1
|
Rao DA. Regulation of T peripheral helper and T follicular helper cells in lupus. Semin Arthritis Rheum 2025; 72S:152675. [PMID: 40024854 DOI: 10.1016/j.semarthrit.2025.152675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Deepak A Rao
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tonini L, Ahn C. Latest Advanced Techniques for Improving Intestinal Organoids Limitations. Stem Cell Rev Rep 2025:10.1007/s12015-025-10894-9. [PMID: 40388043 DOI: 10.1007/s12015-025-10894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Intestinal organoids are valuable tools across different disciplines, from a clinical aspect to the biomedical research, providing a unique perspective on the complexity of the gastrointestinal system. They are alternatives to common cell lines as they can offer insights into architectural functionality and reduce the use of animal models. A deeper understanding of their organoid characteristics is required to harness their full potential. Despite their beneficial uses and multiple advantages, organoids have limitations that remain unaddressed. This review aims to elucidate the principal limitations of intestinal organoids, investigate structural defects such as the deficiency in a vascularized and lymphatic system, and absence of the microbiome, restrictions in mimicking the physiological gut model, including the lack of an acid-neutralizing system or a shortage of digestive enzymes, and the difficulties in their long-term maintenance and polarity accessibility. Development of innovative techniques to address these limitations will lead to improve in vivo recapitulation and pioneering further advancements in this field.
Collapse
Affiliation(s)
- Lisa Tonini
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Garzorz-Stark N, Weidinger S, Sticherling M, Ghoreschi K, Enk A, Eyerich K. Inflammatory Skin Diseases: The Importance of Immunological Signatures. DEUTSCHES ARZTEBLATT INTERNATIONAL 2025:arztebl.m2025.0045. [PMID: 40331983 DOI: 10.3238/arztebl.m2025.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND The understanding and classification of inflammatory skin diseases is shifting from a historical-descriptive perspective to a molecular-pathophysiological one based on immune response patterns. These are derived from a few key immunological mediators, each of which induces its own characteristic clinical, histopathological, and molecular patterns in the skin. METHODS This discussion of the definition of the immune response patterns of inflammatory skin diseases is based on information from pertinent publications retrieved by a selective literature search. A systematic literature search was also conducted on the response of inflammatory skin diseases to treatment with specific biologic agents. RESULTS The described immune response patterns are: autoinflammation; type 1, cytotoxic; type 2a, eczematous; type 2b, blistering; type 3, psoriasiform; type 4a, fibrosing; and type 4b, granulomatous. Each signature can usually be treated in a targeted manner. In general, each therapeutic target structure is associated with an adequate treatment response if and only if the skin disease under treatment has the relevant signature type. Hardly any biomarkers are currently available for the determination of immune response patterns in routine clinical practice. CONCLUSION The classification of inflammatory skin diseases by their immune response patterns opens up the prospect of specifically targeted immunotherapy for each immune response pattern regardless of the historical-descriptive disease entity. Targeting is intended to improve response rates. Initial findings suggest that this strategy is likely to succeed.
Collapse
|
4
|
Saeidpour Masouleh S, Nasiri K, Ostovar Ravari A, Saligheh Rad M, Kiani K, Sharifi Sultani A, Nejati ST, Nabi Afjadi M. Advances and challenges in CAR-T cell therapy for head and neck squamous cell carcinoma. Biomark Res 2025; 13:69. [PMID: 40312353 PMCID: PMC12044960 DOI: 10.1186/s40364-025-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains among the most aggressive malignancies with limited treatment options, especially in recurrent and metastatic cases. Despite advances in surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors, survival rates remain suboptimal due to tumor heterogeneity, immune evasion, and treatment resistance. In recent years, Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized hematologic cancer treatment by genetically modifying T cells to target tumor-specific antigens like CD19, CD70, BCMA, EGFR, and HER2, leading to high remission rates. Its success is attributed to precise antigen recognition, sustained immune response, and long-term immunological memory, though challenges like cytokine release syndrome and antigen loss remain. Notably, its translation to solid tumors, including HNSCC, faces significant challenges, such as tumor microenvironment (TME)-induced immunosuppression, antigen heterogeneity, and limited CAR T-cell infiltration. To address these barriers, several tumor-associated antigens (TAAs), including EGFR, HER2 (ErbB2), B7-H3, CD44v6, CD70, CD98, and MUC1, have been identified as potential CAR T-cell targets in HNSCC. Moreover, innovative approaches, such as dual-targeted CAR T-cells, armored CARs, and CRISPR-engineered modifications, aim to enhance efficacy and overcome resistance. Notably, combination therapies integrating CAR T-cells with immune checkpoint inhibitors (e.g., PD-1/CTLA-4 blockade) and TGF-β-resistant CAR T designs are being explored to improve therapeutic outcomes. This review aimed to elucidate the current landscape of CAR T-cell therapy in HNSCC, by exploring its mechanisms, targeted antigens, challenges, emerging strategies, and future therapeutic potential.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ava Ostovar Ravari
- Faculty of Dentistry, Haybusak University of Medical Sciences, Yerevan, Armenia
| | - Mona Saligheh Rad
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Kiarash Kiani
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Peng J, Zhang L, Li J, Lv X, Liu R, Chen J, Wang G, Gao R. Enhanced Immunity and Infection Resistance in Mice Through Co-Expression of Porcine IL-3, IL-7, and IL-15 Fusion Molecules in Yarrowia lipolytica. BIOLOGY 2025; 14:366. [PMID: 40282231 PMCID: PMC12024524 DOI: 10.3390/biology14040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025]
Abstract
China's livestock industry grapples with challenges posed by infectious diseases and the misuse of antibiotics, resulting in a heightened risk of drug-resistant pathogens. This study explored the immunomodulatory effects of co-expressing porcine interleukin 3, 7, and 15 in Yarrowia lipolytica, denoted as Po1h-IL-3/7/15. A 42-day experiment involving mouse immunization and pathogen challenge was conducted, during which in vivo assessments of antibodies, immune-related cells, and gene expression were detected following oral administration of Po1h-IL-3/7/15. Immunological alterations in mice were analyzed using flow cytometry, qRT-PCR, ELISA, and HE staining. Notably, the serum IgG and intestinal sIgA levels in the Po1h-IL-3/7/15 group were substantially elevated compared to the control groups (p < 0.01), so were the contents of IL-7, IL-15, IFN-γ, IL-22, IL-23, and TNF-α. Furthermore, there was a marked increase in naïve T cells and central memory T cells, accompanied by a significant decrease in regulatory T cells in peripheral blood. Post-challenge with Staphylococcus aureus or Salmonella typhimurium, the expression levels of BD2, IL-1β, IL-8, Jak1, RegⅢ, S100A8, STAT1, and TNF-α genes in the intestines of the Po1h-IL-3/7/15 group were markedly higher than those in the control groups (p < 0.01). Following the challenges, the survival rate of the Po1h-IL-3/7/15 group was 100%, a significant increase compared to the 20% and 40% survival rates observed in the control groups (p < 0.05). These results confirm that IL-3/7/15 significantly boosts innate immunity, humoral and cell-mediated immune responses, and intestinal mucosal immunity in mice, enhancing resistance to bacterial infections and exhibiting potent protective effects.
Collapse
Affiliation(s)
- Junjie Peng
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (L.Z.)
- National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610065, China;
| | - Linhan Zhang
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (L.Z.)
| | - Jiangling Li
- Sichuan Animal Science Academy, Chengdu 610066, China; (X.L.); (R.L.)
| | - Xuebin Lv
- Sichuan Animal Science Academy, Chengdu 610066, China; (X.L.); (R.L.)
| | - Rui Liu
- Sichuan Animal Science Academy, Chengdu 610066, China; (X.L.); (R.L.)
| | - Jianlin Chen
- School of Laboratory Medicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China;
| | - Gang Wang
- National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610065, China;
| | - Rong Gao
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (L.Z.)
| |
Collapse
|
6
|
Wu X, Liu C, Zhang C, Kuai L, Hu S, Jia N, Song J, Jiang W, Chen Q, Li B. The Role of Lactate and Lactylation in the Dysregulation of Immune Responses in Psoriasis. Clin Rev Allergy Immunol 2025; 68:28. [PMID: 40080284 DOI: 10.1007/s12016-025-09037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Historically, lactate has been considered merely a metabolic byproduct. However, recent studies have revealed that lactate plays a much more dynamic role, acting as an immune signaling molecule that influences cellular communication, through the process of "lactate shuttling." Lactylation, a novel post-translational modification, is directly derived from lactate and represents an emerging mechanism through which lactate exerts its effects on cellular function. It has been shown to directly affect immune cells by modulating the activation of pro-inflammatory and anti-inflammatory pathways. This modification influences the expression of key immune-related genes, thereby impacting immune cell differentiation, cytokine production, and overall immune response. In this review, we focused on the role of lactate and lactylation in the dysregulation of immune responses in psoriasis and its relapse. Additionally, we discuss the potential applications of targeting lactate metabolism and lactylation modifications in the treatment of psoriasis, alongside the investigation of artificial intelligence applications in advancing lactate and lactylation-focused drug development, identifying therapeutic targets, and enabling personalized medical decision-making. The significance of this review lies in its comprehensive exploration of how lactate and lactylation contribute to immune dysregulation, offering a novel perspective for understanding the metabolic and epigenetic changes associated with psoriasis. By identifying the roles of these pathways in modulating immune responses, this review provides a foundation for the development of new therapeutic strategies that target these mechanisms.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Caiyun Zhang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
7
|
Tirelli E, Pucci M, Squillario M, Bignotti G, Messali S, Zini S, Bugatti M, Cadei M, Memo M, Caruso A, Fiorentini S, Villanacci V, Uberti D, Abate G. Effects of methylglyoxal on intestine and microbiome composition in aged mice. Food Chem Toxicol 2025; 197:115276. [PMID: 39863075 DOI: 10.1016/j.fct.2025.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored. Thus, this study investigates the impact of prolonged oral administration of MGOs on gut health in aged mice. METHODS Aged mice received MGO chronically (100 mg/kg/day) for 4 weeks Intestinal samples were analyzed using RT-PCR and immunohistochemistry for proinflammatory cytokines, permeability markers, and tight junction proteins. 16S rRNA gene-based microbiome analysis was also performed to characterize microbiome composition and its metabolic potential. RESULTS MGO treatment induced notable alterations at the intestinal level, characterized by an increased formation of MGO-glycated proteins with a concurrent induction of a pro-inflammatory status and reduced expression and delocalization of zonulin-1 and occludin, tight junction proteins. Changes in intestinal morphology were also observed, including hyperproliferation of Paneth cells and an augmented thickness of the intestinal mucus layer, as indicated by immunohistochemical data from MGO-treated mice. Investigation into the microbiota composition revealed that MGO is effective in selectively modifying its composition and metabolic pathways. A decreased abundance of bacterial genera associated with the production of acetic and butyric acids (i.e. Harryflintia, Intestinimonas and Ruminococcaceae genera) and a substantial increase in Lachnospiraceae and Akkermansia genera were found in MGO-treated mice. CONCLUSION These findings highlight how dietary MGO can affect intestinal balance, providing valuable insights into the potential links between glycotoxins, gut microbiota, and overall gut functionality.
Collapse
Affiliation(s)
- Emanuela Tirelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Gloria Bignotti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Stefania Zini
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Mattia Bugatti
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Moris Cadei
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
8
|
Marzano AV, Bartoletti M, Bettoli V, Bianchi L, Chiricozzi A, Clerici M, Dapavo P, Dini V, Foti C, Magnoni C, Megna M, Micali G, Molinelli E, Prignano F. Hidradenitis suppurativa, from basic science to surgery and a new era of tailored targeted therapy: An expert opinion paper. Arch Dermatol Res 2025; 317:511. [PMID: 40021535 PMCID: PMC11870890 DOI: 10.1007/s00403-025-04016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterised by an aberrant activation of innate immunity and increased production of pro-inflammatory mediators such as interleukin 17 (IL-17). IL-17 has been shown to play a key role in the pathogenesis of HS and evidence highlights the potential of IL-17-targeted therapies. The fully human IgG/κ monoclonal antibody secukinumab, which specifically targets IL-17A and inhibits interaction with its receptor, has recently been approved for the treatment of moderate-to-severe HS. Secukinumab offers patients an efficacious and well-tolerated treatment option in terms of sustained response by rapidly improving signs and symptoms, and preventing disease progression in the absence of loss of response. Being a challenging disease, HS is associated with a delay to diagnosis of 3-10 years and, consequently, late implementation of appropriate treatment, leading to disease progression. Misdiagnosis due to flawed understanding and lack of awareness among medical providers and patients is considered an important factor contributing to the delayed diagnosis. Thus, serious efforts must be made on a large scale to urgently reduce the delay in HS diagnosis and reduce the disease burden in patients, including raising awareness, implementation of education programmes at medical and specialisation schools, as well as continuous education of healthcare providers at different levels for the early detection of HS and initiation of appropriate treatment. Here, we present the main critical unmet needs in the diagnosis and treatment of patients affected by HS, address how disease awareness and comprehensive multidisciplinary management (offering both medical and surgical care) can benefit patients, and suggest therapeutic options, based on clinical characterisation and early identification and intervention (window of opportunity), to be adopted for a timely and better management of disease progression and to fill current gaps.
Collapse
Affiliation(s)
- Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Vincenzo Bettoli
- O.U. Of Dermatology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca Bianchi
- Dermatology, Fondazione Policlinico Tor Vergata, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Andrea Chiricozzi
- Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- U.O.C. Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mario Clerici
- Università Degli Studi Di Milano, Milan, Italy
- Don C Gnocchi Foundation IRCCS, Milan, Italy
| | - Paolo Dapavo
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | - Cristina Magnoni
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Elisa Molinelli
- Department of Clinical and Molecular Science, Dermatologic Clinic, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Francesca Prignano
- Department of Health Sciences, Dermatology Section, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
9
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
10
|
Memariani M, Memariani H. New horizons in the treatment of psoriasis: Modulation of gut microbiome. Heliyon 2025; 11:e41672. [PMID: 39866422 PMCID: PMC11760288 DOI: 10.1016/j.heliyon.2025.e41672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases. Psoriasis is a complex disease with multiple factors contributing to its development, such as diet, lifestyle, genetic predisposition, and the microbiome. This paper has a dual purpose. First, we outline the current knowledge on the unique gut microbiota patterns implicated in the pathogenesis of psoriasis. Second, and of equal importance, we briefly discuss the reciprocal impact of psoriasis treatment and gut microbiome. In addition, this review explores potential therapeutic targets based on microbial interventions, which hold promise for providing new treatment options for psoriasis.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Huang N, Ye L, Li H, Peng J, Wei H. Developmental patterns of intestinal group 3 innate lymphoid cells in piglets and their response to enterotoxigenic Escherichia coli infection. Vet Res 2024; 55:159. [PMID: 39695888 DOI: 10.1186/s13567-024-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/22/2024] [Indexed: 12/20/2024] Open
Abstract
Diarrhoea and preweaning mortality in piglets are crucial factors impacting the economic sustainability of the swine industry. Pathogenic infections are among the main causes of diarrhea and mortality. Group 3 innate lymphoid cells (ILC3s) are crucial for safeguarding against pathogenic infections. However, knowledge regarding the development and function of ILC3s in suckling piglets is currently limited. Our findings demonstrate that the development of ILC3s in suckling piglets gradually progresses from day 1 to day 21, with a notable increase observed on day 28. Additionally, the development of NKp46+ILC3s and the production of interleukin (IL)-17A by ILC3s displayed consistent patterns with the changes observed in ILC3s. Notably, interferon (IFN)-γ levels significantly increased on day 14. Moreover, the production of IFN-γ by NKp46+ILC3s was greater than that by NKp46-ILC3s. Importantly, when piglets were subjected to a 4-h challenge with enterotoxigenic Escherichia coli, both the percentages of ILC3s significantly increased, accompanied by increased IL-22 production, highlighting their importance in maintaining intestinal health. The outcomes of this study provide valuable insights for future related research.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center of Cellular and Genetic Sciences, Henan Academy of Sciences, Zhengzhou, 450000, China
| | - Ling Ye
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
12
|
Wang XZ, Huang JL, Zhang J, Li QH, Zhang PP, Wu C, Jia YY, Su H, Sun X. Fecal microbiota transplantation as a new way for OVA-induced atopic dermatitis of juvenile mice. Int Immunopharmacol 2024; 142:113183. [PMID: 39298815 DOI: 10.1016/j.intimp.2024.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Children all over the world suffer from atopic dermatitis (AD), a prevalent condition that impairs their health. Corticosteroids, which have long-term negative effects, are frequently used to treat AD. There has been a growing body of research on the gut microbiota's function in AD. Nevertheless, the function and underlying mechanisms of fecal microbiota transplantation (FMT) in AD children remain to be established. Therefore, in order to assess the preventive effects of FMT treatment on AD and investigate the mechanisms, we constructed an ovalbumin (OVA)-induced juvenile mouse AD model in this investigation. This study explored the role and mechanism of FMT treatment in AD through 16S RNA sequencing, pathological histological staining, molecular biology, and Flow cytometry. Results demonstrated that the FMT treatment improved the gut microbiota's diversity and composition, bringing it back to a level similar to that of a close donor. Following FMT treatment, OVA-specific antibodies were inhibited, immunoglobulin (Ig) E production was decreased, the quantity of mast cells and eosinophils was decreased, and specific inflammatory markers in the skin and serum were decreased. Further mechanistic studies revealed that FMT treatment induced CD103+ DCs and programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression in skin-draining lymph nodes and promoted Treg production to induce immune tolerance and suppress skin inflammation. Meanwhile, changes in the gut microbiota were substantially correlated with Th2 cytokines, OVA-specific antibodies, and PD-L1/PD-1. In conclusion, FMT regulates the Th1/Th2 immunological balance and the gut microbiota. It may also inhibit AD-induced allergy responses through the PD-L1/PD-1 pathway, and providing a unique idea and possibly a fresh approach to the treatment of AD.
Collapse
Affiliation(s)
- Xing-Zhi Wang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Li Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Qiu-Hong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Pan-Pan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Yuan Jia
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Kimura A, Makino T, Kitayama S, Mizawa M, Ishii N, Hashimoto T, Shimizu T. Immunohistopathological analyses of a case of pemphigus vegetans with antibodies against desmoglein 1 and desmocollins 1-3. J Dermatol 2024; 51:1711-1715. [PMID: 39073162 DOI: 10.1111/1346-8138.17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Pemphigus vegetans is a rare type of pemphigus characterized by vegetative lesions primarily localized to the intertriginous area. Despite its unique clinical presentation, the underlying pathomechanism remains unclear owing to the rarity of the disease. We report a case of pemphigus vegetans with antibodies against desmoglein 1 and desmocollins 1-3. Furthermore, immunohistochemical analyses were performed to address the pathogenesis of this disease. A 73-year-old man presented with multiple vegetative plaques with erythema on the trunk, groins, and extremities. Mucosal lesions were not observed. Laboratory examinations revealed mild leukocytosis with eosinophilia. A histopathological examination of the skin lesion showed epidermal hyperplasia and intraepidermal abscesses with marked infiltration of neutrophils and eosinophils, and infiltration of lymphocytes and eosinophils into the upper derms. Bacterial culture of the skin tissue was positive for Staphylococcus aureus. Direct immunofluorescence showed deposits of IgG and C3 on keratinocyte surfaces in the epidermis. Autoantibodies against desmoglein 1 and autoantibodies against desmocollin 1, desmocollin 2, and desmocollin 3 were detected by enzyme-linked immunosorbent assays. The diagnosis of pemphigus vegetans was made. Initiation of prednisolone (1.0 mg/kg/day) gradually improved his skin symptoms. We performed immunohistochemical analyses of the lesional skin, which revealed infiltration of CD3-positive, CD4-positive, and CD68-positive cells in the upper dermis, but CD20- or CD56-positive cells were negative. In addition, the present case showed more prominent infiltration of IL-17A- and IL-22-positive cells in the upper dermis than in pemphigus foliaceus, a type of pemphigus with autoantibodies against desmoglein 1. Furthermore, these cells co-expressed CD3 and CD68. We hypothesized that IL-22 and IL-17A produced by T cells and macrophages and their dysregulation might be involved in the pathogenesis of pemphigus vegetans. Additionally, skin colonization and/or infection with Staphylococcus aureus could potentially contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anri Kimura
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Shohei Kitayama
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Hu Y, Chen LL, Ye Z, Li LZ, Qian HZ, Wu MQ, Wang J, Qin KH, Ye QB. Indigo naturalis as a potential drug in the treatment of ulcerative colitis: a comprehensive review of current evidence. PHARMACEUTICAL BIOLOGY 2024; 62:818-832. [PMID: 39475104 PMCID: PMC11533244 DOI: 10.1080/13880209.2024.2415652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
CONTEXT Ulcerative colitis (UC) is an intractable inflammatory bowel disease that threatens the health of patients. The limited availability of therapeutic strategies makes it imperative to explore more efficient and safer drugs. Indigo naturalis (IN) is a traditional Chinese medicine that possesses many pharmacological activities, including anti-inflammatory, antioxidant, and immunomodulatory activities. The treatment potential of IN for UC has been proven by numerous preclinical and clinical studies in recent years. OBJECTIVE This article provides a comprehensive review of the utility and potential of IN in the treatment of UC. METHODS 'Indigo naturalis' 'Qing dai' 'Qingdai' 'Ulcerative colitis' and 'UC' are used as the keywords, and the relevant literature is collected from online databases (Elsevier, PubMed, and Web of Science). RESULTS AND CONCLUSION Indirubin, indigo, isatin, tryptanthrin, and β-sitosterol are considered the key components in the treatment of UC with IN. Both preclinical and clinical studies support the efficacy of IN for UC, especially in severe UC or in those who do not respond to or have poor efficacy with existing therapies. The mechanisms of IN for UC are associated with the aryl hydrocarbon receptor pathway activation, immune regulation, oxidative stress inhibition, and intestinal microbial modulation. However, the clinical use of IN has the risks of adverse events such as pulmonary hypertension, which suggests the necessity for its rational application. As a potential therapeutic agent for UC that is currently receiving more attention, the clinical value of IN has been initially demonstrated and warrants further evaluation.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu-lin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-zhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan-zhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming-quan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Juan Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai-hua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao-bo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Qiu H, Liu J, Wu Q, Ong H, Zhang Y, Huang X, Yuan T, Zheng R, Deng H, Wang W, Kong W, Wang X, Wang D, Yang Q. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the Hippo-YAP pathway. J Allergy Clin Immunol 2024; 154:1180-1194. [PMID: 39033934 DOI: 10.1016/j.jaci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hsiaohui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Kuchař M, Sloupenská K, Rašková Kafková L, Groza Y, Škarda J, Kosztyu P, Hlavničková M, Mierzwicka JM, Osička R, Petroková H, Walimbwa SI, Bharadwaj S, Černý J, Raška M, Malý P. Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis. Cell Commun Signal 2024; 22:469. [PMID: 39354587 PMCID: PMC11446014 DOI: 10.1186/s12964-024-01846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Collapse
Affiliation(s)
- Milan Kuchař
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 708 00, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Stephen I Walimbwa
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
17
|
Kronborg L, Hansen EO, Bertelsen T, Rittig AH, Emmanuel T, Jørgensen S, Hjuler KF, Iversen L, Johansen C. ERAP1 and ERAP2 gene variants as potential clinical biomarkers of anti-interleukin-17A response in psoriasis vulgaris. Clin Exp Dermatol 2024; 49:1171-1178. [PMID: 38616723 DOI: 10.1093/ced/llae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Interleukin (IL)-17A is a proinflammatory cytokine that plays an essential role in the development of psoriasis. Although treatment with anti-IL-17A monoclonal antibodies has demonstrated high efficacy in patients with psoriasis, not all patients respond equally well, highlighting the need for biomarkers to predict treatment response. Specific single-nucleotide polymorphisms (SNPs) in the genes encoding endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) have been associated with psoriasis and other immune-mediated diseases. OBJECTIVES To investigate the association between the ERAP1 and ERAP2 genotypes and response to secukinumab treatment in patients with psoriasis. METHODS In total, 75 patients with plaque psoriasis were included. All patients were genotyped for the ERAP1 rs27524, rs27044, rs30187, rs2287987 and rs26653 SNPs, the ERAP2 rs2248374 SNP, and the status of the human leucocyte antigen HLA-C*06:02 gene. RESULTS Our results demonstrated that individuals with specific ERAP1 and ERAP2 genotypes had a considerably lower response rate to secukinumab treatment. Patients with the ERAP2 rs2248374 GG genotype had a more than sixfold increased risk of treatment failure compared with patients with the rs2248374 AG or AA genotypes. Stratifying for HLA-C*06:02 status, the ERAP2 GG genotype pointed towards an increased risk of treatment failure among HLA-C*06:02-positive patients, although this was not statistically significant. CONCLUSIONS Taken together, this unique study breaks new ground by identifying distinct ERAP1 and ERAP2 gene variants that may serve as potential biomarkers for predicting the treatment response to secukinumab in patients with psoriasis. Notably, our data extend existing knowledge by linking specific ERAP1 and ERAP2 gene variants to treatment outcome.
Collapse
Affiliation(s)
- Lasse Kronborg
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma Oxlund Hansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sofie Jørgensen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Fjellhaugen Hjuler
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
19
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
20
|
Zhao M, Zhuang Y, Liang Y, Ma L, Shen C. Upadacitinib for Refractory Paediatric Atopic Dermatitis: A Real-World Study on Effectiveness and Safety in Dupilumab Nonresponders. Clin Exp Allergy 2024; 54:694-696. [PMID: 39048775 DOI: 10.1111/cea.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Mutong Zhao
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Zhuang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuan Liang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chunping Shen
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
21
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
22
|
Toth KA, Schmitt EG, Kolicheski A, Greenberg ZJ, Levendosky E, Saucier N, Trammel K, Oikonomou V, Lionakis MS, Klechevsky E, Kim BS, Schuettpelz LG, Saligrama N, Cooper MA. A human STAT3 gain-of-function variant drives local Th17 dysregulation and skin inflammation in mice. J Exp Med 2024; 221:e20232091. [PMID: 38861030 PMCID: PMC11167377 DOI: 10.1084/jem.20232091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Levendosky
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Trammel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, Precision Immunology Institute, Friedman Brain Institute, Mark Lebwohl Center for Neuroinflammation and Sensation, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology & Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Huang X, Li L, Zheng C, Li J, Chen G, Chen Y. Xuanbi Yuyang Decoction Ameliorates DSS-Induced Colitis by Inhibiting Pyroptosis via Blocking of IL-17 Pathway Activation. J Inflamm Res 2024; 17:5235-5249. [PMID: 39131209 PMCID: PMC11313599 DOI: 10.2147/jir.s472812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background Ulcerative colitis (UC), a highly relapsing non-specific disease, is difficult to cure completely. The investigation aims to determine the protective effect and potential action mechanism of Xuanbi yuyang decoction (XBD) on UC. Methods The chemical composition of XBD was determined through non-targeted metabolomics analysis. Subsequently, experimental mice were orally given 3% DSS for 6 days, followed by XBD treatment (0.3 mL, 0.4 mL). In vitro, the human colon epithelial cells were co-treated with DSS and medicated serum. The therapeutic effects of XBD on UC were evaluated in vivo and vitro. The mechanisms of XBD against UC were determined by detecting hallmarks related to pyroptosis and Interleukin (IL)-17 pathways using Western blot and ELISA. The recombinant human interleukin 17A (rhIL17A) and was applied for further verifying the effect of XBD on IL-17 pathway in UC cells. Results XBD supplementation restored DSS-induced weight loss, colon shortening and tissue damage, and reduced DAI. Moreover, XBD enhanced viability, repaired the intestinal mucosal barrier of colitis, decreased pro-inflammatory cytokines levels, and inhibited pyroptosis. Additionally, DSS increased the expression of IL-17 pathway was and cytokines (IL-17A, IL-6), which were blocked by XBD treatment. The rhIL17A treatment attenuated protective effect against DSS-induced colitis and could also enhance pyroptosis. Conclusion XBD has a favorable protective effect against DSS-induced colitis through restraining pyroptosis via inhibition of IL-17 signaling pathway activation, suggesting XBD may be a new and effective treatment therapy for UC.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Liqun Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chaowei Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jianfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guangwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yalu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
24
|
Guo C, Boulant S, Stanifer ML. The Role of Interleukin-22 in Controlling Virus Infections at Mucosal Surfaces. J Interferon Cytokine Res 2024; 44:349-354. [PMID: 38868897 DOI: 10.1089/jir.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan Lynn Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
26
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
27
|
Law C, Wacleche VS, Cao Y, Pillai A, Sowerby J, Hancock B, Horisberger A, Bracero S, Skidanova V, Li Z, Adejoorin I, Dillon E, Benque IJ, Nunez DP, Simmons DP, Keegan J, Chen L, Baker T, Brohawn PZ, Al-Mossawi H, Hao LY, Jones B, Rao N, Qu Y, Alves SE, Jonsson AH, Shaw KS, Vleugels RA, Massarotti E, Costenbader KH, Brenner MB, Lederer JA, Hultquist JF, Choi J, Rao DA. Interferon subverts an AHR-JUN axis to promote CXCL13 + T cells in lupus. Nature 2024; 631:857-866. [PMID: 38987586 PMCID: PMC11628166 DOI: 10.1038/s41586-024-07627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.
Collapse
Affiliation(s)
- Calvin Law
- Department of Biochemistry and Molecular Genetics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Human Immunobiology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Vanessa Sue Wacleche
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Cao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Arundhati Pillai
- Department of Biochemistry and Molecular Genetics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Human Immunobiology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - John Sowerby
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Hancock
- Department of Biochemistry and Molecular Genetics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Human Immunobiology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center of Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Alice Horisberger
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Bracero
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoriya Skidanova
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhihan Li
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ifeoluwakiisi Adejoorin
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eilish Dillon
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac J Benque
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Pena Nunez
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daimon P Simmons
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joshua Keegan
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lin Chen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ling-Yang Hao
- Discovery Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Brian Jones
- Discovery Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Navin Rao
- Discovery Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Yujie Qu
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katharina S Shaw
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Elena Massarotti
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Biochemistry and Molecular Genetics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center of Human Immunobiology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center of Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Agista AZ, Chien YS, Koseki T, Nagaoka H, Ohnuma T, Ohsaki Y, Yeh CL, Yang SC, Ardiansyah, Budijanto S, Komai M, Shirakawa H. Investigation of Rhizopus oligosporus Metabolites in Fermented Wheat Bran and Its Bio Function in Alleviating Colitis in Mice Model. Metabolites 2024; 14:359. [PMID: 39057682 PMCID: PMC11278778 DOI: 10.3390/metabo14070359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Wheat bran (WB) is a low-value by-product of the wheat milling industry. Solid-state fermentation with Rhizopus oligosporus is performed to improve WB's nutritional quality (RH). Twenty-five mice (11-week-old C57BL/6N male mice) were divided into three groups. The first group was fed a control diet (n = 8), the second group a 10% WB-supplemented diet (n = 8), and the last group had a 10% RH-supplemented diet (n = 9). The diet treatment was administered for 4 days before dextran sodium sulfate (DSS, 3% in drinking water) was administered for 9 days. RH supplementation prevented bodyweight loss and reduced the disease activity index in mice. An increase in the level of SCFAs in mouse intestines was detected post-RH supplementation, suggesting that SCFAs might have contributed to its anti-colitis effect. Metabolome analysis was conducted to explore other bioactive compounds in RH. R. oligosporus fermentation significantly increased the amounts of ergothioneine, arginine, branched-chain amino acids, and adenosine in wheat bran. All of these compounds are known to have antioxidant and anti-inflammatory capacities. These bioactive compounds might also have contributed to the RH's ability to ameliorate DSS-induced colitis.
Collapse
Affiliation(s)
- Afifah Zahra Agista
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yu-Shan Chien
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Hazuki Nagaoka
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Takuto Ohnuma
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Ardiansyah
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia;
| | - Slamet Budijanto
- Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16680, Indonesia
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
29
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
30
|
Hu ST, Zhou G, Zhang J. Implications of innate lymphoid cells in oral diseases. Int Immunopharmacol 2024; 133:112122. [PMID: 38663313 DOI: 10.1016/j.intimp.2024.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Innate lymphoid cells (ILCs), as newly discovered antigen-independent innate immune cells, respond promptly to stimuli by secreting effector cytokines to exert effector functions similar to those of T cells. ILCs predominantly reside at mucosal sites and play critical roles in defending against infections, maintaining mucosal homeostasis, regulating inflammatory and immune responses, and participating in tumorigenesis. Recently, there has been a growing interest in the role of ILCs in oral diseases. This review outlines the classifications and the major characteristics of ILCs, and then comprehensively expatiates the research on ILCs in oral cancer, primary Sjogren's syndrome, periodontal diseases, oral lichen planus, oral candidiasis, Behcet's disease, and pemphigus vulgaris, aiming at summarising the implications of ILCs in oral diseases and providing new ideas for further research.
Collapse
Affiliation(s)
- Si-Ting Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
31
|
Liu C, Yan Z, Zhang X, Xia T, Ashaolu JO, Olatunji OJ, Ashaolu TJ. Food-derived bioactive peptides potentiating therapeutic intervention in rheumatoid arthritis. Heliyon 2024; 10:e31104. [PMID: 38778960 PMCID: PMC11109807 DOI: 10.1016/j.heliyon.2024.e31104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the joints of the human body and is projected to have a prevalence age-standardized rate of 1.5 million new cases worldwide by 2030. Several conventional and non-conventional preventive and therapeutic interventions have been suggested but they have their side effects including nausea, abdominal pain, liver damage, ulcers, heightened blood pressure, coagulation, and bleeding. Interestingly, several food-derived peptides (FDPs) from both plant and animal sources are increasingly gaining a reputation for their potential in the management or therapy of RA with little or no side effects. In this review, the concept of inflammation, its major types (acute and chronic), and RA identified as a chronic type were discussed based on its pathogenesis and pathophysiology. The conventional treatment options for RA were briefly outlined as the backdrop of introducing the FDPs that potentiate therapeutic effects in the management of RA.
Collapse
Affiliation(s)
- Chunhong Liu
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Zheng Yan
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Taibao Xia
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Joseph Opeoluwa Ashaolu
- Department of Public Health, Faculty of Basic Medical Sciences, Redeemers University, PMB 230, Ede, Osun State, Nigeria
| | | | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
32
|
Mu X, Gu R, Tang M, Wu X, He W, Nie X. IL-17 in wound repair: bridging acute and chronic responses. Cell Commun Signal 2024; 22:288. [PMID: 38802947 PMCID: PMC11129447 DOI: 10.1186/s12964-024-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic wounds, resulting from persistent inflammation, can trigger a cascade of detrimental effects including exacerbating inflammatory cytokines, compromised blood circulation at the wound site, elevation of white blood cell count, increased reactive oxygen species, and the potential risk of bacterial infection. The interleukin-17 (IL-17) signaling pathway, which plays a crucial role in regulating immune responses, has been identified as a promising target for treating inflammatory skin diseases. This review aims to delve deeper into the potential pathological role and molecular mechanisms of the IL-17 family and its pathways in wound repair. The intricate interactions between IL-17 and other cytokines will be discussed in detail, along with the activation of various signaling pathways, to provide a comprehensive understanding of IL-17's involvement in chronic wound inflammation and repair.
Collapse
Affiliation(s)
- Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi, 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
33
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C, Xu H. The role of Interleukin-22 in severe acute pancreatitis. Mol Med 2024; 30:60. [PMID: 38750415 PMCID: PMC11097471 DOI: 10.1186/s10020-024-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Ruofan Cao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Feifei Zhou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Qianqian Xu
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Ji'nan, Shandong, 250021, P.R. China
| | - Rui Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - ChunHua Zhang
- Shandong First Medical University, Ji'nan, Shandong, 250117, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
35
|
Belyayev L, Kang J, Sadat M, Loh K, Patil D, Muralidaran V, Khan K, Kaufman S, Subramanian S, Gusev Y, Bhuvaneshwar K, Ressom H, Varghese R, Ekong U, Matsumoto CS, Robson SC, Fishbein TM, Kroemer A. Suppressor T helper type 17 cell responses in intestinal transplant recipients with allograft rejection. Hum Immunol 2024; 85:110773. [PMID: 38494386 DOI: 10.1016/j.humimm.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Intestinal transplant (ITx) rejection is associated with memory T helper type 17 cell (Th17) infiltration of grafted tissues. Modulation of Th17 effector cell response is facilitated by T regulatory (Treg) cells, but a phenotypic characterization of this process is lacking in the context of allograft rejection. METHODS Flow cytometry was performed to examine the expression of surface receptors, cytokines, and transcription factors in Th17 and Treg cells in ITx control (n = 34) and rejection patients (n = 23). To elucidate key pathways guiding the rejection biology, we utilized RNA sequencing (RNAseq) and assessed epigenetic stability through pyrosequencing of the Treg-specific demethylated region (TSDR). RESULTS We found that intestinal allograft rejection is characterized by Treg cellular infiltrates, which are polarized toward Th17-type chemokine receptor, ROR-γt transcription factor expression, and cytokine production. These Treg cell subsets have maintained epigenetic stability, as defined by FoxP3-TSDR methylation status, but displayed upregulation of functional Treg and purinergic signaling genes by RNAseq analysis such as CD39, in keeping with suppressor Th17 properties. CONCLUSION We show that ITx rejection is associated with increased polarized cells that express a Th17-like phenotype concurrent with regulatory purinergic markers.
Collapse
Affiliation(s)
- Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20814, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Rency Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Udeme Ekong
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Cal S Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
36
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Seki T, Ohshima S, Komatsu S, Yamada S, Kashiwagi H, Goto Y, Tsuda B, Kanno A, Yasuda A, Kuno H, Tsuji NM, Shiina T, Kametani Y. Coccomyxa subellipsoidea KJ Components Enhance the Expression of Metallothioneins and Th17 Cytokines during Human T Cell Activation. Microorganisms 2024; 12:741. [PMID: 38674685 PMCID: PMC11051862 DOI: 10.3390/microorganisms12040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Coccomyxa subellipsoidea KJ (C-KJ) is a green alga with unique immunoregulatory characteristics. Here, we investigated the mechanism underlying the modification of T cell function by C-KJ components. The water-soluble extract of C-KJ was fractionated into protein (P) and sugar (S) fractions acidic (AS), basic (BS), and neutral (NS). These fractions were used for the treatment of peripheral blood mononuclear cells stimulated with toxic shock syndrome toxin-1. Transcriptome analysis revealed that both P and AS enhanced the expression of the genes encoding metallothionein (MT) family proteins, inflammatory factors, and T helper (Th) 17 cytokine and suppressed that of those encoding Th2 cytokines in stimulated T cells. The kinetics of MT1 and MT2A gene expression showed a transient increase in MT1 and maintenance of MT2A mRNA after T cell stimulation in the presence of AS. The kinetics of Th17-related cytokine secretion in the early period were comparable to those of MT2A mRNA. Furthermore, our findings revealed that static, a STAT-3 inhibitor, significantly suppressed MT2A gene expression. These findings suggest that the expression of MTs is involved in the immune regulatory function of C-KJ components, which is partially regulated by Th17 responses, and may help develop innovative immunoregulatory drugs or functional foods.
Collapse
Affiliation(s)
- Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara 259-1193, Japan; (T.S.); (A.Y.)
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.O.); (T.S.)
| | - Satoko Komatsu
- DENSO CORPORATION, Kariya 448-0029, Japan; (S.K.); (H.K.)
| | - Soga Yamada
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.O.); (T.S.)
| | - Hirofumi Kashiwagi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Yumiko Goto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Banri Tsuda
- Department of Palliative Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Akiko Kanno
- DENSO CORPORATION, Kariya 448-0029, Japan; (S.K.); (H.K.)
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara 259-1193, Japan; (T.S.); (A.Y.)
| | - Hitoshi Kuno
- DENSO CORPORATION, Kariya 448-0029, Japan; (S.K.); (H.K.)
| | - Noriko M Tsuji
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 113-8602, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 113-8602, Japan
- Department of Food Science, Jumonji University, Niiza 352-8510, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.O.); (T.S.)
- Institute of Advanced Biosciences, Tokai University, Hiratsuka 259-1207, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.O.); (T.S.)
- Institute of Advanced Biosciences, Tokai University, Hiratsuka 259-1207, Japan
| |
Collapse
|
38
|
Taskaldiran ES, Tuter G, Yucel AA, Yaman M. Effects of smoking on the salivary and GCF levels of IL-17 and IL-35 in periodontitis. Odontology 2024; 112:616-623. [PMID: 37566245 DOI: 10.1007/s10266-023-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Periodontitis progression is associated with a host response in which anti-inflammatory and pro-inflammatory cytokine networks play a key role. Smoking is involved in the production of various mediators. The study aims to evaluate the levels of IL-17 and IL-35 in saliva and gingival crevicular fluid (GCF), to investigate the effects of smoking on these cytokines in smoker and non-smoker periodontitis patients. 19 smokers with periodontitis, 20 non-smokers with periodontitis, and 18 periodontally healthy subjects were included in the study. Periodontal clinical indexes were recorded and the levels of IL-17 and IL-35 in saliva and GCF were analyzed. No significant difference was detected among the groups in terms of salivary IL-17 and IL-35 levels. GCF IL-17 and IL-35 concentration levels in the non-smoker periodontitis group were significantly lower than the others (p < 0.05). Total levels of GCF IL-17 were significantly higher in both periodontitis groups than the control group; and total levels of GCF IL-35 were significantly higher in non-smoker periodontitis group than the others (p < 0.05). A positive correlation was detected between the salivary IL-17 and IL-35 levels (r = 0.884), GCF IL-17 and IL-35 concentrations (r = 0.854), and total GCF IL-17 and IL-35 (r = 0.973) levels (p < 0.01). The present study revealed a positive correlation between the IL-35 and IL-17 levels both in saliva and GCF. IL-17 and IL-35 can be considered as one of the cytokines that play a role in periodontal health and periodontitis; and smoking may be among the factors that affect the levels of these cytokines in GCF and saliva.
Collapse
Affiliation(s)
- Ezgi Sila Taskaldiran
- Department of Periodontology, Faculty of Dentistry, Istanbul Aydin University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Gulay Tuter
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | - Aysegul Atak Yucel
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Melek Yaman
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
39
|
Wu HX, Long CR, Zhang ZH, Chen YL, Wang YY, Xiang SJ, Zhou BJ. Tryptophan metabolism and liver fibrosis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:192-198. [DOI: 10.11569/wcjd.v32.i3.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
40
|
Tang FL, Xie LW, Tang LF, Lu HY, Zhu RQ, Wang DF, Tian Y, Cai S, Li M. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside) confers protection against ionizing radiation-induced intestinal epithelial injury in vitro and in vivo. Int Immunopharmacol 2024; 129:111637. [PMID: 38335653 DOI: 10.1016/j.intimp.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.
Collapse
Affiliation(s)
- Feng-Ling Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Li-Wei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Lin-Feng Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hai-Yan Lu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Rui-Qiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
41
|
Song Y, Li Y, Hu W, Li F, Sheng H, Huang C, Gou X, Hou J, Zheng J, Xiao Y. Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. BURNS & TRAUMA 2024; 12:tkad054. [PMID: 38444636 PMCID: PMC10910847 DOI: 10.1093/burnst/tkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 03/07/2024]
Abstract
Background The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.
Collapse
Affiliation(s)
- Yajun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Wengang Hu
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing, 404031, China
| | - Hao Sheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, The Army Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
42
|
Zhang T, Wang X, Li W, Wang H, Yan L, Zhao L, Zhang X, Wang N, An W, Liu T, Fan W, Zhang B. Clostridium perfringens α toxin damages the immune function, antioxidant capacity and intestinal health and induces PLCγ1/AMPK/mTOR pathway-mediated autophagy in broiler chickens. Heliyon 2024; 10:e26114. [PMID: 38420466 PMCID: PMC10900427 DOI: 10.1016/j.heliyon.2024.e26114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Clostridium perfringens α toxin is generated by all types of C. perfringens and is closely related to necrotic enteritis in poultry. This study was conducted to investigate the effects of α toxin on immune function, antioxidant capacity, intestinal health and the underlying mechanisms in broiler chickens. A total of 144 twenty-day-old broiler chickens were randomly assigned to four treatments. On d 21, the birds were intraperitoneally injected with PBS (control group) or α toxin at 0.025, 0.1 or 0.4 U/kg of body weight. Samples were collected at 3 h and 24 h post injection (p.i.). Results showed that α toxin challenge linearly decreased the average daily gain during the 3 days after infection and decreased plasma IgA and IgM levels 3 h p.i. Plasma diamine oxidase and d-lactate levels were linearly elevated by α toxin challenge at 3 h p.i. and 24 h p.i. Alpha toxin challenge linearly decreased plasma and jejunal mucosal catalase, glutathione peroxidase and total superoxide dismutase activities at 3 h p.i. and linearly decreased glutathione peroxidase and total superoxide dismutase activities at 24 h p.i. The ileal villus height to crypt depth ratio decreased linearly with increasing α toxin levels at 3 h p.i. and 24 h p.i. Alpha toxin challenge linearly elevated jejunal IL-1β, IL-6, IL-8 and tumor necrosis factor α mRNA expression at 3 h p.i. Additionally, α toxin challenge linearly reduced the jejunal claudin-1, claudin-3 and zonula occludens 1 mRNA expression at 3 h p.i. and the claudin-3, occludin and zonula occludens 1 mRNA expression at 24 h p.i. What's more, α toxin linearly increased the jejunal PLCγ1, AMPKα1 and ATG5 mRNA expression and linearly decreased the mTOR mRNA expression. In conclusion, C. perfringens α toxin challenge decreased body weight gain, impaired immune function, antioxidant capacity and intestinal health, and induced PLCγ1/AMPK/mTOR pathway-mediated autophagy. The recommended intraperitoneal injection dose for moderate injury was 0.1 U/kg of body weight and the recommended sampling time was 3 h p.i. in broiler chickens.
Collapse
Affiliation(s)
- Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, 266114, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, 266000, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wendong An
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tongyue Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlei Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
43
|
Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, Chuturgoon S, Chuturgoon A. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells 2024; 13:425. [PMID: 38474389 PMCID: PMC10931328 DOI: 10.3390/cells13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Lipika Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Simran Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Sanam Chuturgoon
- Northdale Hospital, Department of Health, Pietermaritzburg 3200, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
44
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
45
|
Jariani A, Kakroodi ST, Arabfard M, Jamialahmadi T, Rahimi M, Sahebkar A. Identification of Key Genes in Angiogenesis of Breast and Prostate Cancers in the Context of Different Cell Types. Curr Med Chem 2024; 31:1595-1605. [PMID: 36999716 DOI: 10.2174/0929867330666230331101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 02/03/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Angiogenesis involves the development of new blood vessels. Biochemical signals start this process in the body, which is followed by migration, growth, and differentiation of endothelial cells that line the inside wall of blood vessels. This process is vital for the growth of cancer cells and tumors. MATERIALS AND METHODS We started our analysis by composing a list of genes that have a validated impact in humans with respect to angiogenesis-related phenotypes. Here, we have investigated the expression patterns of angiogenesis-related genes in the context of previously published single-cell RNA-Seq data from prostate and breast cancer samples. RESULTS Using a protein-protein interaction network, we showed how different modules of angiogenesis-related genes are overexpressed in different cell types. In our results, genes, such as ACKR1, AQP1, and EGR1, showed a strong cell type-dependent overexpression pattern in the two investigated cancer types, which can potentially be helpful in the diagnosis and follow-up of patients with prostate and breast cancer. CONCLUSION Our work demonstrates how different biological processes in distinct cell types contribute to the angiogenesis process, which can provide clues regarding the potential application of targeted inhibition of the angiogenesis process.
Collapse
Affiliation(s)
- Abbas Jariani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rahimi
- Clinical care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Li D, Jia W, Zhou L, Hao Y, Wang K, Yang B, Yang J, Luo D, Fu Z. Increased expression of the p-STAT3/IL-17 signaling pathway in patients with dermatomyositis. Mod Rheumatol 2023; 34:129-136. [PMID: 36478263 DOI: 10.1093/mr/roac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2023]
Abstract
OBJECTIVES The aim is to explore the roles of phosphorylated signal transduction and activator of transcription 3 (p-STAT3) and interleukin (IL)-17 in patients with dermatomyositis (DM). METHODS A total of 20 DM patients and 12 healthy controls were enrolled. Flow cytometry combined with counting was used to detect the number of Th17 cells. Western blotting and immunohistochemistry were used to examine the muscle levels of p-STAT3 and IL-17, and serum levels of IL-17 were measured by enzyme-linked immunosorbent assays. RESULTS Muscle p-STAT3 and IL-17 levels, the number of Th17 cells, and serum IL-17 levels were markedly increased in DM. p-STAT3 and IL-17 were co-expressed in the muscle of DM patients. The p-STAT3 levels were correlated with the number of Th17 cells as well as muscle and serum IL-17 levels. The correlations of the p-STAT3 level with elevated levels of transaminases, myocardial enzymes, and the health assessment questionnaire score were significantly positive, while the correlation with manual muscle testing-8 was significantly negative. A receiver operating characteristic curve indicated the good predictive value of p-STAT3 for the occurrence of DM. CONCLUSIONS The increased p-STAT3/IL-17 signaling pathway activation in DM patients may induce muscle inflammation and necrosis, and it may be a potential target for DM.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen Jia
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Luyao Zhou
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiqun Hao
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kai Wang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Yang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Yang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongping Luo
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zili Fu
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
47
|
Rosado-Sánchez I, Herrero-Fernández I, Sobrino S, Carvajal AE, Genebat M, Tarancón-Díez L, Garcia-Guerrero MC, Puertas MC, de Pablos RM, Ruiz R, Martinez-Picado J, Leal M, Pacheco YM. Caecum OX40+CD4 T-cell subset associates with mucosal damage and key markers of disease in treated HIV-infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1129-1138. [PMID: 37704537 DOI: 10.1016/j.jmii.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Blood OX40-expressing CD4 T-cells from antiretroviral (ART)-treated people living with HIV (PWH) were found to be enriched for clonally-expanded HIV sequences, hence contributing to the HIV reservoir. OX40-OX40L is also a checkpoint regulator of inflammation in multiple diseases. We explored gut mucosal OX40+CD4+ T-cells and their potential significance in HIV disease. METHODS Biopsies of caecum and terminal-ileum of ART-treated PWH (n = 32) were obtained and mucosal damage and HIV reservoir were assessed. Mucosal OX40+ and Ki67+ CD4 T-cell subsets, as well as several tissue T-cell subsets modulating mucosal integrity and homeostasis (Th17, Th22, Treg, Tc17, Tc22, IL17+TCRγδ, IL22+TCRγδ) were quantified. Inflammatory-related markers, T-cell activation and thymic output were also determined in blood samples. Correlations were explored using Spearman rank test and corrected for multiple comparisons by Benjamini-Hochberg. RESULTS Compared to healthy controls, a high frequency of mucosal, mainly caecum, CD4 T-cells were OX40+ in PWH. Such frequency strongly correlated with nadir CD4 (r = -0.836; p < 0.0001), CD4/CD8 ratio (r = -0.630; p = 0.002), caecum mucosal damage (r = 0.606; p = 0.008), caecum Th22 (r = -0.635; p = 0.002), caecum Th17 (r = 0.474; p = 0.03) and thymic output (r = -0.686; p < 0.001). It also correlated with Neutrophil-to-Lymphocyte Ratio and blood CD4 T-cell activation and tended to with mucosal HIV reservoir. CONCLUSION High frequencies of caecum OX40+CD4 T-cells are found in people with HIV (PWH) and successful viral control. Interestingly, this cellular subset reflects key markers of disease and peripheral T-cell activation, as well as HIV-driven mucosal damage. OX40+CD4 T-cells deserve further investigation since they could expand because of T-cell homeostatic proliferation and relate to the Th22/Th17 gut mucosal ratio.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Salvador Sobrino
- Digestive Endoscopy Unit, Virgen del Rocío University Hospital, Seville 41013, Spain.
| | - Ana E Carvajal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Miguel Genebat
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Laura Tarancón-Díez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | | | - María Carmen Puertas
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Rocío M de Pablos
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Manuel Leal
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Internal Medicine Service, Viamed-Santa Ángela Hospital, Seville 41014, Spain.
| | - Yolanda M Pacheco
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
48
|
Lee IS, Van Dyken SJ. Both Horatio and Polonius: Innate Lymphoid Cells in Tissue Homeostasis and Repair. Immunohorizons 2023; 7:729-736. [PMID: 37916861 PMCID: PMC10695417 DOI: 10.4049/immunohorizons.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as critical tissue-resident lymphocytes that coordinate responses to environmental stress and injury. Traditionally, their function was thought to mirror adaptive lymphocytes that respond to specific pathogens. However, recent work has uncovered a more central role for ILCs in maintaining homeostasis even in the absence of infection. ILCs are now better conceptualized as an environmental rheostat that helps maintain the local tissue setpoint during environmental challenge by integrating sensory stimuli to direct homeostatic barrier and repair programs. In this article, we trace the developmental origins of ILCs, relate how ILCs sense danger signals, and describe their subsequent engagement of appropriate repair responses using a general paradigm of ILCs functioning as central controllers in tissue circuits. We propose that these interactions form the basis for how ILC subsets maintain organ function and organismal homeostasis, with important implications for human health.
Collapse
Affiliation(s)
- Intelly S. Lee
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
49
|
Peng Z, Dong X, He M, Zhao Y, Liu Y, Li M, Li G, Wang X, Li L, Hu Y. Elevated profiles of peripheral Th22, Th17, Th2 cells, and decreased percentage of Th1 cells in breast cancer patients. Thorac Cancer 2023; 14:3282-3294. [PMID: 37732365 PMCID: PMC10665788 DOI: 10.1111/1759-7714.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Th22 subset is a particular type of CD4+ T helper cells subset. Our study aimed to explore the expression level of circulating Th22, Th17, Th1, and Th2 cells and the possible mechanism of these cells in breast cancer (BC) with different pathological features. METHODS Our study enrolled 43 newly diagnosed BC patients and 30 healthy controls. Frequencies of peripheral Th22, Th17, Th1, and Th2 cells were tested by flow cytometry. Concentrations of IL-22 cytokine in plasma were examined by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was done to test aromatic hydrocarbon receptor (AHR) and RAR-associated orphan receptor C (RORC) gene expression. RESULTS Frequencies of Th22, Th17, Th2 subsets, and the plasma IL-22 level was obviously higher in the BC patients. A positive correlation between Th22 frequency and IL-22 concentration in plasma was detected in BC patients. Furthermore, the percentage of Th22, Th2 subsets in peripheral blood of HER2 positive BC was higher than that in HER2 negative BC patients. A negative correlation between Th1 subset and Ki-67% as well as a positive correlation between Th2 subset and Ki-67% was found in BC patients. The proportion of Th1 cells in BC patients was significantly lower than that of the control group. Expression of AHR and RORC transcription factors were also observed to be upregulated in the BC patients. Furthermore, Th22 cells were positively correlated with BC tumor stage and clinical outcomes. The BC patients with a higher percentage of Th22, Th17, Th1 cells or a lower percentage of Th1 cells showed a decreased trend of survival rate. CONCLUSION Th22, Th17, Th1, and Th2 subsets may play an essential role in BC patients. Th22, Th17, Th1, and Th2 cells may have potential significance to be used as clinical markers in BC patients with different molecular classification. Th22 cells may have potential value in BC patients' outcomes prediction, providing clinical value.
Collapse
Affiliation(s)
- Zhiguo Peng
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xinyue Dong
- Department of OncologyQilu Hospital of Shandong University Dezhou HospitalDezhouChina
| | - Miao He
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yujia Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Mo Li
- Department of OncologyWeifang People's HospitalWeifangChina
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Li Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yu Hu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
50
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|