1
|
Fabisiewicz A, Szostakowska-Rodzos M, Grzybowska EA. Improving the Prognostic and Predictive Value of Circulating Tumor Cell Enumeration: Is Longitudinal Monitoring the Answer? Int J Mol Sci 2024; 25:10612. [PMID: 39408942 PMCID: PMC11476589 DOI: 10.3390/ijms251910612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Circulating tumor cell (CTC) numbers in the blood of cancer patients can indicate the progression and invasiveness of tumors, and their prognostic and predictive value has been repeatedly demonstrated. However, the standard baseline CTC count at the beginning of treatment, while informative, is not completely reliable and may not adequately reflect the state of the disease. A growing number of studies indicate that the long-term monitoring of CTC numbers in the same patient provides more comprehensive prognostic data and should be incorporated into clinical practice, as a factor that contributes to therapeutic decisions. This review describes the current status of CTC enumeration as a prognostic and predictive factor, highlights the shortcomings of current solutions, and advocates for longitudinal CTC analysis as a more effective method of the evaluation of developing disease, treatment efficacy, and the long term-monitoring of the minimal residual disease. As evidenced by the described reports, the longitudinal monitoring of CTCs should provide a better and more sensitive prediction of the course of the disease, and its incorporation in clinical practice should be beneficial.
Collapse
Affiliation(s)
| | | | - Ewa A. Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| |
Collapse
|
2
|
Huang L, Huang H, Zhang Z, Li G. Three-Dimensional DNA Hydrogel Mediated Dual-Mode Sensing Method for Quantification of Epithelial Cell Adhesion Molecule in Biological Fluid Samples. Anal Chem 2024. [PMID: 39007488 DOI: 10.1021/acs.analchem.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Monitoring changes in the expression of marker proteins in biological fluids is essential for biomarker-based disease diagnosis. Epithelial cell adhesion molecule (EpCAM) has been identified as a broad-spectrum biomarker for various chronic diseases and as a therapeutic target. However, the development of simple and reliable methods for quantifying EpCAM changes in biological fluids faces challenges due to the variability of its expression across different diseases, the presence of soluble forms, and matrix effects. In this paper, a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-mode sensing method was established for quantification of trace EpCAM in biological fluids based on bimetallic Au@Ag nanoparticles and nitrogen-doped quantum dots encapsulated DNA hydrogel hybrid with graphene oxide (Au@Ag-NQDs/GO). The DNA hydrogel was constructed based on three-dimensional (3D) structure DNA-mediated strategy using an aptamer DNA (AptDNA) linker. The interaction of the AptDNA with EpCAM triggered the disassembly of the DNA hydrogel. Consequently, the release of Au@Ag nanoparticles induced an "on-off" switch in the SERS signal while the weakened FL quenching effect in Au@Ag-NQDs/GO system achieved "off-on" switch of FL signal, enabling the simultaneous SERS-FL quantification of EpCAM. The established dual-mode method exhibited outstanding sensitivity and stability in quantifying EpCAM in the range of 0.5-60.0 pg/mL, with the limits of detection (LODs) of SERS and FL as 0.17 and 0.35 pg/mL, respectively. When applied for real sample analysis, the method showed satisfactory specificity and recoveries in cancer cells lysate, serum, and urine samples with RSDs of 2.8-6.3%, 4.0-6.3%, and 2.8-5.7%, respectively. The developed SERS-FL sensing method offered a sensitive, reliable, and practical quantification strategy for trace EpCAM in diverse biological fluid samples, which would benefit the early diagnosis of disease and further health management.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Hanbing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhang Z, Chen W, Sun M, Aalders T, Verhaegh GW, Kouwer PHJ. TempEasy 3D Hydrogel Coculture System Provides Mechanistic Insights into Prostate Cancer Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25773-25787. [PMID: 38739686 PMCID: PMC11129143 DOI: 10.1021/acsami.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Patients diagnosed with advanced prostate cancer (PCa) often experience incurable bone metastases; however, a lack of relevant experimental models has hampered the study of disease mechanisms and the development of therapeutic strategies. In this study, we employed the recently established Temperature-based Easy-separable (TempEasy) 3D cell coculture system to investigate PCa bone metastasis. Through coculturing PCa and bone cells for 7 days, our results showed a reduction in PCa cell proliferation, an increase in neovascularization, and an enhanced metastasis potential when cocultured with bone cells. Additionally, we observed increased cell proliferation, higher stemness, and decreased bone matrix protein expression in bone cells when cocultured with PCa cells. Furthermore, we demonstrated that the stiffness of the extracellular matrix had a negligible impact on molecular responses in both primary (PCa cells) and distant malignant (bone cells) sites. The TempEasy 3D hydrogel coculture system is an easy-to-use and versatile coculture system that provides valuable insights into the mechanisms of cell-cell communication and interaction in cancer metastasis.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Wen Chen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Mingchen Sun
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Tilly Aalders
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Gerald W. Verhaegh
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
4
|
Stoecklein NH, Oles J, Franken A, Neubauer H, Terstappen LWMM, Neves RPL. Clinical application of circulating tumor cells. MED GENET-BERLIN 2023; 35:237-250. [PMID: 38835741 PMCID: PMC11110132 DOI: 10.1515/medgen-2023-2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This narrative review aims to provide a comprehensive overview of the current state of circulating tumor cell (CTC) analysis and its clinical significance in patients with epithelial cancers. The review explores the advancements in CTC detection methods, their clinical applications, and the challenges that lie ahead. By examining the important research findings in this field, this review offers the reader a solid foundation to understand the evolving landscape of CTC analysis and its potential implications for clinical practice. The comprehensive analysis of CTCs provides valuable insights into tumor biology, treatment response, minimal residual disease detection, and prognostic evaluation. Furthermore, the review highlights the potential of CTCs as a non-invasive biomarker for personalized medicine and the monitoring of treatment efficacy. Despite the progress made in CTC research, several challenges such as standardization, validation, and integration into routine clinical practice remain. The review concludes by discussing future directions and the potential impact of CTC analysis on improving patient outcomes and guiding therapeutic decision-making in epithelial cancers.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Julia Oles
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Andre Franken
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Hans Neubauer
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Leon W M M Terstappen
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Rui P L Neves
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| |
Collapse
|
5
|
Temilola DO, Adeola HA, Grobbelaar J, Chetty M. Liquid Biopsy in Head and Neck Cancer: Its Present State and Future Role in Africa. Cells 2023; 12:2663. [PMID: 37998398 PMCID: PMC10670726 DOI: 10.3390/cells12222663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The rising mortality and morbidity rate of head and neck cancer (HNC) in Africa has been attributed to factors such as the poor state of health infrastructures, genetics, and late presentation resulting in the delayed diagnosis of these tumors. If well harnessed, emerging molecular and omics diagnostic technologies such as liquid biopsy can potentially play a major role in optimizing the management of HNC in Africa. However, to successfully apply liquid biopsy technology in the management of HNC in Africa, factors such as genetic, socioeconomic, environmental, and cultural acceptability of the technology must be given due consideration. This review outlines the role of circulating molecules such as tumor cells, tumor DNA, tumor RNA, proteins, and exosomes, in liquid biopsy technology for the management of HNC with a focus on studies conducted in Africa. The present state and the potential opportunities for the future use of liquid biopsy technology in the effective management of HNC in resource-limited settings such as Africa is further discussed.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Johan Grobbelaar
- Division of Otorhinolaryngology, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| |
Collapse
|
6
|
Sonam Dongsar T, Tsering Dongsar T, Molugulu N, Annadurai S, Wahab S, Gupta N, Kesharwani P. Targeted therapy of breast tumor by PLGA-based nanostructures: The versatile function in doxorubicin delivery. ENVIRONMENTAL RESEARCH 2023; 233:116455. [PMID: 37356522 DOI: 10.1016/j.envres.2023.116455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
7
|
Volmer LL, Önder CE, Volz B, Singh AR, Brucker SY, Engler T, Hartkopf AD, Koch A. Microfluidic Isolation of Disseminated Tumor Cells from the Bone Marrow of Breast Cancer Patients. Int J Mol Sci 2023; 24:13930. [PMID: 37762233 PMCID: PMC10531360 DOI: 10.3390/ijms241813930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients are putative precursors of metastatic disease, and their presence is associated with an adverse clinical outcome. To achieve the personalization of therapy on a clinical routine level, the characterization of DTCs and in vitro drug testing on DTCs are of great interest. Therefore, biobanking methods, as well as novel approaches to DTC isolation, need to be developed. In this study, we established a protocol for the biobanking of BM samples and evaluated a microfluidic-based separation system (Parsortix®) for the enrichment of cryopreserved DTCs. We were able to successfully isolate viable DTCs after the prior cryopreservation of BM samples. We calculated a significant increase of up to 90-fold in harvested DTCs with the proposed method compared to the current standard techniques, opening up new analysis possibilities for DTCs. Our advanced method further presents options for 3D DTC cultures, enabling the individualized testing of targeted therapies for BC patients. In conclusion, we present a novel approach for DTC enrichment, with possibilities for future clinical implications.
Collapse
Affiliation(s)
- Léa L. Volmer
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Cansu E. Önder
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Barbara Volz
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Anjali R. Singh
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Engler
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas D. Hartkopf
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Welter L, Zheng S, Setayesh SM, Morikado M, Agrawal A, Nevarez R, Naghdloo A, Pore M, Higa N, Kolatkar A, Thiele JA, Sharma P, Moore HCF, Richer JK, Elias A, Pienta KJ, Zurita AJ, Gross ME, Shishido SN, Hicks J, Velasco CR, Kuhn P. Cell State and Cell Type: Deconvoluting Circulating Tumor Cell Populations in Liquid Biopsies by Multi-Omics. Cancers (Basel) 2023; 15:3949. [PMID: 37568766 PMCID: PMC10417732 DOI: 10.3390/cancers15153949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Bi-directional crosstalk between the tumor and the tumor microenvironment (TME) has been shown to increase the rate of tumor evolution and to play a key role in neoplastic progression, therapeutic resistance, and a patient's overall survival. Here, we set out to use a comprehensive liquid-biopsy analysis to study cancer and specific TME cells in circulation and their association with disease status. Cytokeratin+, CD45- circulating rare cells (CRCs) from nine breast and four prostate cancer patients were characterized through morphometrics, single-cell copy number analysis, and targeted multiplexed proteomics to delineate cancer cell lineage from other rare cells originating in the TME. We show that we can detect epithelial circulating tumor cells (EPI.CTC), CTCs undergoing epithelial-to-mesenchymal transition (EMT.CTC) and circulating endothelial cells (CECs) using a universal rare event detection platform (HDSCA). Longitudinal analysis of an index patient finds that CTCs are present at the time of disease progression, while CECs are predominately present at the time of stable disease. In a small cohort of prostate and breast cancer patients, we find high inter-patient and temporal intra-patient variability in the expression of tissue specific markers such as ER, HER2, AR, PSA and PSMA and EpCAM. Our study stresses the importance of the multi-omic characterization of circulating rare cells in patients with breast and prostate carcinomas, specifically highlighting overlapping and cell type defining proteo-genomic characteristics of CTCs and CECs.
Collapse
Affiliation(s)
- Lisa Welter
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Serena Zheng
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Sonia Maryam Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Morikado
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Arushi Agrawal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Rafael Nevarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Milind Pore
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Nikki Higa
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anand Kolatkar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Jana-Aletta Thiele
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Priyanka Sharma
- University of Kansas Medical Center, Westwood, KS 66205, USA;
| | - Halle C. F. Moore
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA;
| | - Jennifer K. Richer
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.R.); (A.E.)
| | - Anthony Elias
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.R.); (A.E.)
| | - Kenneth J. Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, MD Anderson, Houston, TX 77230, USA;
| | - Mitchell E. Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Ni Z, Cao Y, Liu L, Huang C, Xie H, Zhou J, Ge B, Huang Q. Impact of endoscopic metallic stent placement and emergency surgery on detection of viable circulating tumor cells for acute malignant left-sided colonic obstruction. World J Surg Oncol 2023; 21:1. [PMID: 36588150 PMCID: PMC9806888 DOI: 10.1186/s12957-022-02879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Self-expanding metal stents (SEMS) served as a bridge to surgery (BTS). However, this method may be associated with worse long-term prognosis and relapse of CRC patients. Therefore, we attempted to clarify this in the angle of circulating tumor cells (CTCs). METHODS A multicenter study was performed from March 2018 to January 2021. Thirty-two colorectal cancer patients with obstruction were selected, of which 21 patients were performed SEMS as a BTS while 11 patients were performed emergency surgery. Bloods samples were collected in two groups of patients for further detecting CTCs. In the SEMS group, the samples were collected before and after stent insert and after radical surgery performed. In the ES group, the samples were collected before stent insert and after emergency surgery performed. RESULTS The number of CTCs did not show statistically significant differences before and after stent placement (34.90 vs 38.33, p=0.90), neither between the SEMS group and ES group in initial CTC levels (34.90 vs 58.09, p=0.394). No significant differences (38.33 vs 58.09, p=0.632) were observed after stent insert in the SMES group and the initial CTC levels in the ES group. Moreover, no major differences (24.17 vs 42.27, p=0.225) were observed after radical operation performed in both groups. CONCLUSION The treatment of SEMS does not cause an increase in the number of CTC after stent insertion. Furthermore, there are may be other factors besides CTC to cause these poorer oncologic outcomes after SEMS placement.
Collapse
Affiliation(s)
- Zhizhan Ni
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuepeng Cao
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China ,grid.416271.70000 0004 0639 0580Department of Colorectal Surgery, Ningbo First Hospital, Ningbo, China
| | - Liming Liu
- Department of General Surgery, Shanghai Jing’an Shibei Hospital, Shanghai, China
| | - Chenshen Huang
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China ,grid.415108.90000 0004 1757 9178Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Huahao Xie
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinzhe Zhou
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bujun Ge
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Huang
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
12
|
Hu B, Gong Y, Wang Y, Xie J, Cheng J, Huang Q. Comprehensive Atlas of Circulating Rare Cells Detected by SE-iFISH and Image Scanning Platform in Patients With Various Diseases. Front Oncol 2022; 12:821454. [PMID: 35311070 PMCID: PMC8924462 DOI: 10.3389/fonc.2022.821454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Circulating rare cells (CRCs) are known as a crucial nucleated cellular response to pathological conditions, yet the landscape of cell types across a wide variety of diseases lacks comprehensive understanding. This study aimed at detecting and presenting a full spectrum of highly heterogeneous CRCs in clinical practice and further explored the characterization of CRC subtypes in distinct biomarker combinations and aneuploid chromosomes among various disease groups. Methods Peripheral blood was obtained from 2,360 patients with different cancers and non-neoplastic diseases. CRC capture and identification were accomplished using a novel platform integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy with a high-throughput automated image scanning system, on which hemocyte, tumor, epithelial, endothelial, mesenchymal, and stemness biomarkers were immunostained and displayed simultaneously. Double chromosome enumeration probe (CEP8 and CEP12) co-detection was performed on isolated CRCs from an extended trial for two chromosome ploidy patterns. Results A comprehensive atlas categorizing the diverse CRCs into 71 subtypes outlining was mapped out. The presence of epithelial-mesenchymal transition (EMT) or endothelial-mesenchymal transition (EndoMT), the cells with progenitor property, hematologic CRCs expressing multiple biomarkers, CRCs at "naked nuclei" status, and the rarely reported aneuploid mesenchymal epithelial-endothelial fusion cluster were described. Circulating tumor cells (CTCs) were detected in 2,157 (91.4%) patients; the total numbers of CTCs and circulating tumor-derived endothelial cells (CTECs) were relatively higher in several digestive system cancer types and non-neoplastic infectious diseases (p < 0.05). Co-detection combining CEP8 and CEP12 showed a higher diagnostic specificity on account of 57.27% false negativity of CRC detection through a single probe of CEP8. Conclusions The alternative biomarkers and chromosomes to be targeted by SE-iFISH and the image scanning platform, along with the comprehensive atlas, offer insight into the heterogeneity of CRCs and reveal potential contributions to specific disease diagnosis and therapeutic target cell discovery.
Collapse
Affiliation(s)
- Binjie Hu
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulan Wang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhu Xie
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Yadav A, Kumar A, Siddiqui MH. Detection of circulating tumour cells in colorectal cancer: Emerging techniques and clinical implications. World J Clin Oncol 2021; 12:1169-1181. [PMID: 35070736 PMCID: PMC8716996 DOI: 10.5306/wjco.v12.i12.1169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite several advances in oncological management of colorectal cancer, morbidity and mortality are still high and devastating. The diagnostic evaluation by endoscopy is cumbersome, which is uncomfortable to many. Because of the intra- and inter-tumour heterogeneity and changing tumour dynamics, which is continuous in nature, the diagnostic biopsy and assessment of the pathological sample are difficult and also not adequate. Late manifestation of the disease and delayed diagnosis may lead to relapse or metastases. One of the keys to improving the outcome is early detection of cancer, ease of technology to detect with uniformity, and its therapeutic implications, which are yet to come. "Liquid biopsy" is currently the most recent area of interest in oncology, which may provide important tools regarding the characterization of the primary tumour and its metastasis as cancer cells shed into the bloodstream even at the early stages of the disease. By using this approach, clinicians may be able to find out information about the tumour at a given time. Any of the following three types of sampling of biological material can be used in the "liquid biopsy". These are circulating tumour cells (CTCs), circulating tumour DNA, and exosomes. The most commonly studied amongst the three is CTCs. CTCs with their different applications and prognostic value has been found useful in colorectal cancer detection and therapeutics. In this review, we will discuss various markers for CTCs, the core tools/techniques for detection, and also important findings of clinical studies in colorectal cancer and its clinical implications.
Collapse
Affiliation(s)
- Alka Yadav
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | | |
Collapse
|
14
|
Kim H, Heo CM, Oh J, Chung HH, Lee EM, Park J, Lee SH, Lee KH, Lee KT, Lee JK, Cho YK, Park JK. Clinical significance of circulating tumor cells after chemotherapy in unresectable pancreatic ductal adenocarcinoma. Transl Oncol 2021; 16:101321. [PMID: 34954457 PMCID: PMC8718659 DOI: 10.1016/j.tranon.2021.101321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022] Open
Abstract
CTCs can be reliably captured with a microfluidic disc in unresectable PDAC patients. EpCAM/CK and additional Plectin-1 can effectively identify PDAC CTCs. Decreased number of CTCs after chemotherapy is associated with longer survival. The relative change of CTCs after chemotherapy can be a surrogate marker for survival. Circulating tumor cells (CTCs) have emerged as liquid biopsy biomarker providing non-invasive assessment of cancer progression and biology. We investigated whether longitudinal analysis of CTCs could monitor disease progression, response to chemotherapy, and survival in patients with unresectable pancreatic ductal adenocarcinoma (PDAC). A total of 52 patients with PDAC were prospectively enrolled in this study. Peripheral blood samples were serially collected at the time of diagnosis and after chemotherapy with clinical assessments. CTCs were isolated through a centrifugal microfluidic disc, enumerated with immunostaining against Epithelial cell adhesion molecule (EpCAM), Cytokeratin (CK), Plectin-1 and CD45, and identified by an automated imaging system. One or more CTCs were detected in 84.62% patients with unresectable PDAC at the time of diagnosis. CTC numbers were not statistically different across tumor sizes, location and metastatic sites. The absolute number of CTCs after chemotherapy was inversely related to overall survival (OS), and the decreased number of CTCs after chemotherapy was significantly associated with longer OS in patients with PDAC. Identifying CTCs and monitoring CTC changes after chemotherapy could be a useful prognostic marker for survival in patients with unresectable PDACs.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351 Republic of Korea
| | - Chan Mi Heo
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jinmyeong Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hwe Hoon Chung
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eun Mi Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Se-Hoon Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
15
|
Espejo-Cruz ML, González-Rubio S, Zamora-Olaya J, Amado-Torres V, Alejandre R, Sánchez-Frías M, Ciria R, De la Mata M, Rodríguez-Perálvarez M, Ferrín G. Circulating Tumor Cells in Hepatocellular Carcinoma: A Comprehensive Review and Critical Appraisal. Int J Mol Sci 2021; 22:ijms222313073. [PMID: 34884878 PMCID: PMC8657934 DOI: 10.3390/ijms222313073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm and a major cause of cancer-related death worldwide. There is no ideal biomarker allowing early diagnosis of HCC and tumor surveillance in patients receiving therapy. Liquid biopsy, and particularly circulating tumor cells (CTCs), have emerged as a useful tool for diagnosis and monitoring therapeutic responses in different tumors. In the present manuscript, we evaluate the current evidence supporting the quantitative and qualitative assessment of CTCs as potential biomarkers of HCC, as well as technical aspects related to isolation, identification, and classification of CTCs. Although the dynamic assessment of CTCs in patients with HCC may aid the decision-making process, there are still many uncertainties and technical caveats to be solved before this methodology has a true impact on clinical practice guidelines. More studies are needed to identify the optimal combination of surface markers, to increase the efficiency of ex-vivo expansion of CTCs, or even to target CTCs as a potential therapeutic strategy to prevent HCC recurrence after surgery or to hamper tumor progression and extrahepatic spreading.
Collapse
Affiliation(s)
- María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Javier Zamora-Olaya
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Víctor Amado-Torres
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rafael Alejandre
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
16
|
Xie J, Ruan Z, Zheng J, Gong Y, Wang Y, Hu B, Cheng J, Huang Q. Detection of circulating rare cells benefitted the diagnosis of malignant solitary pulmonary nodules. J Cancer Res Clin Oncol 2021; 148:2681-2692. [PMID: 34791530 DOI: 10.1007/s00432-021-03852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Solitary pulmonary nodules (SPNs) are challenging in differentiating between benignancy and malignancy. Therefore, more effective non-invasive biomarkers are urgently needed. The purpose of this investigation was to examine whether circulating rare cells (CRCs) could facilitate the differentiation between benign and malignant SPNs as well as its sensitivity and specificity. METHODS 164 patients diagnosed with SPNs, 24 healthy volunteers, and 25 patients diagnosed with advanced-stage lung cancer were included. CT/PET-CT images, serum tumor markers, and biopsy results were collected. The CRCs were examined using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) and their relationship with malignant or benign SPNs was analyzed. RESULTS The total CRC numbers from patients with malignant SPNs diagnosed by biopsy were significantly greater compared to those with benign SPNs (P < 0.0001), but not significantly different from patients with advanced lung cancer (P > 0.05). The total CRCs, with a cut-off value of 21.5 units, showed 67.6% sensitivity and 73.3% specificity [area under curve (AUC) 95% CI, 0.778 (0.666-0.889)] in discriminating benign and malignant SPNs and the triploid CRCs exhibited a high positive likelihood ratio of 8.4, which suggested that CRCs appeared to have a distinct advantage in discriminating benign and malignant SPNs compared to CT/PET-CT images and serum tumor markers and could be a potential screening indicator for lung cancer in the high-risk population. CONCLUSIONS SE-iFISH could effectively detect CRCs including circulating tumor cells (CTCs) and circulating tumor-derived endothelial cells (CTECs) and the detection of CRCs could benefit the differentiation of patients with benign and malignant SPNs.
Collapse
Affiliation(s)
- Jianzhu Xie
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ruan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zheng
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulan Wang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binjie Hu
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qian Huang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
He S, Wei J, Ding L, Yang X, Wu Y. State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell. Talanta 2021; 239:123024. [PMID: 34952370 DOI: 10.1016/j.talanta.2021.123024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from the primary tumor and then enter the circulatory system, a small part of which may evolve into metastatic cancer under appropriate microenvironment conditions. The detection of CTCs is a truly noninvasive, dynamic monitor for disease changes, which has considerable clinical implications in the selection of targeted drugs. However, their inherent rarity and heterogeneity pose significant challenges to their isolation and detection. Even the "gold standard", CellSearch™, suffers from high expenses, low capture efficiency, and the consumption of time. With the advancement of CTCs analysis technologies in recent years, the yield and efficiency of CTCs enrichment have gradually been improved, as well as detection sensitivity. In this review, the isolation and detection strategies of CTCs have been completely described and the potential directions for future research and development have also been highlighted through analyzing the challenges faced by current strategies.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Huang M, Ma Y, Lv C, Li S, Lu F, Zhang S, Wang DD, Lin PP, Yang Y. Aneuploid Circulating Tumor Cells as a Predictor of Response to Neoadjuvant Chemotherapy in Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:6609-6620. [PMID: 34703281 PMCID: PMC8523810 DOI: 10.2147/ijgm.s330361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to explore the potential application of circulating tumor cells (CTCs) in predicting the therapeutic effect of neoadjuvant chemotherapy (NAC) in non-small-cell lung cancer (NSCLC). Methods Using integrated subtraction enrichment and immunostaining-fluorescence in situ hybridization, the serial CTCs of patients with NSCLC were detected in 7.5 mL of blood at baseline and after two cycles of cisplatin-based NAC, and all aneuploidies of chromosome 8 were examined in the enriched CTCs. Tumor responses were evaluated radiologically with serial chest computed tomography (CT) using the response evaluation criteria in solid tumors and microscopically using the tumor cell necrosis rate (TCNR) of the resected specimen after NAC. Results After two cycles of cisplatin-based NAC, 89% (8/9) of the patients with radiological partial response to NAC had reduced CTC numbers, while 73% (8/11) of the patients with stable disease exhibited increased CTC numbers (P = 0.0098). On pathological examination, 90% (9/10) of patients with a TCNR lower than 30% had >1 CTC post-NAC, while 80% (4/5) of patients with a TCNR higher than 30% had ≤1 CTC post-NAC (P = 0.017). In aneuploidy analysis, the positive rate (CTC > 0) of triploid CTCs was found to have increased after NAC, in contrast with the tetraploid and multiploid CTCs. Furthermore, tetraploid and multiploid CTCs were found to be significantly downregulated in the patients with partial response to NAC. Conclusion The correlations of aneuploid CTCs with both radiological and pathological responses in patients with NSCLC who received NAC were summarized, and the findings indicate that enumerating and karyotyping aneuploid CTCs can serve as a surrogate marker for disease monitoring in NSCLC.
Collapse
Affiliation(s)
- Miao Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Chao Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Fangliang Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Shanyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | | | | | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
19
|
Pan M, Kohlbauer V, Blancke Soares A, Schinke H, Huang Y, Kranz G, Quadt T, Hachmeister M, Gires O. Interactome analysis reveals endocytosis and membrane recycling of EpCAM during differentiation of embryonic stem cells and carcinoma cells. iScience 2021; 24:103179. [PMID: 34693227 PMCID: PMC8517208 DOI: 10.1016/j.isci.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane epithelial cell adhesion molecule (EpCAM) is expressed in epithelia, carcinoma, teratoma, and embryonic stem cells (ESCs). EpCAM displays spatiotemporal patterning during embryogenesis, tissue morphogenesis, cell differentiation, and epithelial-to-mesenchymal transition (EMT) in carcinomas. Potential interactors of EpCAM were identified in murine F9 teratoma cells using a stable isotope labeling with amino acids in cell culture-based proteomic approach (n = 77, enrichment factor >3, p value ≤ 0.05). Kyoto Encyclopedia of Genes and Genomes and gene ontology terms revealed interactions with regulators of endosomal trafficking and membrane recycling, which were further validated for Rab5, Rab7, and Rab11. Endocytosis and membrane recycling of EpCAM were confirmed in mF9 cells, E14TG2α ESC, and Kyse30 carcinoma cells. Reduction of EpCAM during mesodermal differentiation and TGFβ-induced EMT correlated with enhanced endocytosis and block or reduction of recycling in ESCs and esophageal carcinoma cells. Hence, endocytosis and membrane recycling are means of regulation of EpCAM protein levels during differentiation of ESC and EMT induction in carcinoma cells.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Blancke Soares
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Quadt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Hachmeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
20
|
Zhang T, Zhang L, Gao Y, Wang Y, Liu Y, Zhang H, Wang Q, Hu F, Li J, Tan J, Wang DD, Gires O, Lin PP, Li B. Role of aneuploid circulating tumor cells and CD31 + circulating tumor endothelial cells in predicting and monitoring anti-angiogenic therapy efficacy in advanced NSCLC. Mol Oncol 2021; 15:2891-2909. [PMID: 34455700 PMCID: PMC8564645 DOI: 10.1002/1878-0261.13092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Prognosticating the efficacy of anti‐angiogenic therapy through longitudinal monitoring and early detection of treatment resistance in cancer patients remain highly challenging. In this study, co‐detection and comprehensive phenotypic and karyotypic molecular characterization of aneuploid circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) were conducted on non‐small cell lung cancer (NSCLC) patients receiving bevacizumab plus chemotherapy. Prognostic values of the cell‐based significant univariate risk factors identified by Cox regression analyses were progressively investigated. Subjects showing an increase in total post‐therapeutic platelet endothelial cell adhesion molecule‐1 (CD31)– CTCs and CD31+ CTECs exhibited a significantly reduced median progression‐free survival (mPFS) and overall survival. Further stratification analyses indicated that pretherapeutic patients bearing vimentin (Vim)+ CTECs (mesenchymal M‐type) at baseline revealed a significantly shortened mPFS compared with patients with Vim– CTECs. Post‐therapeutic patients harboring epithelial cell adhesion molecule (EpCAM)+ CTCs and CTECs (epithelial E‐type), regardless of Vim expression or not, showed a significantly reduced mPFS. Post‐therapeutic patients possessing de novo EpCAM+/Vim+ (hybrid E/M‐type) CTECs displayed the shortest mPFS. Patients harboring either pre‐ or post‐therapeutic EpCAM–/Vim– null CTECs (N‐type) exhibited a better response to therapy compared to patients harboring EpCAM+ and/or Vim+ CTECs. The presented results support the notion that baseline Vim+ CTECs and post‐therapeutic EpCAM+ CTCs and CTECs are predictive biomarkers for longitudinal monitoring of response to anti‐angiogenesis combination regimens in NSCLC patients.
Collapse
Affiliation(s)
- Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxia Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qunhui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fanbin Hu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jie Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | | | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
21
|
Pillai SG, Siddappa CM, Ma C, Snider J, Kaushal M, Watson MA, Aft R. A microfluidic-based filtration system to enrich for bone marrow disseminated tumor cells from breast cancer patients. PLoS One 2021; 16:e0246139. [PMID: 33989287 PMCID: PMC8121342 DOI: 10.1371/journal.pone.0246139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Disseminated tumors cells (DTCs) present in the bone marrow (BM) are believed to be the progenitors of distant metastatic spread, a major cause of mortality in breast cancer patients. To better understand the behavior and therapeutic vulnerabilities of these rare cell populations, unbiased methods for selective cell enrichment are required. In this study, we have evaluated a microfluidic-based filtration system (ParsortixR, Angle PLC), previously demonstrated for use in circulating tumor cell (CTC) capture, to capture BM DTCs. Performance using BM samples was also compared directly to enrichment of CTCs in the peripheral blood (PB) from both metastatic and non-metastatic breast cancer patients. Although the non-specific capture of BM immune cells was significant, the device could routinely achieve significant cytoreduction of BM and PB WBCs and at least 1,000-fold enrichment of DTCs, based on labeled tumor cell spike-in experiments. Detection of previously characterized DTC-associated gene expression biomarkers was greatly enhanced by the enrichment method, as demonstrated by droplet digital PCR assay. Cells eluted from the device were viable and suitable for single cell RNA sequencing experiments. DTCs in enriched BM samples comprised up to 5% of the total cell population, allowing for effective single cell and population-based transcriptional profiling of these rare cells. Use of the Parsortix instrument will be an effective approach to enrich for rare BM DTCs in order to better understand their diverse molecular phenotypes and develop approaches to eradicate these cells to prevent distant disease development in breast cancer patients.
Collapse
Affiliation(s)
- Sreeraj G. Pillai
- Dept. of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Chidananda M. Siddappa
- Dept. of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Cynthia Ma
- Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jackie Snider
- Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Madhurima Kaushal
- Institute of Informatics, Washington University School of Medicine, St Louis, MO, United States of America
| | - Mark A. Watson
- Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Rebecca Aft
- Dept. of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
- John Cochran Veterans Administration Hospital, St. Louis, MO, United States of America
| |
Collapse
|
22
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
23
|
Balázs K, Antal L, Sáfrány G, Lumniczky K. Blood-Derived Biomarkers of Diagnosis, Prognosis and Therapy Response in Prostate Cancer Patients. J Pers Med 2021; 11:296. [PMID: 33924671 PMCID: PMC8070149 DOI: 10.3390/jpm11040296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men worldwide. Despite the fact that multiple therapeutic alternatives are available for its treatment, it is often discovered in an advanced stage as a metastatic disease. Prostate cancer screening is based on physical examination of prostate size and prostate-specific antigen (PSA) level in the blood as well as biopsy in suspect cases. However, these markers often fail to correctly identify the presence of cancer, or their positivity might lead to overdiagnosis and consequent overtreatment of an otherwise silent non-progressing disease. Moreover, these markers have very limited if any predictive value regarding therapy response or individual risk for therapy-related toxicities. Therefore, novel, optimally liquid biopsy-based (blood-derived) markers or marker panels are needed, which have better prognostic and predictive value than the ones currently used in the everyday routine. In this review the role of circulating tumour cells, extracellular vesicles and their microRNA content, as well as cellular and soluble immunological and inflammation- related blood markers for prostate cancer diagnosis, prognosis and prediction of therapy response is discussed. A special emphasis is placed on markers predicting response to radiotherapy and radiotherapy-related late side effects.
Collapse
Affiliation(s)
| | | | | | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1221 Budapest, Hungary; (K.B.); (L.A.); (G.S.)
| |
Collapse
|
24
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
25
|
The Significance of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma: Real-Time Monitoring and Moving Targets for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071734. [PMID: 32610709 PMCID: PMC7408113 DOI: 10.3390/cancers12071734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is ranked as the sixth most common cancer around the world. With the emergence of the state-of-the-art modalities lately, such as liver transplantation, image-guided ablation, and chemoembolization, the death rate is still high due to high metastasis rate after therapy. Observation by biannual ultrasonography allows effective diagnosis at an early stage for candidates with no extrahepatic metastasis, but its effectiveness still remains unsatisfactory. Developing a new test with improved effectiveness and specificity is urgently needed for HCC diagnosis, especially for patients after first line therapy. Circulating tumor cells (CTCs) are a small sub-population of tumor cells in human peripheral blood, they release from the primary tumor and invade into the blood circulatory system, thereby residing into the distal tissues and survive. As CTCs have specific and aggressive properties, they can evade from immune defenses, induce gene alterations, and modulate signal transductions. Ultimately, CTCs can manipulate tumor behaviors and patient reactions to anti-tumor treatment. Given the fact that in HCC blood is present around the immediate vicinity of the tumor, which allows thousands of CTCs to release into the blood circulation daily, so CTCs are considered to be the main cause for HCC occurrence, and are also a pivotal factor for HCC prognosis. In this review, we highlight the characteristics and enrichment strategies of CTCs, and focus on the use of CTCs for tumor evaluation and management in patients with HCC.
Collapse
|
26
|
Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis. Cells 2020; 9:cells9061539. [PMID: 32599893 PMCID: PMC7349247 DOI: 10.3390/cells9061539] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived endothelial cells (TECs), exhibiting cytogenetic abnormalities of aneuploid chromosomes. Aneuploid TECs are generated from “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both processes crucially engage the hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). Compared to the cancerization process, endothelialization of cancer cells, which comprises the fusion of tumor cells with endothelial cells and transdifferentiation of cancer cells into TECs, is the dominant pathway. Tumor-derived endothelial cells, possessing the dual properties of cancerous malignancy and endothelial vascularization ability, are thus the endothelialized cancer cells. Circulating tumor-derived endothelial cells (CTECs) are TECs shed into the peripheral circulation. Aneuploid CD31+ CTECs, together with their counterpart CD31- circulating tumor cells (CTCs), constitute a unique pair of cellular circulating tumor biomarkers. This review discusses a proposed cascaded framework that focuses on the origins of TECs and CTECs in the hypoxic tumor microenvironment and their clinical implications for tumorigenesis, neovascularization, disease progression, and cancer metastasis. Aneuploid CTECs, harboring hybridized properties of malignancy, vascularization and motility, may serve as a unique target for developing a novel metastasis blockade cancer therapy.
Collapse
|
27
|
Zou L, Imani S, Maghsoudloo M, Shasaltaneh MD, Gao L, Zhou J, Wen Q, Liu S, Zhang L, Chen G. Genome‑wide copy number analysis of circulating tumor cells in breast cancer patients with liver metastasis. Oncol Rep 2020; 44:1075-1093. [PMID: 32705227 PMCID: PMC7388446 DOI: 10.3892/or.2020.7650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The genome‑wide copy number analysis of circulating tumor cells (CTCs) provides a promising prognostic biomarker for survival in breast cancer liver metastasis (BCLM) patients. The present study aimed to confirm the prognostic value of the presence of CTCs in BCLM patients. We previously developed an assay for the genome‑wide pattern differences in copy number variations (CNVs) as an adjunct test for the routine imaging and histopathologic diagnosis methods to distinguish newly diagnosed liver metastases and recurrent liver metastases. Forty‑three breast cancer patients were selected for this study in which 23 newly diagnosed and 20 recurrent liver metastases were diagnosed by histopathology and 18F‑FDG PET/CT imaging. CTCs were counted from all patients using the CellSearch system and were confirmed by cytomorphology and three‑color immunocytochemistry. Genomic DNA of single CTCs was amplified using multiple annealing and looping based amplification cycles (MALBAC). Then, we compared the CTC numbers of newly diagnosed and recurrent BCLM patients using Illumina platforms. A high CTC frequency (>15 CTCs/7.5 ml blood) was found to be correlated with disease severity and metastatic progression, which suggests the value for CTCs in the diagnosis of BCLM in comparison with pathohistology and PET/CT imaging (P>0.05). Moreover, CTCs isolated from BCLM patients remained an independent prognostic detection factor associated with overall survival (P=0.0041). Comparison between newly diagnosed and recurrent liver metastases revealed different frequencies of CNVs (P>0.05). Notably, the CNV pattern of isolated CTCs of recurrent BCLM patients was similar to recurrent liver metastases (nearly 82% of the gain/loss regions). Functional enrichment analysis identified 25 genes as a CNV signature of BCLM. Among them, were defensin and β‑defensin genes, which are significantly associated with anti‑angiogenesis and immunomodulation signaling pathways. High CTC frequencies are effective in the evaluation and differentiation between newly diagnosed liver metastases from recurrent liver metastases. Future clinical studies will be necessary to fully determine the prognostic potential of CTC cluster signatures in patients with BCLM.
Collapse
Affiliation(s)
- Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614411, Iran
| | | | - Lanyang Gao
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jia Zhou
- School of Humanities and Management Science, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Gang Chen
- Department of Medical Equipment, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
28
|
Cui Z, Su F, Li Y, Yang D. Circulating tumour cells as prognosis predictive markers of neoadjuvant chemotherapy-treated breast cancer patients. J Chemother 2020; 32:304-309. [PMID: 32500819 DOI: 10.1080/1120009x.2020.1774207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we detected and measured the count of circulating tumour cells (CTCs) in breast cancer (BC) patients who were treated by neoadjuvant chemotherapy (NAC) in order to assess the clinical validity of CTCs. A total of 96 patients with locally advanced BC and who were treated by NAC were enrolled in this study. The CTC count in the peripheral blood was estimated by negative enrichment-fluorescence in situ hybridization before and after NAC. The clinicopathological data of the patients were recorded. CTCs were detected in 59 of the 96 patients with BC before NAC. Particularly, the detection rate of CTCs was significantly lower in human epidermal growth factor receptor-2 (HER-2)-negative patients than in HER-2-positive patients. CTCs were significantly fewer after NAC than before NAC. The CTC-detection sensitivity in the NAC efficacy evaluation was 75.5% (40/53), while the specificity was 72.1% (31/43). The CTC consistency analysis with clinical effects (Response Evaluation Criteria in Solid Tumors Version 1.1 Standard) was described as moderate (kappa = 0.476, P < 0.001). Thus, our findings suggest that CTC detection is a potential new approach to assess the efficacy of NAC.
Collapse
Affiliation(s)
- Zhaoqing Cui
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Fengbo Su
- Department of Surgery, Shouguang Yingli Central Hospital, Shouguang, Shandong, P. R. China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| |
Collapse
|
29
|
Künzel J, Gribko A, Lu Q, Stauber RH, Wünsch D. Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biol Chem 2020; 400:1465-1479. [PMID: 30903749 DOI: 10.1515/hsz-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The establishment of novel biomarkers in liquid biopsies of cancer patients has come more into focus in prognostic and diagnostic research efforts. Due to their prognostic relevance disseminated tumor cells or circulating tumor cells are the subject of intensive research and are discussed as early diagnostic indicators for treatment failure and the formation of micrometastases. A potential association of this early-systemic tumor component with poor prognosis of cancer patients could be already demonstrated for various entities including breast, colon, lung, melanoma, ovarian and prostate cancers. Thus, the detection of circulating tumor cells seems to be also applicable for minimal-invasive monitoring of therapy progress in head and neck cancer patients. A major problem of the use in clinical routine is that circulating tumor cells could not be detected by modern imaging techniques. To overcome these limitations highly sensitive detection methods and techniques for their molecular characterization are urgently needed allowing mechanistic understanding and targeting of circulating tumor cells. Especially the medical application of nanotechnology (nanomedical methods) has made valuable contributions to the field. Here, we want to provide a comprehensive overview on (nanomedical) detection methods for circulating tumor cells and discuss their merits, pitfalls and future perspectives especially for head and neck solid squamous cell carcinoma (HNSCC) patients.
Collapse
Affiliation(s)
- Julian Künzel
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Alena Gribko
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| |
Collapse
|
30
|
Wu J, Raba K, Guglielmi R, Behrens B, Van Dalum G, Flügen G, Koch A, Patel S, Knoefel WT, Stoecklein NH, Neves RPL. Magnetic-Based Enrichment of Rare Cells from High Concentrated Blood Samples. Cancers (Basel) 2020; 12:E933. [PMID: 32290064 PMCID: PMC7225976 DOI: 10.3390/cancers12040933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we tested two magnetic-bead based systems for the enrichment and detection of rare tumor cells in concentrated blood products. For that, the defined numbers of cells from three pancreatic cancer cell lines were spiked in 108 peripheral blood mononuclear cells (PBMNCs) concentrated in 1 mL, mimicking diagnostic leukapheresis (DLA) samples, and samples were processed for circulating tumor cells (CTC) enrichment with the IsoFlux or the KingFisher systems, using different types of magnetic beads from the respective technology providers. Beads were conjugated with different anti-EpCAM and MUC-1 antibodies. Recovered cells were enumerated and documented by fluorescent microscopy. For the IsoFlux system, best performance was obtained with IsoFlux CTC enrichment kit, but these beads compromised the subsequent immunofluorescence staining. For the KingFisher system, best recoveries were obtained using Dynabeads Biotin Binder beads. These beads also allowed one to capture CTCs with different antibodies and the subsequent immunofluorescence staining. KingFisher instrument allowed a single and streamlined protocol for the enrichment and staining of CTCs that further prevented cell loss at the enrichment/staining interface. Both IsoFlux and KingFisher systems allowed the enrichment of cell line cells from the mimicked-DLA samples. However, in this particular experimental setting, the recovery rates obtained with the KingFisher system were globally higher, the system was more cost-effective, and it allowed higher throughput.
Collapse
Affiliation(s)
- Junhao Wu
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rosa Guglielmi
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Bianca Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Guus Van Dalum
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Georg Flügen
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Andreas Koch
- Thermo Fisher Scientific, Postfach 200152, Frankfurter Str. 129B, 64293 Darmstadt, Germany;
| | - Suraj Patel
- Thermo Fisher Scientific, 3 Fountain Drive, Inchinnan, Renfrew PA4 9RF, UK;
| | - Wolfram T. Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Nikolas H. Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Rui P. L. Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| |
Collapse
|
31
|
Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules 2020; 10:biom10020255. [PMID: 32046162 PMCID: PMC7072682 DOI: 10.3390/biom10020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
Collapse
|
32
|
Zhang L, Zhang X, Liu Y, Zhang T, Wang Z, Gu M, Li Y, Wang DD, Li W, Lin PP. PD-L1+ aneuploid circulating tumor endothelial cells (CTECs) exhibit resistance to the checkpoint blockade immunotherapy in advanced NSCLC patients. Cancer Lett 2020; 469:355-366. [DOI: 10.1016/j.canlet.2019.10.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/23/2022]
|
33
|
Wan S, Kim TH, Smith KJ, Delaney R, Park GS, Guo H, Lin E, Plegue T, Kuo N, Steffes J, Leu C, Simeone DM, Razimulava N, Parikh ND, Nagrath S, Welling TH. New Labyrinth Microfluidic Device Detects Circulating Tumor Cells Expressing Cancer Stem Cell Marker and Circulating Tumor Microemboli in Hepatocellular Carcinoma. Sci Rep 2019; 9:18575. [PMID: 31819089 PMCID: PMC6901480 DOI: 10.1038/s41598-019-54960-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Shanshan Wan
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, NY, USA
| | - Tae Hyun Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Inst., University of Michigan, Ann Arbor, MI, USA
| | - Kaylee J Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Inst., University of Michigan, Ann Arbor, MI, USA
| | - Ryan Delaney
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - G-Su Park
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eric Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Inst., University of Michigan, Ann Arbor, MI, USA
| | - Thomas Plegue
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ning Kuo
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Steffes
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Leu
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, NY, USA
| | - Diane M Simeone
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, NY, USA
| | | | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Inst., University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Theodore H Welling
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
34
|
EpCAM low Circulating Tumor Cells: Gold in the Waste. DISEASE MARKERS 2019; 2019:1718920. [PMID: 31636732 PMCID: PMC6766153 DOI: 10.1155/2019/1718920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
The CellSearch® system which is still considered the gold standard for the enumeration of circulating tumor cells (CTC) utilizes antibodies against the epithelial cell adhesion molecule (EpCAM) for CTC enrichment. Recently, CTC discarded by the CellSearch® system due to their low EpCAM expression have been isolated and analyzed. We here sought to discuss technical and biological issues concerning the isolation and characterization of EpCAMlow CTC, highlighting the enormous potential of this subpopulation discarded by CellSearch®, which might instead reveal an unexpected clinical significance in tumor types where CTC enumeration has never been validated for prognostic and predictive purpose.
Collapse
|
35
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
36
|
Liu X, Li J, Cadilha BL, Markota A, Voigt C, Huang Z, Lin PP, Wang DD, Dai J, Kranz G, Krandick A, Libl D, Zitzelsberger H, Zagorski I, Braselmann H, Pan M, Zhu S, Huang Y, Niedermeyer S, Reichel CA, Uhl B, Briukhovetska D, Suárez J, Kobold S, Gires O, Wang H. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. SCIENCE ADVANCES 2019; 5:eaav4275. [PMID: 31223646 PMCID: PMC6584608 DOI: 10.1126/sciadv.aav4275] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/15/2019] [Indexed: 05/21/2023]
Abstract
Carcinoma cells undergo epithelial-mesenchymal transition (EMT); however, contributions of EMT heterogeneity to disease progression remain a matter of debate. Here, we addressed the EMT status of ex vivo cultured circulating and disseminated tumor cells (CTCs/DTCs) in a syngeneic mouse model of metastatic breast cancer (MBC). Epithelial-type CTCs with a restricted mesenchymal transition had the strongest lung metastases formation ability, whereas mesenchymal-type CTCs showed limited metastatic ability. EpCAM expression served as a surrogate marker to evaluate the EMT heterogeneity of clinical samples from MBC, including metastases, CTCs, and DTCs. The proportion of epithelial-type CTCs, and especially DTCs, correlated with distant metastases and poorer outcome of patients with MBC. This study fosters our understanding of EMT in metastasis and underpins heterogeneous EMT phenotypes as important parameters for tumor prognosis and treatment. We further suggest that EpCAM-dependent CTC isolation systems will underestimate CTC numbers but will quantify clinically relevant metastatic cells.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Junjian Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bruno Loureiro Cadilha
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Anamarija Markota
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Cornelia Voigt
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Zhe Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Anna Krandick
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Horst Zitzelsberger
- Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Isabella Zagorski
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sebastian Niedermeyer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Daria Briukhovetska
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Javier Suárez
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
- Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz Zentrum München, Neuherberg, Germany
- Corresponding author. (O.G.); (H.W.)
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Corresponding author. (O.G.); (H.W.)
| |
Collapse
|
37
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
38
|
Huang Y, Chanou A, Kranz G, Pan M, Kohlbauer V, Ettinger A, Gires O. Membrane-associated epithelial cell adhesion molecule is slowly cleaved by γ-secretase prior to efficient proteasomal degradation of its intracellular domain. J Biol Chem 2018; 294:3051-3064. [PMID: 30598504 DOI: 10.1074/jbc.ra118.005874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/20/2018] [Indexed: 12/27/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) is a key mechanism for activating transmembrane proteins such as epithelial cell adhesion molecule (EpCAM) for cellular signaling and degradation. EpCAM is highly expressed in carcinomas and progenitor and embryonic stem cells and is involved in the regulation of cell adhesion, proliferation, and differentiation. Strictly sequential cleavage of EpCAM through RIP involves initial shedding of the extracellular domain by α-secretase (ADAM) and β-secretase (BACE) sheddases, generating a membrane-tethered C-terminal fragment EpCTF. Subsequently, the rate-limiting γ-secretase complex catalyzes intramembrane cleavage of EpCTF, generating an extracellular EpCAM-Aβ-like fragment and an intracellular EpICD fragment involved in nuclear signaling. Here, we have combined biochemical approaches with live-cell imaging of fluorescent protein tags to investigate the kinetics of γ-secretase-mediated intramembrane cleavage of EpCTF. We demonstrate that γ-secretase-mediated proteolysis of exogenously and endogenously expressed EpCTF is a slow process with a 50% protein turnover in cells ranging from 45 min to 5.5 h. The slow cleavage was dictated by γ-secretase activity and not by EpCTF species, as indicated by cross-species swapping experiments. Furthermore, both human and murine EpICDs generated from EpCTF by γ-secretase were degraded efficiently (94-99%) by the proteasome. Hence, proteolytic cleavage of EpCTF is a comparably slow process, and EpICD generation does not appear to be suited for rapidly transducing extracellular cues into nuclear signaling, but appears to provide steady signals that can be further controlled through efficient proteasomal degradation. Our approach provides an unbiased bioassay to investigate proteolytic processing of EpCTF in single living cells.
Collapse
Affiliation(s)
- Yuanchi Huang
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany, .,the Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Anna Chanou
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Gisela Kranz
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Min Pan
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Vera Kohlbauer
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Andreas Ettinger
- the Institute of Epigenetics and Stem Cells, Marchioninistrasse 25, 81377 München, Germany, and
| | - Olivier Gires
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany, .,the Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
39
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2018; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
40
|
High Expression of EpCAM and Sox2 is a Positive Prognosticator of Clinical Outcome for Head and Neck Carcinoma. Sci Rep 2018; 8:14582. [PMID: 30275505 PMCID: PMC6167386 DOI: 10.1038/s41598-018-32178-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023] Open
Abstract
Locally advanced head and neck squamous cell carcinomas (HNSCC) have limited prognosis due to frequent treatment failure. Currently, TNM-classification and human papillomavirus (HPV) infection are the sole clinical prognosticators of outcome. Tumor heterogeneity and stemness based on epithelial-mesenchymal-transition reportedly associate with therapy resistance. The capacity of epithelial marker EpCAM (EpEX), stemness regulator Sox2 and mesenchymal marker vimentin to predict clinical outcome of HSNCC patients was assessed upon immunohistochemistry staining in two cohorts of HNSCC patients treated with surgery and adjuvant radio (chemo) therapy (n = 94) and primary radio (chemo) therapy (n = 94), respectively. Prognostic values with respect to overall, disease-free and disease-specific survival were assessed in uni- and multivariate cox proportional hazard models to generate integrated risk scores. EpEX, Sox2 and vimentin displayed substantial inter- and intratumoral heterogeneity. EpEXhigh and Sox2high predicted improved clinical outcome in the discovery cohort and in the HPV-negative sub-cohort. EpEXhigh and Sox2high were confirmed as prognosticators of clinical outcome in the validation cohort treated with definitive radio(chemo)therapy. Importantly, EpEXhigh identified patients with improved survival within the HPV-negative subgroup of the validation cohort. Hence, Sox2high and particularly EpEXhigh have potential as tools to predict clinical performance of HNSCC patients, foremost HPV-negative cases, in the frame of molecular-guided treatment decision-making.
Collapse
|
41
|
Pan M, Schinke H, Luxenburger E, Kranz G, Shakhtour J, Libl D, Huang Y, Gaber A, Pavšič M, Lenarčič B, Kitz J, Jakob M, Schwenk-Zieger S, Canis M, Hess J, Unger K, Baumeister P, Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol 2018; 16:e2006624. [PMID: 30261040 PMCID: PMC6177200 DOI: 10.1371/journal.pbio.2006624] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs. Head and neck squamous cell carcinomas (HNSCCs) display poor survival, with death rates above 55%. Major factors affecting survival are metastases’ formation and therapy resistance. Phenotypic changes during partial epithelial-mesenchymal transition (EMT) provide tumor cells with increased migration, invasion, and therapy resistance. Understanding molecular mechanisms of EMT, as a central process of the metastatic cascade and the development of therapy resistance, is therefore important. In the present work, we identified molecular cross talk between epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) as a novel determinant of clinical outcome in HNSCCs. Low levels of EGFR but high levels of EpCAM (EGFRlow/EpCAMhigh) were associated with favorable prognosis, with survival rates above 90%, whereas EGFRhigh/EpCAMlow correlated with poor survival, below 10%. EGFR was shown to have a concentration-dependent capacity to induce proliferation and EMT. Proteolytic cleavage of the extracellular domain of EpCAM (EpEX) produces a ligand of EGFR that induces EGFR-dependent proliferation but counteracts EGF-induced EMT. We delineate an EGFR/extracellular signal–regulated kinase 1/2 (ERK1/2)/EpCAM signaling axis that may be a promising therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Elke Luxenburger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julius Shakhtour
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Ljubljana, Slovenia
| | - Julia Kitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
42
|
Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J. Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 2018; 8:14798-14805. [PMID: 35541343 PMCID: PMC9079946 DOI: 10.1039/c8ra01362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell adhesion molecules (EpCAMs) play a significant role in tumorigenesis and tumor development. EpCAMs are considered to be tumor signaling molecules for cancer diagnosis, prognosis and therapy. Herein, an enzyme-free and highly sensitive fluorescent biosensor, with a combined aptamer-based EpCAM recognition and toehold-aided DNA recycling amplification strategy, was developed for sensitive and specific fluorescence detection of EpCAMs. Due to highly specific binding between EpCAMs and corresponding aptamers, strand a, which is released from the complex of aptamer/strand a in the presence of EpCAMs which is bound to the corresponding aptamer, triggered the toehold-mediated strand displacement process. An amplified fluorescent signal was achieved by recycling strand a for ultrasensitive EpCAM detection with a detection limit as low as 0.1 ng mL-1, which was comparable or superior to that of reported immunoassays and biosensor strategies. In addition, high selectivity towards EpCAMs was exhibited when other proteins were selected as control proteins. Finally, this strategy was successfully used for the ultrasensitive fluorescence detection of EpCAMs in human serum samples with satisfactory results. Importantly, the present strategy may be also expanded for the detection of other targets using the corresponding aptamers.
Collapse
Affiliation(s)
- Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Bing Shang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Zhengpeng Zhu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|
43
|
Aneuploid CTC and CEC. Diagnostics (Basel) 2018; 8:diagnostics8020026. [PMID: 29670052 PMCID: PMC6023477 DOI: 10.3390/diagnostics8020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (> white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the ALK gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the TP53 gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.
Collapse
|
44
|
|
45
|
Sheng Y, Wang T, Li H, Zhang Z, Chen J, He C, Li Y, Lv Y, Zhang J, Xu C, Wang Z, Huang C, Wang L. Comparison of analytic performances of Cellsearch and iFISH approach in detecting circulating tumor cells. Oncotarget 2018; 8:8801-8806. [PMID: 28187533 PMCID: PMC5352443 DOI: 10.18632/oncotarget.6688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/10/2015] [Indexed: 01/06/2023] Open
Abstract
Circulating tumor cells (CTCs) have been widely used to predict the prognosis of breast cancer patients. The aim of the present study was to compare the performances of Cellsearch and immunostaining-fluorescence in situ hybridization (iFISH) in detecting CTCs in breast cancer patients. Forty-five newly diagnosed breast cancer patients and 14 healthy donors were recruited and their CTCs were detected by both Cellsearch and iFISH. Correlation between clinicopathological features and CTCs was investigated. We found that the positive rate of CTC detected by iFISH was significantly higher than by Cellsearch system (91% vs 38%). The CTC count, detected either by iFISH or Cellsearch, was not significantly associated with clinical pictures of patients with breast cancer. Therefore, we concluded that, compared to conventional Cellsearch CTC detection, in situ karyotypic identification performed by iFISH had higher detection rate. Therefore, iFISH may be more clinically useful than Cellsearch system.
Collapse
Affiliation(s)
- Yuan Sheng
- Department of Thyroid and Breast Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ting Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengyu Li
- Department of Thyroid and Breast Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhenzhen Zhang
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai, China
| | - Jianghao Chen
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyang He
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongping Li
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonggang Lv
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juliang Zhang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Xu
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai,China
| | - Zhen Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Huebner H, Fasching PA, Gumbrecht W, Jud S, Rauh C, Matzas M, Paulicka P, Friedrich K, Lux MP, Volz B, Gass P, Häberle L, Meier-Stiegen F, Hartkopf A, Neubauer H, Almstedt K, Beckmann MW, Fehm TN, Ruebner M. Filtration based assessment of CTCs and CellSearch® based assessment are both powerful predictors of prognosis for metastatic breast cancer patients. BMC Cancer 2018; 18:204. [PMID: 29463222 PMCID: PMC5819661 DOI: 10.1186/s12885-018-4115-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/09/2018] [Indexed: 12/17/2022] Open
Abstract
Background The assessment of circulating tumor cells (CTCs) has been shown to enable monitoring of treatment response and early detection of metastatic breast cancer (MBC) recurrence. The aim of this study was to compare a well-established CTC detection method based on immunomagnetic isolation with a new, filtration-based platform. Methods In this prospective study, two 7.5 ml blood draws were obtained from 60 MBC patients and CTC enumeration was assessed using both the CellSearch® and the newly developed filtration-based platform. We analyzed the correlation of CTC-positivity between both methods and their ability to predict prognosis. Overall survival (OS) was calculated and Kaplan-Meier curves were estimated with thresholds of ≥1 and ≥5 detected CTCs. Results The CTC positivity rate of the CellSearch® system was 56.7% and of the filtration-based platform 66.7%. There was a high correlation of CTC enumeration obtained with both methods. The OS for patients without detected CTCs, regardless of the method used, was significantly higher compared to patients with one or more CTCs (p < 0.001). The median OS of patients with no CTCs vs. ≥ 1 CTC assessed by CellSearch® was 1.83 years (95% CI: 1.63–2.02) vs. 0.74 years (95% CI: 0.51–1.52). If CTCs were detected by the filtration-based method the median OS times were 1.88 years (95% CI: 1.74–2.03) vs. 0.59 years (95% CI: 0.38–0.80). Conclusions The newly established EpCAM independently filtration-based system is a suitable method to determine CTC counts for MBC patients. Our study confirms CTCs as being strong predictors of prognosis in our population of MBC patients.
Collapse
Affiliation(s)
- Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Walter Gumbrecht
- Siemens Healthcare GmbH, Günther-Scharowsky-Str.1, 91058, Erlangen, Germany
| | - Sebastian Jud
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Claudia Rauh
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Mark Matzas
- Siemens Healthcare GmbH, Günther-Scharowsky-Str.1, 91058, Erlangen, Germany
| | - Peter Paulicka
- Siemens Healthcare GmbH, Günther-Scharowsky-Str.1, 91058, Erlangen, Germany
| | - Katja Friedrich
- Siemens Healthcare GmbH, Günther-Scharowsky-Str.1, 91058, Erlangen, Germany
| | - Michael P Lux
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Bernhard Volz
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany.,Biostatistics Unit. Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Franziska Meier-Stiegen
- Department of Gynecology and Obstetrics, Heinrich Heine University of Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Andreas Hartkopf
- Department of Gynecology and Obstetrics, University Hospital Tuebingen, Calwerstraße 7, 72076, Tuebingen, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, Heinrich Heine University of Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Katrin Almstedt
- Department of Obstetrics and Gynecology, Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, Heinrich Heine University of Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstraße 21-23, 91054, Erlangen, Germany.
| |
Collapse
|
47
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
48
|
Gao F, Cui Y, Jiang H, Sui D, Wang Y, Jiang Z, Zhao J, Lin S. Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget 2018; 7:71330-71340. [PMID: 27517490 PMCID: PMC5342081 DOI: 10.18632/oncotarget.11114] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/10/2016] [Indexed: 11/29/2022] Open
Abstract
Brain glioma is the most common primary intracranial tumor characterized by dismal prognosis and frequent recurrence, yet a real-time and reliable biological approach to monitor tumor response and progression is still lacking. Recently, few studies have reported that circulating tumor cells (CTCs) could be detected in glioblastoma multiform (GBM), providing the possibility of its application in brain glioma monitoring system. But its application limits still exist, because the detection rate of CTCs is still low and was exclusively limited to high- grade gliomas. Here, we adopted an advanced integrated cellular and molecular approach of SE-iFISH to detect CTCs in the peripheral blood (PB) of patients with 7 different subtypes of brain glioma, uncovering the direct evidences of glioma migration. We identified CTCs in the PB from 24 of 31 (77%) patients with glioma in all 7 subtypes. No statistical difference of CTC incidence and count was observed in different pathological subtypes or WHO grades of glioma. Clinical data revealed that CTCs, to some extent, was superior to MRI in monitoring the treatment response and differentiating radionecrosis from recurrence of glioma. Conclusively, CTCs is a common property of brain gliomas of various pathological subtypes, which has provided an ultimate paradox for the hypothesis “soil and seed”. It can be used to monitor the microenvironment of gliomas dynamically, which will be a meaningful complement to radiographic imaging.
Collapse
Affiliation(s)
- Faliang Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, First Hospital of Tsinghua University, Beijing, China
| | - Dali Sui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Yonggang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Zhongli Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brian Tumor, Beijing, China
| |
Collapse
|
49
|
Kuai JH, Wang Q, Zhang AJ, Zhang JY, Chen ZF, Wu KK, Hu XZ. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J Gastroenterol 2018; 24:351-359. [PMID: 29391757 PMCID: PMC5776396 DOI: 10.3748/wjg.v24.i3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the capacity of newly developed epidermal growth factor receptor (EGFR)-targeted immune magnetic liposomes (EILs) vs epithelial cell adhesion molecule (EpCAM) immunomagnetic beads to capture colorectal circulating tumor cells (CTCs).
METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and EpCAM magnetic beads.
RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with EpCAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues.
CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.
Collapse
Affiliation(s)
- Jing-Hua Kuai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Qing Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Ai-Jun Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Jing-Yu Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Zheng-Feng Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Kang-Kang Wu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Xiao-Zhen Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| |
Collapse
|
50
|
Minimal Residual Disease in Head and Neck Cancer and Esophageal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:55-82. [DOI: 10.1007/978-3-319-97746-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|