1
|
Zheng X, Zhang X, Yu J, Zheng J. Pan-cancer analysis identifies EIPR1 as a potential prognostic and immunological biomarker for lung adenocarcinoma and its functional validation. Gene 2025; 954:149439. [PMID: 40154585 DOI: 10.1016/j.gene.2025.149439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND EARP and GARP complex-interacting protein 1 (EIPR1) may be a new oncogene in tumors, influencing the prognosis and invasion of cancer. However, a systematic analysis of the function of EIPR1 in various cancers remains vacant. Thus, we proceeded with a comprehensive analysis to ascertain the role of EIPR1 among various cancers. METHODS We explored EIPR1 expression in pan-cancer, and its association with clinical stage, survival, gene mutations and methylation by the TIMER 2.0, GEPIA2, cBioPortal, and UALCAN. The protein-protein interaction (PPI) network, immune infiltration, and immune checkpoint assessments of EIPR1 was performed using the STRING and SangerBox. The role of EIPR1 expression in lung adenocarcinoma (LUAD) was explored by the R software. The impact of EIPR1 expression on LUAD progression was studied through in vitro assays. RESULTS EIPR1 was overexpressed in most cancers and revealed as a potential prognostic biomarker in tumors, involving in tumorigenesis by affecting its methylation and gene mutations. The immune infiltration and immune checkpoints of tumors were related to the expression of EIPR1. Additionally, EIPR1 expression affected the survival, diagnosis, clinicopathological features, tumor microenvironment, and drug sensitivity of LUAD patients. Validation studies demonstrated that EIPR1 knockdown suppressed the malignant growth, invasion, and migration of LUAD cells. CONCLUSIONS This study delivers an extensive landscape for the oncogenesis and immunological characteristics of EIPR1, which reveals that EIPR1 may serve as a potential biological target for future prognosis and immune treatment in tumors, especially in LUAD.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang 261041, China
| | - Jie Yu
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China; Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
3
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2025; 28:260-269. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
4
|
Fu S, Yeung CK, Xu RH. Pluripotent stem cell-derived mesenchymal stem cells for therapeutic applications, developmental study, and cancer research. Curr Opin Genet Dev 2025; 92:102327. [PMID: 40054034 DOI: 10.1016/j.gde.2025.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025]
Abstract
Human mesenchymal stem cells (MSCs) have been widely studied and applied for the treatment of various diseases due to their crucial role in tissue repair and regeneration. Compared to MSCs isolated from somatic tissues, MSCs differentiated from human pluripotent stem cells (ps-MSCs) have demonstrated similar therapeutic effects while possessing some advantages in quality control and assurance, given their unlimited and consistent supply of source cells. This makes ps-MSCs highly druggable and promising for therapeutic applications. In this minireview, we introduce the latest progress in ps-MSC research, focusing on the therapeutic properties, origin, in vivo development, and application of ps-MSCs in cancer research. We will also discuss the perspectives and challenges of this relatively new source of MSCs.
Collapse
Affiliation(s)
- Siyi Fu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheung K Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
5
|
Chandra R, Ehab J, Hauptmann E, Gunturu NS, Karalis JD, Kent DO, Heid CA, Reznik SI, Sarkaria IS, Huang H, Brekken RA, Minna JD. The Current State of Tumor Microenvironment-Specific Therapies for Non-Small Cell Lung Cancer. Cancers (Basel) 2025; 17:1732. [PMID: 40507214 PMCID: PMC12153686 DOI: 10.3390/cancers17111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 06/16/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related mortality. Exploration of the tumor microenvironment (TME) has resulted in dramatic advancements in the treatment of NSCLC through the advent of immunotherapy. Indeed, anti-programmed death (PD) ligand 1/PD-1 checkpoint inhibitor therapy has substantially improved survival for advanced, unresectable disease and is now being increasingly utilized in the perioperative setting for early-stage, resectable tumors. This success has generated vigorous interest in exploring other cellular players in the NSCLC TME that could be potentially targeted for therapeutic benefit. In this review, we discuss the current state of therapeutic targets in the NSCLC TME, reflect on the revolution of immunotherapy and future directions for its utilization, and reflect on how the current investigations into TME-specific targets may impact thoracic surgical care.
Collapse
Affiliation(s)
- Raghav Chandra
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
| | - Jasmina Ehab
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (J.E.); (D.O.K.)
| | - Edward Hauptmann
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
| | - Naga Swati Gunturu
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
| | - John D. Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
| | - Daniel O. Kent
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (J.E.); (D.O.K.)
| | - Christopher A. Heid
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.A.H.); (S.I.R.); (I.S.S.)
| | - Scott I. Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.A.H.); (S.I.R.); (I.S.S.)
| | - Inderpal S. Sarkaria
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.A.H.); (S.I.R.); (I.S.S.)
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A. Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (R.C.); (E.H.); (N.S.G.); (J.D.K.); (H.H.); (R.A.B.)
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Zhao S, Zhang Y, Meng X, Wang Y, Li Y, Li H, Zhao X, Yang P, Liu S, Yang C. INHBA + macrophages and Pro-inflammatory CAFs are associated with distinctive immunosuppressive tumor microenvironment in submucous Fibrosis-Derived oral squamous cell carcinoma. BMC Cancer 2025; 25:857. [PMID: 40355814 PMCID: PMC12067746 DOI: 10.1186/s12885-025-14261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Transcriptomic and metabolic profiles of tumor cells and stromal cells in oral squamous cell carcinoma (OSCC)-derived from oral submucosal fibrosis (OSF) (ODSCC) have been reported. However, the complex intercellular regulatory network within the tumor immunosuppressive microenvironment (TISME) in ODSCC remains poorly elucidated. Here, we utilized single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data from GEO database and multiple immunofluorescence staining (mIF) to reveal distinctive TISME of ODSCC. Results found that compared to OSCC without OSF history (NODSCC), OSCC derived from OSF (ODSCC) showed a significant increase in exhausted CD8+T and Treg cells (Ro/e > 1, p < 0.05) and a decrease in cytotoxic T (CTL) (Ro/e < 1). ODSCC enriched in more Inhibin subunit beta A+ Macrophages (INHBA+Mac) and Proinflammatory Cancer-associated Fibroblast (iCAF) versus NODSCC. INHBA+Mac possessed strongest immune-suppressive functions, evidenced by highest immune checkpoint scores, lowest MHC scores and highest expression of SPP1 among macrophages. Moreover, INHBA+Mac in ODSCC presented stronger immune-suppressive functions than that in NODSCC. iCAF differentially highly expressed INHBA and enriched in immune-related pathways and collagen/ECM pathways across CAF subsets, and possessed stronger immune-suppressive functions, as shown by up-regulated gene expression of TDO2, IDO1 and DUSP4 in ODSCC versus in NODSCC. Furthermore, INHBA expression was higher in ODSCC than in NODSCC (p < 0.01). The classic OSF-inducing molecule arecoline significantly increases the expression of INHBA (p < 0.0001) in vitro experiments stimulating THP-1 cells. ST analysis revealed a close co-location of INHBA+Mac, iCAF and Treg and SpaGene identified INHBA-ACVR1/ACVR2A/ACVR2B interaction regions overlapping with distribution of three types of cells. Collectively, ODSCC shows a more severe TISME and potentially poorer sensitivity to immunotherapy than NODSCC. The increased INHBA+Mac and iCAF in ODSCC are associated with the observed more severe TISME. The upregulated INHBA in ODSCC and its interaction with INHBA-ACVR1/ACVR2A/ACVR2B may mediate the modulation effect of INHBA+ Mac and iCAF on Treg differentiation and functionality.
Collapse
Affiliation(s)
- Simin Zhao
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqin Meng
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Ye Wang
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Hao Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Xingyu Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Department of Plastic, Aesthetic, and Burn Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Shaopeng Liu
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, Cho KS, Dai E, Basi A, Burks JK, Rajapakshe KI, Chu Y, Jiang J, Zhang D, Yan X, Guerrero PA, Serrano A, Li M, Hwang TH, Futreal A, Ajani JA, Solis Soto LM, Jazaeri AA, Kadara H, Maitra A, Wang L. Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell 2025; 43:905-924.e6. [PMID: 40154487 PMCID: PMC12074878 DOI: 10.1016/j.ccell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a multifaceted cell population essential for shaping the tumor microenvironment (TME) and influencing therapy responses. Characterizing the spatial organization and interactions of CAFs within complex tissue environments provides critical insights into tumor biology and immunobiology. In this study, through integrative analyses of over 14 million cells from 10 cancer types across 7 spatial transcriptomics and proteomics platforms, we discover, validate, and characterize four distinct spatial CAF subtypes. These subtypes are conserved across cancer types and independent of spatial omics platforms. Notably, they exhibit distinct spatial organizational patterns, neighboring cell compositions, interaction networks, and transcriptomic profiles. Their abundance and composition vary across tissues, shaping TME characteristics, such as levels, distribution, and state composition of tumor-infiltrating immune cells, tumor immune phenotypes, and patient survival. This study enriches our understanding of CAF spatial heterogeneity in cancer and paves the way for novel approaches to target and modulate CAFs.
Collapse
Affiliation(s)
- Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanyuan Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akshay Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kimal I Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae Hyun Hwang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Bao Y, Chen J, Han X, He Y, Yang T, Shi X, Chen J, Gu L, Wang S, Xie L, Wang H, Wang L. Calbindin 2 as a Novel Biomarker and Therapeutic Target for Abdominal Aortic Aneurysm: Integrative Analysis of Human Proteomes and Genetics. J Am Heart Assoc 2025; 14:e039195. [PMID: 40314374 DOI: 10.1161/jaha.124.039195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a clinical life-threatening issue. No pharmacological treatments are currently approved for the prevention and treatment of AAA. Therefore, identifying novel biomarkers and therapeutic targets is crucial for improving AAA management and outcomes. METHODS To identify plasma proteins with potential causal effects on AAA, we integrated genetic evidence from proteome-wide Mendelian randomization, genetic correlation, and colocalization analysis. The role of identified proteins in AAA was further explored through the phenome-wide association study and mediation analysis. Multiomics data analysis, including bulk RNA sequencing, single-cell/single-nucleus RNA sequencing, and spatial transcriptomics, was employed to characterize the expression patterns of these proteins. Experimental validation was performed using an AAA model in apolipoprotein E-deficient mice infused with angiotensin II. Druggability analysis was conducted to identify drug candidates, which were tested in preclinical mouse models. RESULTS CALB2 (calbindin 2) was identified as having a causal effect on AAA and may influence the progression of AAA through the regulation of lipid metabolism. Multiomics analysis revealed that CALB2 is predominantly expressed in the mesothelial cells of adipose tissues. Inhibition of CALB2 in an AAA mouse model alleviated AAA progression. Druggability analysis identified lenalidomide and genistein as potential therapeutic candidates, and experiments confirmed their efficacy in preventing AAA development. CONCLUSIONS This study identifies CALB2 as being associated with an increased risk of AAA and suggests that i might be a novel biomarker and therapeutic molecule for AAA management. Lenalidomide and genistein hold promising potential as treatments for patients with AAA.
Collapse
Affiliation(s)
- Yulin Bao
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Jiayi Chen
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Xudong Han
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Ye He
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Tongtong Yang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Xinying Shi
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Jiawen Chen
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Lingfeng Gu
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Sibo Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu China
| | - Hao Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Liansheng Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
11
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
12
|
Cao M, Peng W, Cheng B, Wang R, Chen W, Liu L, Huang H, Chen S, Cui H, Liang J, Zhou Q, Xiong S, Bai S, Liu L, Zhao Y. PPY-Induced iCAFs Cultivate an Immunosuppressive Microenvironment in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413432. [PMID: 40162859 PMCID: PMC12120788 DOI: 10.1002/advs.202413432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by cancer cells surrounded by affluent stromal components, which may underlie their limited response to various therapeutic interventions, including immunotherapy. Inflammatory cancer-associated fibroblasts (iCAFs), a crucial subset of CAFs within the PDAC microenvironment, play a pivotal role in shaping an immunosuppressive microenvironment. In this study, single-cell RNA sequencing analysis is performed to screen for cancer cells-secreted proteins associated with iCAF induction, and PPY (pancreatic polypeptide) is validated as a potent inducer. Unlike previously reported iCAF inducers, PPY is a gastrointestinal hormone predominantly expressed in the pancreas, suggesting that targeting it may have minimal systemic effects. Multiplex immunohistochemistry (mIHC) on human PDAC tissue microarrays, orthotopic allograft mouse models, and co-culture experiments are utilized to validate the crucial role of PPY in iCAF induction. Mechanistic studies integrating mRNA sequencing, immunoprecipitation-mass spectrometry, and molecular docking reveal that PPY induces iCAFs by activating the non-canonical NF-κB pathway through EGFR. Importantly, targeting PPY enhanced the efficacy of anti-PD-1 immunotherapy in KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre) mice, as evidenced by reduced tumor burden on PET-CT imaging and improved survival. This research is expected to provide a novel strategy for improving immunotherapy in PDAC by targeting a key inducer of iCAFs.
Collapse
Affiliation(s)
- Mengdie Cao
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wang Peng
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bin Cheng
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ronghua Wang
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Wei Chen
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- School of Life SciencesThe Chinese University of Hong KongShatin, New TerritoriesHong Kong999077China
| | - Luyao Liu
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hai Huang
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shiru Chen
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Haochen Cui
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - JingWen Liang
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiaodan Zhou
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Si Xiong
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuya Bai
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Luoxia Liu
- Department of Nuclear MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuchong Zhao
- Department of Gastroenterology and HepatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
13
|
Shakiba M, Tuveson DA. Macrophages and fibroblasts as regulators of the immune response in pancreatic cancer. Nat Immunol 2025; 26:678-691. [PMID: 40263612 DOI: 10.1038/s41590-025-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancers that has yet to benefit from immunotherapies. This is primarily a result of its characteristic 'cold' tumor microenvironment composed of cancer-associated fibroblasts (CAFs), a dense network of extracellular matrix and several immune cell types, the most abundant of which are the tumor-associated macrophages (TAMs). Advances in single-cell and spatial technologies have elucidated the vast functional heterogeneity of CAFs and TAMs, their symbiotic relationship and their cooperative role in the tumor microenvironment. In this Review, we provide an overview of the heterogeneity of CAFs and TAMs, how they establish an immunosuppressive microenvironment and their collaboration in the remodeling of the extracellular matrix. Finally, we examine why the impact of immunotherapy in PDAC has been limited and how a detailed molecular and spatial understanding of the combined role of CAFs and TAMs is paramount to the design of effective therapies.
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
14
|
Tao M, Liu W, Chen J, Liu R, Zou J, Yu B, Wang C, Huang M, Chen Q, Zhang Z, Chen Z, Sun H, Zhou C, Tan S, Zheng Y, Wang H. Transcriptome Landscape of Cancer-Associated Fibroblasts in Human PDAC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415196. [PMID: 40019403 PMCID: PMC12120754 DOI: 10.1002/advs.202415196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the progression of pancreatic ductal adenocarcinoma (PDAC). Here, integrated single-cell RNA sequencing analysis is utilized to comprehensively map CAFs in the human PDAC tumor microenvironment (TME). Normal fibroblasts (NFs) and nine distinct CAF subtypes are identified including newly identified CAF subtypes, CDCP1+FTL+ CAFs, transitional CAFs (tCAFs), interferon simulated genes (ISG)+ myofibroblastic CAFs (myCAFs), and proliferative CAFs (pCAFs). CDCP1+FTL+ CAFs, pCAFs, and ISG+ myCAFs are associated with unfavorable clinical outcomes. CDCP1+FTL+ CAFs exhibit enhanced glycolysis and iron metabolism, resisting ferroptosis. The antigen-presenting CAFs (apCAFs) show high heterogeneity, consisting of multiple subtypes expressing distinct immune cell signatures. The CAF subtypes display differentiation plasticity, transitioning from early normal-like CAFs (nCAFs) to inflammatory CAFs (iCAFs) and myCAFs, ultimately leading to more invasive pCAFs. AP-1 family members FOS and JUN regulate the malignant phenotype conversion of NFs to nCAFs, while transforming growth factor-β (TGFβ) and interferon-γ (IFNγ) signals trigger the interconversion between classic myCAFs and iCAFs, respectively. A close interaction between CAFs and myeloid cells (especially neutrophils) is further observed in PDAC-TME, mainly mediated by CXCR4-CXCL12 chemotaxis. This work depicts a detailed CAF map and its dynamic interconvertible shift, providing important insights for combined targeted CAFs therapy.
Collapse
Affiliation(s)
- Mengyu Tao
- Department of OncologyShanghai General HospitalShanghai Jiaotong University School of MedicineShanghai200800P. R. China
| | - Wenting Liu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jianhua Chen
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Rujiao Liu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jianling Zou
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Bo Yu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Chenchen Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Mingzhu Huang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qingjian Chen
- Department of OncologyShanghai General HospitalShanghai Jiaotong University School of MedicineShanghai200800P. R. China
| | - Zhe Zhang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Zhiyu Chen
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Haoyu Sun
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Department of ImmunologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Cheng Zhou
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Shuguang Tan
- The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yuxuan Zheng
- Human Phenome InstituteMinhang HosptialFudan UniversityShanghai201203P. R. China
| | - Hongxia Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
15
|
Liu Y, Zhang X, Gu W, Su H, Wang X, Wang X, Zhang J, Xu M, Sheng W. Unlocking the crucial role of cancer-associated fibroblasts in tumor metastasis: Mechanisms and therapeutic prospects. J Adv Res 2025; 71:399-413. [PMID: 38825314 DOI: 10.1016/j.jare.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tumor metastasis represents a stepwise progression and stands as a principal determinant of unfavorable prognoses among cancer patients. Consequently, an in-depth exploration of its mechanisms holds paramount clinical significance. Cancer-associated fibroblasts (CAFs), constituting the most abundant stromal cell population within the tumor microenvironment (TME), have garnered robust evidence support for their pivotal regulatory roles in tumor metastasis. AIM OF REVIEW This review systematically explores the roles of CAFs at eight critical stages of tumorigenic dissemination: 1) extracellular matrix (ECM) remodeling, 2) epithelial-mesenchymal transition (EMT), 3) angiogenesis, 4) tumor metabolism, 5) perivascular migration, 6) immune escape, 7) dormancy, and 8) premetastatic niche (PMN) formation. Additionally, we provide a compendium of extant strategies aimed at targeting CAFs in cancer therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW This review delineates a structured framework for the interplay between CAFs and tumor metastasis while furnishing insights for the potential therapeutic developments. It contributes to a deeper understanding of cancer metastasis within the TME, facilitating the utilization of CAF-targeting therapies in anti-metastatic approaches.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Hui Su
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Jiayu Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Liu M, Li TZ, Xu C. The role of tumor-associated fibroblast-derived exosomes in chemotherapy resistance of colorectal cancer and its application prospect. Biochim Biophys Acta Gen Subj 2025; 1869:130796. [PMID: 40122307 DOI: 10.1016/j.bbagen.2025.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor in the world. With its increasing incidence and younger age trend, its impact on human health has been paid more and more attention. Currently, we have a variety of chemotherapy drugs that can be used to treat colorectal cancer. However, the drug resistance of colorectal cancer has become a significant factor affecting its cure rate. Some studies have reported that exosomes are related to the occurrence of drug resistance. However, the exact mechanism is not precise. Therefore, we focused on the role of cancer associated-fibroblast-derived (CAFs-derived) exosomes in colorectal progression. It was found that cancer cells transmit information through exosome interaction and induce chemotherapy resistance by promoting epithelial-mesenchymal transition (EMT), up-regulating the Wnt/β-catenin signaling pathway, transforming growth factor-β1 (TGF-β1) pathway, promoting angiogenesis and other possible molecular mechanisms. In addition, in terms of clinical significance and therapeutic strategies, we explore the clinical relevance of CAFs-derived exosomes in colorectal cancer patients and their potential as potential biomarkers for predicting chemotherapy response. We also provide a new possible direction for overcoming chemotherapy resistance in colorectal cancer by targeting CAFs-derived exosomes.
Collapse
Affiliation(s)
- Meichen Liu
- The Second Clinical Medical College, Nanchang University, NanChang, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China.
| |
Collapse
|
17
|
Sheng R, Yin Y, Wang X. Mesothelial and immune cells interplay in the tumor microenvironment. Trends Mol Med 2025:S1471-4914(25)00086-3. [PMID: 40307075 DOI: 10.1016/j.molmed.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/21/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
Mesothelial cells (MCs) constitute a dynamic mesothelium in which their numerous crucial functions synergistically interact with other cells to maintain serosal integrity and homeostasis. Previous studies have confirmed the crucial role of interactions between MCs and tumor cells in tumorigenesis and progression in the tumor microenvironment (TME). However, recent research has found that MCs can induce an immunosuppressive microenvironment by secreting various cytokines, chemokines, and exosomes which recruit immunosuppressive cells or interact with immune cells, thus contributing to tumor progression. This review primarily examines the immunoregulatory role of MCs in the TME of mesothelioma and metastatic pleural and peritoneal carcinomas. It also explores the potential mechanisms by which these interactions induce immunosuppression and their impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Rong Sheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
18
|
Weber F, Reese KL, Pantel K, Smit DJ. Cancer-associated fibroblasts as a potential novel liquid biopsy marker in cancer patients. J Exp Clin Cancer Res 2025; 44:127. [PMID: 40259388 PMCID: PMC12010557 DOI: 10.1186/s13046-025-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are tissue residing cells within the tumor microenvironment (TME). Stromal CAFs have been shown to be associated with poor prognosis and tumor progression in several solid tumor entities. Although the molecular mechanisms are not fully understood yet, a critical role within the TME through direct interaction with the tumor cells as well as other cells has been proposed. While most studies on CAFs focus on stromal CAFs, recent reports highlight the possibility of detecting circulating CAFs (cCAFs) in the blood. In contrast to invasive tissue biopsies for stromal CAF characterization, liquid biopsy allows a minimally invasive isolation of cCAFs. Furthermore, liquid biopsy methods could enable continuous monitoring of cCAFs in cancer patients and therefore may present a novel biomarker for solid tumors. In this work, we present an overview of cCAF studies currently available and summarize the liquid biopsy techniques for cCAF isolation and detection. Moreover, the future research directions in the emerging field are highlighted and the potential applications of cCAFs as novel biomarkers for solid tumor patients discussed.
Collapse
Affiliation(s)
- Franziska Weber
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Lloyd EG, Jihad M, Manansala JS, Li W, Cheng PS, Mucciolo G, Zaccaria M, Teles SP, Henríquez JA, Harish S, Brais R, Ashworth S, Luo W, Johnson PM, Veghini L, Vallespinos M, Corbo V, Biffi G. SMAD4 and KRAS Status Shapes Cancer Cell-Stromal Cross-Talk and Therapeutic Response in Pancreatic Cancer. Cancer Res 2025; 85:1368-1389. [PMID: 39841099 PMCID: PMC7617379 DOI: 10.1158/0008-5472.can-24-2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on preclinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase the understanding of malignant cell-stromal cell cross-talk in PDAC. In this study, we used single-cell RNA sequencing to analyze the cellular landscape of Trp53-mutant mouse models driven by KrasG12D or KrasG12V, in which Smad4 was wild type or deleted. KrasG12DSmad4-deleted PDAC developed a fibro-inflammatory rich stroma with increased malignant JAK/STAT cell signaling and enhanced therapeutic response to JAK/STAT inhibition. SMAD4 loss in KrasG12V PDAC differently altered the tumor microenvironment compared with KrasG12D PDAC, and the malignant compartment lacked JAK/STAT signaling dependency. Thus, malignant cell genotype affects cancer cell and stromal cell phenotypes in PDAC, directly affecting therapeutic efficacy. Significance: SMAD4 loss differentially impacts malignant cell-stromal cell signaling and treatment sensitivity of pancreatic tumors driven by KRASG12D or KRASG12V, highlighting the importance of understanding genotype-phenotype relationships for precision therapy.
Collapse
Affiliation(s)
- Eloise G. Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Muntadher Jihad
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Judhell S. Manansala
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Wenlong Li
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Priscilla S.W. Cheng
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Gianluca Mucciolo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Marta Zaccaria
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sara Pinto Teles
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sneha Harish
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Rebecca Brais
- Histopathology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | - Sally Ashworth
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Weike Luo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Paul M. Johnson
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Mireia Vallespinos
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| |
Collapse
|
20
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
21
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Guo J, Wang K, Sun Q, Liu J, Zheng J. Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition. Cell Biol Toxicol 2025; 41:67. [PMID: 40186771 PMCID: PMC11972216 DOI: 10.1007/s10565-025-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Examining the communications in the tumor microenvironment (TME) specific to hepatocellular carcinoma (HCC), this exploration looks into the role played by beta-1,4-Galactosyltransferase III (B4GALT3) in bone marrow mesenchymal stromal cell-derived extracellular vesicles (BMSCs-EVs) regarding the NF-κB pathway and the triggering of cancer-associated fibroblasts (CAF). Through a multidisciplinary approach combining transcriptome sequencing, bioinformatic analysis, and various experimental models, the involvement of B4GALT3 in regulating CAF activity by modulating NF-κB signaling was brought to light in our study. The outcomes suggest that targeting B4GALT3 could impede HCC cell migration and invasion, promote apoptosis, and dampen tumor progression and metastasis, offering novel insights into potential therapeutic strategies for combating HCC.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Qigang Sun
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
23
|
Pan Y, Qiu Y, Zhou X, Mao W, Xu X. Cancer-associated fibroblasts: multidimensional players in liver cancer. Front Oncol 2025; 15:1454546. [PMID: 40248197 PMCID: PMC12003132 DOI: 10.3389/fonc.2025.1454546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), control tumor growth through production and organization of the extracellular matrix (ECM) for a long time. However, the results from different studies that have focused on targeting CAFs to disturb tumor progression are extremely controversial. Recent studies using advanced single-cell RNA sequencing technology (scRNAseq) combined with multiple genetically engineered mouse models have identified diverse CAF subpopulations in the premalignant liver microenvironment (PME) of hepatocellular carcinoma (HCC) and TME of intrahepatic cholangiocarcinoma (ICC), providing a deeper understanding of the exact roles of each CAF subpopulation in cancer development. This review focuses on the specific protein markers, signaling pathways, and functions of various emerging CAF subclusters that contribute to the development of ICC and HCC. Elucidating the role and regulation of CAF subpopulations under different pathophysiological conditions will facilitate the discovery of new therapeutics that modulate CAF activity.
Collapse
Affiliation(s)
- Yanyun Pan
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuangang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wei Mao
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Hangzhou, China
| | - Xiaoming Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
24
|
Yang J, Xin B, Wang X, Wan Y. Cancer-associated fibroblasts in breast cancer in the single-cell era: Opportunities and challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189291. [PMID: 40024607 DOI: 10.1016/j.bbcan.2025.189291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women, and its progression is closely linked to the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), key components of the TME, play a crucial role in promoting tumor growth by driving cancer cell proliferation, invasion, extracellular matrix (ECM) remodeling, inflammation, chemoresistance, and immunosuppression. CAFs exhibit considerable heterogeneity and are classified into subgroups based on different combinations of biomarkers. Single-cell RNA sequencing (scRNA-seq) enables high-throughput and high-resolution analysis of individual cells. Relying on this technology, it is possible to cluster complex CAFs according to different biomarkers to analyze the specific phenotypes and functions of different subpopulations. This review explores CAF clusters in breast cancer and their associated biomarkers, highlighting their roles in disease progression and potential for targeted therapies.
Collapse
Affiliation(s)
- Jingtong Yang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Xiaoyu Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
25
|
Kang SW, Helm BR, Wang Y, Xiao S, Zhang W, Vasudev A, Lau KS, Liu Q, Richie ER, Hale LP, Manley NR. Insulin-like growth factor 2 as a driving force for exponential expansion and differentiation of the neonatal thymus. Development 2025; 152:dev204347. [PMID: 40110795 PMCID: PMC12045631 DOI: 10.1242/dev.204347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Like all organs, the thymus grows in size and function rapidly during development, but this growth comes to a halt after birth. However, the molecular mechanisms behind such a transition in the thymus remain obscure. Using single-cell RNA sequencing (scRNA-seq) of the murine thymic stroma, we identified that major transcriptomic changes occur in the endothelium and mesenchyme across the transition to homeostasis. Differentially expressed gene and intercellular network analyses of temporally resolved scRNA-seq data revealed fibroblast-derived insulin-like growth factor 2 (IGF2) as a candidate driving neonatal thymic expansion. We demonstrated that IGF2 activity promotes a cortical thymic epithelial cell-specific proliferation and is tightly regulated at the thymic growth transition. Bulk RNA-seq of human thymi across the transition also revealed that IGF2 drives thymic expansion, suggesting an evolutionarily conserved role. Our study highlights the role of fibroblast-derived IGF2 in promoting cortical thymic epithelial cell proliferation and differentiation, resulting in early thymic expansion that is followed by downregulation to establish homeostasis.
Collapse
Affiliation(s)
- Seung Woo Kang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Bryan R. Helm
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shiyun Xiao
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Wen Zhang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Anusha Vasudev
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken S. Lau
- Epithlielial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura P. Hale
- Department of Pathology and the Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nancy R. Manley
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
26
|
Maru SY, Wetzel M, Mitchell JT, Gross NE, Andaloori L, Howe K, Kartalia E, Mo G, Leatherman J, Ho WJ, Fertig EJ, Kagohara LT, Pearce EJ, Jaffee EM. Antigen-presenting cancer-associated fibroblasts in murine pancreatic tumors differentially control regulatory T cell phenotype and function via CXCL9 and CCL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645833. [PMID: 40236227 PMCID: PMC11996409 DOI: 10.1101/2025.03.27.645833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a complex tumor microenvironment (TME) including stromal cells that influence resistance to therapy. Recent studies have revealed that stromal cancer-associated fibroblasts (CAFs) are heterogeneous in origin, gene expression, and function. Antigen-presenting CAFs (apCAFs), are defined by major histocompatibility complex (MHC)-II expression and can activate effector CD4 + T cells that have the potential to contribute to the anti-cancer immune response, but also can induce regulatory T cell (Treg) differentiation. Whether apCAFs promote or restrain the antitumor response remains uncertain. Using tumor clones of the KPC murine PDAC model differing in sensitivity to immune checkpoint blockade (ICB), we found that immunosensitive (sKPC) tumors were characterized by higher immune cell and apCAF infiltration than resistant (rKPC) tumors. IMC analysis showed proximity of apCAFs and CD4 + T cells in both sKPC and rKPC tumors implicating interaction within the TME. apCAF-depleted sKPC tumor-bearing mice had diminished sensitivity to ICB. apCAFs from both sKPC and rKPC tumors activated tumor-infiltrating CD4 + T cells and induced Treg differentiation. However, transcriptomic analysis showed that Tregs induced by apCAFs were overexpressed for immunosuppressive genes in rKPCs relative to sKPCs, and that this is associated with differential chemokine signaling from apCAFs depending on tumor origin. Together these data implicate apCAFs as important mediators of the antitumor immune response, modulation of which could facilitate the development of more effective anti-tumor immune based approaches for PDAC patients.
Collapse
|
27
|
Wang S, Van KV, Zheng M, Chen WL, Ma YS. High antigen-presenting CAF levels correlate with reduced glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism in immune cells and poor prognosis in esophageal squamous cell carcinoma: Insights from bulk and single-cell transcriptome profiling. Int J Biol Macromol 2025; 301:140418. [PMID: 39889995 DOI: 10.1016/j.ijbiomac.2025.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
In esophageal squamous cell carcinoma (ESCC), the tumor microenvironment (TME) is characterized by a significant accumulation of cancer-associated fibroblasts (CAFs), which play a pivotal role in the host response against tumor cells. While fibroblasts are known to be crucial in the metabolic reprogramming of the TME, the specific metabolic alterations induced by these cells remain largely undefined. Utilizing single-cell RNA sequencing, we have identified a distinct subpopulation of antigen-presenting CAF (apCAF) within ESCC tumors. Our findings reveal that apCAF contribute to adverse patient outcomes by remodeling the tumor metabolic environment. Notably, apCAF modulate the glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism pathway in T cells, B cells, and macrophages. Disruption of this pathway may facilitate immune evasion by the tumor. These insights underscore the critical role of CAFs in shaping the metabolic landscape of the TME and lay the groundwork for developing therapeutic strategies aimed at enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Kelly Van Van
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Miaomiao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China.
| |
Collapse
|
28
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
29
|
Kay EJ, Zanivan S. The tumor microenvironment is an ecosystem sustained by metabolic interactions. Cell Rep 2025; 44:115432. [PMID: 40088447 DOI: 10.1016/j.celrep.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) and immune cells make up two major components of the tumor microenvironment (TME), contributing to an ecosystem that can either support or restrain cancer progression. Metabolism is a key regulator of the TME, providing a means for cells to communicate with and influence each other, modulating tumor progression and anti-tumor immunity. Cells of the TME can metabolically interact directly through metabolite secretion and consumption or by influencing other aspects of the TME that, in turn, stimulate metabolic rewiring in target cells. Recent advances in understanding the subtypes and plasticity of cells in the TME both open up new avenues and create challenges for metabolically targeting the TME to hamper tumor growth and improve response to therapy. This perspective explores ways in which the CAF and immune components of the TME could metabolically influence each other, based on current knowledge of their metabolic states, interactions, and subpopulations.
Collapse
Affiliation(s)
- Emily Jane Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK.
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Walsh RM, Ambrose J, Jack JL, Eades AE, Bye BA, Tannus Ruckert M, Messaggio F, Olou AA, Chalise P, Pei D, VanSaun MN. Depletion of tumor-derived CXCL5 improves T cell infiltration and anti-PD-1 therapy response in an obese model of pancreatic cancer. J Immunother Cancer 2025; 13:e010057. [PMID: 40121029 PMCID: PMC11931939 DOI: 10.1136/jitc-2024-010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. CXC-ligands are a family of cytokines responsible for stimulating these receptors; while typically secreted by activated immune cells, fibroblasts, and even adipocytes, they are also secreted by immune-evasive cancer cells. CXC-ligand release is known to occur in response to inflammatory stimuli. Adipose tissue is an endocrine organ and a source of inflammatory signaling peptides. Importantly, adipose-derived cytokines and chemokines are implicated as potential drivers of tumor cell immune evasion; cumulatively, these findings suggest that targeting CXC-ligands may be beneficial in the context of obesity. METHODS RNA-sequencing of human PDAC cell lines was used to assess influences of adipose conditioned media on the cancer cell transcriptome. The adipose-induced secretome of PDAC cells was validated with ELISA for induction of CXCL5 secretion. Human tissue data from CPTAC was used to correlate IL-1β and TNF expression with both CXCL5 mRNA and protein levels. CRISPR-Cas9 was used to knockout CXCL5 from a murine PDAC KPC cell line to assess orthotopic tumor studies in syngeneic, diet-induced obese mice. Flow cytometry and immunohistochemistry were used to compare the immune profiles between tumors with or without CXCL5. Mice-bearing CXCL5 competent or deficient tumors were monitored for differential tumor size in response to anti-PD-1 immune checkpoint blockade therapy. RESULTS Human adipose tissue conditioned media stimulates CXCL5 secretion from PDAC cells via either IL-1β or TNF; neutralization of both is required to significantly block the release of CXCL5 from tumor cells. Ablation of CXCL5 from tumors promoted an enriched immune phenotype with an unanticipatedly increased number of exhausted CD8 T cells. Application of anti-PD-1 treatment to control tumors failed to alter tumor growth, yet treatment of CXCL5-deficient tumors showed response by significantly diminished tumor mass. CONCLUSIONS In summary, our findings show that both TNF and IL-1β can stimulate CXCL5 release from PDAC cells in vitro, which correlates with expression in patient data. CXCL5 depletion in vivo alone is sufficient to promote T cell infiltration into tumors, increasing efficacy and requiring checkpoint blockade inhibition to alleviate tumor burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanuel Messaggio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Prabhakar Chalise
- Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
- The University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Dong Pei
- Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
- The University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Michael N VanSaun
- Cancer Biology, KUMC, Kansas City, Kansas, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
31
|
Cao Z, Meng Z, Li J, Tian Y, Lu L, Wang A, Huang J, Wang J, Sun J, Chen L, Lu S, Li Z. Interferon-γ-stimulated antigen-presenting cancer-associated fibroblasts hinder neoadjuvant chemoimmunotherapy efficacy in lung cancer. Cell Rep Med 2025; 6:102017. [PMID: 40056907 PMCID: PMC11970394 DOI: 10.1016/j.xcrm.2025.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/06/2024] [Accepted: 02/14/2025] [Indexed: 03/21/2025]
Abstract
Conventional neoadjuvant chemotherapy provides limited benefit for patients with resectable non-small cell lung cancer (NSCLC). Recently, neoadjuvant chemoimmunotherapy (NCIT) has transformed the perioperative management of NSCLC by priming systemic anti-tumor immunity before surgery, yet it remains ineffective for at least 50% of patients. Through single-cell sequencing analysis of our NCIT cohort, we identify that antigen-presenting cancer-associated fibroblasts (apCAFs) can impede the efficacy of NCIT. Using a custom cancer-associated fibroblast biobank, we uncover that interferon (IFN)-γ stimulates apCAF expansion via the JAK1/2-STAT1-IFI6/27 pathway. Mechanistically, apCAFs significantly contribute to PD-L2 expression in the tumor microenvironment (TME), triggering the accumulation of FOXP1+regulatory T cells (Tregs) through the PD-L2-RGMB axis. Reprogramming apCAFs by inhibiting the IFN-γ pathway or blocking the PD-L2-RGMB axis substantially mitigates apCAFs-mediated FOXP1+Tregs' expansion. In summary, we reveal the role of apCAFs in compromising NCIT efficacy and propose applications for anti-PD-L2/RGMB regimens to synergize with anti-PD1 therapies by targeting apCAFs.
Collapse
Affiliation(s)
- Zhengqi Cao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Zhouwenli Meng
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jian Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Li Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Anni Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jingze Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jing Sun
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Lixuan Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| |
Collapse
|
32
|
Zhang X, Ren B, Liu B, Wang R, Li S, Zhao Y, Zhou W. Single-cell RNA sequencing and spatial transcriptomics reveal the heterogeneity and intercellular communication of cancer-associated fibroblasts in gastric cancer. J Transl Med 2025; 23:344. [PMID: 40102930 PMCID: PMC11917039 DOI: 10.1186/s12967-025-06376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignancy characterized by a complex tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are a key component of the TME, exhibit significant heterogeneity and play crucial roles in tumor progression. Therefore, a comprehensive understanding of CAFs is essential for developing novel therapeutic strategies for gastric cancer. METHODS This study investigates the characteristics and functional information of CAF subtypes and explores the intercellular communication between CAFs and malignant epithelial cells (ECs) in gastric cancer by analyzing single-cell sequencing data from 24 gastric cancer samples. CellChat was employed to map intercellular communication, and Seurat was used to integrate single-cell sequencing data with spatial transcriptome data to reconstruct a comprehensive single-cell spatial map. The spatial relationship between apCAFs and cancer cells was analyzed using multicolor immunohistochemistry. RESULTS Cells were categorized into nine distinct categories, revealing a positive correlation between the proportions of epithelial cells (ECs) and fibroblasts. Furthermore, six fibroblast subpopulations were identified: inflammatory (iCAFs), pericytes, matrix (mCAFs), antigen-presenting (apCAFs), smooth muscle cells (SMCs), and proliferative CAFs (pCAFs). Each of these subpopulations was linked to various biological processes and immune responses. Malignant ECs exhibited heightened intercellular communication, particularly with CAF subpopulations, through specific ligand-receptor interactions. High-density regions of CAF subpopulations displayed spatial exclusivity, with pericytes serving as a source for iCAFs, mCAFs, and apCAFs. Notably, malignant ECs and apCAFs showed increased interactions, with certain ligand-receptor pairs potentially impacting the prognosis of gastric cancer. Multiplex immunohistochemistry (mIHC) confirmed the close spatial proximity of apCAFs to cancer cells in gastric cancer. CONCLUSION Our study provided a comprehensive characterization of CAF heterogeneity in gastric cancer and revealed the intricate intercellular networks within the TME. The identified CAF subpopulations and their interactions with malignant cells could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Xijie Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Rui Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Sen Li
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuzhou Zhao
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China.
| |
Collapse
|
33
|
Chang J, Lu J, Liu Q, Xiang T, Zhang S, Yi Y, Li D, Liu T, Liu Z, Chen X, Dong Z, Li C, Yi H, Yu S, Huang L, Qu F, Wang M, Wang D, Dong H, Cheng G, Zhu L, Li J, Li C, Wu P, Xie X, Teschendorff AE, Lin D, Wang X, Wu C. Single-cell multi-stage spatial evolutional map of esophageal carcinogenesis. Cancer Cell 2025; 43:380-397.e7. [PMID: 40068596 DOI: 10.1016/j.ccell.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Cancer development involves the co-evolution of cancer cells and their surrounding microenvironment, yet the dynamics of this interaction within the physical architecture remains poorly understood. Here, we present a spatial transcriptomic map at single-cell resolution, encompassing 127 multi-stage fields of view from 43 patients, to chart the evolutionary trajectories of human esophageal squamous cell carcinoma (ESCC). By analyzing 6.4 million cells, we reveal that ESCC progression is driven by a proliferative epithelial cell subpopulation that acquires dedifferentiated and invasive characteristics. At the late precancerous stage, these cells disrupt the epithelial-stromal interface and recruit normal fibroblasts via JAG1-NOTCH1 signaling, transforming them into cancer-associated fibroblasts (CAFs). This interaction leads to the formation of a "CAF-Epi" (CAF and epithelial cell) niche at the tumor edge that shields the tumor from immune surveillance. The CAF-Epi niche formation is a key indicator of progression in ESCC and other squamous cell carcinomas and patient outcomes.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxu Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenghao Dong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Cainan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - HanZhang Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Siqi Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Fangfei Qu
- Changping Laboratory, Beijing 102206, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Dehe Wang
- Changping Laboratory, Beijing 102206, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenying Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pujie Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoting Xie
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Xiaoqun Wang
- Changping Laboratory, Beijing 102206, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
34
|
Liu X, Yang J, Huang S, Hong Y, Zhu Y, Wang J, Wang Y, Liang T, Bai X. Pancreatic cancer-derived extracellular vesicles enhance chemoresistance by delivering KRAS G12D protein to cancer-associated fibroblasts. Mol Ther 2025; 33:1134-1153. [PMID: 39810420 PMCID: PMC11897769 DOI: 10.1016/j.ymthe.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
KRAS mutations are instrumental in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the efficacy of direct targeting of KRAS mutations to inhibit tumor development remains doubtful. It is therefore necessary to gain a deeper insight into the mechanism in which KRAS mutations influence the effectiveness of clinical treatments. In this study, KRASG12D protein was detected in cancer-associated fibroblasts (CAFs) from clinical samples of PDAC. In vitro experiments demonstrated that KRASG12D protein in CAFs was not expressed from its own mutant gene but was derived from the ingestion of tumor cell-derived extracellular vesicles (EVs). The presence of KRASG12D protein in CAFs resulted in enhanced proliferation and migration. Furthermore, KRASG12D-containing CAFs were observed to promote tumor chemoresistance to gemcitabine treatment both in vitro and in vivo. Application of a KRAS mutation-specific inhibitor, MRTX1133, has been demonstrated to reverse chemoresistance in PDAC. Moreover, clinical data suggest that patients with KRAS mutations have poorer prognosis following adjuvant chemotherapy. These findings elucidate the mechanism by which oncogenic KRAS mutations promote cancer chemoresistance and remodel tumor environment in a non-autonomous manner, suggesting a novel strategy for targeting KRAS mutations to enhance chemosensitivity in PDAC.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yupeng Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jianing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Liao T, Chen X, Qiu F, Zhang X, Wu F, Zhao Z, Xu M, Chen M, Shen JW, Shen Q, Ji J. Regulation of cancer-associated fibroblasts for enhanced cancer immunotherapy using advanced functional nanomedicines: an updated review. J Nanobiotechnology 2025; 23:166. [PMID: 40038745 PMCID: PMC11877876 DOI: 10.1186/s12951-025-03217-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that plays a critical role in cancer progression. It comprises various cell types, including immune cells, tumor cells, and stromal cells. Among these, cancer-associated fibroblasts (CAFs) represent a heterogeneous population with diverse origins, phenotypes, and functions. Activated CAFs secrete multiple factors that promote tumor growth, migration, angiogenesis, and contribute to chemoresistance. Additionally, CAFs secrete extracellular matrix (ECM) components, such as collagen, which form a physical barrier that hinders the penetration of chemotherapeutic and immunotherapeutic agents. This ECM also influences immune cell infiltration, impeding their ability to effectively target tumor cells. As a result, modulating the activity of CAFs has emerged as a promising strategy to enhance the efficacy of tumor immunotherapy. Nano-delivery systems, constructed from various nanomaterials with high targeting specificity and biocompatibility, offer a compelling approach to deliver therapeutic agents or immunomodulatory factors directly to CAFs. This modulation can alter CAF function, reduce their tumor-promoting effects, and thereby improve the outcomes of immunotherapy. This review provides an in-depth exploration of the origins, functions, and interactions of CAFs within the TME, particularly in the context of immune suppression. Furthermore, it discusses the potential applications of functional nanocarrifers in modulating CAFs and enhancing the effectiveness of tumor immunotherapy, highlighting the significant progress and potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Tingting Liao
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fengkai Qiu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ming Xu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Jia-Wei Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qiying Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiansong Ji
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China.
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
36
|
Song J, Wei R, Liu C, Zhao Z, Liu X, Wang Y, Liu F, Liu X. Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response. Nat Commun 2025; 16:2175. [PMID: 40038297 PMCID: PMC11880398 DOI: 10.1038/s41467-025-57465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Cancer-associated fibroblasts (CAF) play a crucial role in tumor progression and immune regulation. However, the functional heterogeneity of CAFs remains unclear. Here, we identify antigen-presenting CAFs (apCAF), characterized by high MHC II expression, in gastric cancer (GC) tumors and find that apCAFs are preferentially located near tertiary lymphoid structures. Both in vivo and in vitro experiments demonstrate that apCAFs promote T cell activation and enhances its cytotoxic and proliferative capacities, thereby strengthening T cell-mediated anti-tumor immunity. Additionally, apCAFs facilitate the polarization of macrophages toward a pro-inflammatory phenotype. These polarized macrophages, in turn, promote the formation of apCAFs, creating a positive feedback loop that amplifies anti-tumor immune responses. Notably, baseline tumors in immunotherapy responders across various cancer types exhibit higher levels of apCAFs infiltration. This study advances the understanding of CAFs heterogeneity in GC and highlights apCAFs as a potential biomarker for predicting immunotherapy response in pan-cancer.
Collapse
Affiliation(s)
- Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuanjun Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Fenglin Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S, Bian X, Wong MH, Cao Q, Cheng L, Lu G, Leung KS. STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes. Genome Med 2025; 17:18. [PMID: 40033360 PMCID: PMC11874447 DOI: 10.1186/s13073-025-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Here we present STModule, a Bayesian method developed to identify tissue modules from spatially resolved transcriptomics that reveal spatial components and essential characteristics of tissues. STModule uncovers diverse expression signals in transcriptomic landscapes such as cancer, intraepithelial neoplasia, immune infiltration, outcome-related molecular features and various cell types, which facilitate downstream analysis and provide insights into tumor microenvironments, disease mechanisms, treatment development, and histological organization of tissues. STModule captures a broader spectrum of biological signals compared to other methods and detects novel spatial components. The tissue modules characterized by gene sets demonstrate greater robustness and transferability across different biopsies. STModule: https://github.com/rwang-z/STModule.git .
Collapse
Affiliation(s)
- Ran Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yan Qian
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiaojing Guo
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Zhiqiang Xiong
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiuwu Bian
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Lixin Cheng
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong Island, Hong Kong, 999077, China.
| |
Collapse
|
38
|
Zheng Y, Shao W, Ge T, Ge S, Jia R, Yang L, Zhuang A. Cancer-Associated Fibroblast Signature Can Predict Prognosis and Therapeutic Responses in Skin Cutaneous Melanoma. Pigment Cell Melanoma Res 2025; 38:e70005. [PMID: 40012115 DOI: 10.1111/pcmr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Skin cutaneous melanoma (SKCM) is a lethal skin cancer with a poor prognosis and limited response to immunotherapy. Cancer-associated fibroblasts (CAFs) are key contributors to tumor progression, therapy resistance, and immunosuppression. In this study, mRNA sequencing and clinical data from SKCM samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to evaluate the prognostic significance, therapeutic implications, and potential for enhancing immunotherapy through targeting CAFs in SKCM. A CAF-related risk model comprising nine genes was developed, revealing that patients classified as low-risk exhibited superior survival outcomes and increased sensitivity to immunotherapy. Spearman correlation analysis identified significant associations between the risk score and the sensitivity to 40 drugs, as well as resistance to 17 drugs. Additionally, CAFs were categorized into three distinct subgroups in SKCM, with antigen-presenting CAFs (apCAFs) notably suppressing the infiltration of anti-tumor immune cells and strongly correlating with poor prognosis. In summary, the CAF-related risk model offers a robust prognostic tool for SKCM, capable of predicting both survival outcomes and therapeutic sensitivity. Moreover, the pivotal role of apCAFs within the immune microenvironment suggests that targeting these cells may enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yue Zheng
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Weihuan Shao
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Tongxin Ge
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Ludi Yang
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Ai Zhuang
- State Key Laboratory of Eye Health, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Li Q, Xiao Y, Han L, Luo W, Dai W, Fang H, Wang R, Xu Y, Cai S, Goel A, Bai F, Cai G. Microbiome dysbiosis, neutrophil recruitment and mesenchymal transition of mesothelial cells promotes peritoneal metastasis of colorectal cancer. NATURE CANCER 2025; 6:493-510. [PMID: 39966610 DOI: 10.1038/s43018-025-00910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Peritoneal metastasis (PM) is common in colorectal cancer (CRC), yet its underlying mechanisms are poorly understood. Here, we explored the transcriptional profile of CRC, PM and adjacent tissues revealing key players that facilitate PM. Single-cell analysis of 48 matched samples from 12 patients revealed that remodeling of malignant cells and the tumor microenvironment promotes CRC progression and metastasis. Multiplexed imaging confirmed depletion in PM by enrichment in CRC tissues of neutrophils associated with mucosal immunity disruption, intestinal microbiota dysbiosis and mesenchymal transition of both cancerous and mesothelial cells. Functional analyses in cell lines, organoids and in vivo models demonstrated that dysbiosis promoted inflammation and protumor neutrophil recruitment, while coupled mesenchymal transition of malignant and mesothelial cells disrupted the stromal structure and increased cancer cell invasiveness. Our findings suggest that targeting mesothelial cells and tumor microenvironment remodeling may offer therapeutic strategies for CRC-PM.
Collapse
Affiliation(s)
- Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiwei Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqin Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, China.
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
41
|
Ren Q, Vermeulen L. Shaping the microenvironment in peritoneal metastases. NATURE CANCER 2025; 6:412-414. [PMID: 39966609 DOI: 10.1038/s43018-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Affiliation(s)
- Qihao Ren
- Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Louis Vermeulen
- Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
42
|
Cai Z, Li Z, Zhong W, Lin F, Dong X, Ye H, Guo Y, Chen G, Yu X, Yu H, Tang R, Liu X. Targeting Mesothelin Enhances Personalized Neoantigen Vaccine Induced Antitumor Immune Response in Orthotopic Pancreatic Cancer Mouse Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407976. [PMID: 39887656 PMCID: PMC11948035 DOI: 10.1002/advs.202407976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/25/2024] [Indexed: 02/01/2025]
Abstract
The immunosuppressive microenvironment in pancreatic cancer, characterized by low tumor-specific T cells and excessive fibrosis, limits the effectiveness of immunotherapy. Here, three datasets and multi-immunofluorescence staining of tissue microarrays in pancreatic cancer indicate that mesothelin (MSLN) expression negatively correlates with cytotoxic T cells in tumor. Anti-MSLN antibody (αMSLN) treatment of pancreatic cancer in vivo can significantly increase T cell infiltration. Meanwhile, the combination of αMSLN and neoantigen peptide vaccine identified from pancreatic cancer cell lines is demonstrated to be more effective in inducing neoantigen-specific T cell generation and infiltration at subcutaneous and orthotopic pancreatic cancer models for enhancing antitumor efficacy. Single-cell transcriptome analysis shows that the combined treatment significantly reduces the proportion of fibroblasts, improves the infiltration of IFN-γ+CD4+ and GZMK+CD8+ T cells, as well as reduces the interaction of antigen presentation-associated ligands and receptors between antigen-presenting Cancer-Associated Fibroblasts (apCAFs) and naive CD4+ T cells. The negative correlations between apCAFs and CD8+ T cells/IFN-γ+CD4+ T cells are further confirmed in human pancreatic cancer tissues. Overall, this study demonstrates that targeting MSLN can improve neoantigen vaccine induced immune efficacy by reducing apCAFs to interrupt the conversion of naive CD4+ T cells to Tregs, and therefore increase the infiltration of tumor-specific T cells.
Collapse
Affiliation(s)
- Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Wenting Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Fangzhou Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Honghao Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Xiaoling Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai 201203P. R. China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou 350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou 350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou 350116P. R. China
| |
Collapse
|
43
|
Qin Y, Miyake T, Muramoto K, Maekawa T, Nishina Y, Wang Y, Shimizu T, Tani M. Fibroblast Activation Protein-α Expression in Cancer-Associated Fibroblasts Shows the Poor Survival of Colorectal Cancer via Immune-Mediated Pathways : Implications of FAP in Cancer-Associated Fibroblasts Link Immune Dysregulation to Adverse Survival in Colorectal Cancer. Ann Surg Oncol 2025; 32:1941-1952. [PMID: 39623187 DOI: 10.1245/s10434-024-16593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) and immune cells, the key components of the tumor microenvironment (TME), play critical roles in oncogenesis. Despite the recognized function of fibroblast activation protein-α (FAP), a specific biomarker of CAFs in cancer progression, its role in the survival of patients with colorectal cancer (CRC) and tumor immune microenvironment (TIME) remains unclear. METHODS We investigated 180 pathological sections obtained from 178 consecutive patients with CRC who underwent surgical resection at Shiga University of Medical Science Hospital between January 2013 and December 2015. FAP expression levels and CD3 and CD8 densities at the invasive margin and center of tumor were assessed using immunohistochemical (IHC) staining. Furthermore, we used single-cell RNA sequencing (scRNA-seq) of CAFs in a separate cohort of 10 untreated patients with CRC derived from the Gene Expression Omnibus database. RESULTS According to IHC evaluation, high FAP expression in patients with CRC showed a correlation with reduced tumor-infiltrating lymphocyte (TIL) distribution and poor survival. Based on the FAP transcription levels obtained through scRNA-seq analysis, CAFs were grouped into high and low FAP expression groups. Elevated FAP expression was correlated with decreased expression of T- and B-cell biomarkers, suggesting an association with an immunosuppressive TME promotion. Several genes associated with cancer-related immune-mediated pathways (CXCL12, COL11A1, CCL11, and COL10A1) were significantly upregulated in FAP-positive CAFs. CONCLUSIONS This study highlights the effects of FAP expression on survival of patients with CRC, its interaction with TILs, and relevant signaling pathways, and underscores potential immunotherapeutic targets for future investigation.
Collapse
Affiliation(s)
- Yubo Qin
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
- Department of Emergency Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan.
| | - Keiji Muramoto
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Takeru Maekawa
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yusuke Nishina
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Ying Wang
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tomoharu Shimizu
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
44
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
45
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025; 45:33-51. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Zhong Y, Wang Y, Wang C, Cao K, Wang X, Xu X, Yang M, Zhang G, Liu H, Lu J. Targeting mesothelin-CD24 axis repolarizes tumor-associated macrophages to potentiate PD-1 blockade therapy in high-grade serous ovarian cancer. J Immunother Cancer 2025; 13:e011230. [PMID: 40010770 PMCID: PMC11873354 DOI: 10.1136/jitc-2024-011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a highly aggressive malignancy marked by an immunosuppressive tumor microenvironment that hinders effective immune responses. A key feature of this environment is the extensive infiltration of myeloid cells, which contributes to immune evasion. This study explored how mesothelin (MSLN), a tumor-associated antigen, modulates the expression of CD24, an emerging target for immune modulation, and its role in promoting immune evasion in HGSOC. Understanding these underlying mechanisms is crucial for enhancing the efficacy of immune checkpoint blockade (ICB) therapies and improving outcomes in patients with HGSOC. METHODS We analyzed the expression of MSLN in HGSOC samples and examined its correlation with clinical outcome. In vitro and in vivo models were used to explore how MSLN influences CD24 expression and the polarization of tumor-associated macrophages (TAMs). We also investigated the role of MSLN in the activation of Wnt/β-catenin signaling and its impact on T-cell function and antitumor immunity. The effects of Msln knockdown on CD24 expression and the response to anti-programmed cell death protein-1 (PD-1) therapy were evaluated in syngeneic mouse models. RESULTS MSLN expression was found to be significantly elevated in HGSOC, with high MSLN levels correlating with poor prognosis and resistance to ICB. MSLN upregulated CD24 and promoted the protumorigenic polarization of TAMs, contributing to T-cell dysfunction. Mechanistically, MSLN activated Wnt/β-catenin signaling, which in turn enhanced CD24 expression. This activation forms a positive feedback loop that further promotes MSLN transcription. In contrast, Msln knockdown reduced CD24 expression, relieved cytotoxic T-cell suppression, and significantly improved the efficacy of anti-PD-1 therapy in syngeneic models. CONCLUSIONS This study elucidates the critical role of MSLN in immune evasion in HGSOC and its underlying mechanisms. Targeting MSLN in combination with ICB is a promising strategy to enhance the efficacy of immunotherapy and improve patient outcomes in HGSOC.
Collapse
Affiliation(s)
- Yujing Zhong
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenyang Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xueling Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuyao Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiaqi Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
47
|
Hu ZY, Ding D, Song Y, Deng YF, Zhang CM, Yu T. Molecular mechanism of pancreatic ductal adenocarcinoma: The heterogeneity of cancer-associated fibroblasts and key signaling pathways. World J Clin Oncol 2025; 16:97007. [PMID: 39995552 PMCID: PMC11686552 DOI: 10.5306/wjco.v16.i2.97007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis, leading to a notably low five-year survival rate. This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers, such as mutations in CDKN2A, KRAS, SMAD4, and TP53, along with the influence of cancer-associated fibroblasts (CAFs) on disease progression. In particular, we focused on the pivotal roles of signaling pathways such as the transforming growth factor-β and Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies. This study provides new scientific perspectives on pancreatic cancer treatment, especially in the development of precision medicine and targeted therapeutic strategies, and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens. Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.
Collapse
Affiliation(s)
- Zhong-Yuan Hu
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ding Ding
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Yu Song
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ya-Feng Deng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Cheng-Ming Zhang
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| | - Tao Yu
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| |
Collapse
|
48
|
Li H, Zhang Z, Shi Z, Zhou S, Nie S, Yu Y, Zhang L, Sun Y, Fang C, Hu J, Niu Y, Schuck K, Wang L, Jiang K, Lu Z, Kahlert C, Roth S, Loos M, Herr I, Sunami Y, Kleeff J, Friess H, Reichert M, Dantes Z, Zou X, Michalski CW, Shen S, Kong B. Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy. Cell Rep Med 2025; 6:101927. [PMID: 39914384 PMCID: PMC11866503 DOI: 10.1016/j.xcrm.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Hongzhen Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Zhiheng Zhang
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhao Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shuang Nie
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lingling Zhang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yifeng Sun
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Chao Fang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Kathleen Schuck
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Zahra Dantes
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Christoph W Michalski
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bo Kong
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
49
|
Chen X, Chen F, Jia S, Lu Q, Zhao M. Antigen-presenting fibroblasts: emerging players in immune modulation and therapeutic targets. Theranostics 2025; 15:3332-3344. [PMID: 40093895 PMCID: PMC11905139 DOI: 10.7150/thno.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Antigen-presenting fibroblasts are a newly recognized subset that challenges the traditional view of these cells as mere structural components. Under pathological or environmental stimuli, fibroblasts acquire antigen-presenting capabilities through the expression of MHC-II molecules and co-stimulatory factors, enabling them to interact with T cells and modulate immune responses. These specialized fibroblasts have been identified across various tissues and diseases, where they play context-dependent roles, either amplifying immune dysregulation or contributing to immune homeostasis. This review synthesizes recent advances in understanding the origins, activation, and functions of antigen-presenting fibroblasts. It highlights their role in promoting pathogenic immune responses and offering therapeutic opportunities through targeted modulation. Advancing our understanding of antigen-presenting fibroblasts holds great promise for developing innovative approaches to immune modulation and therapy across a range of diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Fangqi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
50
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|