1
|
Dou T, Chen Y, Liu L, Zhang Y, Pei W, Li J, Lei Y, Wang Y, Jia H. Radiogenomic analysis of clinical and ultrasonic characteristics in correlation to immune-related genes in breast cancer. Sci Rep 2025; 15:15918. [PMID: 40335526 PMCID: PMC12058982 DOI: 10.1038/s41598-025-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/02/2025] [Indexed: 05/09/2025] Open
Abstract
Breast ultrasound plays a significant role in the non-invasive screening and diagnosis of breast cancer. The application of immunotherapy for breast cancer can significantly prolong the overall survival of advanced patients, which is an important research area of breast cancer treatment. The combination of ultrasound and immunotherapy helps patients diagnose and predict survival and develop a personalized treatment plan. This study analyzed the correlation between the clinical and ultrasonic characteristics of breast cancer and immune-related genes. First, the differential expression of immune-related genes was obtained using the GEO and IMMPORT database. Then, differentially expressed immune-related genes related to the overall survival of breast cancer were obtained using the GEPIA and Kaplan-Meier plotter platforms. Additionally, clinical, ultrasonic characteristics and pathological specimens of breast cancer patients' tumors were collected. Whole transcriptome sequencing and immunohistochemical staining were performed on the tumor specimens to obtain gene expression. CXCL2, MIA, NR3C2, PTX3, S100B, SAA1, SAA2, and CXCL9 genes were correlated with each other and with clinical and ultrasonic characteristics. The high expression of MIA was related to the positive expression of PR in breast cancer. The low expression of NR3C2 was correlated with the clinical characteristics of tumor size ≥ 20 mm, later stage, Her-2 positive, Ki-67 ≥ 20%. NR3C2 was negatively correlated with the value of PKI and AUC in contrast-enhanced ultrasound parameters, and positively correlated with the value of AT and TTP. The expression of the PTX3 gene was also negatively correlated with the value of PKI and Emax of shear wave elastography. SAA2 was related to the presence or absence of edge burrs characterized by ultrasound. The expression of the CXCL9 gene was associated with the age of onset and tumor stage. In this study, 8 differentially expressed immune-related genes related to the overall survival of breast cancer were screened, which had been proved to be associated with some characteristics of cancer in previous studies, and could be further studied in the subsequent immunotherapy of breast cancer. Some clinical and ultrasonic characteristics of breast cancer were significantly correlated with immune-related genes, such as NR3C2, SAA2, and CXCL9. Further analysis of these genes provides new ideas for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Lunhang Liu
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Lei
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, ShanxiMedical University, Taiyuan, Shanxi, China.
- key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China.
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Wang SR, Shen YT, Huang B, Xu HX. Ultrasound-based radiogenomics: status, applications, and future direction. Ultrasonography 2025; 44:95-111. [PMID: 39935290 PMCID: PMC11938802 DOI: 10.14366/usg.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025] Open
Abstract
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
Collapse
Affiliation(s)
- Si-Rui Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Ting Shen
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, China
| | - Hui-Xiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Jonnalagedda P, Weinberg B, Min TL, Bhanu S, Bhanu B. Computational modeling of tumor invasion from limited and diverse data in Glioblastoma. Comput Med Imaging Graph 2024; 117:102436. [PMID: 39342741 DOI: 10.1016/j.compmedimag.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
For diseases with high morbidity rates such as Glioblastoma Multiforme, the prognostic and treatment planning pipeline requires a comprehensive analysis of imaging, clinical, and molecular data. Many mutations have been shown to correlate strongly with the median survival rate and response to therapy of patients. Studies have demonstrated that these mutations manifest as specific visual biomarkers in tumor imaging modalities such as MRI. To minimize the number of invasive procedures on a patient and for the overall resource optimization for the prognostic and treatment planning process, the correlation of imaging and molecular features has garnered much interest. While the tumor mass is the most significant feature, the impacted tissue surrounding the tumor is also a significant biomarker contributing to the visual manifestation of mutations - which has not been studied as extensively. The pattern of tumor growth impacts the surrounding tissue accordingly, which is a reflection of tumor properties as well. Modeling how the tumor growth impacts the surrounding tissue can reveal important information about the patterns of tumor enhancement, which in turn has significant diagnostic and prognostic value. This paper presents the first work to automate the computational modeling of the impacted tissue surrounding the tumor using generative deep learning. The paper isolates and quantifies the impact of the Tumor Invasion (TI) on surrounding tissue based on change in mutation status, subsequently assessing its prognostic value. Furthermore, a TI Generative Adversarial Network (TI-GAN) is proposed to model the tumor invasion properties. Extensive qualitative and quantitative analyses, cross-dataset testing, and radiologist blind tests are carried out to demonstrate that TI-GAN can realistically model the tumor invasion under practical challenges of medical datasets such as limited data and high intra-class heterogeneity.
Collapse
Affiliation(s)
- Padmaja Jonnalagedda
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America.
| | - Brent Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Taejin L Min
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Shiv Bhanu
- Department of Radiology, Riverside Community Hospital, Riverside CA, United States of America
| | - Bir Bhanu
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America
| |
Collapse
|
4
|
Chen J, Zeng H, Cheng Y, Yang B. Identifying radiogenomic associations of breast cancer based on DCE-MRI by using Siamese Neural Network with manufacturer bias normalization. Med Phys 2024; 51:7269-7281. [PMID: 38922986 DOI: 10.1002/mp.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non-invasive system for identifying HER2 and HR in breast cancer using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS In light of the absence of high-performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I-SPY 1) and I-SPY 2, were incorporated. I-SPY 2 was utilized for model training and validation, while I-SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. RESULTS The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I-SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I-SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. CONCLUSION This study proposes a non-invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre-trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic.
Collapse
Affiliation(s)
- Junhua Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Haiyan Zeng
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Cheng
- Medical Engineering Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, China
- School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Jiang B, Bao L, He S, Chen X, Jin Z, Ye Y. Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis. Breast Cancer Res 2024; 26:137. [PMID: 39304962 DOI: 10.1186/s13058-024-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Breast cancer is the most common malignant tumor among women worldwide and remains one of the leading causes of death among women. Its incidence and mortality rates are continuously rising. In recent years, with the rapid advancement of deep learning (DL) technology, DL has demonstrated significant potential in breast cancer diagnosis, prognosis evaluation, and treatment response prediction. This paper reviews relevant research progress and applies DL models to image enhancement, segmentation, and classification based on large-scale datasets from TCGA and multiple centers. We employed foundational models such as ResNet50, Transformer, and Hover-net to investigate the performance of DL models in breast cancer diagnosis, treatment, and prognosis prediction. The results indicate that DL techniques have significantly improved diagnostic accuracy and efficiency, particularly in predicting breast cancer metastasis and clinical prognosis. Furthermore, the study emphasizes the crucial role of robust databases in developing highly generalizable models. Future research will focus on addressing challenges related to data management, model interpretability, and regulatory compliance, ultimately aiming to provide more precise clinical treatment and prognostic evaluation programs for breast cancer patients.
Collapse
Affiliation(s)
- Bitao Jiang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China.
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China.
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China
| | - Songqin He
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China
| | - Xiao Chen
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China
| | - Zhihui Jin
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China
| | - Yingquan Ye
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China.
| |
Collapse
|
6
|
Koska IO, Ozcan HN, Tan AA, Beydogan B, Ozer G, Oguz B, Haliloglu M. Radiomics in differential diagnosis of Wilms tumor and neuroblastoma with adrenal location in children. Eur Radiol 2024; 34:5016-5027. [PMID: 38311701 PMCID: PMC11255001 DOI: 10.1007/s00330-024-10589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVES Machine learning methods can be applied successfully to various medical imaging tasks. Our aim with this study was to build a robust classifier using radiomics and clinical data for preoperative diagnosis of Wilms tumor (WT) or neuroblastoma (NB) in pediatric abdominal CT. MATERIAL AND METHODS This is a single-center retrospective study approved by the Institutional Ethical Board. CT scans of consecutive patients diagnosed with WT or NB admitted to our hospital from January 2005 to December 2021 were evaluated. Three distinct datasets based on clinical centers and CT machines were curated. Robust, non-redundant, high variance, and relevant radiomics features were selected using data science methods. Clinically relevant variables were integrated into the final model. Dice score for similarity of tumor ROI, Cohen's kappa for interobserver agreement among observers, and AUC for model selection were used. RESULTS A total of 147 patients, including 90 WT (mean age 34.78 SD: 22.06 months; 43 male) and 57 NB (mean age 23.77 SD:22.56 months; 31 male), were analyzed. After binarization at 24 months cut-off, there was no statistically significant difference between the two groups for age (p = .07) and gender (p = .54). CT clinic radiomics combined model achieved an F1 score of 0.94, 0.93 accuracy, and an AUC 0.96. CONCLUSION In conclusion, the CT-based clinic-radiologic-radiomics combined model could noninvasively predict WT or NB preoperatively. Notably, that model correctly predicted two patients, which none of the radiologists could correctly predict. This model may serve as a noninvasive preoperative predictor of NB/WT differentiation in CT, which should be further validated in large prospective models. CLINICAL RELEVANCE STATEMENT CT-based clinic-radiologic-radiomics combined model could noninvasively predict Wilms tumor or neuroblastoma preoperatively. KEY POINTS • CT radiomics features can predict Wilms tumor or neuroblastoma from abdominal CT preoperatively. • Integrating clinic variables may further improve the performance of the model. • The performance of the combined model is equal to or greater than human readers, depending on the lesion size.
Collapse
Affiliation(s)
- Ilker Ozgur Koska
- Department of Radiology, Behcet Uz Children's Hospital, Konak İzmir, Turkey.
| | - H Nursun Ozcan
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Aziz Anil Tan
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
- Department of Radiology, Sincan Training and Research Hospital, Ankara, Turkey
| | - Beyza Beydogan
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gozde Ozer
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Berna Oguz
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mithat Haliloglu
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Jiang J, Li L, Yin G, Luo H, Li J. A Molecular Typing Method for Invasive Breast Cancer by Serum Raman Spectroscopy. Clin Breast Cancer 2024; 24:376-383. [PMID: 38492997 DOI: 10.1016/j.clbc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The incidence of breast cancer ranks highest among cancers and is exceedingly heterogeneous. Immunohistochemical staining is commonly used clinically to identify the molecular subtype for subsequent treatment and prognosis. PURPOSE Raman spectroscopy and support vector machine (SVM) learning algorithm were utilized to identify blood samples from breast cancer patients in order to investigate a novel molecular typing approach. METHOD Tumor tissue coarse needle aspiration biopsy samples, and peripheral venous blood samples were gathered from 459 invasive breast cancer patients admitted to the breast department of Sichuan Cancer Hospital between June 2021 and September 2022. Immunohistochemical staining and in situ hybridization were performed on the coarse needle aspiration biopsy tissues to obtain their molecular typing pathological labels, including: 70 cases of Luminal A, 167 cases of Luminal B (HER2-positive), 57 cases of Luminal B (HER2-negative), 84 cases of HER2-positive, and 81 cases of triple-negative. Blood samples were processed to obtained Raman spectra taken for SVM classification models establishment with machine algorithms (using 80% of the sample data as the training set), and then the performance of the SVM classification models was evaluated by the independent validation set (20% of the sample data). RESULTS The AUC values of SVM classification models remained above 0.85, demonstrating outstanding model performance and excellent subtype discrimination of breast cancer molecular subtypes. CONCLUSION Raman spectroscopy of serum samples can promptly and precisely detect the molecular subtype of invasive breast cancer, which has the potential for clinical value.
Collapse
Affiliation(s)
- Jun Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lintao Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Yin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Huaichao Luo
- Department of Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Li
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Demetriou D, Lockhat Z, Brzozowski L, Saini KS, Dlamini Z, Hull R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers (Basel) 2024; 16:1076. [PMID: 38473432 DOI: 10.3390/cancers16051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Despite significant progress in the prevention, screening, diagnosis, prognosis, and therapy of breast cancer (BC), it remains a highly prevalent and life-threatening disease affecting millions worldwide. Molecular subtyping of BC is crucial for predictive and prognostic purposes due to the diverse clinical behaviors observed across various types. The molecular heterogeneity of BC poses uncertainties in its impact on diagnosis, prognosis, and treatment. Numerous studies have highlighted genetic and environmental differences between patients from different geographic regions, emphasizing the need for localized research. International studies have revealed that patients with African heritage are often diagnosed at a more advanced stage and exhibit poorer responses to treatment and lower survival rates. Despite these global findings, there is a dearth of in-depth studies focusing on communities in the African region. Early diagnosis and timely treatment are paramount to improving survival rates. In this context, radiogenomics emerges as a promising field within precision medicine. By associating genetic patterns with image attributes or features, radiogenomics has the potential to significantly improve early detection, prognosis, and diagnosis. It can provide valuable insights into potential treatment options and predict the likelihood of survival, progression, and relapse. Radiogenomics allows for visual features and genetic marker linkage that promises to eliminate the need for biopsy and sequencing. The application of radiogenomics not only contributes to advancing precision oncology and individualized patient treatment but also streamlines clinical workflows. This review aims to delve into the theoretical underpinnings of radiogenomics and explore its practical applications in the diagnosis, management, and treatment of BC and to put radiogenomics on a path towards fully integrated diagnostics.
Collapse
Affiliation(s)
- Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Zarina Lockhat
- Department of Radiology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Luke Brzozowski
- Translational Research and Core Facilities, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kamal S Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Cobo M, Menéndez Fernández-Miranda P, Bastarrika G, Lloret Iglesias L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci Data 2023; 10:732. [PMID: 37865635 PMCID: PMC10590396 DOI: 10.1038/s41597-023-02641-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Miriam Cobo
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain.
| | | | - Gorka Bastarrika
- Clínica Universidad de Navarra, Department of Radiology, Pamplona, Spain
| | - Lara Lloret Iglesias
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain
| |
Collapse
|
10
|
Deng XY, Cao PW, Nan SM, Pan YP, Yu C, Pan T, Dai G. Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study. Clin Breast Cancer 2023; 23:729-736. [PMID: 37481337 DOI: 10.1016/j.clbc.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast. MATERIALS AND METHODS A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed. RESULTS Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group. CONCLUSIONS Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.
Collapse
Affiliation(s)
- Xue-Ying Deng
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| | - Pei-Wei Cao
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shuai-Ming Nan
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yue-Peng Pan
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chang Yu
- Department of Pathology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ting Pan
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Gang Dai
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
11
|
Zhou J, Xie T, Shan H, Cheng G. HLA-DQA1 expression is associated with prognosis and predictable with radiomics in breast cancer. Radiat Oncol 2023; 18:117. [PMID: 37434241 DOI: 10.1186/s13014-023-02314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND High HLA-DQA1 expression is associated with a better prognosis in many cancers. However, the association between HLA-DQA1 expression and prognosis of breast cancer and the noninvasive assessment of HLA-DQA1 expression are still unclear. This study aimed to reveal the association and investigate the potential of radiomics to predict HLA-DQA1 expression in breast cancer. METHODS In this retrospective study, transcriptome sequencing data, medical imaging data, clinical and follow-up data were downloaded from the TCIA ( https://www.cancerimagingarchive.net/ ) and TCGA ( https://portal.gdc.cancer.gov/ ) databases. The clinical characteristic differences between the high HLA-DQA1 expression group (HHD group) and the low HLA-DQA1 expression group were explored. Gene set enrichment analysis, Kaplan‒Meier survival analysis and Cox regression were performed. Then, 107 dynamic contrast-enhanced magnetic resonance imaging features were extracted, including size, shape and texture. Using recursive feature elimination and gradient boosting machine, a radiomics model was established to predict HLA-DQA1 expression. Receiver operating characteristic (ROC) curves, precision-recall curves, calibration curves, and decision curves were used for model evaluation. RESULTS The HHD group had better survival outcomes. The differentially expressed genes in the HHD group were significantly enriched in oxidative phosphorylation (OXPHOS) and estrogen response early and late signalling pathways. The radiomic score (RS) output from the model was associated with HLA-DQA1 expression. The area under the ROC curves (95% CI), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the radiomic model were 0.866 (0.775-0.956), 0.825, 0.939, 0.7, 0.775, and 0.913 in the training set and 0.780 (0.629-0.931), 0.659, 0.81, 0.5, 0.63, and 0.714 in the validation set, respectively, showing a good prediction effect. CONCLUSIONS High HLA-DQA1 expression is associated with a better prognosis in breast cancer. Quantitative radiomics as a noninvasive imaging biomarker has potential value for predicting HLA-DQA1 expression.
Collapse
Affiliation(s)
- JingYu Zhou
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - TingTing Xie
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - HuiMing Shan
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - GuanXun Cheng
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
12
|
Fanizzi A, Pomarico D, Rizzo A, Bove S, Comes MC, Didonna V, Giotta F, La Forgia D, Latorre A, Pastena MI, Petruzzellis N, Rinaldi L, Tamborra P, Zito A, Lorusso V, Massafra R. Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer. Sci Rep 2023; 13:8575. [PMID: 37237020 PMCID: PMC10220052 DOI: 10.1038/s41598-023-35344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are available on the market but are very expensive. Therefore, there is the urgent need to explore novel reliable and less expensive prognostic tools in this setting. In this paper, we shown a machine learning survival model to estimate Invasive Disease-Free Events trained on clinical and histological data commonly collected in clinical practice. We collected clinical and cytohistological outcomes of 145 patients referred to Istituto Tumori "Giovanni Paolo II". Three machine learning survival models are compared with the Cox proportional hazards regression according to time-dependent performance metrics evaluated in cross-validation. The c-index at 10 years obtained by random survival forest, gradient boosting, and component-wise gradient boosting is stabled with or without feature selection at approximately 0.68 in average respect to 0.57 obtained to Cox model. Moreover, machine learning survival models have accurately discriminated low- and high-risk patients, and so a large group which can be spared additional chemotherapy to hormone therapy. The preliminary results obtained by including only clinical determinants are encouraging. The integrated use of data already collected in clinical practice for routine diagnostic investigations, if properly analyzed, can reduce time and costs of the genomic tests.
Collapse
Affiliation(s)
- Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Domenico Pomarico
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Samantha Bove
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Maria Colomba Comes
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Francesco Giotta
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Agnese Latorre
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Maria Irene Pastena
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Nicole Petruzzellis
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Lucia Rinaldi
- Struttura Semplice Dipartimentale di Oncologia Per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| |
Collapse
|
13
|
Thakur SB, Chakraborthy J, Pinker K. Editorial for "TP53 Mutation Estimation Based on Radiomics Analysis for Breast Cancer". J Magn Reson Imaging 2023; 57:1104-1105. [PMID: 35762927 DOI: 10.1002/jmri.28324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sunitha B Thakur
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jayasree Chakraborthy
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Shi S, An X, Li Y. Ultrasound Radiomics-Based Logistic Regression Model to Differentiate Between Benign and Malignant Breast Nodules. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:869-879. [PMID: 36149670 DOI: 10.1002/jum.16078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To explore the potential value of ultrasound radiomics in differentiating between benign and malignant breast nodules by extracting the radiomic features of two-dimensional (2D) grayscale ultrasound images and establishing a logistic regression model. METHODS The clinical and ultrasound data of 1000 female patients (500 pathologically benign patients, 500 pathologically malignant patients) who underwent breast ultrasound examinations at our hospital were retrospectively analyzed. The cases were randomly divided into training and validation sets at a ratio of 7:3. Once the region of interest (ROI) of the lesion was manually contoured, Spearman's rank correlation, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm were adopted to determine optimal features and establish a logistic regression classification model. The performance of the model was assessed using the area under the receiver operating characteristic curve (AUC), and calibration and decision curves (DCA). RESULTS Eight ultrasound radiomic features were selected to establish the model. The AUC values of the model were 0.979 and 0.977 in the training and validation sets, respectively (P = .0029), indicating good discriminative ability in both datasets. Additionally, the calibration and DCA suggested that the model's calibration efficiency and clinical application value were both superior. CONCLUSIONS The proposed logistic regression model based on 2D grayscale ultrasound images could facilitate differential diagnosis of benign and malignant breast nodules. The model, which was constructed using ultrasound radiomic features identified in this study, demonstrated good diagnostic performance and could be useful in helping clinicians formulate individualized treatment plans for patients.
Collapse
Affiliation(s)
- Shanshan Shi
- Ultrasound Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin An
- Ultrasound Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuhong Li
- Ultrasound Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Xi J, Sun D, Chang C, Zhou S, Huang Q. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers. Comput Biol Med 2023; 155:106672. [PMID: 36805226 DOI: 10.1016/j.compbiomed.2023.106672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The radiogenomics analysis can provide the connections between genomics and radiomics, which can infer the genomic features of tumors from their radiogenomic associations through the low-cost and non-invasiveness screening ultrasonic images. Although there are a number of pioneer approaches exploring the connections between genomic aberrations and ultrasonic features, these studies mainly focus on the relationship between ultrasonic features and only the most popular cancer genes, confronting two difficulties: missing many-to-many relationships as omics-to-omics view, and confounding group-specific associations with whole sample associations. To overcome the difficulty of omics-to-omics view and the issue of tumor heterogeneity, we propose an omics-to-omics joint knowledge association subtensor model. Specifically, the subtensor factorization framework can successfully discover the joint cross-modal module via an omics-to-omics view, while the sparse weight sample indication strategy can mine sample subgroups from the multi-omic data with tumor heterogeneity. The experimental evaluation result shows the jointness of the discovered modules across omics, their association with tumorigenesis contribution, and their relation for cancer related functions. In summary, our proposed omics-to-omics joint knowledge association subtensor model can serve as an efficient tool for radiogenomic knowledge associations, promoting the cross-modal knowledge graph construction of in explainable artificial intelligence cancer diagnosis.
Collapse
Affiliation(s)
- Jianing Xi
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Donghui Sun
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
16
|
Ju HM, Kim BC, Lim I, Byun BH, Woo SK. Estimation of an Image Biomarker for Distant Recurrence Prediction in NSCLC Using Proliferation-Related Genes. Int J Mol Sci 2023; 24:ijms24032794. [PMID: 36769108 PMCID: PMC9917349 DOI: 10.3390/ijms24032794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to identify a distant-recurrence image biomarker in NSCLC by investigating correlations between heterogeneity functional gene expression and fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) image features of NSCLC patients. RNA-sequencing data and 18F-FDG PET images of 53 patients with NSCLC (19 with distant recurrence and 34 without recurrence) from The Cancer Imaging Archive and The Cancer Genome Atlas Program databases were used in a combined analysis. Weighted correlation network analysis was performed to identify gene groups related to distant recurrence. Genes were selected for functions related to distant recurrence. In total, 47 image features were extracted from PET images as radiomics. The relationship between gene expression and image features was estimated using a hypergeometric distribution test with the Pearson correlation method. The distant recurrence prediction model was validated by a random forest (RF) algorithm using image texture features and related gene expression. In total, 37 gene modules were identified by gene-expression pattern with weighted gene co-expression network analysis. The gene modules with the highest significance were selected (p-value < 0.05). Nine genes with high protein-protein interaction and area under the curve (AUC) were identified as hub genes involved in the proliferation function, which plays an important role in distant recurrence of cancer. Four image features (GLRLM_SRHGE, GLRLM_HGRE, SUVmean, and GLZLM_GLNU) and six genes were identified to be correlated (p-value < 0.1). AUCs (accuracy: 0.59, AUC: 0.729) from the 47 image texture features and AUCs (accuracy: 0.767, AUC: 0.808) from hub genes were calculated using the RF algorithm. AUCs (accuracy: 0.783, AUC: 0.912) from the four image texture features and six correlated genes and AUCs (accuracy: 0.738, AUC: 0.779) from only the four image texture features were calculated using the RF algorithm. The four image texture features validated by heterogeneity group gene expression were found to be related to cancer heterogeneity. The identification of these image texture features demonstrated that advanced prediction of NSCLC distant recurrence is possible using the image biomarker.
Collapse
Affiliation(s)
- Hye Min Ju
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Sang-Keun Woo
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
- Correspondence: ; Tel.: +82-2-970-1659
| |
Collapse
|
17
|
Giacobbe G, Granata V, Trovato P, Fusco R, Simonetti I, De Muzio F, Cutolo C, Palumbo P, Borgheresi A, Flammia F, Cozzi D, Gabelloni M, Grassi F, Miele V, Barile A, Giovagnoni A, Gandolfo N. Gender Medicine in Clinical Radiology Practice. J Pers Med 2023; 13:jpm13020223. [PMID: 36836457 PMCID: PMC9966684 DOI: 10.3390/jpm13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gender Medicine is rapidly emerging as a branch of medicine that studies how many diseases common to men and women differ in terms of prevention, clinical manifestations, diagnostic-therapeutic approach, prognosis, and psychological and social impact. Nowadays, the presentation and identification of many pathological conditions pose unique diagnostic challenges. However, women have always been paradoxically underestimated in epidemiological studies, drug trials, as well as clinical trials, so many clinical conditions affecting the female population are often underestimated and/or delayed and may result in inadequate clinical management. Knowing and valuing these differences in healthcare, thus taking into account individual variability, will make it possible to ensure that each individual receives the best care through the personalization of therapies, the guarantee of diagnostic-therapeutic pathways declined according to gender, as well as through the promotion of gender-specific prevention initiatives. This article aims to assess potential gender differences in clinical-radiological practice extracted from the literature and their impact on health and healthcare. Indeed, in this context, radiomics and radiogenomics are rapidly emerging as new frontiers of imaging in precision medicine. The development of clinical practice support tools supported by artificial intelligence allows through quantitative analysis to characterize tissues noninvasively with the ultimate goal of extracting directly from images indications of disease aggressiveness, prognosis, and therapeutic response. The integration of quantitative data with gene expression and patient clinical data, with the help of structured reporting as well, will in the near future give rise to decision support models for clinical practice that will hopefully improve diagnostic accuracy and prognostic power as well as ensure a more advanced level of precision medicine.
Collapse
Affiliation(s)
- Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Piero Trovato
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Correspondence:
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federica Flammia
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Francesca Grassi
- Division of Radiology, “Università degli Studi della Campania Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| |
Collapse
|
18
|
Lin G, Wang X, Ye H, Cao W. Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence-the Novel Biomarkers in Breast Cancer Immune Microenvironment. Technol Cancer Res Treat 2023; 22:15330338231218227. [PMID: 38111330 PMCID: PMC10734346 DOI: 10.1177/15330338231218227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and some subtypes are associated with a poor prognosis with a lack of efficacious therapy. Moreover, immunotherapy and the use of other novel antibody‒drug conjugates have been rapidly incorporated into the standard management of advanced breast cancer. To extract more benefit from these therapies, clarifying and monitoring the tumor microenvironment (TME) status is critical, but this is difficult to accomplish based on conventional approaches. Radiomics is a method wherein radiological image features are comprehensively collected and assessed to build connections with disease diagnosis, prognosis, therapy efficacy, the TME, etc In recent years, studies focused on predicting the TME using radiomics have increasingly emerged, most of which demonstrate meaningful results and show better capability than conventional methods in some aspects. Beyond predicting tumor-infiltrating lymphocytes, immunophenotypes, cytokines, infiltrating inflammatory factors, and other stromal components, radiomic models have the potential to provide a completely new approach to deciphering the TME and facilitating tumor management by physicians.
Collapse
Affiliation(s)
- Guang Lin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hunan Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenming Cao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Chen H, Lan X, Yu T, Li L, Tang S, Liu S, Jiang F, Wang L, Huang Y, Cao Y, Wang W, Wang X, Zhang J. Development and validation of a radiogenomics model to predict axillary lymph node metastasis in breast cancer integrating MRI with transcriptome data: A multicohort study. Front Oncol 2022; 12:1076267. [PMID: 36644636 PMCID: PMC9837803 DOI: 10.3389/fonc.2022.1076267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction To develop and validate a radiogenomics model for predicting axillary lymph node metastasis (ALNM) in breast cancer compared to a genomics and radiomics model. Methods This retrospective study integrated transcriptomic data from The Cancer Genome Atlas with matched MRI data from The Cancer Imaging Archive for the same set of 111 patients with breast cancer, which were used as the training and testing groups. Fifteen patients from one hospital were enrolled as the external validation group. Radiomics features were extracted from dynamic contrast-enhanced (DCE)-MRI of breast cancer, and genomics features were derived from differentially expressed gene analysis of transcriptome data. Boruta was used for genomics and radiomics data dimension reduction and feature selection. Logistic regression was applied to develop genomics, radiomics, and radiogenomics models to predict ALNM. The performance of the three models was assessed by receiver operating characteristic curves and compared by the Delong test. Results The genomics model was established by nine genomics features, and the radiomics model was established by three radiomics features. The two models showed good discrimination performance in predicting ALNM in breast cancer, with areas under the curves (AUCs) of 0.80, 0.67, and 0.52 for the genomics model and 0.72, 0.68, and 0.71 for the radiomics model in the training, testing and external validation groups, respectively. The radiogenomics model integrated with five genomics features and three radiomics features had a better performance, with AUCs of 0.84, 0.75, and 0.82 in the three groups, respectively, which was higher than the AUC of the radiomics model in the training group and the genomics model in the external validation group (both P < 0.05). Conclusion The radiogenomics model combining radiomics features and genomics features improved the performance to predict ALNM in breast cancer.
Collapse
|
20
|
Identifying Associations between DCE-MRI Radiomic Features and Expression Heterogeneity of Hallmark Pathways in Breast Cancer: A Multi-Center Radiogenomic Study. Genes (Basel) 2022; 14:genes14010028. [PMID: 36672769 PMCID: PMC9858814 DOI: 10.3390/genes14010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To investigate the relationship between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic features and the expression activity of hallmark pathways and to develop prediction models of pathway-level heterogeneity for breast cancer (BC) patients. METHODS Two radiogenomic cohorts were analyzed (n = 246). Tumor regions were segmented semiautomatically, and 174 imaging features were extracted. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to identify significant imaging-pathway associations. Random forest regression was used to predict pathway enrichment scores. Five-fold cross-validation and grid search were used to determine the optimal preprocessing operation and hyperparameters. RESULTS We identified 43 pathways, and 101 radiomic features were significantly related in the discovery cohort (p-value < 0.05). The imaging features of the tumor shape and mid-to-late post-contrast stages showed more transcriptional connections. Ten pathways relevant to functions such as cell cycle showed a high correlation with imaging in both cohorts. The prediction model for the mTORC1 signaling pathway achieved the best performance with the mean absolute errors (MAEs) of 27.29 and 28.61% in internal and external test sets, respectively. CONCLUSIONS The DCE-MRI features were associated with hallmark activities and may improve individualized medicine for BC by noninvasively predicting pathway-level heterogeneity.
Collapse
|
21
|
Unsupervised Analysis Based on DCE-MRI Radiomics Features Revealed Three Novel Breast Cancer Subtypes with Distinct Clinical Outcomes and Biological Characteristics. Cancers (Basel) 2022; 14:cancers14225507. [PMID: 36428600 PMCID: PMC9688868 DOI: 10.3390/cancers14225507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: This study aimed to reveal the heterogeneity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast cancer (BC) and identify its prognosis values and molecular characteristics. Methods: Two radiogenomics cohorts (n = 246) were collected and tumor regions were segmented semi-automatically. A total of 174 radiomics features were extracted, and the imaging subtypes were identified and validated by unsupervised analysis. A gene-profile-based classifier was developed to predict the imaging subtypes. The prognostic differences and the biological and microenvironment characteristics of subtypes were uncovered by bioinformatics analysis. Results: Three imaging subtypes were identified and showed high reproducibility. The subtypes differed remarkably in tumor sizes and enhancement patterns, exhibiting significantly different disease-free survival (DFS) or overall survival (OS) in the discovery cohort (p = 0.024) and prognosis datasets (p ranged from <0.0001 to 0.0071). Large sizes and rapidly enhanced tumors usually had the worst outcomes. Associations were found between imaging subtypes and the established subtypes or clinical stages (p ranged from <0.001 to 0.011). Imaging subtypes were distinct in cell cycle and extracellular matrix (ECM)-receptor interaction pathways (false discovery rate, FDR < 0.25) and different in cellular fractions, such as cancer-associated fibroblasts (p < 0.05). Conclusions: The imaging subtypes had different clinical outcomes and biological characteristics, which may serve as potential biomarkers.
Collapse
|
22
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Mammography-based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad Radiol 2022; 29:1228-1247. [PMID: 34799256 DOI: 10.1016/j.acra.2021.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Breast cancer is a highly complex heterogeneous disease. Current validated prognostic factors (e.g., histological grade, lymph node involvement, receptor status, and proliferation index), as well as multigene tests (e.g., Oncotype DX and PAM50) are helpful to describe breast cancer characteristics and predict the chance of recurrence risk and survival. Nevertheless, they are invasive and cannot capture a complete heterogeneity of the entire breast tumor resulting in up to 30% of patients being either over- or under-treated for breast cancer. Furthermore, multigene testings are time consuming and expensive. Radiomics is emerging as a reliable, accurate, non-invasive, and cost-effective approach of using quantitative image features to classify breast cancer characteristics and predict patient outcomes. Several recent radiomics reviews have been conducted in breast cancer, however, specific mammography-based radiomics studies have not been well discussed. This scoping review aims to assess and summarize the current evidence on the potential usefulness of mammography-based (i.e., digital mammography, digital breast tomosynthesis, and contrast-enhanced mammography) radiomics in predicting factors that describe breast cancer characteristics, recurrence, and survival. MATERIALS AND METHODS PubMed database and eligible text reference were searched using relevant keywords to identify studies published between 2015 and December 19, 2020. Studies collected were screened and assessed based on the inclusion and exclusion criteria. RESULTS Eighteen eligible studies were included and organized into three main sections: radiomics predicting breast cancer characteristics, radiomics predicting breast cancer recurrence and survival, and radiomics integrating with clinical data. Majority of publications reported retrospective studies while three studies examined prospective cohorts. Encouraging results were reported, suggesting the potential clinical value of mammography-based radiomics. Further efforts are required to standardize radiomics approaches and catalogue reproducible and relevant mammographic radiomic features. The role of integrating radiomics with other information is discussed. CONCLUSION The potential role of mammography-based radiomics appears promising but more efforts are required to further evaluate its reliability as a routine clinical tool.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia..
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Ming W, Zhu Y, Bai Y, Gu W, Li F, Hu Z, Xia T, Dai Z, Yu X, Li H, Gu Y, Yuan S, Zhang R, Li H, Zhu W, Ding J, Sun X, Liu Y, Liu H, Liu X. Radiogenomics analysis reveals the associations of dynamic contrast-enhanced-MRI features with gene expression characteristics, PAM50 subtypes, and prognosis of breast cancer. Front Oncol 2022; 12:943326. [PMID: 35965527 PMCID: PMC9366134 DOI: 10.3389/fonc.2022.943326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To investigate reliable associations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features and gene expression characteristics in breast cancer (BC) and to develop and validate classifiers for predicting PAM50 subtypes and prognosis from DCE-MRI non-invasively. METHODS Two radiogenomics cohorts with paired DCE-MRI and RNA-sequencing (RNA-seq) data were collected from local and public databases and divided into discovery (n = 174) and validation cohorts (n = 72). Six external datasets (n = 1,443) were used for prognostic validation. Spatial-temporal features of DCE-MRI were extracted, normalized properly, and associated with gene expression to identify the imaging features that can indicate subtypes and prognosis. RESULTS Expression of genes including RBP4, MYBL2, and LINC00993 correlated significantly with DCE-MRI features (q-value < 0.05). Importantly, genes in the cell cycle pathway exhibited a significant association with imaging features (p-value < 0.001). With eight imaging-associated genes (CHEK1, TTK, CDC45, BUB1B, PLK1, E2F1, CDC20, and CDC25A), we developed a radiogenomics prognostic signature that can distinguish BC outcomes in multiple datasets well. High expression of the signature indicated a poor prognosis (p-values < 0.01). Based on DCE-MRI features, we established classifiers to predict BC clinical receptors, PAM50 subtypes, and prognostic gene sets. The imaging-based machine learning classifiers performed well in the independent dataset (areas under the receiver operating characteristic curve (AUCs) of 0.8361, 0.809, 0.7742, and 0.7277 for estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2)-enriched, basal-like, and obtained radiogenomics signature). Furthermore, we developed a prognostic model directly using DCE-MRI features (p-value < 0.0001). CONCLUSIONS Our results identified the DCE-MRI features that are robust and associated with the gene expression in BC and displayed the possibility of using the features to predict clinical receptors and PAM50 subtypes and to indicate BC prognosis.
Collapse
Affiliation(s)
- Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zixi Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuolei Dai
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huamei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Shaoxun Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haitao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jianing Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Basurto-Hurtado JA, Cruz-Albarran IA, Toledano-Ayala M, Ibarra-Manzano MA, Morales-Hernandez LA, Perez-Ramirez CA. Diagnostic Strategies for Breast Cancer Detection: From Image Generation to Classification Strategies Using Artificial Intelligence Algorithms. Cancers (Basel) 2022; 14:3442. [PMID: 35884503 PMCID: PMC9322973 DOI: 10.3390/cancers14143442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is one the main death causes for women worldwide, as 16% of the diagnosed malignant lesions worldwide are its consequence. In this sense, it is of paramount importance to diagnose these lesions in the earliest stage possible, in order to have the highest chances of survival. While there are several works that present selected topics in this area, none of them present a complete panorama, that is, from the image generation to its interpretation. This work presents a comprehensive state-of-the-art review of the image generation and processing techniques to detect Breast Cancer, where potential candidates for the image generation and processing are presented and discussed. Novel methodologies should consider the adroit integration of artificial intelligence-concepts and the categorical data to generate modern alternatives that can have the accuracy, precision and reliability expected to mitigate the misclassifications.
Collapse
Affiliation(s)
- Jesus A. Basurto-Hurtado
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| | - Irving A. Cruz-Albarran
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| | - Manuel Toledano-Ayala
- División de Investigación y Posgrado de la Facultad de Ingeniería (DIPFI), Universidad Autónoma de Querétaro, Cerro de las Campanas S/N Las Campanas, Santiago de Querétaro 76010, Mexico;
| | - Mario Alberto Ibarra-Manzano
- Laboratorio de Procesamiento Digital de Señales, Departamento de Ingeniería Electrónica, Division de Ingenierias Campus Irapuato-Salamanca (DICIS), Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico;
| | - Luis A. Morales-Hernandez
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
| | - Carlos A. Perez-Ramirez
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| |
Collapse
|
25
|
Pereira T, Silva F, Claro P, Carvalho DC, Dias SC, Torrao H, Oliveira HP. A Random Forest-based Classifier for MYCN Status Prediction in Neuroblastoma using CT Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3854-3857. [PMID: 36086471 DOI: 10.1109/embc48229.2022.9871349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Genomic amplification of MYCN is associated with poor outcomes and is detected in 16% of all NB cases. CT scans and MRI are the imaging techniques recommended for diagnosis and disease staging. The assessment of imaging features such as tumor volume, shape, and local extension represent relevant prognostic information. Radiogenomics have shown powerful results in the assessment of the genotype based on imaging findings automatically extracted from medical images. In this work, random forest was used to classify the MYCN amplification using radiomic features extracted from CT slices in a population of 46 NB patients. The learning model showed an area under the curve (AUC) of 0.85 ± 0.13, suggesting that radiomic-based methodologies might be helpful in the extraction of information that is not accessible by human naked eyes but could aid the clinicians on the diagnosis and treatment plan definition. Clinical relevance - This approach represents a random forest-based model to predict the MYCN amplification in NB patients that could give a faster, earlier, and repeatable analysis of the tumor along the time.
Collapse
|
26
|
Darvish L, Bahreyni-Toossi MT, Roozbeh N, Azimian H. The role of radiogenomics in the diagnosis of breast cancer: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the most common cancers diagnosed worldwide is breast cancer (BC), which is the leading cause of cancer death among women. The radiogenomics method is more accurate for managing and inhibiting this disease, which takes individual diagnosis on genes, environments, and lifestyles of each person. The present study aims to highlight the current state-of-the-art, the current role and limitations, and future directions of radiogenomics in breast cancer.
Method
This systematic review article was searched from databases such as Embase, PubMed, Web of Science, Google Scholar, Scopus, and Cochrane Library without any date or language limitations of databases. Searches were performed using Boolean OR and AND operators between the main terms and keywords of particular topic of the subject under investigation. All retrospective, prospective, cohort, and pilot studies were included, which were provided with more details about the topic. Articles such as letter to the editor, review, and short communications were excluded because of lack of information, discussions, or use of radiogenomics method on other cancers. For quality assessment of articles, STROBE checklist was used.
Result
For the systematic review, 18 articles were approved after assessing the full text of selected articles. In this review, 3614 patients with BC of selected articles were evaluated, and all radiogenomics were associated with more power in classification, differential diagnosis, and prognosis of BC. Among the various modalities to predict genomic indicators and molecular subtypes, DCE-MRI has the higher performance and finally the highest amount of AUC value (0.956) belonged to PI3K gene.
Conclusion
This review shows that radiogenomics can help with the diagnosis and treatment of breast cancer in patients. It has shown that recognizing and specifying radiogenomic phenotypes in the genomic signatures can be helpful in treatment and diagnosis of disease. The molecular methods used in these articles are limited to miRNAs expression, gene expression, Ki67 proliferation index, next-generation RNA sequencing, whole RNA sequencing, and molecular histopathology that can be completed in future studies by other methods such as exosomal miRNAs, specific proteins expression, DNA repair capacity, and other biomarkers that have prognostic and predictive value for cancer treatment response. Studies with control group and large sample size for evaluation of radiogenomics in diagnosis and treatment recommended.
Collapse
|
27
|
Sun K, Xin Y, Ma Y, Lou M, Qi Y, Zhu J. ASU-Net: U-shape adaptive scale network for mass segmentation in mammograms. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-210393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
U-Net is a commonly used deep learning model for mammogram segmentation. Despite outstanding overall performance in segmenting, U-Net still faces from two aspects of challenges: (1) the skip-connections in U-Net have limitations, which may not be able to effectively extract multi-scale features for breast masses with diverse shapes and sizes. (2) U-Net only merges low-level spatial information and high-level semantic information through concatenating, which neglects interdependencies between channels. To address these two problems, we propose the U-shape adaptive scale network (ASU-Net), which contains two modules: adaptive scale module (ASM) and feature refinement module (FRM). In each level of skip-connections, ASM is used to adaptively adjust the receptive fields according to the different scales of the mass, which makes the network adaptively capture multi-scale features. Besides, FRM is employed to allows the decoder to capture channel-wise dependencies, which make the network can selectively emphasize the feature representation of useful channels. Two commonly used mammogram databases including the DDSM-BCRP database and the INbreast database are used to evaluate the segmentation performance of ASU-Net. Finally, ASU-Net obtains the Dice Index (DI) of 91.41% and 93.55% in the DDSM-BCRP database and the INbreast database, respectively.
Collapse
Affiliation(s)
- Kexin Sun
- Qinghai Normal University, School of Physics and Electronic Information Engineering, Qinghai Province, Xining, China
| | - Yuelan Xin
- Qinghai Normal University, School of Physics and Electronic Information Engineering, Qinghai Province, Xining, China
| | - Yide Ma
- Lanzhou University, School of Information Science and Engineering, Gansu Province, Lanzhou, China
| | - Meng Lou
- Lanzhou University, School of Information Science and Engineering, Gansu Province, Lanzhou, China
| | - Yunliang Qi
- Lanzhou University, School of Information Science and Engineering, Gansu Province, Lanzhou, China
| | - Jie Zhu
- Qinghai Normal University, School of Physics and Electronic Information Engineering, Qinghai Province, Xining, China
| |
Collapse
|
28
|
Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9227440. [PMID: 35265119 PMCID: PMC8901319 DOI: 10.1155/2022/9227440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
This study was aimed to discuss the feasibility of distinguishing benign and malignant breast tumors under the tomographic ultrasound imaging (TUI) of deep learning algorithm. The deep learning algorithm was used to segment the images, and 120 patients with breast tumor were included in this study, all of whom underwent routine ultrasound examinations. Subsequently, TUI was used to assist in guiding the positioning, and the light scattering tomography system was used to further measure the lesions. A deep learning model was established to process the imaging results, and the pathological test results were undertaken as the gold standard for the efficiency of different imaging methods to diagnose the breast tumors. The results showed that, among 120 patients with breast tumor, 56 were benign lesions and 64 were malignant lesions. The average total amount of hemoglobin (HBT) of malignant lesions was significantly higher than that of benign lesions (P < 0.05). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of TUI in the diagnosis of breast cancer were 90.4%, 75.6%, 81.4%, 84.7%, and 80.6%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of ultrasound in the diagnosis of breast cancer were 81.7%, 64.9%, 70.5%, 75.9%, and 80.6%, respectively. In addition, for suspected breast malignant lesions, the combined application of ultrasound and tomography can increase the diagnostic specificity to 82.1% and the accuracy to 83.8%. Based on the above results, it was concluded that TUI combined with ultrasound had a significant effect on benign and malignant diagnosis of breast cancer and can significantly improve the specificity and accuracy of diagnosis. It also reflected that deep learning technology had a good auxiliary role in the examination of diseases and was worth the promotion of clinical application.
Collapse
|
29
|
Zhu C, Zhang S, Liu D, Wang Q, Yang N, Zheng Z, Wu Q, Zhou Y. A Novel Gene Prognostic Signature Based on Differential DNA Methylation in Breast Cancer. Front Genet 2021; 12:742578. [PMID: 34956313 PMCID: PMC8693898 DOI: 10.3389/fgene.2021.742578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: DNA methylation played essential roles in regulating gene expression. The impact of DNA methylation status on the occurrence and development of cancers has been well demonstrated. However, little is known about its prognostic role in breast cancer (BC). Materials: The Illumina Human Methylation450 array (450k array) data of BC was downloaded from the UCSC xena database. Transcriptomic data of BC was downloaded from the Cancer Genome Atlas (TCGA) database. Firstly, we used univariate and multivariate Cox regression analysis to screen out independent prognostic CpGs, and then we identified methylation-associated prognosis subgroups by consensus clustering. Next, a methylation prognostic model was developed using multivariate Cox analysis and was validated with the Illumina Human Methylation27 array (27k array) dataset of BC. We then screened out differentially expressed genes (DEGs) between methylation high-risk and low-risk groups and constructed a methylation-based gene prognostic signature. Further, we validated the gene signature with three subgroups of the TCGA-BRCA dataset and an external dataset GSE146558 from the Gene Expression Omnibus (GEO) database. Results: We established a methylation prognostic signature and a methylation-based gene prognostic signature, and there was a close positive correlation between them. The gene prognostic signature involved six genes: IRF2, KCNJ11, ZDHHC9, LRP11, PCMT1, and TMEM70. We verified their expression in mRNA and protein levels in BC. Both methylation and methylation-based gene prognostic signatures showed good prognostic stratification ability. The AUC values of 3-years, 5-years overall survival (OS) were 0.737, 0.744 in the methylation signature and 0.725, 0.715 in the gene signature, respectively. In the validation groups, high-risk patients were confirmed to have poorer OS. The AUC values of 3 years were 0.757, 0.735, 0.733 in the three subgroups of TCGA dataset and 0.635 in GSE146558 dataset. Conclusion: This study revealed the DNA methylation landscape and established promising methylation and methylation-based gene prognostic signatures that could serve as potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuyuan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingqing Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Ian TWM, Tan EY, Chotai N. Role of mammogram and ultrasound imaging in predicting breast cancer subtypes in screening and symptomatic patients. World J Clin Oncol 2021; 12:808-822. [PMID: 34631444 PMCID: PMC8479344 DOI: 10.5306/wjco.v12.i9.808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) radiogenomics, or correlation analysis of imaging features and BC molecular subtypes, can complement genetic analysis with less resource-intensive diagnostic methods to provide an early and accurate triage of BC. This is pertinent because BC is the most prevalent cancer amongst adult women, resulting in rising demands on public health resources.
AIM To find combinations of mammogram and ultrasound imaging features that predict BC molecular subtypes in a sample of screening and symptomatic patients.
METHODS This retrospective study evaluated 328 consecutive patients in 2017-2018 with histologically confirmed BC, of which 237 (72%) presented with symptoms and 91 (28%) were detected via a screening program. All the patients underwent mammography and ultrasound imaging prior to biopsy. The images were retrospectively read by two breast-imaging radiologists with 5-10 years of experience with no knowledge of the histology results to ensure statistical independence. To test the hypothesis that imaging features are correlated with tumor subtypes, univariate binomial and multinomial logistic regression models were performed. Our study also used the multivariate logistic regression (with and without interaction terms) to identify combinations of mammogram and ultrasound (US) imaging characteristics predictive of molecular subtypes.
RESULTS The presence of circumscribed margins, posterior enhancement, and large size is correlated with triple-negative BC (TNBC), while high-risk microcalcifications and microlobulated margins is predictive of HER2-enriched cancers. Ductal carcinoma in situ is characterized by small size on ultrasound, absence of posterior acoustic features, and architectural distortion on mammogram, while luminal subtypes tend to be small, with spiculated margins and posterior acoustic shadowing (Luminal A type). These results are broadly consistent with findings from prior studies. In addition, we also find that US size signals a higher odds ratio for TNBC if presented during screening. As TNBC tends to display sonographic features such as circumscribed margins and posterior enhancement, resulting in visual similarity with benign common lesions, at the screening stage, size may be a useful factor in deciding whether to recommend a biopsy.
CONCLUSION Several imaging features were shown to be independent variables predicting molecular subtypes of BC. Knowledge of such correlations could help clinicians stratify BC patients, possibly enabling earlier treatment or aiding in therapeutic decisions in countries where receptor testing is not readily available.
Collapse
Affiliation(s)
- Tay Wei Ming Ian
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore 101070, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Niketa Chotai
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
31
|
Richardson ML, Garwood ER, Lee Y, Li MD, Lo HS, Nagaraju A, Nguyen XV, Probyn L, Rajiah P, Sin J, Wasnik AP, Xu K. Noninterpretive Uses of Artificial Intelligence in Radiology. Acad Radiol 2021; 28:1225-1235. [PMID: 32059956 DOI: 10.1016/j.acra.2020.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
We deem a computer to exhibit artificial intelligence (AI) when it performs a task that would normally require intelligent action by a human. Much of the recent excitement about AI in the medical literature has revolved around the ability of AI models to recognize anatomy and detect pathology on medical images, sometimes at the level of expert physicians. However, AI can also be used to solve a wide range of noninterpretive problems that are relevant to radiologists and their patients. This review summarizes some of the newer noninterpretive uses of AI in radiology.
Collapse
Affiliation(s)
| | - Elisabeth R Garwood
- Department of Radiology, University of Massachusetts, Worcester, Massachusetts
| | - Yueh Lee
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew D Li
- Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Boston, Massachusets
| | - Hao S Lo
- Department of Radiology, University of Washington, Seattle, Washington
| | - Arun Nagaraju
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Xuan V Nguyen
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Linda Probyn
- Department of Radiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario
| | - Prabhakar Rajiah
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica Sin
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Ashish P Wasnik
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Kali Xu
- Department of Medicine, Santa Clara Valley Medical Center, Santa Clara, California
| |
Collapse
|
32
|
Grimm LJ. Radiomics: A Primer for Breast Radiologists. JOURNAL OF BREAST IMAGING 2021; 3:276-287. [PMID: 38424774 DOI: 10.1093/jbi/wbab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 03/02/2024]
Abstract
Radiomics has a long-standing history in breast imaging with computer-aided detection (CAD) for screening mammography developed in the late 20th century. Although conventional CAD had widespread adoption, the clinical benefits for experienced breast radiologists were debatable due to high false-positive marks and subsequent increased recall rates. The dramatic growth in recent years of artificial intelligence-based analysis, including machine learning and deep learning, has provided numerous opportunities for improved modern radiomics work in breast imaging. There has been extensive radiomics work in mammography, digital breast tomosynthesis, MRI, ultrasound, PET-CT, and combined multimodality imaging. Specific radiomics outcomes of interest have been diverse, including CAD, prediction of response to neoadjuvant therapy, lesion classification, and survival, among other outcomes. Additionally, the radiogenomics subfield that correlates radiomics features with genetics has been very proliferative, in parallel with the clinical validation of breast cancer molecular subtypes and gene expression assays. Despite the promise of radiomics, there are important challenges related to image normalization, limited large unbiased data sets, and lack of external validation. Much of the radiomics work to date has been exploratory using single-institution retrospective series for analysis, but several promising lines of investigation have made the leap to clinical practice with commercially available products. As a result, breast radiologists will increasingly be incorporating radiomics-based tools into their daily practice in the near future. Therefore, breast radiologists must have a broad understanding of the scope, applications, and limitations of radiomics work.
Collapse
Affiliation(s)
- Lars J Grimm
- Duke University, Department of Radiology, Durham, NC, USA
| |
Collapse
|
33
|
Tokuda Y, Yanagawa M, Fujita Y, Honma K, Tanei T, Shimoda M, Miyake T, Naoi Y, Kim SJ, Shimazu K, Hamada S, Tomiyama N. Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Res Treat 2021; 188:107-115. [PMID: 33730265 DOI: 10.1007/s10549-021-06179-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE To compare the diagnostic performance of ring-type dedicated breast PET (dbPET), whole-body PET (WBPET), and DCE-MRI for predicting pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). METHODS This prospective study included 29 women with histologically proven breast cancer on needle biopsy between July 2016 and July 2019 (age: mean 55 years; range 35-78). Patients underwent WBPET followed by ring-type dbPET and DCE-MRI pre- and post-NAC for preoperative evaluation. pCR was defined as an invasive tumor that disappeared in the breast. Standardized uptake values corrected for lean body mass (SULpeak) were calculated for dbPET and WBPET scans. Maximum tumor length was measured in DCE-MRI images. Reduction rates were calculated for quantitative evaluation. Two radiologists independently evaluated the qualitative findings. Reduction rates and qualitative findings were compared between the pCR (n = 7) and non-pCR (n = 22) groups for each modality. Differences in quantitative and qualitative data between the two groups were analyzed statistically. RESULTS Significant differences were observed in the reduction rates of dbPET and DCE-MRI (P = 0.01 and 0.03, respectively) between the two groups. Univariate and multiple logistic regression analyses revealed that SULpeak reduction rates in WBPET and dbPET (P = 0.02 and P = 0.01, respectively) and in dbPET (odds ratio, 16.00; 95% CI 1.57-162.10; P = 0.01) were significant indicators associated with pCR, respectively. No between-group differences were observed in qualitative findings in the three modalities. CONCLUSION SULpeak reduction rate of dbPET > 82% was an independent indicator associated with pCR after NAC in breast cancer.
Collapse
Affiliation(s)
- Yukiko Tokuda
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Fujita
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
- Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka city, Osaka, 541-8567, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Seiki Hamada
- MI Clinic, 1-12-13 Shoji, Toyonaka-shi, Osaka, 560-0004, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Liu Z, Wu K, Wu B, Tang X, Yuan H, Pang H, Huang Y, Zhu X, Luo H, Qi Y. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed Pharmacother 2020; 135:111173. [PMID: 33383370 DOI: 10.1016/j.biopha.2020.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiaoning Tang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Huiqing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Hao Pang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
35
|
Ni M, Zhou X, Liu J, Yu H, Gao Y, Zhang X, Li Z. Prediction of the clinicopathological subtypes of breast cancer using a fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI. BMC Cancer 2020; 20:1073. [PMID: 33167903 PMCID: PMC7654148 DOI: 10.1186/s12885-020-07557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The clinicopathological classification of breast cancer is proposed according to therapeutic purposes. It is simplified and can be conducted easily in clinical practice, and this subtyping undoubtedly contributes to the treatment selection of breast cancer. This study aims to investigate the feasibility of using a Fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI for predicting the clinicopathological subtypes of breast cancer. METHODS Patients who underwent breast magnetic resonance imaging were confirmed by retrieving data from our institutional picture archiving and communication system (PACS) between March 2013 and September 2017. Five clinicopathological subtypes were determined based on the status of ER, PR, HER2 and Ki-67 from the immunohistochemical test. The radiomic features of diffusion-weighted imaging were derived from the volume of interest (VOI) of each tumour. Fisher discriminant analysis was performed for clinicopathological subtyping by using a backward selection method. To evaluate the diagnostic performance of the radiomic features, ROC analyses were performed to differentiate between immunohistochemical biomarker-positive and -negative groups. RESULTS A total of 84 radiomic features of four statistical methods were included after preprocessing. The overall accuracy for predicting the clinicopathological subtypes was 96.4% by Fisher discriminant analysis, and the weighted accuracy was 96.6%. For predicting diverse clinicopathological subtypes, the prediction accuracies ranged from 92 to 100%. According to the cross-validation, the overall accuracy of the model was 82.1%, and the accuracies of the model for predicting the luminal A, luminal BHER2-, luminal BHER2+, HER2 positive and triple negative subtypes were 79, 77, 88, 92 and 73%, respectively. According to the ROC analysis, the radiomic features had excellent performance in differentiating between different statuses of ER, PR, HER2 and Ki-67. CONCLUSIONS The Fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI is a reliable method for the prediction of clinicopathological breast cancer subtypes.
Collapse
Affiliation(s)
- Ming Ni
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Xiaoming Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Jingwei Liu
- Department of Pediatric Surgery, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Haiyang Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Xuexi Zhang
- Life Science, GE Healthcare China, Shanghai, 201203, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China.
| |
Collapse
|
36
|
Wang Y, Wang Y, Guo C, Xie X, Liang S, Zhang R, Pang W, Huang L. Cancer genotypes prediction and associations analysis from imaging phenotypes: a survey on radiogenomics. Biomark Med 2020; 14:1151-1164. [PMID: 32969248 DOI: 10.2217/bmm-2020-0248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present a survey on the progress of radiogenomics research, which predicts cancer genotypes from imaging phenotypes and investigates the associations between them. First, we present an overview of the popular technology modalities for obtaining diagnostic medical images. Second, we summarize recently used methodologies for radiogenomics analysis, including statistical analysis, radiomics and deep learning. And then, we give a survey on the recent research based on several types of cancers. Finally, we discuss these studies and propose possible future research directions. In conclusion, we have identified strong correlations between cancer genotypes and imaging phenotypes. In addition, with the rapid growth of medical data, deep learning models show great application potential for radiogenomics.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Xuping Xie
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Sen Liang
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, PR China
| | - Ruochi Zhang
- School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Wei Pang
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Lan Huang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,Zhuhai Laboratory of Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Department of Computer Science & Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| |
Collapse
|
37
|
Abstract
Screening for breast cancer reduces breast cancer-related mortality and earlier detection facilitates less aggressive treatment. Unfortunately, current screening modalities are imperfect, suffering from limited sensitivity and high false-positive rates. Novel techniques in the field of breast imaging may soon play a role in breast cancer screening: digital breast tomosynthesis, contrast material-enhanced spectral mammography, US (automated three-dimensional breast US, transmission tomography, elastography, optoacoustic imaging), MRI (abbreviated and ultrafast, diffusion-weighted imaging), and molecular breast imaging. Artificial intelligence and radiomics have the potential to further improve screening strategies. Furthermore, nonimaging-based screening tests such as liquid biopsy and breathing tests may transform the screening landscape. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ritse M Mann
- From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands (R.M.M.); Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (R.H.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Southwoods Imaging, Youngstown, Ohio (R.G.B.); Department of Radiology, New York University Langone School of Medicine, New York, NY (L.M.); and Department of Radiology, New York University Grossman School of Medicine, Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York, NY (L.M.)
| | - Regina Hooley
- From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands (R.M.M.); Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (R.H.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Southwoods Imaging, Youngstown, Ohio (R.G.B.); Department of Radiology, New York University Langone School of Medicine, New York, NY (L.M.); and Department of Radiology, New York University Grossman School of Medicine, Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York, NY (L.M.)
| | - Richard G Barr
- From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands (R.M.M.); Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (R.H.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Southwoods Imaging, Youngstown, Ohio (R.G.B.); Department of Radiology, New York University Langone School of Medicine, New York, NY (L.M.); and Department of Radiology, New York University Grossman School of Medicine, Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York, NY (L.M.)
| | - Linda Moy
- From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands (R.M.M.); Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (R.H.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Southwoods Imaging, Youngstown, Ohio (R.G.B.); Department of Radiology, New York University Langone School of Medicine, New York, NY (L.M.); and Department of Radiology, New York University Grossman School of Medicine, Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York, NY (L.M.)
| |
Collapse
|
38
|
Cho N. Breast Cancer Radiogenomics: Association of Enhancement Pattern at DCE MRI with Deregulation of mTOR Pathway. Radiology 2020; 296:288-289. [PMID: 32478609 DOI: 10.1148/radiol.2020201607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nariya Cho
- From the Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
39
|
Performance of preoperative breast MRI based on breast cancer molecular subtype. Clin Imaging 2020; 67:130-135. [PMID: 32619774 DOI: 10.1016/j.clinimag.2020.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To assess the performance of preoperative breast MRI biopsy recommendations based on breast cancer molecular subtype. METHODS All preoperative breast MRIs at a single academic medical center from May 2010 to March 2014 were identified. Reports were reviewed for biopsy recommendations. All pathology reports were reviewed to determine biopsy recommendation outcomes. Molecular subtypes were defined as Luminal A (ER/PR+ and HER2-), Luminal B (ER/PR+ and HER2+), HER2 (ER-, PR- and HER2+), and Basal (ER-, PR-, and HER2-). Logistic regression assessed the probability of true positive versus false positive biopsy and mastectomy versus lumpectomy. RESULTS There were 383 patients included with a molecular subtype distribution of 253 Luminal A, 44 Luminal B, 20 HER2, and 66 Basal. Two hundred and thirteen (56%) patients and 319 sites were recommended for biopsy. Molecular subtype did not influence the recommendation for biopsy (p = 0.69) or the number of biopsy site recommendations (p = 0.30). The positive predictive value for a biopsy recommendation was 42% overall and 46% for Luminal A, 43% for Luminal B, 36% for HER2, and 29% for Basal subtype cancers. The multivariate logistic regression model showed no difference in true positive biopsy rate based on molecular subtype (p = 0.78). Fifty-one percent of patients underwent mastectomy and the multivariate model demonstrated that only a true positive biopsy (odds ratio: 5.3) was associated with higher mastectomy rates. CONCLUSION Breast cancer molecular subtype did not influence biopsy recommendations, positive predictive values, or surgical approaches. Only true positive biopsies increased the mastectomy rate.
Collapse
|
40
|
Choyke PL. Mutation Profiles of Urothelial Cancer: Will Genomics Change Radiology or Vice Versa? Radiology 2020; 295:581-582. [PMID: 32233919 DOI: 10.1148/radiol.2020200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter L Choyke
- From the Molecular Imaging Program, National Cancer Institute, 10 Center Dr, Building 10, Room B3B69F, Bethesda, MD 20802
| |
Collapse
|
41
|
Jha S, Cook T. Artificial Intelligence in Radiology--The State of the Future. Acad Radiol 2020; 27:1-2. [PMID: 31753720 DOI: 10.1016/j.acra.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Saurabh Jha
- Department of Radiology, MRI Learning Center Hospital, University of Pennsylvania, 3400 Spruce Street, Phila, PA 19104, United States.
| | - Tessa Cook
- Department of Radiology, MRI Learning Center Hospital, University of Pennsylvania, 3400 Spruce Street, Phila, PA 19104, United States
| |
Collapse
|