1
|
Shen TH, Yu X, Zhou C, Liu Y, Li QY, Li W, Jiang TH, Zhu YQ, Liu Y. Review of the mechanisms of the biliary-enteric axis in the development of cholangiocarcinoma. World J Clin Oncol 2025; 16:102374. [PMID: 40290694 PMCID: PMC12019280 DOI: 10.5306/wjco.v16.i4.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a particularly aggressive and challenging type of cancer, known for its poor prognosis, which is worsened by the complex interplay of various biological and environmental factors that contribute to its development. Recently, researchers have increasingly focused on the significant role of the biliary-enteric communication of liver-gut axis in the pathogenesis of CCA, highlighting a complex relationship that has not been thoroughly explored before. This review aims to summarize the key concepts related to the biliary-enteric communication of liver-gut axis and investigate its potential mechanisms that may lead to the onset and progression of CCA, a disease that presents substantial treatment challenges. Important areas of focus will include the microbiome's profound influence, which interacts with host physiology in ways that may worsen cancer development; changes in bile acid metabolism that can create toxic environments favorable for tumor growth; the regulation of inflammatory processes that may either promote or inhibit tumor progression; the immune system's involvement, which is crucial in the body's response to cancer; and the complex interactions within metabolic pathways that can affect cellular behavior and tumor dynamics. By integrating recent research findings from various studies, we aim to explore the multifaceted roles of the biliary-enteric communication of liver-gut axis in CCA, providing new insights and perspectives for future research while identifying promising therapeutic targets that could lead to innovative treatment strategies aimed at improving patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Tian-Hao Shen
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xue Yu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cheng Zhou
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qiu-Ying Li
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Li
- Department of Hepatological Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ting-Hui Jiang
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yong-Qiang Zhu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yan Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
2
|
Perez V, Boulo V, De Lorgeril J, Pham D, Ansquer D, Plougoulen G, Ballan V, Lam JS, Romatif O, Le Luyer J, Falchetto C, Basset C, Flohr S, Maamaatuaiahutapu M, Lafille MA, Lau C, Saulnier D, Wabete N, Callac N. Hemolymph microbiota and immune effectors' expressions driven by geographical rearing acclimation of the aquacultured Penaeus stylirostris. Anim Microbiome 2025; 7:5. [PMID: 39799372 PMCID: PMC11725212 DOI: 10.1186/s42523-025-00376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis. Indeed, the hemolymph harbors the factors involved in the animal homeostasis that interacts with the microbiota, the immunity. In the Southwest Pacific, the high economical valued shrimp Penaeus stylirostris is reared in two contrasted sites, in New Caledonia (NC) and in French Polynesia (FP). RESULTS We characterized the active microbiota inhabiting the hemolymph of shrimps while considering its stability during two seasons and at a one-month interval and evidenced an important microbial variability between the shrimps according to the rearing conditions and the sites. We highlighted specific biomarkers along with a common core microbiota composed of 6 ASVs. Putative microbial functions were mostly associated with bacterial competition, infections and metabolism in NC, while they were highly associated with the cell metabolism in FP suggesting a rearing site discrimination. Differential relative expression of immune effectors measured in the hemolymph of two shrimp populations from NC and FP, exhibited higher level of expression in NC compared to FP. In addition, differential relative expression of immune effectors was correlated to bacterial biomarkers based on their geographical location. CONCLUSIONS Our data suggest that, in Pacific shrimps, both the microbiota and the expression of the immune effectors could have undergone differential immunostimulation according to the rearing site as well as a geographical adaptative divergence of the shrimps as an holobiont, to their rearing sites. Further, the identification of proxies such as the core microbiota and site biomarkers, could be used to guide future actions to monitor the bacterial microbiota and thus preserve the productions.
Collapse
Affiliation(s)
- Valérie Perez
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, Nantes, 44000, France
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, 34090, France
| | - Julien De Lorgeril
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Dominique Ansquer
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Gwenola Plougoulen
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Valentine Ballan
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Jean-Sébastien Lam
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Océane Romatif
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, 34090, France
| | - Jeremy Le Luyer
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia, F-98719, France
| | - Corinne Falchetto
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia, F-98719, France
| | - Caline Basset
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia, F-98719, France
| | - Stanley Flohr
- DRM, Direction des Ressources Marines, Papeete, 98713, French Polynesia
| | | | | | - Christophe Lau
- DRM, Direction des Ressources Marines, Papeete, 98713, French Polynesia
| | - Denis Saulnier
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia, F-98719, France
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia
| | - Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia.
| |
Collapse
|
3
|
Slawinska A, Dunisławska A, Kowalczyk A, Łukaszewicz E, Siwek M. Immune-Related Gene Expression Responses to In Ovo Stimulation and LPS Challenge in Two Distinct Chicken Genotypes. Genes (Basel) 2024; 15:1585. [PMID: 39766852 PMCID: PMC11675432 DOI: 10.3390/genes15121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In ovo stimulation introduces bioactive compounds, such as prebiotics, probiotics, or synbiotics into incubating eggs to enhance gut health and immune system development in chickens. This study aimed to determine the genetic and environmental effects modulating responses to in ovo stimulation in commercial broilers and Green-legged Partridge-like (GP) native chickens. METHODS Eggs were stimulated on day 12 of incubation with prebiotics (GOS-galactooligosaccharides), probiotics (Lactococcus lactis subsp. cremoris), or synbiotics (GOS + L. lactis), with controls being mock-injected. Hatched chicks were reared in group pens and challenged with lipopolysaccharide (LPS) on day 42 post-hatching. Cecal tonsils (CT) and spleens were harvested 2 h post-challenge. RT-qPCR was used to analyze the relative gene expression of cytokine genes: IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p40, and IL-17. RESULTS The results show that genotype influenced the expression of all immune-related genes, with broiler chickens exhibiting stronger innate inflammatory responses than native chickens. LPS induced both mucosal (CT) and systemic (spleen) immune responses in broilers but only systemic (spleen) responses in native chickens. CONCLUSIONS In ovo stimulation had less of an impact on cytokine gene expression than LPS challenge. Broilers expressed higher inflammatory immune responses than GP native chickens.
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Szosa Bydgoska 13, 87-100 Toruń, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Ewa Łukaszewicz
- Division of Poultry Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
4
|
Bruse N, Jansen A, Gerretsen J, Rijbroek D, Wienholts K, Arron M, van Goor H, Ederveen THA, Pickkers P, Kox M. The gut microbiota composition has no predictive value for the endotoxin-induced immune response or development of endotoxin tolerance in humans invivo. Microbes Infect 2023; 25:105174. [PMID: 37348752 DOI: 10.1016/j.micinf.2023.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND It is largely unknown whether the gut microbiome regulates immune responses in humans. We determined relationships between the microbiota composition and immunological phenotypes in 108 healthy volunteers, using 16S sequencing, an ex vivo monocyte challenge model, and an in vivo challenge model of systemic inflammation induced by lipopolysaccharide (LPS). RESULTS Significant associations were observed between the microbiota composition and ex vivo monocytic cytokine responses induced by several stimuli, most notably IL-10 production induced by Pam3Cys, Pseudomonas aeruginosa and Candida albicans, although the explained variance was rather low (0.3-4.8%). Furthermore, a number of pairwise correlations between Blautia, Bacteroides and Prevotella genera and cytokine production induced by these stimuli were identified. LPS administration induced a profound transient in vivo inflammatory response. A second LPS challenge one week after the first resulted in a severely blunted response, reflecting endotoxin tolerance. However, no significant relationships between microbiota composition and in vivo parameters of inflammation or tolerance were found (explained variance ranging from 0.4 to 1.5%, ns). CONCLUSIONS The gut microbiota composition explains a limited degree of variance in ex vivo monocytic cytokine responses to several pathogenic stimuli, but no relationships with the LPS-induced in vivo immune response or tolerance was observed.
Collapse
Affiliation(s)
- Niklas Bruse
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Aron Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Jelle Gerretsen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Danielle Rijbroek
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Kiedo Wienholts
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Therapy, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands
| | - Melissa Arron
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Harry van Goor
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Peter Pickkers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Matthijs Kox
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Biemond JJ, McDonald B, Haak BW. Leveraging the microbiome in the treatment of sepsis: potential pitfalls and new perspectives. Curr Opin Crit Care 2023; 29:123-129. [PMID: 36762681 DOI: 10.1097/mcc.0000000000001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the current knowledge about microbiota-targeted therapies in sepsis, and calls out - despite recent negative studies - not to halt our efforts of translating these tools into regular medical practice. RECENT FINDINGS The intestinal microbiome has an important role in shaping our immune system, and microbiota-derived metabolites prime innate and adaptive inflammatory responses to infectious pathogens. Microbiota composition is severely disrupted during sepsis, which has been linked to increased risk of mortality and secondary infections. However, efforts of using these microbes as a tool for prognostic or therapeutic purposes have been unsuccessful so far, and recent trials studying the impact of probiotics in critical illness did not improve patient outcomes. Despite these negative results, researchers must continue their attempts of harnessing the microbiome to improve sepsis survival in patients with a high risk of clinical deterioration. Promising research avenues that could potentially benefit sepsis patients include the development of next-generation probiotics, use of the microbiome as a theranostic tool to direct therapy, and addressing the restoration of microbial communities following ICU discharge. SUMMARY Although research focused on microbiome-mediated therapy in critically ill patients has not yielded the results that were anticipated, we should not abandon our efforts to translate promising preclinical findings into clinical practice.
Collapse
Affiliation(s)
- Jason J Biemond
- Center for Experimental and Molecular Medicine (CEMM)
- Microbiota Center Amsterdam, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Braedon McDonald
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM)
- Microbiota Center Amsterdam, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Schuurman AR, Kullberg RFJ, Wiersinga WJ. Probiotics in the Intensive Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11020217. [PMID: 35203819 PMCID: PMC8868307 DOI: 10.3390/antibiotics11020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
The understanding of the gut microbiome in health and disease has shown tremendous progress in the last decade. Shaped and balanced throughout life, the gut microbiome is intricately related to the local and systemic immune system and a multitude of mechanisms through which the gut microbiome contributes to the host’s defense against pathogens have been revealed. Similarly, a plethora of negative consequences, such as superinfections and an increased rate of hospital re-admissions, have been identified when the gut microbiome is disturbed by disease or by the iatrogenic effects of antibiotic treatment and other interventions. In this review, we describe the role that probiotics may play in the intensive care unit (ICU). We discuss what is known about the gut microbiome of the critically ill, and the concept of probiotic intervention to positively modulate the gut microbiome. We summarize the evidence derived from randomized clinical trials in this context, with a focus on the prevention of ventilator-associated pneumonia. Finally, we consider what lessons we can learn in terms of the current challenges, efficacy and safety of probiotics in the ICU and what we may expect from the future. Throughout the review, we highlight studies that have provided conceptual advances to the field or have revealed a specific mechanism; this narrative review is not intended as a comprehensive summary of the literature.
Collapse
Affiliation(s)
- Alex R. Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Robert F. J. Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|