1
|
Balsa LM, Ferraresi-Curotto V, Lavecchia MJ, Echeverría GA, Piro OE, García-Tojal J, Pis-Diez R, González-Baró AC, León IE. Anticancer activity of a new copper(II) complex with a hydrazone ligand. Structural and spectroscopic characterization, computational simulations and cell mechanistic studies on 2D and 3D breast cancer cell models. Dalton Trans 2021; 50:9812-9826. [PMID: 34190268 DOI: 10.1039/d1dt00869b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here the synthesis, crystal structure, characterization and anticancer activity of a copper(ii)-hydrazone complex, [Cu(MeBHoVa)(H2O)2](NO3) (for short, CuHL), against human breast cancer cells on monolayer (2D) and spheroids/mammospheres (3D). The solid-state molecular structure of the complex has been determined by X-ray diffraction methods. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by computational methods based on DFT. The compound has been characterized in the solid state and in solution by spectroscopic (FTIR, Raman, UV-vis) methods. The results were compared with those obtained for the hydrazone ligand and complemented with DFT calculations. Cell viability assays on MCF7 (IC50(CuHL) = 1.7 ± 0.1 μM, IC50(CDDP) = 42.0 ± 3.2 μM) and MDA-MB-231 (IC50(CuHL) = 1.6 ± 0.1 μM, IC50(CDDP) = 131.0 ± 18 μM) demonstrated that the complex displays higher antitumor activity than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Molecular docking and molecular dynamics simulations showed that CuHL could interacts with DNA, inducing a significant genotoxic effect on both breast cancer cells from 0.5 to 1 μM. On the other hand, CuHL increases the ROS production and induces cell programmed death on breast cancer cells at very low micromolar concentrations (0.5-1.0 μM). Moreover, the compound decreased the amount of breast CSCs on MCF7 and MDA-MB-231 cells reducing the percentage of CD44+/CD24-/low cells from 0.5 to 1.5 μM. In addition, CuHL overcame CDDP with an IC50 value 65-fold lower against breast multicellular spheroids ((IC50(CuHL) = 2.2 ± 0.3 μM, IC50(CDDP) = 125 ± 4.5 μM)). Finally, CuHL reduced mammosphere formation capacity, hence affecting the size and number of mammospheres and showing that the complex exhibits antitumor properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | | | - Martin J Lavecchia
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Gustavo A Echeverría
- Instituto de Física La Plata (IFLP, CONICET-UNLP), CC 67, B1900AVV, La Plata, Argentina.
| | - Oscar E Piro
- Instituto de Física La Plata (IFLP, CONICET-UNLP), CC 67, B1900AVV, La Plata, Argentina.
| | - Javier García-Tojal
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Reinaldo Pis-Diez
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ana C González-Baró
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
2
|
Balsa LM, Ruiz MC, Santa Maria de la Parra L, Baran EJ, León IE. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J Inorg Biochem 2019; 204:110975. [PMID: 31911364 DOI: 10.1016/j.jinorgbio.2019.110975] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
The goal of this work was to display the anticancer and antimetastatic activity of a copper(II) with tropolone (trp), complex [Cu(trp)2] toward human breast cancer cells in monolayer (2D) and spheroids (3D). Cytotoxicity assays against MCF7 (IC50(complex) = 5.2 ± 1.8 μM, IC50(CDDP) = 19.3 ± 2.1 μM) and MDA-MB-231 (IC50(complex) = 4.0 ± 0.2 μM, IC50(CDDP) = 27.0 ± 1.9 μM) demonstrate that [Cu(trp)2] exert greater antitumor potency than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Besides, [Cu(trp)2] inhibits cell migration by reducing the metalloproteinases activities and the compound undergoes the breast cancer cells to apoptosis at lower concentrations (2.5-10 μM). Moreover, [Cu(trp)2] overcame CDDP presenting an IC50 value 26-fold more lower against breast multicellular spheroids ((IC50(complex) = 4.9 μM, IC50(CDDP) = 130 μM)). Also, our results showed that [Cu(trp)2] inhibited the cell migration and cell invasion of breast multicellular spheroids, showing that [Cu(trp)2] exhibited antimetastatic properties. On the other hand, [Cu(trp)2] reduced mammosphere forming capacity affecting the size and number of mammospheres. Taken together, [Cu(trp)2] exhibited anticancer and antimetastatic properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Maria C Ruiz
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Lucia Santa Maria de la Parra
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Enrique J Baran
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Ignacio E León
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Ruan Z, Yang X, Cheng W. OCT4 accelerates tumorigenesis through activating JAK/STAT signaling in ovarian cancer side population cells. Cancer Manag Res 2018; 11:389-399. [PMID: 30643464 PMCID: PMC6314052 DOI: 10.2147/cmar.s180418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although surgery, chemotherapy, and radiotherapy eliminate clinically apparent ovarian tumor, the 5-year survival rate is no more than 45%. Cancer stem cells (CSCs) have been identified for precaution of tumor metastasis and recurrence in many kinds of cancers including ovarian cancer. AIM This study aims to explore the function of OCT4, a CSC marker, in ovarian cancer progression and to investigate its underlying mechanism. MATERIALS AND METHODS By Hoechst side population (SP) technique, CSC-like SP cells from human ovarian cancer SKOV3 and A2780 cells were isolated and used for this study. shRNA and lentivirus targeting human OCT4 gene were used to knock down OCT4 in SP cells and upregulate OCT4 in non-SP (NSP) cells stably. Peficitinib was used to inhibit JAK/STAT signaling. Cell counting kit-8, flow cytometry, and in vivo xenograft model were used to evaluate the effects of OCT4/JAK/STAT on the viability, drug resistance, apoptosis, cycle, and tumorigenesis of the SP cells. Immunofluorescence staining was used to detect the location of STAT6. RESULTS Results showed that OCT4 was upregulated in the SP of SKOV3 and A2780 cells when compared with the NSP cells. Downregulation of OCT4 inhibited SP cell viability, tumorigenesis, and reduced cell drug resistance and induced a G2/M phase arrest, while upregulation of OCT4 conferred NSP cell malignant features. Besides, OCT4 upregulation in NSP cells increased the phosphorylated levels of proteins in JAK and STAT families, especially in JAK1 and STAT6. Furthermore, the roles of apoptosis inhibition and viability, invasion, and tumorigenesis promotions induced by OCT4 in NSP cells were all abolished when adding peficitinib. CONCLUSION Our study demonstrated that OCT4 accelerated ovarian cancer progression through activating JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| | - Xingyu Yang
- Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| | - Weiwei Cheng
- Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| |
Collapse
|
4
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
5
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Ren H, Du P, Ge Z, Jin Y, Ding D, Liu X, Zou Q. TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance. J Cancer 2016; 7:1074-80. [PMID: 27326250 PMCID: PMC4911874 DOI: 10.7150/jca.14031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 01/07/2023] Open
Abstract
Purpose Increasing evidences revealed that cancer cells with the characteristics of epithelial-mesenchymal transition (EMT) or cancer stem cells (CSC) have high ability of progression, invasion, metastasis and chemoresistance. TWIST1 and BMI1 are crucial transcription factors required for EMT and CSC. Both TWIST1 and BMI1 are up-regulated in various cancers and have a positive correlation with poor prognosis. Although recent results showed that the two molecules function in promoting cancer metastasis and chemoresistance respectively, the correlation of TWIST1 and BMI1 is not well understood. Methods In this review, we summarize recent advance in cancer research focus on TWIST1 and BMI1 in cancer metastasis and chemoresistance, and emphasize the possible link between EMT and CSC. Results Further investigation of TWIST1 and BMI1 cooperately promote CSC proliferation due to EMT-associated effect will help to understand the mechanism of tumor cells metastasis and chemoresistance. Conclusions TWIST1 and BMI1 in cancer cells will be effective targets for treating chemoresistant metastatic lesions.
Collapse
Affiliation(s)
- Hong Ren
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Peizhun Du
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Zongyu Ge
- 2. Department of General Surgery, Huzhou Maternity and Child Health Care Hospital, Zhejiang Province, P.R. China
| | - Yiting Jin
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Di Ding
- 3. Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiuping Liu
- 4. Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Qiang Zou
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
7
|
Recouvreux S, Sampayo R, Bessone MID, Simian M. Microenvironment and endocrine resistance in breast cancer: Friend or foe? World J Clin Oncol 2015; 6:207-211. [PMID: 26677432 PMCID: PMC4675904 DOI: 10.5306/wjco.v6.i6.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer affects one in eight women around the world. Seventy five percent of these patients have tumors that are estrogen receptor positive and as a consequence receive endocrine therapy. However, about one third eventually develop resistance and cancer reappears. In the last decade our vision of cancer has evolved to consider it more of a tissue-related disease than a cell-centered one. This editorial argues that we are only starting to understand the role the tumor microenvironment plays in therapy resistance in breast cancer. The development of new therapeutic strategies that target the microenvironment will come when we clearly understand this extremely complicated scenario. As such, and as a scientific community, we have extremely challenging work ahead. We share our views regarding these matters.
Collapse
|
8
|
Liang YY, Chen MY, Hua YJ, Chen S, Zheng LS, Cao X, Peng LX, Xie P, Huang BJ, Sun R, Wang L, Xiang YQ, Guo X, Qian CN. Downregulation of Ras association domain family member 6 (RASSF6) underlies the treatment resistance of highly metastatic nasopharyngeal carcinoma cells. PLoS One 2014; 9:e100843. [PMID: 25028967 PMCID: PMC4100732 DOI: 10.1371/journal.pone.0100843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/30/2014] [Indexed: 11/24/2022] Open
Abstract
Radiation and cisplatin-based chemotherapy are major treatments for nasopharyngeal carcinoma (NPC). However, a major impediment for further improving the cure rate is the development of treatment resistance with an undetermined molecular mechanism in metastatic NPC cells. Our established, highly metastatic NPC cells have been reported to be more resistant to cisplatin chemotherapy. In the present study, we found that Ras association domain family member 6 (RASSF6) was downregulated in highly metastatic cells but upregulated in low metastatic cells in comparison to their parental cell line. Ectopic-expression of RASSF6 enhanced the sensitivity of highly metastatic NPC cells to cisplatin or radiation by enhancing apoptosis. RASSF6 depletion conversely reduced treatment sensitivity by decreasing the apoptosis rate. Over-expression of RASSF6 in highly metastatic NPC cells could enhance the phosphorylation of JNK when exposed to cisplatin or radiation treatment, while knocking down RASSF6 in low metastatic NPC cells could reduce the level of phospho-JNK when exposed to the same treatments. The activation of JNK signaling by RASSF6 and its subsequent sensitivity to apoptosis in NPC cells could be inhibited by applying the JNK inhibitor SP600125. In conclusion, the downregulation of RASSF6 in highly metastatic NPC cells contributed to their treatment resistance, and over-expression of RASSF6 conferred treatment sensitivity to highly metastatic NPC cells by activating JNK signaling. RASSF6 could be a valuable molecular marker for identifying sensitive metastatic NPC tumors during cisplatin treatment or radiotherapy.
Collapse
Affiliation(s)
- Ying-Ying Liang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Hua
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi Chen
- Department of Gastroesophageal surgery, The Sixth Affliated Hospital (Gastrointestinal and Anal Hospital), Sun Yat-sen University, GuangZhou, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Cao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Raffo D, Berardi DE, Pontiggia O, Todaro L, de Kier Joffé EB, Simian M. Tamoxifen selects for breast cancer cells with mammosphere forming capacity and increased growth rate. Breast Cancer Res Treat 2013; 142:537-48. [PMID: 24258256 DOI: 10.1007/s10549-013-2760-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/01/2013] [Indexed: 12/18/2022]
Abstract
Using the M05 mouse mammary tumor model and the MCF-7 cell line, we investigated the effect of tamoxifen treatment on the fraction of breast cancer cells with self-renewing capacity both in vitro and in vivo. We found that pretreatment with 4-OH-tamoxifen leads to an increase in cells with the ability of forming mammospheres that express lower levels of ER-α and increased expression of transcription factors associated with pluripotency. Moreover, exposure on plastic to 4-OH-tamoxifen by itself leads to an upregulation of these transcription factors. M05 tumors grown in mice treated with tamoxifen have a higher percentage of cells with self-renewing capacity and this proportion is conserved when tumors are passaged to nontreated mice. Furthermore, interruption of tamoxifen leads to increased tumor growth compared to tumors grown in mice that were never exposed to the antiestrogen. In addition, these tumors are characterized by a higher number of CD24(l)CD29(h) cells compared to tumors grown in nontreated mice. Treatment in vitro with 4-OH-tamoxifen for 5 days leads to a long lasting increase in the proportion of cells with self-renewing capacity even after 1 month of growth in the absence of the antiestrogen. Finally, we compared the mammosphere forming capacity of hormone dependent and independent passages of the M05 tumor and found that hormone independence is associated to an increase in cells with self-renewing capacity. Our results support previous findings that suggest that endocrine treatment selects for cells with stem cell properties.
Collapse
Affiliation(s)
- Diego Raffo
- Research Area, Área Investigación, Instituto de Oncología "Angel H. Roffo", Avda. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|