1
|
Deng S, Zhang Z, Liu L, Xu C, Zhang D, Dong L, Gao C, Wang X, Fan Z. The E3 ligase c-Cbl modulates microglial phenotypes and contributes to Parkinson's disease pathology. Cell Death Discov 2025; 11:184. [PMID: 40246829 PMCID: PMC12006326 DOI: 10.1038/s41420-025-02482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Microglial activation, particularly the polarization between classical (M1 phenotype) and alternative (M2 phenotype) states, plays pivotal roles in the immune pathogenesis of Parkinson's disease (PD), with the M1 phenotype exerting neurotoxic effects and the M2 phenotype conferring neuroprotection. Modulating microglial polarization toward the M2 phenotype holds therapeutic potential for PD. This study investigated the role of c-Cbl, an E3 ubiquitin ligase implicated in modulating microglial phenotypes and protecting dopaminergic neurons. Our findings revealed that c-Cbl-/- mice exhibited motor deficits, reduced striatal dopamine levels, and progressive dopaminergic neuron loss in the substantia nigra (SN). Genetic ablation of c-Cbl significantly increased proinflammatory cytokine release and microglial activation in the SN, accompanied by a phenotypic shift from M2 to M1 polarization. Furthermore, stereotaxic c-Cbl knockdown in the SN exacerbated behavioral impairments and accelerated dopaminergic neuron degeneration in the MPTP-induced mouse model of PD. At the molecular level, c-Cbl deletion promoted M1 polarization of microglia through dysregulation of the PI3K/Akt signaling pathway, thereby impairing dopaminergic neuronal survival. Collectively, this study demonstrates that c-Cbl knockout recapitulates PD-like pathology and drives microglial activation. Our results establish that c-Cbl orchestrates the transition from neurotoxic M1 to neuroprotective M2 microglial phenotypes, highlighting its central role in PD immunopathogenesis. These findings suggest c-Cbl as a promising therapeutic target for modulating microglial polarization and alleviating PD symptoms.
Collapse
Affiliation(s)
- Shumin Deng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zhiyuan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Lu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Chen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Di Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chunyan Gao
- Department of Clinical Medicine, Yanjing Medical College, Capital Medical University, Beijing, PR China
| | - Xiaomin Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zheng Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.
| |
Collapse
|
2
|
Islam N, Krishnan HB, Slovin J, Li Z, Fakir T, Luthria D, Natarajan S. High-Resolution Mass Spectrometry Approach for Proteomic and Metabolomic Analyses of High-Protein Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6993-7002. [PMID: 40042580 DOI: 10.1021/acs.jafc.5c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Soybeans are a valuable source of vegetable protein and edible oil. Fast neutron (FN) radiation was employed to produce large chromosomal deletions in soybean Glycine max (L.) Merrill. We conducted proteomic and metabolomic profiling of a high-protein soybean mutant (G15FN-12) developed through FN mutagenesis to identify the metabolic pathways that underlie the elevated protein content. A deletion of 137 genes located on chromosome-12 had occurred in G15FN-12. Tandem tag-based protein profiling of the mutant and wild type identified 6098 proteins, of which 175 showed increased abundance and 239 showed decreased abundance in the mutant seeds. Using liquid chromatography-mass spectrometry (LC-MS)-based metabolomic profiling, we identified 610 metabolites, of which 294 metabolites showed increased and 157 showed reduced content in mutant seeds as compared to wild type. Proteomic and metabolomic profiling revealed a decrease in ubiquitin-proteasome-associated proteins and an increase in heat shock proteins in the mutant seed. We hypothesize that decreased protein degradation, together with enhanced refolding of misfolded protein by molecular chaperones, contributes to elevated protein content in the mutant seed. The development of value-added seed traits such as increased protein using advanced metabolic engineering techniques can be achieved by further exploring the metabolic pathways identified in this investigation.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Columbia, Missouri 65201, United States
| | - Janet Slovin
- Genetic Improvement for Fruits & Vegetables Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Zenglu Li
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia 30602, United States
| | - Tareq Fakir
- Methods and Application of Food Composition Laboratory, NEA, BHNRC, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Devanand Luthria
- Methods and Application of Food Composition Laboratory, NEA, BHNRC, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| |
Collapse
|
3
|
Zhang Y, Han Y, Li X, Huang M, Hao P, Kang J. Ultradeep Phosphoproteomics for Assessing Protein Kinase Inhibitor Selectivity on a Proteome Scale. J Med Chem 2025; 68:5845-5855. [PMID: 40009782 DOI: 10.1021/acs.jmedchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The selectivity of protein kinase inhibitors (PKIs) remains a major challenge in drug discovery. In this study, we present an ultradeep phosphoproteomics approach for assessing PKI selectivity and elucidating mechanisms of action using Zanubrutinib as a model. Two complementary phosphoproteomics strategies were employed: phosphopeptides enriched with Zr4+-IMAC in combination with TiO2 beads were analyzed using data-independent acquisition (DIA), while tyrosine phosphopeptides enriched with SH2-Superbinder were analyzed via data-dependent acquisition (DDA). The comprehensive phosphoproteomic analysis identified that 97 and 316 phosphosites were significantly altered upon Zanubrutinib stimulation in the DDA and DIA data sets, respectively. Bioinformatics analysis of these phosphoproteins provided a detailed selectivity profile of Zanubrutinib, offering insights into its mechanism of action at the molecular level. Compared to existing methods, our approach is more comprehensive, has higher throughput, and is more precise─not only for PKI selectivity assessment but also for broader cell signaling research.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Xuan Li
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Min Huang
- Thermo Fisher Scientific (China), Shanghai 200131, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Xia Y, Huang C, Zhong M, Zhong H, Ruan R, Xiong J, Yao Y, Zhou J, Deng J. Targeting HGF/c-MET signaling to regulate the tumor microenvironment: Implications for counteracting tumor immune evasion. Cell Commun Signal 2025; 23:46. [PMID: 39856684 PMCID: PMC11762533 DOI: 10.1186/s12964-025-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The hepatocyte growth factor (HGF) along with its receptor (c-MET) are crucial in preserving standard cellular physiological activities, and imbalances in the c-MET signaling pathway can lead to the development and advancement of tumors. It has been extensively demonstrated that immune checkpoint inhibitors (ICIs) can result in prolonged remission in certain patients. Nevertheless, numerous preclinical studies have shown that MET imbalance hinders the effectiveness of anti-PD-1/PD-L1 treatments through various mechanisms. Consequently, clarifying the link between the c-MET signaling pathway and the tumor microenvironment (TME), as well as uncovering the effects of anti-MET treatment on ICI therapy, is crucial for enhancing the outlook for tumor patients. In this review, we examine the impact of abnormal activation of the HGF/c-MET signaling pathway on the control of the TME and the processes governing PD-L1 expression in cancer cells. The review thoroughly examines both clinical and practical evidence regarding the use of c-MET inhibitors alongside PD-1/PD-L1 inhibitors, emphasizing that focusing on c-MET with immunotherapy enhances the effectiveness of treating MET tumors exhibiting elevated PD-L1 expression.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Min Zhong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
6
|
Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J. Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2603-2616. [PMID: 39145866 DOI: 10.1007/s11427-024-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
While receptor tyrosine kinase-like orphan receptor 1 (ROR1) is typically expressed at low levels or absent in normal tissues, its expression is notably elevated in various malignant tumors and conditions, including chronic lymphocytic leukemia (CLL), breast cancer, ovarian cancer, melanoma, and lung adenocarcinoma. This distinctive feature positions ROR1 as an attractive target for tumor-specific treatments. Currently, several targeted drugs directed at ROR1 are undergoing clinical development, including monoclonal antibodies, antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cell therapy (CAR-T). Additionally, there are four small molecule inhibitors designed to bind to ROR1, presenting promising avenues for the development of PROTAC degraders targeting ROR1. This review offers updated insights into ROR1's structural and functional characteristics, embryonic development implications, cell survival signaling pathways, and evolutionary targeting strategies, all of which have the potential to advance the treatment of malignant tumors.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Linxiang Zhao
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
7
|
Petukhova N, Poluzerova A, Bug D, Nerubenko E, Kostareva A, Tsoy U, Dmitrieva R. USP8 Mutations Associated with Cushing's Disease Alter Protein Structure Dynamics. Int J Mol Sci 2024; 25:12697. [PMID: 39684405 DOI: 10.3390/ijms252312697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The adenomas in Cushing's disease frequently exhibit mutations in exon 14, within a binding motif for the regulatory protein 14-3-3 located between the catalytic domain (DUB), responsible for ubiquitin hydrolysis, and the WW-like domain that mediates autoinhibition, resulting in constantly active USP8. The exact molecular mechanism of deubiquitinase activity disruption in Cushing's disease remains unclear. To address this, Sanger sequencing of USP8 was performed to identify mutations in corticotropinomas. These mutations were subjected to computational screening, followed by molecular dynamics simulations to assess the structural alterations that might change the biological activity of USP8. Eight different variants of the USP8 gene were identified both within and outside the "hotspot" region. Six of these had previously been reported in Cushing's disease, while two were detected for the first time in our patients with CD. One of the two new variants, initially classified as benign during screening, was found in the neighboring SH3 binding motif at a distance of 20 amino acids. This variant demonstrated pathogenicity patterns similar to those of known pathogenic variants. All USP8 variants identified in our patients caused conformational changes in the USP8 protein in a similar manner. The identified mutations, despite differences in annotation results-including evolutionary conservation assessments, automated predictor data, and variations in localization within exon 14-exhibit similar patterns of protein conformational change. This suggests a pathogenic effect that contributes to the development of CD.
Collapse
Affiliation(s)
- Natalia Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, 197022 Saint Petersburg, Russia
| | | | - Dmitry Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, 197022 Saint Petersburg, Russia
| | - Elena Nerubenko
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Uliana Tsoy
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Renata Dmitrieva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
8
|
Turner JA, Van Gulick RJ, Robinson WA, Mughal T, Tobin RP, MacBeth ML, Holman B, Classon A, Bagby SM, Yacob BW, Hartman SJ, Silverman I, Vorwald VM, Gorden N, Gonzalez R, Gay LM, Ali SM, Benson A, Miller VA, Ross JS, Pitts TM, Rioth MJ, Lewis KD, Medina T, McCarter MD, Gonzalez R, Couts KL. Expanding the landscape of oncogenic drivers and treatment options in acral and mucosal melanomas by targeted genomic profiling. Int J Cancer 2024; 155:1792-1807. [PMID: 39001563 PMCID: PMC11570350 DOI: 10.1002/ijc.35087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2024]
Abstract
Despite advancements in treating cutaneous melanoma, patients with acral and mucosal (A/M) melanomas still have limited therapeutic options and poor prognoses. We analyzed 156 melanomas (101 cutaneous, 28 acral, and 27 mucosal) using the Foundation One cancer-gene specific clinical testing platform and identified new, potentially targetable genomic alterations (GAs) in specific anatomic sites of A/M melanomas. Using novel pre-clinical models of A/M melanoma, we demonstrate that several GAs and corresponding oncogenic pathways associated with cutaneous melanomas are similarly targetable in A/M melanomas. Other alterations, including MYC and CRKL amplifications, were unique to A/M melanomas and susceptible to indirect targeting using the BRD4 inhibitor JQ1 or Src/ABL inhibitor dasatinib, respectively. We further identified new, actionable A/M-specific alterations, including an inactivating NF2 fusion in a mucosal melanoma responsive to dasatinib in vivo. Our study highlights new molecular differences between cutaneous and A/M melanomas, and across different anatomic sites within A/M, which may change clinical testing and treatment paradigms for these rare melanomas.
Collapse
Affiliation(s)
- Jacqueline A. Turner
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert J. Van Gulick
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A. Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tariq Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, MA, USA
| | - Richard P. Tobin
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Morgan L. MacBeth
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Blair Holman
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Stacey M. Bagby
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Betelehem W. Yacob
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Hartman
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ian Silverman
- Ignyta, Inc., San Diego, CA, USA
- Present address, Incyte Research Institute, Wilmington, DE, USA
| | - Victoria M. Vorwald
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Gorden
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rita Gonzalez
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Adam Benson
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jeffrey S. Ross
- Foundation Medicine Inc., Cambridge, MA, USA
- Upstate Medical University, Syracuse, NY, USA
| | - Todd M. Pitts
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J. Rioth
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karl D. Lewis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Medina
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Martin D. McCarter
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rene Gonzalez
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kasey L. Couts
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Lv Q, Wang J, Yang H, Chen X, Zhang Y, Ji G, Hu L, Zhang Y. Didymin ameliorates ulcerative colitis-associated secondary liver damage by facilitating Notch1 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155561. [PMID: 39217654 DOI: 10.1016/j.phymed.2024.155561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Didymin is a dietary flavonoid originally discovered by our group as a potent anti-ulcerative colitis (UC) agent. However, whether didymin plays a protective role in UC-associated inflammatory liver injury is still unclear. PURPOSE This study aimed to evaluate the therapeutic potential of didymin on UC-associated inflammatory liver injury and explore the underlying mechanism. STUDY DESIGN AND METHODS Colitis model was established in C57BL/6 mice by exposure to DSS, and didymin was administrated intragastrically for consecutive 10 days. The inflammatory liver injury was assessed by levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum and histopathological damage in the liver. In vitro Kupffer cells and RAW264.7 cells challenged with lipopolysaccharides (LPS) were used to explore the modulatory activity of didymin on pro-inflammatory cytokines secretion and Notch1 signaling pathway activation. RESULTS Didymin significantly mitigated liver coefficiency, ALT and AST levels in serum, and the hepatic histopathological damage caused by DSS-induced acute and chronic colitis. The mRNA expressions of pro-inflammatory factors including Tnf, Il1, and Il6 in liver tissues, Kupffer cells, and RAW264.7 cells stimulated by the influx of LPS was significantly deprived after didymin treatment. Mechanistically, didymin obstructed the protein expression, nuclear translocation of notch intracellular domain 1 (Notch1-ICD) and mRNA expression of hairy and enhancer of split 1 (Hes1). Further, the inhibitory mechanism of the Notch1-Hes1 pathway was dependent on c-Cbl-mediated Notch1-ICD lysosomal degradation. CONCLUSION Our study verified for the first time that didymin could prevent UC-associated diseases, such as inflammatory liver injury, and the mechanism was related to facilitating Notch1 lysosomal degradation rather than proteasome degradation via promoting protein expression of c-Cbl in macrophages. Our findings that the inhibition of Notch1 signaling transduction helps to alleviate UC-associated liver injury provides possible therapeutics for the treatment of colitis and also furnishes a research paradigm for the study of flavonoids with similar structures.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueli Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guangye Ji
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Bohlen J, Bagarić I, Vatovec T, Ogishi M, Ahmed SF, Cederholm A, Buetow L, Sobrino S, Le Floc’h C, Arango-Franco CA, Seabra L, Michelet M, Barzaghi F, Leardini D, Saettini F, Vendemini F, Baccelli F, Catala A, Gambineri E, Veltroni M, Aguilar de la Red Y, Rice GI, Consonni F, Berteloot L, Largeaud L, Conti F, Roullion C, Masson C, Bessot B, Seeleuthner Y, Le Voyer T, Rinchai D, Rosain J, Neehus AL, Erazo-Borrás L, Li H, Janda Z, Cho EJ, Muratore E, Soudée C, Lainé C, Delabesse E, Goulvestre C, Ma CS, Puel A, Tangye SG, André I, Bole-Feysot C, Abel L, Erlacher M, Zhang SY, Béziat V, Lagresle-Peyrou C, Six E, Pasquet M, Alsina L, Aiuti A, Zhang P, Crow YJ, Landegren N, Masetti R, Huang DT, Casanova JL, Bustamante J. Autoinflammation in patients with leukocytic CBL loss of heterozygosity is caused by constitutive ERK-mediated monocyte activation. J Clin Invest 2024; 134:e181604. [PMID: 39403923 PMCID: PMC11475086 DOI: 10.1172/jci181604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Patients heterozygous for germline CBL loss-of-function (LOF) variants can develop myeloid malignancy, autoinflammation, or both, if some or all of their leukocytes become homozygous for these variants through somatic loss of heterozygosity (LOH) via uniparental isodisomy. We observed an upregulation of the inflammatory gene expression signature in whole blood from these patients, mimicking monogenic inborn errors underlying autoinflammation. Remarkably, these patients had constitutively activated monocytes that secreted 10 to 100 times more inflammatory cytokines than those of healthy individuals and CBL LOF heterozygotes without LOH. CBL-LOH hematopoietic stem and progenitor cells (HSPCs) outgrew the other cells, accounting for the persistence of peripheral monocytes homozygous for the CBL LOF variant. ERK pathway activation was required for the excessive production of cytokines by both resting and stimulated CBL-LOF monocytes, as shown in monocytic cell lines. Finally, we found that about 1 in 10,000 individuals in the UK Biobank were heterozygous for CBL LOF variants and that these carriers were at high risk of hematological and inflammatory conditions.
Collapse
Affiliation(s)
- Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Ivan Bagarić
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Taja Vatovec
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Syed F. Ahmed
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Steicy Sobrino
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Chromatin and Gene Regulation during Development, Paris Cité University, INSERM U1163, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Luis Seabra
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Marine Michelet
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Albert Catala
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | | | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filippo Consonni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laureline Berteloot
- Department of Pediatric Imaging, Necker Hospital for Sick Children, Paris, France
- INSERM U1163, Paris, France
| | - Laetitia Largeaud
- Laboratory of Hematology, Hospital Center of the University of Toulouse, Toulouse, France
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Cécile Roullion
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Cécile Masson
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Bioinformatic Plateform, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Cité University, Paris, France
| | - Boris Bessot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Lucia Erazo-Borrás
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Zarah Janda
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - En-Jui Cho
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Eric Delabesse
- Department of Hematology, CHU and Centre de Recherche de Cancérologie de Toulouse, Paul-Sabatier University, Toulouse, France
| | | | - Cindy S. Ma
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Isabelle André
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Christine Bole-Feysot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Chantal Lagresle-Peyrou
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Emmanuelle Six
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Oncology, Centre Hospitalo–Universitaire de Toulouse, Toulouse, France
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Yanick J. Crow
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Riccardo Masetti
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Danny T. Huang
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children–AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| |
Collapse
|
11
|
Zheng L, Tang T, Wang Z, Sun C, Chen X, Li W, Wang B. FUS-Mediated CircFGFR1 Accelerates the Development of Papillary Thyroid Carcinoma by Stabilizing FGFR1 Protein. Biochem Genet 2024; 62:3977-3995. [PMID: 38261157 DOI: 10.1007/s10528-023-10630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent type of thyroid cancer and its incidence is rising globally. The molecular mechanisms of PTC progression remain unclear, hindering the development of effective treatments. This study focuses on hsa_circ_0008016 (circFGFR1), a circular RNA significantly up-regulated in PTC cells. Silencing circFGFR1 inhibited PTC cell proliferation and increased cell apoptosis, suggesting its role in PTC progression. The RNA-binding protein FUS was identified as a promoter of circFGFR1 formation. While circFGFR1 does not influence FGFR1 mRNA translation, it inhibits ubiquitination and degradation of FGFR1 protein, prolonging its half-life. CircFGFR1 also interacts with protein CBL, inhibiting CBL-mediated ubiquitination of FGFR1 proteins. Rescue assays confirmed circFGFR1 promotes PTC cell growth through mediating FGFR1. This study highlights the potential of circFGFR1 as a therapeutic target, offering insights into PTC's molecular mechanisms, and paving the way for novel treatment strategies.
Collapse
MESH Headings
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Humans
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA-Binding Protein FUS/genetics
- RNA-Binding Protein FUS/metabolism
- Cell Proliferation
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Apoptosis
- Protein Stability
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Lu Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Tong Tang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhitao Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Xiao Chen
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wanwan Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Benzhong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
12
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
13
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Sekine Y, Kikkawa K, Honda S, Sasaki Y, Kawahara S, Mizushima A, Togi S, Fujimuro M, Oritani K, Matsuda T. STAP-2 facilitates insulin signaling through binding to CAP/c-Cbl and regulates adipocyte differentiation. Sci Rep 2024; 14:5799. [PMID: 38461189 PMCID: PMC10925025 DOI: 10.1038/s41598-024-56533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is an adaptor molecule involved in several cellular signaling cascades. Here, we attempted to identify novel STAP-2 interacting molecules, and identified c-Cbl associated protein (CAP) as a binding protein through the C-terminal proline-rich region of STAP-2. Expression of STAP-2 increased the interaction between CAP and c-Cbl, suggesting that STAP-2 bridges these proteins and enhances complex formation. CAP/c-Cbl complex is known to regulate GLUT4 translocation in insulin signaling. STAP-2 overexpressed human hepatocyte Hep3B cells showed enhanced GLUT4 translocation after insulin treatment. Elevated levels of Stap2 mRNA have been observed in 3T3-L1 cells and mouse embryonic fibroblasts (MEFs) during adipocyte differentiation. The differentiation of 3T3-L1 cells into adipocytes was highly promoted by retroviral overexpression of STAP-2. In contrast, STAP-2 knockout (KO) MEFs exhibited suppressed adipogenesis. The increase in body weight with high-fat diet feeding was significantly decreased in STAP-2 KO mice compared to WT animals. These data suggest that the expression of STAP-2 correlates with adipogenesis. Thus, STAP-2 is a novel regulatory molecule that controls insulin signal transduction by forming a c-Cbl/STAP-2/CAP ternary complex.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan.
| | - Kazuna Kikkawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Sachie Honda
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akihiro Mizushima
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Sumihito Togi
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
15
|
Mouawad N, Ruggeri E, Capasso G, Martinello L, Visentin A, Frezzato F, Trentin L. How receptor tyrosine kinase-like orphan receptor 1 meets its partners in chronic lymphocytic leukemia. Hematol Oncol 2024; 42:e3250. [PMID: 38949887 DOI: 10.1002/hon.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 07/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Prognosis
- Molecular Targeted Therapy
- Animals
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Nayla Mouawad
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Guido Capasso
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Leonardo Martinello
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Huang L, Thiex NW, Lou J, Ahmad G, An W, Low-Nam ST, Kerkvliet JG, Band H, Hoppe AD. The ubiquitin ligases Cbl and Cbl-b regulate macrophage growth by controlling CSF-1R import into macropinosomes. Mol Biol Cell 2024; 35:ar38. [PMID: 38170572 PMCID: PMC10916879 DOI: 10.1091/mbc.e23-09-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Natalie W. Thiex
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wei An
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shalini T. Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Jason G. Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Adam D. Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| |
Collapse
|
17
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
18
|
Kimani SW, Perveen S, Szewezyk M, Zeng H, Dong A, Li F, Ghiabi P, Li Y, Chau I, Arrowsmith CH, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Halabelian L. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun Biol 2023; 6:1272. [PMID: 38104184 PMCID: PMC10725504 DOI: 10.1038/s42003-023-05655-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.
Collapse
Affiliation(s)
- Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Magdalena Szewezyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Tarvestad-Laise K, Ceresa BP. Knockout of c-Cbl/Cbl-b slows c-Met trafficking resulting in enhanced signaling in corneal epithelial cells. J Biol Chem 2023; 299:105233. [PMID: 37690689 PMCID: PMC10622846 DOI: 10.1016/j.jbc.2023.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.
Collapse
Affiliation(s)
- Kate Tarvestad-Laise
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
20
|
Scalia P, Williams SJ. Over-expression by degradation rescue of RTKs via cancer-secreted autocrine growth factors: a Phospho-degron-driven actionable layer of post-translational regulation?. Front Oncol 2023; 13:1278402. [PMID: 37823054 PMCID: PMC10562641 DOI: 10.3389/fonc.2023.1278402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Recently published work provide the first known evidence of a malignancy-associated regulatory mechanism, functionally connecting a phospho-regulated degron domain embedded in a receptor tyrosine kinase (RTK), with its ectopic expression in cancer, conditional to a specific autocrine growth factor signal. Mechanistically, the growth factor-triggered phosphorylation inhibits the degron domain present in the regulated RTK, blocking access to a specific degradation complex. This ultimately rescues the RTK from rapid ubiquitin-proteasome-system-mediated degradation and, most importantly, causes its cellular overexpression. This mechanism, which has been here assigned the new functional name "Over-Expression by Degradation Rescue" (OEDR), provides an additional layer and potentially preferential tool for the control of RTKs expression in cancer, in addition to other mechanisms acting at the transcriptional and messenger transcript stabilization levels. We propose this newly defined phosphorylation/ubiquitination switch-dependent signal to bear wider unexploited relevance in cell biology and human pathophysiology. The recently identified mechanism underlying an OEDR-regulated RTK is discussed herein in the context of physiological endocrine circuits and cancer.
Collapse
Affiliation(s)
- Pierluigi Scalia
- Istituto Somatogene per la Oncologia Personalizzata e la Ricerca Onco-Genomica (ISOPROG)-Somatolink Expert-Patients For Patients (EPFP) Research Network, Philadelphia, PA, United States
- Istituto Somatogene per la Oncologia Personalizzata e la Ricerca Onco-Genomica (ISOPROG)-Somatolink Expert-Patients For Patients (EPFP) Research Network, Caltanissetta, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Stephen J. Williams
- Istituto Somatogene per la Oncologia Personalizzata e la Ricerca Onco-Genomica (ISOPROG)-Somatolink Expert-Patients For Patients (EPFP) Research Network, Philadelphia, PA, United States
- Istituto Somatogene per la Oncologia Personalizzata e la Ricerca Onco-Genomica (ISOPROG)-Somatolink Expert-Patients For Patients (EPFP) Research Network, Caltanissetta, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
22
|
Spagnolo CC, Ciappina G, Giovannetti E, Squeri A, Granata B, Lazzari C, Pretelli G, Pasello G, Santarpia M. Targeting MET in Non-Small Cell Lung Cancer (NSCLC): A New Old Story? Int J Mol Sci 2023; 24:10119. [PMID: 37373267 PMCID: PMC10299133 DOI: 10.3390/ijms241210119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, we have seen the development and approval for clinical use of an increasing number of therapeutic agents against actionable oncogenic drivers in metastatic non-small cell lung cancer (NSCLC). Among them, selective inhibitors, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting the mesenchymal-epithelial transition (MET) receptor, have been studied in patients with advanced NSCLC with MET deregulation, primarily due to exon 14 skipping mutations or MET amplification. Some MET TKIs, including capmatinib and tepotinib, have proven to be highly effective in this molecularly defined subgroup of patients and are already approved for clinical use. Other similar agents are being tested in early-stage clinical trials with promising antitumor activity. The purpose of this review is to provide an overview of MET signaling pathways, MET oncogenic alterations primarily focusing on exon 14 skipping mutations, and the laboratory techniques used to detect MET alterations. Furthermore, we will summarize the currently available clinical data and ongoing studies on MET inhibitors, as well as the mechanisms of resistance to MET TKIs and new potential strategies, including combinatorial approaches, to improve the clinical outcomes of MET exon 14-altered NSCLC patients.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrje Universiteit, 1081HV Amsterdam, The Netherlands;
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, 56017 San Giuliano, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Barbara Granata
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Chiara Lazzari
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS, 10060 Torino, Italy;
| | - Giulia Pretelli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.P.); (G.P.)
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.P.); (G.P.)
- Oncologia Medica 2, Istituto Oncologico Veneto, IRCCS, 35128 Padova, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| |
Collapse
|
23
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
24
|
Mayro B, Hoj JP, Cerda-Smith CG, Hutchinson HM, Caminear MW, Thrash HL, Winter PS, Wardell SE, McDonnell DP, Wu C, Wood KC, Pendergast AM. ABL kinases regulate the stabilization of HIF-1α and MYC through CPSF1. Proc Natl Acad Sci U S A 2023; 120:e2210418120. [PMID: 37040401 PMCID: PMC10120083 DOI: 10.1073/pnas.2210418120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.
Collapse
Affiliation(s)
- Benjamin Mayro
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Jacob P. Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Christian G. Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Haley M. Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Michael W. Caminear
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Hannah L. Thrash
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Peter S. Winter
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC27710
| | - Colleen Wu
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC27710
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC27710
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC27710
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
25
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
26
|
Chen H, Bai Y, Kobayashi M, Xiao S, Cai W, Barajas S, Chen S, Miao J, Meke FN, Vemula S, Ropa JP, Croop JM, Boswell HS, Wan J, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood 2023; 141:244-259. [PMID: 36206490 PMCID: PMC9936309 DOI: 10.1182/blood.2022016580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Shiyu Xiao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sergio Barajas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sisi Chen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - James P. Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - James M. Croop
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Department of Medical Genetics, Indiana University, Indianapolis, IN
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jessica K. Altman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Elizabeth A. Eklund
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wei Tong
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, NB
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Yan Liu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
27
|
Wisniewski DJ, Liyasova MS, Korrapati S, Zhang X, Ratnayake S, Chen Q, Gilbert SF, Catalano A, Voeller D, Meerzaman D, Guha U, Porat-Shliom N, Annunziata CM, Lipkowitz S. Flotillin-2 regulates epidermal growth factor receptor activation, degradation by Cbl-mediated ubiquitination, and cancer growth. J Biol Chem 2023; 299:102766. [PMID: 36470425 PMCID: PMC9823131 DOI: 10.1016/j.jbc.2022.102766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/08/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is frequently dysregulated in various cancers. The ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene (Cbl) regulates degradation of activated EGFR through ubiquitination and acts as an adaptor to recruit proteins required for trafficking. Here, we used stable isotope labeling with amino acids in cell culture mass spectrometry to compare Cbl complexes with or without epidermal growth factor (EGF) stimulation. We identified over a hundred novel Cbl interactors, and a secondary siRNA screen found that knockdown of Flotillin-2 (FLOT2) led to increased phosphorylation and degradation of EGFR upon EGF stimulation in HeLa cells. In PC9 and H441 cells, FLOT2 knockdown increased EGF-stimulated EGFR phosphorylation, ubiquitination, and downstream signaling, reversible by EGFR inhibitor erlotinib. CRISPR knockout (KO) of FLOT2 in HeLa cells confirmed EGFR downregulation, increased signaling, and increased dimerization and endosomal trafficking. Furthermore, we determined that FLOT2 interacted with both Cbl and EGFR. EGFR downregulation upon FLOT2 loss was Cbl dependent, as coknockdown of Cbl and Cbl-b restored EGFR levels. In addition, FLOT2 overexpression decreased EGFR signaling and growth. Overexpression of wildtype (WT) FLOT2, but not the soluble G2A FLOT2 mutant, inhibited EGFR phosphorylation upon EGF stimulation in HEK293T cells. FLOT2 loss induced EGFR-dependent proliferation and anchorage-independent growth. Lastly, FLOT2 KO increased tumor formation and tumor volume in nude mice and NSG mice, respectively. Together, these data demonstrated that FLOT2 negatively regulated EGFR activation and dimerization, as well as its subsequent ubiquitination, endosomal trafficking, and degradation, leading to reduced proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mariya S Liyasova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Soumya Korrapati
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shashikala Ratnayake
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Samuel F Gilbert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alexis Catalano
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
28
|
Yang Y, Xiao H, Lin Z, Chen R, Li S, Li C, Sun X, Hei Z, Gong W, Huang H. The ubiquitination of CKIP-1 mediated by Src aggravates diabetic renal fibrosis (original article). Biochem Pharmacol 2022; 206:115339. [PMID: 36347273 DOI: 10.1016/j.bcp.2022.115339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Renal chronic inflammation is an important hallmark of diabetic renal fibrosis. Casein kinase 2 interacting protein 1 (CKIP-1) performs a nephroprotective role in the pathogenesis of diabetic nephropathy (DN), which is dramatically decreased in diabetic kidneys. However, whether CKIP-1 regulates inflammation to ameliorate renal fibrosis remains unclear and it is interesting to clarify the degradation mechanism of CKIP-1. Here, we identified CKIP-1 expression was down-regulated in diabetic kidneys and knockout (KO) of CKIP-1 increased c-Jun expression and extra cellular matrix (ECM) in kidneys of normal mice, and knockout (KO) of CKIP-1 further exacerbated renal inflammatory fibrosis in diabetic mice. Moreover, the activated Src kinase interacted with CKIP-1 at Lys252 and increased K48 linked polyubiquitination and proteasome degradation of CKIP-1 in HG induced GMCs and diabetic kidneys. Mechanistically, Src facilitating the binding of c-Cbl with CKIP-1 by promoting the phosphorylation of c-Cbl, thereby increasing Cbl-mediated ubiquitination of CKIP-1 to down-regulate CKIP-1 protein expression. Thus, our study highlighted the anti-inflammation role of CKIP-1 and clarified the mechanism of CKIP-1 degradation in DN.
Collapse
Affiliation(s)
- Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangdong Medical University, Zhanjiang 524032, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Wenyan Gong
- Department of Clinical Medicine, medical school, Hangzhou Normal University, Hangzhou 310000, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Mol Cell Proteomics 2022; 22:100451. [PMID: 36423812 PMCID: PMC9792355 DOI: 10.1016/j.mcpro.2022.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.
Collapse
Affiliation(s)
- Laurine Levillayer
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Marion Declercq
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Mélanie Dos Santos
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Louis Lebreton
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Katerina Danezi
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France,For correspondence: Jean-François Bureau
| |
Collapse
|
30
|
Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. E3 ubiquitin ligases in the acute leukemic signaling pathways. Front Physiol 2022; 13:1004330. [PMID: 36439256 PMCID: PMC9691902 DOI: 10.3389/fphys.2022.1004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| |
Collapse
|
31
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
32
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
33
|
Ye Z, Chen J, Huang P, Xuan Z, Zheng S. Ubiquitin-specific peptidase 10, a deubiquitinating enzyme: Assessing its role in tumor prognosis and immune response. Front Oncol 2022; 12:990195. [PMID: 36248971 PMCID: PMC9554417 DOI: 10.3389/fonc.2022.990195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific peptidase 10 (USP10) is a member of the ubiquitin-specific protease family that removes the ubiquitin chain from ubiquitin-conjugated protein substrates. We performed a literature search to evaluate the structure and biological activity of USP10, summarize its role in tumorigenesis and tumor progression, and discuss how USP10 may act as a tumor suppressor or a tumor-promoting gene depending on its mechanism of action. Subsequently, we elaborated further on these results through bioinformatics analysis. We demonstrated that abnormal expression of USP10 is related to tumorigenesis in various types of cancer, including liver, lung, ovarian, breast, prostate, and gastric cancers and acute myeloid leukemia. Meanwhile, in certain cancers, increased USP10 expression is associated with tumor suppression. USP10 was downregulated in kidney renal clear cell carcinoma (KIRC) and associated with reduced overall survival in patients with KIRC. In contrast, USP10 upregulation was associated with poor prognosis in head and neck squamous cell carcinoma (HNSC). In addition, we elucidated the novel role of USP10 in the regulation of tumor immunity in KIRC and HNSC through bioinformatics analysis. We identified several signaling pathways to be significantly associated with USP10 expression, such as ferroptosis, PI3K/AKT/mTOR, TGF-β, and G2/M checkpoint. In summary, this review outlines the role of USP10 in various forms of cancer, discusses the relevance of USP10 inhibitors in anti-tumor therapies, and highlights the potential function of USP10 in regulating the immune responses of tumors.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| |
Collapse
|
34
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
35
|
Coakley-Youngs E, Ranatunga M, Richardson S, Getti G, Shorter S, Fivaz M. Autism-associated CHD8 keeps proliferation of human neural progenitors in check by lengthening the G1 phase of the cell cycle. Biol Open 2022; 11:276883. [PMID: 36222238 PMCID: PMC9548376 DOI: 10.1242/bio.058941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2022] [Indexed: 01/17/2023] Open
Abstract
ABSTRACT
De novo mutations (DNMs) in chromodomain helicase DNA binding protein 8 (CHD8) are associated with a specific subtype of autism characterized by enlarged heads and distinct cranial features. The vast majority of these DNMs are heterozygous loss-of-function mutations with high penetrance for autism. CHD8 is a chromatin remodeler that preferentially regulates expression of genes implicated in early development of the cerebral cortex. How CHD8 haploinsufficiency alters the normal developmental trajectory of the brain is poorly understood and debated. Using long-term single-cell imaging, we show that disruption of a single copy of CHD8 in human neural precursor cells (NPCs) markedly shortens the G1 phase of the cell cycle. Consistent with faster progression of CHD8+/− NPCs through G1 and the G1/S checkpoint, we observed increased expression of E cyclins and elevated phosphorylation of Erk in these mutant cells – two central signaling pathways involved in S phase entry. Thus, CHD8 keeps proliferation of NPCs in check by lengthening G1, and mono-allelic disruption of this gene alters cell-cycle timing in a way that favors self-renewing over neurogenic cell divisions. Our findings further predict enlargement of the neural progenitor pool in CHD8+/− developing brains, providing a mechanistic basis for macrocephaly in this autism subtype.
Collapse
Affiliation(s)
- Emma Coakley-Youngs
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Medhavi Ranatunga
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Simon Richardson
- Exogenics Laboratory, University of Greenwich at Medway 3 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Giulia Getti
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Susan Shorter
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Marc Fivaz
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| |
Collapse
|
36
|
Shen H, Huang F, Zhang X, Ojo OA, Li Y, Trummell HQ, Anderson JC, Fiveash J, Bredel M, Yang ES, Willey CD, Chong Z, Bonner JA, Shi LZ. Selective suppression of melanoma lacking IFN-γ pathway by JAK inhibition depends on T cells and host TNF signaling. Nat Commun 2022; 13:5013. [PMID: 36008408 PMCID: PMC9411168 DOI: 10.1038/s41467-022-32754-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance to immune checkpoint blockers (ICBs) in melanoma patients is a pressing issue, of which tumor loss of IFN-γ signaling genes is a major underlying mechanism. However, strategies of overcoming this resistance mechanism have been largely elusive. Moreover, given the indispensable role of tumor-infiltrating T cells (TILs) in ICBs, little is known about how tumor-intrinsic loss of IFN-γ signaling (IFNγR1KO) impacts TILs. Here, we report that IFNγR1KO melanomas have reduced infiltration and function of TILs. IFNγR1KO melanomas harbor a network of constitutively active protein tyrosine kinases centered on activated JAK1/2. Mechanistically, JAK1/2 activation is mediated by augmented mTOR. Importantly, JAK1/2 inhibition with Ruxolitinib selectively suppresses the growth of IFNγR1KO but not scrambled control melanomas, depending on T cells and host TNF. Together, our results reveal an important role of tumor-intrinsic IFN-γ signaling in shaping TILs and manifest a targeted therapy to bypass ICB resistance of melanomas defective of IFN-γ signaling.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Fengyuan Huang
- Department of Genetics and Informatics Institute, UAB-SOM, Birmingham, AL, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Yuebin Li
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Hoa Quang Trummell
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - John Fiveash
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Markus Bredel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics and Informatics Institute, UAB-SOM, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
- Department of Microbiology, UAB-SOM, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA.
- Programs in Immunology, UAB-SOM, Birmingham, AL, USA.
| |
Collapse
|
37
|
Jiang P, Tang S, Hudgins H, Smalligan T, Zhou X, Kamat A, Dharmarpandi J, Naguib T, Liu X, Dai Z. The Abl/Abi signaling links WAVE regulatory complex to Cbl E3 ubiquitin ligase and is essential for breast cancer cell metastasis. Neoplasia 2022; 32:100819. [PMID: 35839699 PMCID: PMC9287790 DOI: 10.1016/j.neo.2022.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
A Cbl-TKB binding motif regulates the stability of Abi and WAVE regulatory complex. Abl kinases serve as a switch to activate Cbl-mediated Abi/WRC degradation. Depletion of Abi1 impairs EGFR and Src family kinases signaling. Abi1 is essential for breast cancer cell invasion and lung metastasis. The family of Abelson interactor (Abi) proteins is a component of WAVE regulatory complex (WRC) and a downstream target of Abelson (Abl) tyrosine kinase. The fact that Abi proteins also interact with diverse membrane proteins and intracellular signaling molecules places these proteins at a central position in the network that controls cytoskeletal functions and cancer cell metastasis. Here, we identified a motif in Abi proteins that conforms to consensus sequences found in a cohort of receptor and non-receptor tyrosine kinases that bind to Cbl-tyrosine kinase binding domain. The phosphorylation of tyrosine 213 in this motif is essential for Abi degradation. Double knockout of c-Cbl and Cbl B in Bcr-Abl-transformed leukemic cells abolishes Abi1, Abi2, and WAVE2 degradation. Moreover, knockout of Abi1 reduces Src family kinase Lyn activation in Bcr-Abl-positive leukemic cells and promotes EGF-induced EGF receptor downregulation in breast cancer cells. Importantly, Abi1 depletion impeded breast cancer cell invasion in vitro and metastasis in mouse xenografts. Together, these studies uncover a novel mechanism by which the WRC and receptor/non-receptor tyrosine kinases are regulated and identify Abi1 as a potential therapeutic target for metastatic breast cancer.
Collapse
Affiliation(s)
- Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Suni Tang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Hogan Hudgins
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Tate Smalligan
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Anuja Kamat
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Janaki Dharmarpandi
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Tarek Naguib
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA.
| |
Collapse
|
38
|
Ma X, Ru Y, Luo Y, Kuai L, Chen QL, Bai Y, Liu YQ, Chen J, Luo Y, Song JK, Zhou M, Li B. Post-Translational Modifications in Atopic Dermatitis: Current Research and Clinical Relevance. Front Cell Dev Biol 2022; 10:942838. [PMID: 35874824 PMCID: PMC9301047 DOI: 10.3389/fcell.2022.942838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by compromised immune system, excessive inflammation, and skin barrier disruption. Post-translational modifications (PTMs) are covalent and enzymatic modifications of proteins after their translation, which have been reported to play roles in inflammatory and allergic diseases. However, less attention has been paid to the effect of PTMs on AD. This review summarized the knowledge of six major classes (including phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD pathogenesis and discussed the opportunities for disease management.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jia Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| |
Collapse
|
39
|
Iatsiuk V, Malinka F, Pickova M, Tureckova J, Klema J, Spoutil F, Novosadova V, Prochazka J, Sedlacek R. Semantic clustering analysis of E3-ubiquitin ligases in gastrointestinal tract defines genes ontology clusters with tissue expression patterns. BMC Gastroenterol 2022; 22:186. [PMID: 35413796 PMCID: PMC9006408 DOI: 10.1186/s12876-022-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions. However, the functional classification of Ub-ligases needs to be revised and extended. Methods In the current study, we used a novel semantic biclustering technique for expression profiling of Ub-ligases and ubiquitination-related genes in the murine gastrointestinal tract (GIT). We accommodated a general framework of the algorithm for finding tissue-specific gene expression clusters in GIT. In order to test identified clusters in a biological system, we used a model of epithelial regeneration. For this purpose, a dextran sulfate sodium (DSS) mouse model, following with in situ hybridization, was used to expose genes with possible compensatory features. To determine cell-type specific distribution of Ub-ligases and ubiquitination-related genes, principal component analysis (PCA) and Uniform Manifold Approximation and Projection technique (UMAP) were used to analyze the Tabula Muris scRNA-seq data of murine colon followed by comparison with our clustering results. Results Our established clustering protocol, that incorporates the semantic biclustering algorithm, demonstrated the potential to reveal interesting expression patterns. In this manner, we statistically defined gene clusters consisting of the same genes involved in distinct regulatory pathways vs distinct genes playing roles in functionally similar signaling pathways. This allowed us to uncover the potentially redundant features of GIT-specific Ub-ligases and ubiquitination-related genes. Testing the statistically obtained results on the mouse model showed that genes clustered to the same ontology group simultaneously alter their expression pattern after induced epithelial damage, illustrating their complementary role during tissue regeneration. Conclusions An optimized semantic clustering protocol demonstrates the potential to reveal a readable and unique pattern in the expression profiling of GIT-specific Ub-ligases, exposing ontologically relevant gene clusters with potentially redundant features. This extends our knowledge of ontological relationships among Ub-ligases and ubiquitination-related genes, providing an alternative and more functional gene classification. In a similar way, semantic cluster analysis could be used for studding of other enzyme families, tissues and systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02265-2.
Collapse
Affiliation(s)
- Veronika Iatsiuk
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Malinka
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Marketa Pickova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jolana Tureckova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Frantisek Spoutil
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Novosadova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
40
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
41
|
Yu Q, Guo M, Zeng W, Zeng M, Zhang X, Zhang Y, Zhang W, Jiang X, Yu B. Interactions between NLRP3 inflammasome and glycolysis in macrophages: New insights into chronic inflammation pathogenesis. Immun Inflamm Dis 2022; 10:e581. [PMID: 34904398 PMCID: PMC8926505 DOI: 10.1002/iid3.581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
NLRP3 inflammasome activation in macrophages fuels sterile inflammation, which has been tied with metabolic reprogramming characterized by high glycolysis and low oxidative phosphorylation. The key enzymes in glycolysis and glycolysis‐related products can regulate and activate NLRP3 inflammasome. In turn, NLRP3 inflammasome is considered to affect glycolysis, as well. However, the exact mechanism remains ambiguous. On the basis of these findings, the focus of this review is mainly on the developments in our understanding of interaction between NLRP3 inflammasome activation and glycolysis in macrophages, and small molecule compounds that influence the activation of NLRP3 inflammasomes by regulating glycolysis in macrophages. The application of this interaction in the treatment of diseases is also discussed. This paper may yield valuable clues for development of novel therapeutic agent for NLRP3 inflammasome‐related diseases.
Collapse
Affiliation(s)
- Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Chen HK, Li YZ, Ge AN, Zhu YB, Wu SJ, Bai X, Bai HH, Liu YN. Cbl-b modulated TrkA ubiquitination and function in the dorsal root ganglion of mice. Eur J Pharmacol 2022; 921:174876. [DOI: 10.1016/j.ejphar.2022.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
43
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
44
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
45
|
Roman-Trufero M, Dillon N. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Front Cell Dev Biol 2022; 10:1058751. [PMID: 36578786 PMCID: PMC9790923 DOI: 10.3389/fcell.2022.1058751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination of cellular proteins plays critical roles in key signalling pathways and in the regulation of protein turnover in eukaryotic cells. E2 ubiquitin conjugating enzymes function as essential intermediates in ubiquitination reactions by acting as ubiquitin donors for the E3 ubiquitin ligase enzymes that confer substrate specificity. The members of the UBE2D family of E2 enzymes are involved in regulating signalling cascades through ubiquitination of target proteins that include receptor tyrosine kinases (RTKs) and components of the Hedgehog, TGFβ and NFκB pathways. UBE2D enzymes also function in transcriptional control by acting as donors for ubiquitination of histone tails by the Polycomb protein Ring1B and the DNA methylation regulator UHRF1 as well as having roles in DNA repair and regulation of the level of the tumour suppressor p53. Here we review the functional roles and mechanisms of regulation of the UBE2D proteins including recent evidence that regulation of the level of UBE2D3 is critical for controlling ubiquitination of specific targets during development. Cellular levels of UBE2D3 have been shown to be regulated by phosphorylation, which affects folding of the protein, reducing its stability. Specific variations in the otherwise highly conserved UBE2D3 protein sequence in amniotes and in a subgroup of teleost fishes, the Acanthomorpha, suggest that the enzyme has had important roles during vertebrate evolution.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Niall Dillon
- MRC London Institute of Medical Sciences, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
46
|
Tang R, Langdon WY, Zhang J. Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne) 2022; 13:971162. [PMID: 35966060 PMCID: PMC9365936 DOI: 10.3389/fendo.2022.971162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that participate in a broad spectrum of cellular processes including cellular growth, motility, differentiation, proliferation, and metabolism. Hence, elucidating the regulatory mechanisms of RTKs involved in an assortment of diseases such as cancers attracts increasing interest from researchers. Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in mammals) have emerged as negative regulators of activated RTKs. Upon activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase binding (TKB) domain and targets them for ubiquitination, thus facilitating their degradation and negative regulation of RTK signaling. RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF), fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (HGFR) undergo ubiquitination upon interaction with Cbl family members. In this review, we summarize the current knowledge related to the negative regulation of RTKs by Cbl family proteins.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wallace Y. Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Jian Zhang,
| |
Collapse
|
47
|
Molecular Pathogenesis in Myeloid Neoplasms with Germline Predisposition. Life (Basel) 2021; 12:life12010046. [PMID: 35054439 PMCID: PMC8779845 DOI: 10.3390/life12010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloid neoplasms with germline predisposition have recently been added as distinct provisional entities in the 2017 revision of the World Health Organization’s classification of tumors of hematopoietic and lymphatic tissue. Individuals with germline predisposition have increased risk of developing myeloid neoplasms—mainly acute myeloid leukemia and myelodysplastic syndrome. Although the incidence of myeloid neoplasms with germline predisposition remains poorly defined, these cases provide unique and important insights into the biology and molecular mechanisms of myeloid neoplasms. Knowledge of the regulation of the germline genes and their interactions with other genes, proteins, and the environment, the penetrance and clinical presentation of inherited mutations, and the longitudinal dynamics during the process of disease progression offer models and tools that can further our understanding of myeloid neoplasms. This knowledge will eventually translate to improved disease sub-classification, risk assessment, and development of more effective therapy. In this review, we will use examples of these disorders to illustrate the key molecular pathways of myeloid neoplasms.
Collapse
|
48
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Ma JJ, Zhang TY, Diao XT, Yao L, Li YX, Suo ZW, Yang X, Hu XD, Liu YN. BDNF modulated KCC2 ubiquitylation in spinal cord dorsal horn of mice. Eur J Pharmacol 2021; 906:174205. [PMID: 34048740 DOI: 10.1016/j.ejphar.2021.174205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The K+-Cl- co-transporter 2 (KCC2) is a neuron-specific Cl- extruder in the dorsal horn of spinal cord. The low intracellular Cl- concentration established by KCC2 is critical for GABAergic and glycinergic systems to generate synaptic inhibition. Peripheral nerve lesions have been shown to cause KCC2 dysfunction in adult spinal cord through brain-derived neurotrophic factor (BDNF) signaling, which switches the hyperpolarizing inhibitory transmission to be depolarizing and excitatory. However, the mechanisms by which BDNF impairs KCC2 function remain to be elucidated. Here we found that BDNF treatment enhanced KCC2 ubiquitination in the dorsal horn of adult mice, a post-translational modification that leads to KCC2 degradation. Our data showed that spinal BDNF application promoted KCC2 interaction with Casitas B-lineage lymphoma b (Cbl-b), one of the E3 ubiquitin ligases that are involved in the spinal processing of nociceptive information. Knockdown of Cbl-b expression decreased KCC2 ubiquitination level and attenuated the pain hypersensitivity induced by BDNF. Spared nerve injury significantly increased KCC2 ubiquitination, which could be reversed by inhibition of TrkB receptor. Our data implicated that KCC2 was one of the important pain-related substrates of Cbl-b and that ubiquitin modification contributed to BDNF-induced KCC2 hypofunction in the spinal cord.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Tian-Yu Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xin-Tong Diao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Lin Yao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yin-Xia Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Yan-Ni Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
50
|
Yang J, Weisberg EL, Liu X, Magin RS, Chan WC, Hu B, Schauer NJ, Zhang S, Lamberto I, Doherty L, Meng C, Sattler M, Cabal-Hierro L, Winer E, Stone R, Marto JA, Griffin JD, Buhrlage SJ. Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2. Leukemia 2021; 36:210-220. [PMID: 34326465 DOI: 10.1038/s41375-021-01336-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/30/2023]
Abstract
Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert S Magin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wai Cheung Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bin Hu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shengzhe Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ilaria Lamberto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura Doherty
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|