1
|
Ge Q, Lock M, Yang X, Ding Y, Yue J, Zhao N, Hu YS, Zhang Y, Yao M, Zang YF. Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T. Neuroinformatics 2024; 22:421-435. [PMID: 38780699 DOI: 10.1007/s12021-024-09667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.
Collapse
Affiliation(s)
- Qiu Ge
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Matthew Lock
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Xue Yang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yuejiao Ding
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Juan Yue
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China
| | - Na Zhao
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yun-Song Hu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | | | - Minliang Yao
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
González-López P, Kuptsov A, Gómez-Revuelta C, Fernández-Villa J, Abarca-Olivas J, Daniel RT, Meling TR, Nieto-Navarro J. The Integration of 3D Virtual Reality and 3D Printing Technology as Innovative Approaches to Preoperative Planning in Neuro-Oncology. J Pers Med 2024; 14:187. [PMID: 38392620 PMCID: PMC10890029 DOI: 10.3390/jpm14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Our study explores the integration of three-dimensional (3D) virtual reality (VR) and 3D printing in neurosurgical preoperative planning. Traditionally, surgeons relied on two-dimensional (2D) imaging for complex neuroanatomy analyses, requiring significant mental visualization. Fortunately, nowadays advanced technology enables the creation of detailed 3D models from patient scans, utilizing different software. Afterwards, these models can be experienced through VR systems, offering comprehensive preoperative rehearsal opportunities. Additionally, 3D models can be 3D printed for hands-on training, therefore enhancing surgical preparedness. This technological integration transforms the paradigm of neurosurgical planning, ensuring safer procedures.
Collapse
Affiliation(s)
- Pablo González-López
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | - Artem Kuptsov
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | | | | | - Javier Abarca-Olivas
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | - Roy T Daniel
- Centre Hospitalier Universitaire Vaudois, 1005 Lausanne, Switzerland
| | - Torstein R Meling
- Department of Neurosurgery, Rigshospitalet, 92100 Copenhagen, Denmark
| | - Juan Nieto-Navarro
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| |
Collapse
|
3
|
BOLD fMRI and DTI fiber tracking for preoperative mapping of eloquent cerebral regions in brain tumor patients: impact on surgical approach and outcome. Neurol Sci 2023:10.1007/s10072-023-06667-2. [PMID: 36914833 DOI: 10.1007/s10072-023-06667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Task-based BOLD fMRI and DTI-fiber tracking have become part of the routine presurgical work-up of brain tumor patients in many institutions. However, their potential impact on both surgical treatment and neurologic outcome remains unclear, in despite of the high costs and complex implementation. METHODS We retrospectively investigated whether performing fMRI and DTI-ft preoperatively substantially impacted surgical planning and patient outcome in a series of brain tumor patients. We assessed (i) the quality of fMRI and DTI-ft results, by using a scale of 0-2 (0 = failed mapping; 1 = intermediate confidence; 2 = good confidence), (ii) whether functional planning substantially contributed to defining the surgical strategy to be undertaken (i.e., no surgery, biopsy, or resection, with or without ESM), the surgical entry point and extent of resection, and (iii) the incidence of neurological deficits post-operatively. RESULTS Twenty-seven patients constituted the study population. The mean confidence rating was 1.9/2 for fMRI localization of the eloquent cortex and lateralization of the language function and 1.7/2 for DTI-ft results. Treatment strategy was altered in 33% (9/27) of cases. Surgical entry point was modified in 8% (2/25) of cases. The extent of resection was modified in 40% (10/25). One patient (1/25, 4%) developed one new functional deficit post-operatively. CONCLUSION Functional MR mapping - which must not be considered an alternative to ESM - has a critical role preoperatively, potentially modifying treatment strategy or increasing the neurosurgeons' confidence in the surgical approach hypothesized based on conventional imaging.
Collapse
|
4
|
Aerts H, Colenbier N, Almgren H, Dhollander T, Daparte JR, Clauw K, Johri A, Meier J, Palmer J, Schirner M, Ritter P, Marinazzo D. Pre- and post-surgery brain tumor multimodal magnetic resonance imaging data optimized for large scale computational modelling. Sci Data 2022; 9:676. [PMID: 36335218 PMCID: PMC9637199 DOI: 10.1038/s41597-022-01806-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
We present a dataset of magnetic resonance imaging (MRI) data (T1, diffusion, BOLD) acquired in 25 brain tumor patients before the tumor resection surgery, and six months after the surgery, together with the tumor masks, and in 11 controls (recruited among the patients’ caregivers). The dataset also contains behavioral and emotional scores obtained with standardized questionnaires. To simulate personalized computational models of the brain, we also provide structural connectivity matrices, necessary to perform whole-brain modelling with tools such as The Virtual Brain. In addition, we provide blood-oxygen-level-dependent imaging time series averaged across regions of interest for comparison with simulation results. An average resting state hemodynamic response function for each region of interest, as well as shape maps for each voxel, are also contributed.
Measurement(s) | BOLD signal • Diffusion Anisotropy | Technology Type(s) | Functional Magnetic Resonance Imaging • Diffusion Weighted Imaging | Factor Type(s) | Surgery | Sample Characteristic - Organism | Homo sapiens |
Collapse
|
5
|
Cirillo S, Battistella G, Castellano A, Sanvito F, Iadanza A, Bailo M, Barzaghi RL, Acerno S, Mortini P, Gorno-Tempini ML, Mandelli ML, Falini A. Comparison between inferior frontal gyrus intrinsic connectivity network and verb-generation task fMRI network for presurgical language mapping in healthy controls and in glioma patients. Brain Imaging Behav 2022; 16:2569-2585. [PMID: 35908147 DOI: 10.1007/s11682-022-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Task-based functional MRI (tb-fMRI) represents an extremely valuable approach for the identification of language eloquent regions for presurgical mapping in patients with brain tumors. However, its routinely application is limited by patient-related factors, such as cognitive disability and difficulty in coping with long-time acquisitions, and by technical factors, such as lack of equipment availability for stimuli delivery. Resting-state fMRI (rs-fMRI) instead, allows the identification of distinct language networks in a 10-min acquisition without the need of performing active tasks and using specific equipment. Therefore, to test the feasibility of rs-fMRI as a preoperative mapping tool, we reconstructed a lexico-semantic intrinsic connectivity network (ICN) in healthy controls (HC) and in a case series of patients with gliomas and compared the organization of this language network with the one derived from tb-fMRI in the patient's group. We studied three patients with extra-frontal gliomas who underwent functional mapping with auditory verb-generation (AVG) task and rs-fMRI with a seed in the left inferior frontal gyrus (IFG). First, we identified the functional connected areas to the IFG in HC. We qualitatively compared these areas with those that showed functional activation in AVG task derived from Neurosynth meta-analysis. Last, in each patient we performed single-subject analyses both for rs- and tb-fMRI, and we evaluated the spatial overlap between the two approaches. In HC, the IFG-ICN network showed a predominant left fronto-temporal functional connectivity in regions overlapping with the AVG network derived from a meta-analysis. In two patients, rs- and tb-fMRI showed comparable patterns of activation in left fronto-temporal regions, with different levels of contralateral activations. The third patient could not accomplish the AVG task and thus it was not possible to make any comparison with the ICN. However, in this patient, task-free approach disclosed a consistent network of fronto-temporal regions as in HC, and additional parietal regions. Our preliminary findings support the value of rs-fMRI approach for presurgical mapping, particularly for identifying left fronto-temporal core language-related areas in glioma patients. In a preoperative setting, rs-fMRI approach could represent a powerful tool for the identification of eloquent language areas, especially in patients with language or cognitive impairments.
Collapse
Affiliation(s)
- Sara Cirillo
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | | | - Antonella Iadanza
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Bailo
- Vita-Salute San Raffaele University, Milan, Italy.,Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Stefania Acerno
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, Milan, Italy.,Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.,Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, UCSF, San Francisco, CA, 94158, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Lam FC, Tsedev U, Kasper EM, Belcher AM. Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Front Bioeng Biotechnol 2022; 10:857093. [PMID: 35903794 PMCID: PMC9315239 DOI: 10.3389/fbioe.2022.857093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fred C. Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam,
| | - Uyanga Tsedev
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
| | - Angela M. Belcher
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Lavrador JP, Oviedova A, Pereira N, Patel S, Rajwani KM, Sekhon P, Gullan R, Ashkan K, Vergani F, Bhangoo R. Minimally invasive approach to a deep-seated motor eloquent brain tumour: a technical note. J Surg Case Rep 2022; 2022:rjab611. [PMID: 35079339 PMCID: PMC8784184 DOI: 10.1093/jscr/rjab611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Deep-seated brain tumours represent a unique neurosurgical challenge as they are often surrounded by eloquent structures. We describe a minimally invasive technique using tubular retractors and intraoperative neurophysiology monitoring for open biopsy of a deep-seated lesion surrounded by the corticospinal tract. We used preoperative functional mapping with diffusion tensor imaging tractography and navigated transcranial magnetic stimulation to identify a safe surgical corridor. We also used 5-Aminolevulinic Acid induced fluorescence to identify the lesion intraoperatively and optimize tissue samples obtained for histopathological diagnosis. We found the use of these tools improved the safety of surgery and reduced the risk of surgical morbidity.
Collapse
Affiliation(s)
| | | | | | | | - Kapil Mohan Rajwani
- Correspondence address. Department of Neurosurgery, King’s College Hospital, Denmak Hill, Brixton, London SE5 9RS, UK. Tel: +44 203 299 9000; E-mail:
| | | | | | | | | | | |
Collapse
|
8
|
Preoperative Assessment of Language Dominance through Combined Resting-State and Task-Based Functional Magnetic Resonance Imaging. J Pers Med 2021; 11:jpm11121342. [PMID: 34945814 PMCID: PMC8706548 DOI: 10.3390/jpm11121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Brain lesions in language-related cortical areas remain a challenge in the clinical routine. In recent years, the resting-state fMRI (RS-fMRI) was shown to be a feasible method for preoperative language assessment. The aim of this study was to examine whether language-related resting-state components, which have been obtained using a data-driven independent-component-based identification algorithm, can be supportive in determining language dominance in the left or right hemisphere. Twenty patients suffering from brain lesions close to supposed language-relevant cortical areas were included. RS-fMRI and task-based (TB-fMRI) were performed for the purpose of preoperative language assessment. TB-fMRI included a verb generation task with an appropriate control condition (a syllable switching task) to decompose language-critical and language-supportive processes. Subsequently, the best fitting ICA component for the resting-state language network (RSLN) referential to general linear models (GLMs) of the TB-fMRI (including models with and without linguistic control conditions) was identified using an algorithm based on the Dice index. Thereby, the RSLNs associated with GLMs using a linguistic control condition led to significantly higher laterality indices than GLM baseline contrasts. LIs derived from GLM contrasts with and without control conditions alone did not differ significantly. In general, the results suggest that determining language dominance in the human brain is feasible both with TB-fMRI and RS-fMRI, and in particular, the combination of both approaches yields a higher specificity in preoperative language assessment. Moreover, we can conclude that the choice of the language mapping paradigm is crucial for the mentioned benefits.
Collapse
|
9
|
Jenabi M, Young RJ, Moreno R, Gene M, Cho N, Otazo R, Holodny AI, Peck KK. Multiband diffusion tensor imaging for presurgical mapping of motor and language pathways in patients with brain tumors. J Neuroimaging 2021; 31:784-795. [PMID: 33817896 DOI: 10.1111/jon.12859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Assessment of the essential white matter fibers of arcuate fasciculus and corticospinal tract (CST), required for preoperative planning in brain tumor patients, relies on the reliability of diffusion tensor imaging (DTI). The recent development of multiband DTI (mb-DTI) based on simultaneous multislice excitation could maintain the overall quality of tractography while not exceeding standard clinical care time. To address this potential, we performed quantitative analyses to evaluate tractography results of arcuate fasciculus and CST acquired by mb-DTI in brain tumor patients. METHODS We retrospectively analyzed 44 patients with brain lesions who underwent presurgical single-shot DTI (s-DTI) and mb-DTI. We measured DTI parameters: fractional anisotropy (FA) and mean diffusivity (MD [mm2 s-1 ]) in whole brain and tumor regions; and the tractography parameters: fiber FA, MD (mm2 s-1 ), volume (mm3 ), and length (mm) in the whole brain, arcuate fasciculus, and CST. Additionally, three neuroradiologists performed a blinded visual assessment comparing s-DTI with mb-DTI. RESULTS The mb-DTI showed higher mean FA and lower MD (r > .95, p < .002) in whole brain and tumor regions of interest; slightly higher fiber FA, volume, and length; and slightly lower fiber MD in whole brain, arcuate fasciculus, and CST than in s-DTI. These differences were significant for fiber FA in all tracts; length (mm) in arcuate fasciculus; and fiber MD (mm2 s-1 ) and volume (mm3 ) in all patients with tumor involved in the arcuate fasciculus, CST, and whole brain tracts (p = .001). Visual assessment demonstrated that both techniques produced visually similar tracts. CONCLUSIONS This study demonstrated the clinical potential and significant advantages of preoperative mb-DTI in brain tumor patients.
Collapse
Affiliation(s)
- Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Madeleine Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicholas Cho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Weill Medical College of Cornell University, New York, New York, USA.,Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, New York, USA
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Stopa BM, Senders JT, Broekman MLD, Vangel M, Golby AJ. Preoperative functional MRI use in neurooncology patients: a clinician survey. Neurosurg Focus 2021; 48:E11. [PMID: 32006949 DOI: 10.3171/2019.11.focus19779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Functional MRI (fMRI) is increasingly being investigated for use in neurosurgical patient care. In the current study, the authors characterize the clinical use of fMRI by surveying neurosurgeons' use of and attitudes toward fMRI as a surgical planning tool in neurooncology patients. METHODS A survey was developed to inquire about clinicians' use of and experiences with preoperative fMRI in the neurooncology patient population, including example case images. The survey was distributed to all neurosurgical departments with a residency program in the US. RESULTS After excluding incomplete surveys and responders that do not use fMRI (n = 11), 50 complete responses were included in the final analysis. Responders were predominantly from academic programs (88%), with 20 years or more in practice (40%), with a main area of practice in neurooncology (48%) and treating an adult population (90%). All 50 responders currently use fMRI in neurooncology patients, mostly for low- (94%) and high-grade glioma (82%). The leading decision factors for ordering fMRI were location of mass in dominant hemisphere, location in a functional area, motor symptoms, and aphasia. Across 10 cases, language fMRI yielded the highest interrater reliability agreement (Fleiss' kappa 0.437). The most common reasons for ordering fMRI were to identify language laterality, plan extent of resection, and discuss neurological risks with patients. Clinicians reported that fMRI results were not obtained when ordered a median 10% of the time and were suboptimal a median 27% of the time. Of responders, 70% reported that they had ever resected an fMRI-positive functional site, of whom 77% did so because the site was "cleared" by cortical stimulation. Responders reported disagreement between fMRI and awake surgery 30% of the time. Overall, 98% of responders reported that if results of fMRI and intraoperative mapping disagreed, they would rely on intraoperative mapping. CONCLUSIONS Although fMRI is increasingly being adopted as a practical preoperative planning tool for brain tumor resection, there remains a substantial degree of discrepancy with regard to its current use and presumed utility. There is a need for further research to evaluate the use of preoperative fMRI in neurooncology patients. As fMRI continues to gain prominence, it will be important for clinicians to collectively share best practices and develop guidelines for the use of fMRI in the preoperative planning phase of brain tumor patients.
Collapse
Affiliation(s)
- Brittany M Stopa
- 1Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joeky T Senders
- 1Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,2Department of Neurosurgery, University Medical Center, Utrecht, The Netherlands
| | - Marike L D Broekman
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; and
| | | | - Alexandra J Golby
- Departments of4Radiology and.,5Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Joshi H, Hoch MJ, Braileanu M, Gore A, Willie JT, Hu R. Reduced gray-white matter contrast localizes the motor cortex on double inversion recovery (DIR) 3T MRI. Neuroradiology 2021; 63:1071-1078. [PMID: 33415349 DOI: 10.1007/s00234-020-02631-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Reduced gray-white matter contrast along the central sulcus has been described on T1- and T2-weighted magnetic resonance imaging (MRI). The purpose of this study was to assess the gray-white matter contrast of the motor cortex on double inversion recovery (DIR), a sequence with superior gray-white matter differentiation. METHODS The gray-white matter signal on DIR was retrospectively compared to T1-weighted magnetization-prepared rapid gradient echo (T1-MPRAGE) using normal (n = 25) and abnormal (n = 25) functional MRI (fMRI) exams. Quantitative gray-white matter contrast ratios (CR) of the precentral and adjacent gyri were obtained on normal exams. Two neuroradiologists qualitatively rated reduced gray-white matter contrast of the hemispheres of both normal and abnormal exams. Hand motor functional mapping was used as a reference. RESULTS In normal hemispheres (n = 50), the mean CR was significantly lower on DIR (0.44) vs T1-MPRAGE (0.63, p < 0.001). Reduced gray-white matter contrast was categorized as "definitely present" more frequently on DIR than T1-MPRAGE by reviewers in both normal (n = 50; reviewer 1 DIR 88% and MPRAGE 68%, p = 0.02; reviewer 2 DIR 86% and T1-MPRAGE 64%; p=0.01) and abnormal hemispheres (n = 50; reviewer 1 DIR 80% and T1-MPRAGE 38%, p < 0.001; reviewer 2 DIR 74% and T1-MPRAGE 46%, p = 0.005). CONCLUSION Reduced gray-white matter contrast of the motor cortex is more pronounced on DIR compared to T1-MPRAGE on quantitative and qualitative assessments of normal MRI exams. In abnormal cases, reviewers more definitively identified the motor cortex on DIR. In cases with distorted brain anatomy, DIR may be a useful adjunct sequence to localize the motor cortex.
Collapse
Affiliation(s)
- Hena Joshi
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Michael J Hoch
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Braileanu
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Ashwani Gore
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Cevolani D, Di Donato F, Santarella L, Bertossi S, Cellerini M. Functional MRI (fMRI) Evaluation of Hyperbaric Oxygen Therapy (HBOT) Efficacy in Chronic Cerebral Stroke: A Small Retrospective Consecutive Case Series. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010190. [PMID: 33383925 PMCID: PMC7794810 DOI: 10.3390/ijerph18010190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 05/07/2023]
Abstract
Topics: Functional Magnetic Resonance Imaging (fMRI) evaluation of HyberBaric Oxygen Therapy (HBOT) effects on chronic cerebral stroke Patients (Pts). Introduction: Our aim was to evaluate with fMRI, in a 3 Tesla system, the functional effects of HBOT on the Central Nervous System (CNS) in four Pts with established ischaemic and haemorrhagic cerebral strokes (2 Pts each). To our knowledge, no author used this Magnetic Resonance (MR) technique for this purpose, till now. Methods: All four Pts underwent a fMRI study before and after 40 HBOT sessions, with a time window of a few days. They carried out two language (text listening, silent word-verb generation) and two motor (hand and foot movements) tasks (30 s On-Off block paradigms). Results: After HBOT, all Pts reported a clinical improvement, mostly concerning language fluency and motor paresis. fMRI analysis demonstrated an increase in both the extent and the statistical significance of most of the examined eloquent areas. Conclusions: These changes were consistent with the clinical improvement in all Pts, suggesting a possible role of fMRI in revealing neuronal functional correlates of neuronal plasticity and HBOT-related neoangiogenesis. Although only four Pts were examined, fMRI proved to be a sensitive, non-invasive and reliable modality for monitoring neuronal functional changes before and after HBOT.
Collapse
Affiliation(s)
- Daniela Cevolani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, c/o Neuroradiology Unit, “Bellaria” Hospital, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-339-46-222-47
| | - Ferruccio Di Donato
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Luigi Santarella
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Simone Bertossi
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Martino Cellerini
- Neuroradiology Unit, “Bellaria” Hospital, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy;
| |
Collapse
|
13
|
Yazbek S, Smayra T, Mallak I, Hage S, Sleilaty G, Atat C, Abdel Hay J, Moussa R. Functional MRI study of language organization in left-handed and right-handed trilingual subjects. Sci Rep 2020; 10:13165. [PMID: 32759954 PMCID: PMC7406510 DOI: 10.1038/s41598-020-70167-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Functional MRI (fMRI) is gaining importance in the preoperative assessment of language. Selecting the appropriate language to test by fMRI in trilingual patients is intricate. Our objective is to compare fMRI maps for all three languages in left- and right-handed trilingual subjects. 15 right- and 15 left-handed trilingual volunteers were included in the study. We performed fMRI for each volunteer with a visual responsive naming paradigm that was repeated three times, once in each language. The activated areas and the laterality indices were calculated and correlation with the age of acquisition and proficiency of each language was determined. Strong statistical correlation was found between the Laterality Index (LI) of the three languages, in both the right and left-handed groups. Discordant lateralization of language was only observed in four left-handed subjects who demonstrated bilateral and left-lateralization. In right-handed subjects, the activation maps for the first and the second acquired language were similar. The largest activation was seen with the last acquired language. Irrespective of language proficiency and age of acquisition, the language lateralization might change for left-handed subjects. In right-handed subjects, there is no change and the last acquired language results in the largest activation. fMRI performed for a single language can accurately determine language lateralization in right-handed subjects, whereas in left-handed subjects, it is mandatory to test all languages.
Collapse
Affiliation(s)
- Sandrine Yazbek
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon.
| | - Tarek Smayra
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Iyad Mallak
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Stephanie Hage
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Ghassan Sleilaty
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Chirine Atat
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Joe Abdel Hay
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Ronald Moussa
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| |
Collapse
|
14
|
Chirchiglia D, Chirchiglia P, Latorre D. An update of the imaging and diagnostic techniques in use for the preservation of eloquent areas in brain tumor surgery – An opinion paper. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Brumer I, De Vita E, Ashmore J, Jarosz J, Borri M. Implementation of clinically relevant and robust fMRI-based language lateralization: Choosing the laterality index calculation method. PLoS One 2020; 15:e0230129. [PMID: 32163517 PMCID: PMC7067428 DOI: 10.1371/journal.pone.0230129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
The assessment of language lateralization has become widely used when planning neurosurgery close to language areas, due to individual specificities and potential influence of brain pathology. Functional magnetic resonance imaging (fMRI) allows non-invasive and quantitative assessment of language lateralization for presurgical planning using a laterality index (LI). However, the conventional method is limited by the dependence of the LI on the chosen activation threshold. To overcome this limitation, different threshold-independent LI calculations have been reported. The purpose of this study was to propose a simplified approach to threshold-independent LI calculation and compare it with three previously reported methods on the same cohort of subjects. Fifteen healthy subjects, who performed picture naming, verb generation, and word fluency tasks, were scanned. LI values were calculated for all subjects using four methods, and considering either the whole hemisphere or an atlas-defined language area. For each method, the subjects were ranked according to the calculated LI values, and the obtained rankings were compared. All LI calculation methods agreed in differentiating strong from weak lateralization on both hemispheric and regional scales (Spearman's correlation coefficients 0.59-1.00). In general, a more lateralized activation was found in the language area than in the whole hemisphere. The new method is well suited for application in the clinical practice as it is simple to implement, fast, and robust. The good agreement between LI calculation methods suggests that the choice of method is not key. Nevertheless, it should be consistent to allow a relative comparison of language lateralization between subjects.
Collapse
Affiliation(s)
- Irène Brumer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan Ashmore
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
- Department of Medical Physics and Bioengineering, NHS Highland, Inverness, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| | - Marco Borri
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| |
Collapse
|
16
|
Branco P, Seixas D, Castro SL. Mapping language with resting-state functional magnetic resonance imaging: A study on the functional profile of the language network. Hum Brain Mapp 2020; 41:545-560. [PMID: 31609045 PMCID: PMC7268076 DOI: 10.1002/hbm.24821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/05/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) is a promising technique for language mapping that does not require task-execution. This can be an advantage when language mapping is limited by poor task performance, as is common in clinical settings. Previous studies have shown that language maps extracted with rsfMRI spatially match their task-based homologs, but no study has yet demonstrated the direct participation of the rsfMRI language network in language processes. This demonstration is critically important because spatial similarity can be influenced by the overlap of domain-general regions that are recruited during task-execution. Furthermore, it is unclear which processes are captured by the language network: does it map rather low-level or high-level (e.g., syntactic and lexico-semantic) language processes? We first identified the rsfMRI language network and then investigated task-based responses within its regions when processing stimuli of increasing linguistic content: symbols, pseudowords, words, pseudosentences and sentences. The language network responded only to language stimuli (not to symbols), and higher linguistic content elicited larger brain responses. The left fronto-parietal, the default mode, and the dorsal attention networks were examined and yet none showed language involvement. These findings demonstrate for the first time that the language network extracted through rsfMRI is able to map language in the brain, including regions subtending higher-level syntactic and semantic processes.
Collapse
Affiliation(s)
- Paulo Branco
- Centre for PsychologyUniversity of PortoPortoPortugal
- Department of BiomedicineUniversity of PortoPortoPortugal
| | - Daniela Seixas
- Department of BiomedicineUniversity of PortoPortoPortugal
| | - São L. Castro
- Centre for PsychologyUniversity of PortoPortoPortugal
| |
Collapse
|
17
|
Ding JR, Zhu F, Hua B, Xiong X, Wen Y, Ding Z, Thompson PM. Presurgical localization and spatial shift of resting state networks in patients with brain metastases. Brain Imaging Behav 2019; 13:408-420. [PMID: 29611075 DOI: 10.1007/s11682-018-9864-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.
Collapse
Affiliation(s)
- Ju-Rong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China. .,Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA.
| | - Fangmei Zhu
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Bo Hua
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Xingzhong Xiong
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Yuqiao Wen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Zhongxiang Ding
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China.
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
18
|
Abstract
Advanced neuroimaging techniques are increasingly being implemented in clinical practice as complementary tools to conventional imaging because they can provide crucial functional information about the pathophysiology of a variety of disorders. Therefore, it is important to understand the basic principles underlying them and their role in diagnosis and management. In this review, we will primarily focus on the basic principles and clinical applications of perfusion imaging, diffusion imaging, magnetic resonance spectroscopy, functional MRI, and dual-energy computerized tomography. Our goal is to provide the reader with a basic understanding of these imaging techniques and when they should be used in clinical practice.
Collapse
|
19
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
20
|
Mancini M, Vos SB, Vakharia VN, O'Keeffe AG, Trimmel K, Barkhof F, Dorfer C, Soman S, Winston GP, Wu C, Duncan JS, Sparks R, Ourselin S. Automated fiber tract reconstruction for surgery planning: Extensive validation in language-related white matter tracts. Neuroimage Clin 2019; 23:101883. [PMID: 31163386 PMCID: PMC6545442 DOI: 10.1016/j.nicl.2019.101883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
Diffusion MRI and tractography hold great potential for surgery planning, especially to preserve eloquent white matter during resections. However, fiber tract reconstruction requires an expert with detailed understanding of neuroanatomy. Several automated approaches have been proposed, using different strategies to reconstruct the white matter tracts in a supervised fashion. However, validation is often limited to comparison with manual delineation by overlap-based measures, which is limited in characterizing morphological and topological differences. In this work, we set up a fully automated pipeline based on anatomical criteria that does not require manual intervention, taking advantage of atlas-based criteria and advanced acquisition protocols available on clinical-grade MRI scanners. Then, we extensively validated it on epilepsy patients with specific focus on language-related bundles. The validation procedure encompasses different approaches, including simple overlap with manual segmentations from two experts, feasibility ratings from external multiple clinical raters and relation with task-based functional MRI. Overall, our results demonstrate good quantitative agreement between automated and manual segmentation, in most cases better performances of the proposed method in qualitative terms, and meaningful relationships with task-based fMRI. In addition, we observed significant differences between experts in terms of both manual segmentation and external ratings. These results offer important insights on how different levels of validation complement each other, supporting the idea that overlap-based measures, although quantitative, do not offer a full perspective on the similarities and differences between automated and manual methods.
Collapse
Affiliation(s)
- Matteo Mancini
- Centre for Medical Image Computing, University College London, London, United Kingdom.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Aidan G O'Keeffe
- Department of Statistical Science, University College London, London, UK
| | - Karin Trimmel
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Frederik Barkhof
- Centre for Medical Image Computing, University College London, London, United Kingdom; Brain Repair and Rehabilitation, University College London, London, UK; Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherlands
| | - Christian Dorfer
- Department of Neurosurgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Salil Soman
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA 00215, United States
| | - Gavin P Winston
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Liu Z, Bartsch AJ, Berrocal VJ, Johnson TD. A mixed-effects, spatially varying coefficients model with application to multi-resolution functional magnetic resonance imaging data. Stat Methods Med Res 2019; 28:1203-1215. [PMID: 29334860 DOI: 10.1177/0962280217752378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spatial resolution plays an important role in functional magnetic resonance imaging studies as the signal-to-noise ratio increases linearly with voxel volume. In scientific studies, where functional magnetic resonance imaging is widely used, the standard spatial resolution typically used is relatively low which ensures a relatively high signal-to-noise ratio. However, for pre-surgical functional magnetic resonance imaging analysis, where spatial accuracy is paramount, high-resolution functional magnetic resonance imaging may play an important role with its greater spatial resolution. High spatial resolution comes at the cost of a smaller signal-to-noise ratio. This begs the question as to whether we can leverage the higher signal-to-noise ratio of a standard functional magnetic resonance imaging study with the greater spatial accuracy of a high-resolution functional magnetic resonance imaging study in a pre-operative patient. To answer this question, we propose to regress the statistic image from a high resolution scan onto the statistic image obtained from a standard resolution scan using a mixed-effects model with spatially varying coefficients. We evaluate our model via simulation studies and we compare its performance with a recently proposed model that operates at a single spatial resolution. We apply and compare the two models on data from a patient awaiting tumor resection. Both simulation study results and the real data analysis demonstrate that our newly proposed model indeed leverages the larger signal-to-noise ratio of the standard spatial resolution scan while maintaining the advantages of the high spatial resolution scan.
Collapse
Affiliation(s)
- Zhuqing Liu
- 1 Eli Lilly and Company, Indianapolis, IN, USA
| | - Andreas J Bartsch
- 2 Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany.,3 Department of Neuroradiology, University of Wuerzburg, Wuerzburg, Germany.,4 FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Veronica J Berrocal
- 5 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Timothy D Johnson
- 5 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Romano A, D'Andrea G, Pesce A, Olivieri G, Rossi-Espagnet MC, Picotti V, Raco A, Bozzao A. Trigonal and Peritrigonal Lesions of the Lateral Ventricle: Presurgical Tractographic Planning and Clinic Outcome Evaluation. World Neurosurg 2019; 124:e296-e302. [PMID: 30599250 DOI: 10.1016/j.wneu.2018.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Surgery of lesions within the atrium of the lateral ventricle remains a challenging procedure because of the deep location and the relationship to vascular structures. The aim of this study was to determine the usefulness of tractography to evaluate the position of white matter tracts located along the course of the surgical access to trigonal and peritrigonal lesions. METHODS Diffusion tensor imaging (DTI) was acquired in 19 patients. All patients underwent surgical resection of brain tumors. Pre- and postoperative clinical conditions were evaluated by a neurosurgeon, using the Karnofsky Performance Status Scale. The corticospinal tract, optic radiation, and arcuate fasciculum were reconstructed because of their location close to the trigonal region. Two neurosurgeons were asked to assess the surgical approach with and without tractography. RESULTS According to the tractographic reconstructions, the surgical access was chosen from the middle temporal gyrus in 12 patients (63%) and the posterior parietal gyrus in 7 patients (37%), leading to an a priori change in the surgical approach in 14 patients (73%). Six patients (31%) showed new postsurgical transient symptoms, whereas in 2 patients (10%) the deficits were permanent. After 30 days, the Karnofsky Performance Status Scale evaluation showed an improvement or a substantial stability of symptoms in 90% of cases. In 2 patients, a worsening of 30% of clinical performance was appreciable. CONCLUSIONS The use of DTI in preoperative planning of trigonal and peritrigonal lesions may help in description of the best surgical approach for patient; this technique allows to reach the tumors, saving the white matter tracts, when it is possible.
Collapse
Affiliation(s)
- Andrea Romano
- Department of Odontostomatological and Maxillo-Facial Sciences, Umberto I Hospital, University Sapienza, Rome, Italy; NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy.
| | - Giancarlo D'Andrea
- Department of Neurosurgery, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Alessandro Pesce
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Giorgia Olivieri
- Department of Clinical Pathology, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy; Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Veronica Picotti
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Antonino Raco
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy
| |
Collapse
|
23
|
Seynaeve L, Haeck T, Gramer M, Maes F, De Vleeschouwer S, Van Paesschen W. Optimized preoperative motor cortex mapping in brain tumors using advanced processing of transcranial magnetic stimulation data. NEUROIMAGE-CLINICAL 2019; 21:101657. [PMID: 30660662 PMCID: PMC6413351 DOI: 10.1016/j.nicl.2019.101657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022]
Abstract
Background and objective Transcranial magnetic stimulation (TMS) is a useful technique to help localize motor function prior to neurosurgical procedures. Adequate modelling of the effect of TMS on the brain is a prerequisite to obtain reliable data. Methods Twelve patients were included with perirolandic tumors to undergo TMS-based motor mapping. Several models were developed to analyze the mapping data, from a projection to the nearest brain surface to motor evoked potential (MEP) amplitude informed weighted average of the induced electric fields over a multilayer detailed individual head model. The probability maps were compared with direct cortical stimulation (DCS) data in all patients for the hand and in three for the foot. The gold standard was defined as the results of the DCS sampling (with on average 8 DCS-points per surgery) extrapolated over the exposed cortex (of the tailored craniotomy), and the outcome parameters were based on the similarity of the probability maps with this gold standard. Results All models accurately gauge the location of the motor cortex, with point-cloud based mapping algorithms having an accuracy of 83–86%, with similarly high specificity. To delineate the whole area of the motor cortex representation, the model based on the weighted average of the induced electric fields calculated with a realistic head model performs best. The optimal single threshold to visualize the field based maps is 40% of the maximal value for the anisotropic model and 50% for the isotropic model, but dynamic thresholding adds information for clinical practice. Conclusions The method with which TMS mapping data are analyzed clearly affects the predicted area of the primary motor cortex representation. Realistic electric field based modelling is feasible in clinical practice and improves delineation of the motor cortex representation compared to more simple point-cloud based methods.
Probability maps of the motor cortex representation were created from a TMS mapping. The MEP-weighted averaged tissue specific induced fields based map performed best. This map can gauge both motor cortex outline and hotspot, by varying the threshold.
Collapse
Affiliation(s)
- Laura Seynaeve
- Laboratory for Epilepsy Research, KU Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium.
| | - Tom Haeck
- Department ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, Box 2441, 3001 Leuven, Belgium; Medical Imaging Research Center, UZ Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium
| | - Markus Gramer
- Department ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, Box 2441, 3001 Leuven, Belgium; Medical Imaging Research Center, UZ Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium
| | - Frederik Maes
- Department ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, Box 2441, 3001 Leuven, Belgium; Medical Imaging Research Center, UZ Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium.
| | - Steven De Vleeschouwer
- Department of Neurosurgery, UZ Leuven, Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium.
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Herestraat 49, Box 7003, 3000 Leuven, Belgium; Department of Neurology, UZ Leuven, Belgium.
| |
Collapse
|
24
|
|
25
|
Alizadeh AM, Van Dromme IC, Janssen P. Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO. J Neurophysiol 2018; 120:2806-2818. [PMID: 30230993 DOI: 10.1152/jn.00198.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both dorsal and ventral visual pathways harbor several areas sensitive to gradients of binocular disparity (i.e., higher-order disparity). Although a wealth of information exists about disparity processing in early visual (V1, V2, and V3) and end-stage areas, TE in the ventral stream, and the anterior intraparietal area (AIP) in the dorsal stream, little is known about midlevel area TEO in the ventral pathway. We recorded single-unit responses to disparity-defined curved stimuli in a functional magnetic resonance imaging (fMRI) activation elicited by curved surfaces compared with flat surfaces in the macaque area TEO. This fMRI activation contained a small proportion of disparity-selective neurons, with very few of them second-order disparity selective. Overall, this population of TEO neurons did not preserve its three-dimensional structure selectivity across positions in depth, indicating a lack of higher-order disparity selectivity, but showed stronger responses to flat surfaces than to curved surfaces, as predicted by the fMRI experiment. The receptive fields of the responsive TEO cells were relatively small and generally foveal. A linear support vector machine classifier showed that this population of disparity-selective TEO neurons contains reliable information about the sign of curvature and the position in depth of the stimulus. NEW & NOTEWORTHY We recorded in a part of the macaque area TEO that is activated more by curved surfaces than by flat surfaces at different disparities using the same stimuli. In contrast to previous studies, this functional magnetic resonance imaging-defined patch did not contain a large number of higher-order disparity-selective neurons. However, a linear support vector machine could reliably classify both the sign of the disparity gradient and the position in depth of the stimuli.
Collapse
Affiliation(s)
- Amir-Mohammad Alizadeh
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Ilse C Van Dromme
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Peter Janssen
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| |
Collapse
|
26
|
Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg Rev 2018; 42:639-647. [DOI: 10.1007/s10143-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
27
|
Rosazza C, Zacà D, Bruzzone MG. Pre-surgical Brain Mapping: To Rest or Not to Rest? Front Neurol 2018; 9:520. [PMID: 30018589 PMCID: PMC6038713 DOI: 10.3389/fneur.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cristina Rosazza
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta,”, Milan, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Maria G. Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta,”, Milan, Italy
| |
Collapse
|
28
|
Gould L, Ekstrand C, Fourney DR, Mickleborough MJ, Ellchuk T, Borowsky R. The Effect of Tumor Neovasculature on Functional Magnetic Resonance Imaging Blood Oxygen Level–Dependent Activation. World Neurosurg 2018; 115:373-383. [DOI: 10.1016/j.wneu.2018.04.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
|
29
|
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain. eNeuro 2018; 5:eN-NWR-0083-18. [PMID: 29911173 PMCID: PMC6001263 DOI: 10.1523/eneuro.0083-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022] Open
Abstract
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong–Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
Collapse
|
30
|
Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping. Neuroimage 2018; 168:499-508. [DOI: 10.1016/j.neuroimage.2016.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 11/12/2016] [Indexed: 11/19/2022] Open
|
31
|
Alemi R, Batouli SAH, Behzad E, Ebrahimpoor M, Oghabian MA. Not single brain areas but a network is involved in language: Applications in presurgical planning. Clin Neurol Neurosurg 2018; 165:116-128. [PMID: 29334640 DOI: 10.1016/j.clineuro.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. PATIENTS AND METHODS In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. RESULTS The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. CONCLUSION This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Otorhinolaryngology, Faculty of Medicine, McGill University, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Ebrahimpoor
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Silva MA, See AP, Essayed WI, Golby AJ, Tie Y. Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 2017; 17:794-803. [PMID: 29270359 PMCID: PMC5735325 DOI: 10.1016/j.nicl.2017.12.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality. In this review, we discuss clinical fMRI's applications, limitations and potential solutions. These limitations depend on the following parameters: foundations of fMRI, physiologic effects of the disease, distinctions between clinical and research fMRI, and the design of the fMRI study. We also compare fMRI to other brain mapping modalities which should be considered as alternatives or adjuncts when appropriate, and discuss intraoperative use and validation of fMRI. These concepts direct the clinical application of fMRI in neurosurgical patients.
Collapse
Affiliation(s)
- Michael A Silva
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Alfred P See
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Walid I Essayed
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra J Golby
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yanmei Tie
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
33
|
Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, Ortega M, Hoyt-Drazen C, Gratton C, Sun H, Hampton JM, Coalson RS, Nguyen AL, McDermott KB, Shimony JS, Snyder AZ, Schlaggar BL, Petersen SE, Nelson SM, Dosenbach NUF. Precision Functional Mapping of Individual Human Brains. Neuron 2017; 95:791-807.e7. [PMID: 28757305 PMCID: PMC5576360 DOI: 10.1016/j.neuron.2017.07.011] [Citation(s) in RCA: 837] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
Human functional MRI (fMRI) research primarily focuses on analyzing data averaged across groups, which limits the detail, specificity, and clinical utility of fMRI resting-state functional connectivity (RSFC) and task-activation maps. To push our understanding of functional brain organization to the level of individual humans, we assembled a novel MRI dataset containing 5 hr of RSFC data, 6 hr of task fMRI, multiple structural MRIs, and neuropsychological tests from each of ten adults. Using these data, we generated ten high-fidelity, individual-specific functional connectomes. This individual-connectome approach revealed several new types of spatial and organizational variability in brain networks, including unique network features and topologies that corresponded with structural and task-derived brain features. We are releasing this highly sampled, individual-focused dataset as a resource for neuroscientists, and we propose precision individual connectomics as a model for future work examining the organization of healthy and diseased individual human brains.
Collapse
Affiliation(s)
- Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, 75235, USA.
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Adrian W Gilmore
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Catherine Hoyt-Drazen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caterina Gratton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Haoxin Sun
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline M Hampton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen B McDermott
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76789, USA.
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Assignment Confidence in Localization of the Hand Motor Cortex: Comparison of Structural Imaging With Functional MRI. AJR Am J Roentgenol 2016; 207:1263-1270. [DOI: 10.2214/ajr.15.15119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Abstract
The introduction of hybrid PET/MRI systems allows simultaneous multimodality image acquisition of high technical quality. This technique is well suited for the brain, and particularly in dementia and neuro-oncology. In routine use combinations of well-established MRI sequences and PET tracers provide the most optimal and clinically valuable protocols. For dementia the [18F]-fluorodeoxyglucose (FDG) has merit with a simultaneous four sequence MRI protocol of 20 min supported by supplementary statistical reading tools and quantitative measurements of the hippocampal volume. Clinical PET/MRI using [18F]-fluoro-ethyl-tyrosine (FET) also abide to the expectations of the adaptive and versatile diagnostic tool necessary in neuro-oncology covering both simple 20 min protocols for routine treatment surveillance and complicated 90 min brain and spinal cord protocols in pediatric neuro-oncology under general anesthesia. The clinical value of adding advanced MRI sequences in multiparametric imaging setting, however, is still undocumented.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 9, Blegdamsvej, Copenhagen 2100-DK, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 9, Blegdamsvej, Copenhagen 2100-DK, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 9, Blegdamsvej, Copenhagen 2100-DK, Denmark.
| |
Collapse
|
36
|
Dymerska B, Poser BA, Barth M, Trattnig S, Robinson SD. A method for the dynamic correction of B 0-related distortions in single-echo EPI at 7T. Neuroimage 2016; 168:321-331. [PMID: 27397624 PMCID: PMC5832018 DOI: 10.1016/j.neuroimage.2016.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/21/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
We propose a method to calculate field maps from the phase of each EPI in an fMRI time series. These field maps can be used to correct the corresponding magnitude images for distortion caused by inhomogeneity in the static magnetic field. In contrast to conventional static distortion correction, in which one ‘snapshot’ field map is applied to all subsequent fMRI time points, our method also captures dynamic changes to B0 which arise due to motion and respiration. The approach is based on the assumption that the non-B0-related contribution to the phase measured by each radio-frequency coil, which is dominated by the coil sensitivity, is stable over time and can therefore be removed to yield a field map from EPI. Our solution addresses imaging with multi-channel coils at ultra-high field (7 T), where phase offsets vary rapidly in space, phase processing is non-trivial and distortions are comparatively large. We propose using dual-echo gradient echo reference scan for the phase offset calculation, which yields estimates with high signal-to-noise ratio. An extrapolation method is proposed which yields reliable estimates for phase offsets even where motion is large and a tailored phase unwrapping procedure for EPI is suggested which gives robust results in regions with disconnected tissue or strong signal decay. Phase offsets are shown to be stable during long measurements (40 min) and for large head motions. The dynamic distortion correction proposed here is found to work accurately in the presence of large motion (up to 8.1°), whereas a conventional method based on single field map fails to correct or even introduces distortions (up to 11.2 mm). Finally, we show that dynamic unwarping increases the temporal stability of EPI in the presence of motion. Our approach can be applied to any EPI measurements without the need for sequence modification.
Collapse
Affiliation(s)
- Barbara Dymerska
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Simon D Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Liu Z, Berrocal VJ, Bartsch AJ, Johnson TD. Pre-Surgical fMRI Data Analysis Using a Spatially Adaptive Conditionally Autoregressive Model. BAYESIAN ANALYSIS 2016; 11:599-625. [PMID: 27042244 PMCID: PMC4814103 DOI: 10.1214/15-ba972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spatial smoothing is an essential step in the analysis of functional magnetic resonance imaging (fMRI) data. One standard smoothing method is to convolve the image data with a three-dimensional Gaussian kernel that applies a fixed amount of smoothing to the entire image. In pre-surgical brain image analysis where spatial accuracy is paramount, this method, however, is not reasonable as it can blur the boundaries between activated and deactivated regions of the brain. Moreover, while in a standard fMRI analysis strict false positive control is desired, for pre-surgical planning false negatives are of greater concern. To this end, we propose a novel spatially adaptive conditionally autoregressive model with variances in the full conditional of the means that are proportional to error variances, allowing the degree of smoothing to vary across the brain. Additionally, we present a new loss function that allows for the asymmetric treatment of false positives and false negatives. We compare our proposed model with two existing spatially adaptive conditionally autoregressive models. Simulation studies show that our model outperforms these other models; as a real model application, we apply the proposed model to the pre-surgical fMRI data of two patients to assess peri- and intra-tumoral brain activity.
Collapse
Affiliation(s)
- Zhuqing Liu
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109;
| | - Veronica J Berrocal
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109;
| | - Andreas J Bartsch
- i)Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; ; ii)Department of Neuroradiology, University of Wuerzburg, Joseph-Schneider-Str. 11, 97080 Wuerzburg, Germany; iii)FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Timothy D Johnson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
38
|
Morrison MA, Churchill NW, Cusimano MD, Schweizer TA, Das S, Graham SJ. Reliability of Task-Based fMRI for Preoperative Planning: A Test-Retest Study in Brain Tumor Patients and Healthy Controls. PLoS One 2016; 11:e0149547. [PMID: 26894279 PMCID: PMC4760755 DOI: 10.1371/journal.pone.0149547] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes. Method Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms. Results There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task. Conclusion In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns.
Collapse
Affiliation(s)
- Melanie A. Morrison
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- * E-mail:
| | | | - Michael D. Cusimano
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Tom A. Schweizer
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Dong JW, Brennan NMP, Izzo G, Peck KK, Holodny AI. fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca's area. Neuroradiology 2016; 58:513-20. [PMID: 26847705 DOI: 10.1007/s00234-016-1655-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area-Broca's area (BA)-is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. METHODS Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. RESULTS Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). CONCLUSION MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.
Collapse
Affiliation(s)
- Jian W Dong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- New York University School of Medicine, New York, NY, USA
| | - Nicole M Petrovich Brennan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Giana Izzo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Bioimaging and Radiological Sciences, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Medical Physics and the Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Department of Medical Physics and the Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Branco P, Seixas D, Deprez S, Kovacs S, Peeters R, Castro SL, Sunaert S. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning. Front Hum Neurosci 2016; 10:11. [PMID: 26869899 PMCID: PMC4740781 DOI: 10.3389/fnhum.2016.00011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/11/2016] [Indexed: 01/28/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way.
Collapse
Affiliation(s)
- Paulo Branco
- Center for Psychology and Faculty of Psychology and Educational Sciences, University of Porto Porto, Portugal
| | - Daniela Seixas
- Department of Experimental Biology, Faculty of Medicine of Porto UniversityPorto, Portugal; Department of Imaging, Centro Hospitalar de Vila Nova de Gaia/EspinhoVila Nova de Gaia, Portugal
| | - Sabine Deprez
- Translational MRI, Department of Imaging and Pathology, Katholieke Universiteit Leuven - University of LeuvenLeuven, Belgium; Department of Radiology, University Hospitals LeuvenLeuven, Belgium; Medical Imaging Research Center, Katholieke Universiteit Leuven - University Hospitals LeuvenLeuven, Belgium
| | - Silvia Kovacs
- Translational MRI, Department of Imaging and Pathology, Katholieke Universiteit Leuven - University of LeuvenLeuven, Belgium; Department of Radiology, University Hospitals LeuvenLeuven, Belgium; Medical Imaging Research Center, Katholieke Universiteit Leuven - University Hospitals LeuvenLeuven, Belgium
| | - Ronald Peeters
- Translational MRI, Department of Imaging and Pathology, Katholieke Universiteit Leuven - University of LeuvenLeuven, Belgium; Department of Radiology, University Hospitals LeuvenLeuven, Belgium; Medical Imaging Research Center, Katholieke Universiteit Leuven - University Hospitals LeuvenLeuven, Belgium
| | - São L Castro
- Center for Psychology and Faculty of Psychology and Educational Sciences, University of Porto Porto, Portugal
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, Katholieke Universiteit Leuven - University of LeuvenLeuven, Belgium; Department of Radiology, University Hospitals LeuvenLeuven, Belgium; Medical Imaging Research Center, Katholieke Universiteit Leuven - University Hospitals LeuvenLeuven, Belgium
| |
Collapse
|
41
|
Ung N, Mathur M, Chung LK, Cremer N, Pelargos P, Frew A, Thill K, Mathur I, Voth B, Lim M, Yang I. A Systematic Analysis of the Reliability of Diffusion Tensor Imaging Tractography for Facial Nerve Imaging in Patients with Vestibular Schwannoma. J Neurol Surg B Skull Base 2016; 77:314-8. [PMID: 27441156 DOI: 10.1055/s-0035-1566303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022] Open
Abstract
Surgeons need to visualize the facial nerve reliably in relation to the vestibular schwannoma (VS) in surgical planning. Diffusion tensor imaging (DTI) tractography has enabled unprecedented in vivo preoperative visualization. We collected data to measure the accuracy of DTI for an accurate location of the nerve in preoperative VS resection planning. A PubMed search for relevant studies was conducted. Inclusion criteria were gross total resection of VS, preoperative DTI identification of the facial nerve, and intraoperative cranial nerve localization by the surgeon. Exclusion criteria were tumors other than VS and unsuccessful preoperative location of the cranial nerve. Accuracy rate was calculated by comparing the intraoperative and preoperative locations detailed by DTI. The query identified 38 cases of VS that fit our inclusion criteria. Overall, 89% had surgical findings that agreed with the DTI location of the facial nerve. Of these cases, 32 patients had a postoperative House-Brackmann grade I or II. Our findings suggest that DTI is a reliable method for facial nerve imaging. Implementation of this technique may help decrease facial nerve injury during surgery. Limitations and further studies are needed to better understand what factors correlate with successful location of the facial nerve and DTI in patients with VS.
Collapse
Affiliation(s)
- Nolan Ung
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Monica Mathur
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Nicole Cremer
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Panayiotis Pelargos
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Andrew Frew
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Kimberly Thill
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Ishani Mathur
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Brittany Voth
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| |
Collapse
|
42
|
Ravn S, Holmberg M, Sørensen P, Frokjaer JB, Carl J. Presurgical functional magnetic resonance imaging in patients with brain tumors. Acta Radiol 2016; 57:82-9. [PMID: 25523064 DOI: 10.1177/0284185114562992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/11/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Clinical functional magnetic resonance imaging (fMRI) is still an upcoming diagnostic tool because it is time-consuming to perform the post-scan calculations and interpretations. A standardized and easily used method for the clinical assessment of fMRI scans could decrease the workload and make fMRI more attractive for clinical use. PURPOSE To evaluate a standardized clinical approach for distance measurement between benign brain tumors and eloquent cortex in terms of the ability to predict pre- and postoperative neurological deficits after intraoperative neuronavigation-assisted surgery. MATERIAL AND METHODS A retrospective study of 34 patients. The fMRI data were reanalyzed using a standardized distance measurement procedure combining data from both fMRI and three-dimensional T1 MRI scans. The pre- and postoperative neurological status of each patient was obtained from hospital records. Data analysis was performed using logistic regression analysis to determine whether the distance measured between the tumor margin and fMRI activity could serve as a predictor for neurological deficits. RESULTS An odds ratio of 0.89 mm(-1) (P = 0.03) was found between the risk of preoperative neurological motor deficits and the tumor-fMRI distance. An odds ratio of 0.82 mm(-1) (P = 0.04) was found between the risk of additional postoperative neurological motor deficits and the tumor-fMRI distance. The tumor was radically removed in 10 cases; five patients experienced additional postoperative motor deficits (tumor-fMRI distance <18 mm) and five did not (tumor-fMRI distance >18 mm) (P = 0.008). CONCLUSION This study indicates that the distance measured between the tumor margin and fMRI activation could serve as a valuable predictor of neurological motor deficits.
Collapse
Affiliation(s)
- Søren Ravn
- Department of Radiology, Aalborg University Hospital, Denmark
- Department of Clinical Medicine Aarhus University, Denmark
| | - Mats Holmberg
- Department of Oncology, Aalborg University Hospital, Denmark
| | - Preben Sørensen
- Department of Neurosurgery, Aalborg University Hospital, Denmark
| | - Jens B Frokjaer
- Department of Radiology, Aalborg University Hospital, Denmark
- Department of Clinical Medicine Aarhus University, Denmark
| | - Jesper Carl
- Department of Clinical Medicine Aarhus University, Denmark
- Department of Medical Physics, Aalborg University Hospital, Denmark
| |
Collapse
|
43
|
Abstract
Advanced MR imaging techniques have found extensive utility in the clinical practice of neuroradiology. A variety of these techniques are incorporated into imaging protocols for routine use, specific applications to particular disease entities, or as problem-solving tools on an ad hoc basis. This article summarizes and illustrates the spectrum of advanced MR imaging tools used clinically in the practice of neuroradiology.
Collapse
|
44
|
DeYoe EA, Raut RV. Visual mapping using blood oxygen level dependent functional magnetic resonance imaging. Neuroimaging Clin N Am 2014; 24:573-84. [PMID: 25441501 DOI: 10.1016/j.nic.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is used clinically to map the visual cortex before brain surgery or other invasive treatments to achieve an optimal balance between therapeutic effect and the avoidance of postoperative vision deficits. Clinically optimized stimuli, behavioral task, analysis, and displays permit identification of cortical subregions supporting high-acuity central vision that is critical for reading and other essential visual functions. Emerging techniques such as resting-state fMRI may facilitate the use of fMRI-based vision mapping in a broader range of patients.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Ryan V Raut
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
45
|
Domsch S, Zapp J, Schad LR, Nees F, Hill H, Hermann D, Mann K, Vollstädt-Klein S. Optimized protocol for high resolution functional magnetic resonance imaging at 3T using single-shot echo planar imaging. J Neurosci Methods 2014; 239:170-82. [PMID: 25445785 DOI: 10.1016/j.jneumeth.2014.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND To translate highly accelerated EPI-fMRI protocols as commonly used at ultra-high field strengths to clinical 3T settings. NEW METHOD EPI protocols with increasing matrix sizes and parallel imaging (PI) factors were tested in two separate fMRI studies, a simple motor-task and a complex motivation-task experiment with focus on the sensorimotor cortex (SMC) and the nucleus accumbens (NAcc), respectively. RESULTS By increasing the matrix size and the PI-factor simultaneously, BOLD-sensitivity in terms of maximal t-values and numbers of activated clusters was uncompromised in single individuals in both fMRI experiments. In the SMC, the multi-subject analysis revealed an increase of 66% of the maximal t-value whereby the number of activated clusters was increased by a factor of 3.3 when the matrix size (PI-factor) was increased from 96×96 (R=2) to 192×192 (R=4). In the NAcc, the number of activated clusters increased from 5 to 7 whereby the maximal t-value remained unaffected when the matrix size (PI-factor) was increased from 96×96 (R=2) to 160×160 (R=3). COMPARISON WITH EXISTING METHOD Using the proposed high-resolution EPI protocol, spatial blurring was clearly reduced. Further, BOLD sensitivity was clearly improved in multi-subject analyses and remained unaffected in single individuals compared to using the standard protocols. CONCLUSIONS Conventionally used matrix sizes (PI-factors) might be non-optimal for some applications sacrificing BOLD spatial specificity. We recommend using the proposed high-resolution protocols applicable in detecting robust BOLD activation in fMRI.
Collapse
Affiliation(s)
- Sebastian Domsch
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Jascha Zapp
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Lothar R Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Holger Hill
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
46
|
Abstract
We studied the effect of oxygen inhalation during resting state functional MRI scanning in healthy control individuals. We hypothesized that resting state networks would be modified under hyperoxic conditions. Thirty-four normal volunteers were recruited for this study. All participants were scanned twice: once while breathing atmospheric air and once under hyperoxic conditions in a randomized order. Hyperoxic conditions were produced by administering 100% O2. Blood oxygen level-dependent T2* scans were obtained for each of the scans. Resting state networks were extracted using independent component analysis. A paired t-test showed that the resting state networks scans (default mode network, attention network and executive network) acquired under hyperoxic conditions had significantly higher Z-scores than scans performed under atmospheric air. Spectral analysis of the time-course signal in these networks also showed a difference in the total power of low frequencies between the two conditions. These results were reversed in the visual network. Clinical or research applications of oxygen-enhanced MRI need to take into account the modularly effects that hyperoxia exerts on the networks resting state functional MRI.
Collapse
|
47
|
Parker JG, Zalusky EJ, Kirbas C. Evaluation of a clinical fMRI cueing system utilizing complex scene and auditory stimuli for neurosurgical treatment planning of patients with cognitive and physical deficits. Int J Neurosci 2014; 125:409-18. [DOI: 10.3109/00207454.2014.944615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Abstract
Evaluating language has been a long-standing application in functional magnetic resonance imaging (fMRI) studies, both in research and clinical circumstances, and still provides challenges. Localization of eloquent areas is important in neurosurgical cases, so that there is least possible damage to these areas during surgery, maintaining their function postoperatively, therefore providing good quality of life to the patient. Preoperative fMRI study is a non-invasive tool to localize the eloquent areas, including language, with other traditional methods generally used being invasive and at times perilous. In this article, we describe methods and various paradigms to study the language areas, in clinical neurosurgical cases, along with illustrations of cases from our institute.
Collapse
Affiliation(s)
- Santosh S Gupta
- Department of Magnetic Resonance Imaging, P.D. Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Mahim, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Barry RL, Gore JC. Enhanced phase regression with Savitzky-Golay filtering for high-resolution BOLD fMRI. Hum Brain Mapp 2014; 35:3832-40. [PMID: 24443117 DOI: 10.1002/hbm.22440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 10/24/2013] [Accepted: 11/25/2013] [Indexed: 12/28/2022] Open
Abstract
Phase regression exploits the temporal evolution of phase in individual voxels to suppress blood oxygenation level dependent (BOLD) signal fluctuations caused by larger vessels and draining veins while preserving signal changes from microvascular effects. However, this process does not perform well when phase time series have low signal-to-noise ratios because of high levels of physiological noise. We demonstrate that Savitzky-Golay filters may be used to recover the underlying change in phase and completely restore the efficacy of phase regression. We do not make a priori assumptions regarding phase evolution and perform a data-driven exploration of parameter space to select the Savitzky-Golay filter parameters that minimize temporal variance in each voxel after phase regression. This approach is shown to work well on data acquired with single-shot and multi-shot pulse sequences, and should therefore be useful for both human and animal gradient-echo fMRI at high spatial resolutions at high fields. The ability to improve the spatial specificity of BOLD activation may be especially advantageous for clinical applications of fMRI that rely upon the accuracy of individual subject's activation maps to assist with presurgical planning and clinical decision-making. Enhanced phase regression with Savitzky-Golay filtering may also find other uses in analyses of resting state functional connectivity.
Collapse
Affiliation(s)
- Robert L Barry
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
50
|
Kollndorfer K, Furtner J, Krajnik J, Prayer D, Schöpf V. Attention shifts the language network reflecting paradigm presentation. Front Hum Neurosci 2013; 7:809. [PMID: 24324429 PMCID: PMC3838991 DOI: 10.3389/fnhum.2013.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/07/2013] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Functional magnetic resonance imaging (fMRI) is a reliable and non-invasive method with which to localize language function in pre-surgical planning. In clinical practice, visual stimulus presentation is often difficult or impossible, due to the patient's restricted language or attention abilities. Therefore, our aim was to investigate modality-specific differences in visual and auditory stimulus presentation. METHODS Ten healthy subjects participated in an fMRI study comprising two experiments with visual and auditory stimulus presentation. In both experiments, two language paradigms (one for language comprehension and one for language production) used in clinical practice were investigated. In addition to standard data analysis by the means of the general linear model (GLM), independent component analysis (ICA) was performed to achieve more detailed information on language processing networks. RESULTS GLM analysis revealed modality-specific brain activation for both language paradigms for the contrast visual > auditory in the area of the intraparietal sulcus and the hippocampus, two areas related to attention and working memory. Using group ICA, a language network was detected for both paradigms independent of stimulus presentation modality. The investigation of language lateralization revealed no significant variations. Visually presented stimuli further activated an attention-shift network, which could not be identified for the auditory presented language. CONCLUSION The results of this study indicate that the visually presented language stimuli additionally activate an attention-shift network. These findings will provide important information for pre-surgical planning in order to preserve reading abilities after brain surgery, significantly improving surgical outcomes. Our findings suggest that the presentation modality for language paradigms should be adapted on behalf of individual indication.
Collapse
Affiliation(s)
- Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | | | | | | | | |
Collapse
|