1
|
Eustace N, Amini A, Malhotra J, Higgins KA, Williams TM, Lee P. Stereotactic body radiation therapy in the management of lung neoplasms: is it ready for prime time? Curr Opin Pulm Med 2025:00063198-990000000-00240. [PMID: 40265515 DOI: 10.1097/mcp.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Advances in radiation delivery have expanded the scope of stereotactic body radiation therapy (SBRT) in lung cancer treatment, as it offers better local control, shorter treatments, and enhanced immunostimulation. This review summarizes recent literature regarding SBRT's role in nonoperable and operable early-stage, locally advanced, central, and oligometastatic nonsmall cell lung cancer (NSCLC), and its mixed results with immunotherapy. RECENT FINDINGS Recent studies demonstrate SBRT achieves excellent local control in inoperable early-stage NSCLC and is being explored as an alternative to surgery for operable cases. Additionally, SBRT can be done safely in central tumors if strict dose limits to normal structures are observed. SBRT shows promise in locally advanced disease, as consolidative local therapy for oligoprogressive and oligometastatic disease and in combination with immune checkpoint inhibitors. Advances in adaptive radiation therapy and novel fractionation schedules, including ultra-hypofractionation and personalized approaches, further refine SBRT's role in lung cancer management, with more practice changing clinical trials on the horizon. SUMMARY SBRT provides durable and well tolerated treatment for patients with localized and metastatic lung cancer. With ongoing trials exploring its synergy with immunotherapy and its applicability in operable patients and large tumors, SBRT is poised to play an even greater role in personalized lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Jyoti Malhotra
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Kristin A Higgins
- Department of Radiation Oncology, City of Hope Atlanta, Newnan, Georgia
| | | | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California, USA
| |
Collapse
|
2
|
Jang K, Cross S, Yeghiaian-Alvandi R. Stereotactic reirradiation for in-field lung cancer recurrence after stereotactic ablative radiotherapy: A systematic review and meta-analysis. Radiother Oncol 2025; 208:110898. [PMID: 40262688 DOI: 10.1016/j.radonc.2025.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE There is paucity of data for thoracic in-field reirradiation with two courses of stereotactic ablative radiotherapy (SABR). This meta-analysis evaluates the safety and efficacy of repeat SABR as salvage therapy for in-field failures after definitive SABR. MATERIALS AND METHODS A systematic search of PubMed, Cochrane Library, MEDLINE, and EMBASE databases was conducted in accordance with PRISMA guidelines. Studies were included if they involved adult patients treated with salvage SABR for in-field recurrences of lung cancer following prior SABR. To address varying definitions of local failure, studies were included if recurrence occurred within the original planning target volume (PTV). Studies with out-of-field failures (>1 cm from PTV) or those using non-SABR techniques were excluded. Pooled 1- and 2-year local control (LC) rates, overall survival (OS), and toxicities were calculated using a random-effects model. Population-weighted linear regression was employed to assess the relationship between dosimetric and clinico-pathologic variables and patient outcomes. RESULTS Twelve studies involving 197 patients were included in the quantitative analysis. All patients received two courses of SABR, with a median total dose of 50 Gy in 5 fractions. Pooled 1- and 2-year LC rates were 78.2 % (95 % CI: 66-87 %) and 68.0 % (95 % CI: 55-79 %), respectively. Patients receiving a cumulative biologically effective dose (BED) ≥ 200 Gy had significantly higher LC rates (84.9 %, 95 % CI: 70-93 %) vs (64.9 %, 95 % CI: 54-75 %, p = 0.02). Median OS did not significantly differ between low and high BED groups, though there was a trend toward improved survival with higher BED (21.4 vs 32.6 months). The pooled median OS across all studies was 26.3 months (95 % CI: 25.4-27.1). Improved LC rates were associated with smaller tumours (<2 cm), higher BED from the initial treatment and longer interval (>12 months) between initial and repeat SABR (p < 0.01). Toxicities were minimal, with a pooled incidence of ≥ grade 2 pneumonitis at 6.4 % and only 0.10 % reporting ≥ grade 3 toxicity. CONCLUSIONS Salvage in-field reirradiation with SABR achieves high local control and low toxicity, particularly in patients receiving higher cumulative BED (≥200 Gy) and with longer intervals (≥12 months) between treatments. These results suggest that repeat SABR is a viable salvage option for selected patients. Further prospective studies are needed to optimise dosing and patient selection for safe and effective reirradiation.
Collapse
Affiliation(s)
- Kevin Jang
- Department of Radiation Oncology, Nepean Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shamira Cross
- Department of Radiation Oncology, Nepean Hospital, Sydney, New South Wales, Australia
| | | |
Collapse
|
3
|
Durdux C, Alati A. [Stereotactic radiotherapy for lung cancer]. Bull Cancer 2025; 112:3S31-3S38. [PMID: 40155075 DOI: 10.1016/s0007-4551(25)00155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The treatment of early stage T1-T2N0M0 non-small cell lung cancers (NSCLC) was previously based on surgery. However, 20 to 25% of patients are inoperable due to their age, comorbidities or refuse surgery. Since 2018, stereotactic body radiation therapy (SBRT) has become the standard treatment for these patients. For operable patients, the comparison surgery - SBRT is difficult without a clear conclusion, the different phase III trials have not yet permitted to provide a formal answer in terms of local control and survival by default of inclusion. Dose and fractionation need to be selected according to tumor location. Tolerance is usually good, with few grade ≥3 toxicities; however, caution is advised for ultra-central tumors and in case of interstitial pneumonia. Post-therapeutic imaging monitoring is complex, sometimes with uncertainties between radiation-induced pneumonitis and relapse. This complexity may increase in ongoing trials combining SBRT and immunotherapy.
Collapse
Affiliation(s)
- Catherine Durdux
- Université Paris Cité; Service d'onco-radiothérapie, AP-HP, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France.
| | - Aurélia Alati
- Université Paris Cité; Service d'onco-radiothérapie, AP-HP, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|
4
|
Hua W, Zhang Z, Ni L, Liu X. Comparison of surgical and radiotherapy outcomes in octogenarians with early-stage non-small cell lung cancer: a SEER database retrospective cohort study. Aging Clin Exp Res 2025; 37:53. [PMID: 40011326 PMCID: PMC11865165 DOI: 10.1007/s40520-025-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Lung cancer remains the leading cause of death worldwide, yet optimal treatment strategies for octogenarians with early-stage non-small cell lung cancer (NSCLC) remain unclear. AIMS To investigate treatment patterns and survival outcomes in octogenarians and older with early-stage NSCLC. METHODS A retrospective cohort study was conducted using Surveillance, Epidemiology, and End Results database. Patients aged ≥ 80 years with stage I-IIA NSCLC diagnosed between 2011 and 2020 were included. Primary treatments included surgery, radiation, and no treatment. Kaplan-Meier curves were used to evaluate overall survival (OS) and cancer-specific survival (CSS) stratified by treatment and year. Propensity score matching balanced clinical characteristics between surgery and radiation groups, followed by Cox regression analysis. Survival outcomes were further compared within matched subgroups stratified by tumor size. RESULTS Among 7,372 patients, median survival was 67 months for surgery and 33 months for radiotherapy. Radiotherapy use increased from 31.2% in 2011 to 49.4% in 2020, while surgery rates declined. Multivariate analysis (N = 2,434) showed radiotherapy was associated with worse OS (hazard ratio = 1.96, 95% CI = 1.78-2.15, P < 0.001) compared to surgery. DISCUSSION Radiotherapy is increasingly used to treat early-stage NSCLC in octogenarians, yet surgery provides superior long-term survival. Limitations of lack of detailed comorbidity data and differentiation between conventional radiotherapy and stereotactic ablative radiotherapy (SABR) may have expanded the advantages of surgery. Meanwhile, patient performance status and preferences must be considered in treatment decisions. CONCLUSIONS Surgery remains the preferred treatment option for eligible octogenarians with early-stage NSCLC.
Collapse
Affiliation(s)
- Wenxuan Hua
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhigang Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lianfang Ni
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
5
|
Wang S, Yin X, Wu L, Yu H, Lu Z, Zhao F, Yan D, Yan S. Establishing a prognostic scoring system and exploring prognostic value of examined lymph node numbers for stage I non-small cell lung cancer: a retrospective study of Surveillance, Epidemiology, and End Results (SEER) database and a Chinese cohort. Transl Cancer Res 2025; 14:404-423. [PMID: 39974421 PMCID: PMC11833396 DOI: 10.21037/tcr-24-1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 02/21/2025]
Abstract
Background There is currently no recognized assessment system to predict disease outcomes for stage I non-small cell lung cancer (NSCLC). This research aimed to develop a prognostic scoring system for predicting 5-year overall survival (OS) of individuals with stage I NSCLC following definitive therapeutic intervention. Additionally, the optimal number of examined lymph nodes (ELNs) count for tumors no larger than 30 mm was determined. Methods Patients (n=22,617) diagnosed with stage I NSCLC from 2007 to 2015 who underwent definitive treatment (pulmonary lobectomy, pulmonary sublobectomy, or radiotherapy) were identified from the Surveillance, Epidemiology, and End Results (SEER) database. There were 400 Chinese patients with stage I NSCLC diagnosed in 2017 enrolled for external validation. The nomogram was constructed based on gradient boosting machine. The optimal ELNs in patients with tumors ≤30 mm and node-negative undergoing pulmonary lobectomy or pulmonary sublobectomy were determined using log-rank test and validated by multivariable analysis. Results Age at diagnosis, histology, differentiated grade, tumor staging, number of ELNs, and definitive treatment pattern were recognized as important factors for 5-year OS. The prognostic scoring system exhibited superior discrimination accuracy, calibration ability, and net clinical benefit compared to the tumor, node, metastasis (TNM) staging system. For patients with tumors ≤30 mm, more than 10 and 20 ELNs demonstrated the maximum OS difference during lobectomy and sublobectomy, respectively. Conclusions This prognostic scoring system will anticipate the prognosis of stage I NSCLC patients after radical treatment, thereby offering individualized treatment recommendations for both clinicians and patients. A minimum of 10 ELNs during lobectomy and 20 ELNs during sublobectomy are necessary for small-sized NSCLC.
Collapse
Affiliation(s)
- Siyuan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Yin
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Yu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongjie Lu
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhao
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfang Yan
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Senxiang Yan
- Division of Radiotherapy, Department of Radiation Oncology Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wolf A, Loo BW, Mak RH, Liptay M, Pettiford B, Rocco G, Lanuti M, Merritt RE, Keshavarz H, Suh RD, Brunelli A, Criner GJ, Mazzone PJ, Walsh G, Wafford QE, Murthy S, Marshall MB, Tong B, Luketich J, Schuchert MJ, Varghese TK, D'Amico TA, Pennathur A, Swanson SJ. Systematic Review of Stereotactic Ablative Radiotherapy (SABR)/Stereotactic Body Radiation Therapy (SBRT) for Treatment of High-Risk Patients with Stage I Non-Small Cell Lung Cancer. Semin Thorac Cardiovasc Surg 2024; 37:89-98. [PMID: 39674443 DOI: 10.1053/j.semtcvs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/16/2024]
Abstract
Stereotactic ablative radiotherapy (SABR) has emerged as an alternative, non-surgical treatment for high-risk patients with stage I non-small cell lung cancer (NSCLC) with increased use over time. The American Association for Thoracic Surgery (AATS) Clinical Practice Standards Committee (CPSC) assembled an expert panel and conducted a systematic review of the literature evaluating the results of SABR, which is also referred to as stereotactic body radiation therapy (SBRT) or stereotactic radiosurgery (SRS), prior to developing treatment recommendations for high-risk patients with stage I NSCLC based on expert consensus. Publications detailing the findings of 16 prospective studies of SABR and 14 retrospective studies of SABR for the management of early-stage lung cancer in 54,697 patients were identified by systematic review of the literature with further review by members of our expert panel. Medical inoperability (93-95%) was the primary reason for utilizing SABR. The median rate of histologically confirmed cancer in treated patients was 67% (range 57-86%). In retrospective studies and prospective studies, the most common dosing regimens were 48-54Gy in 3-5 fractions and 44-66Gy in 3-5 fractions respectively. The median follow-up after SABR was 30 months (range 15-50). The complications, oncological results and quality of life after SABR in high-risk patients with early-stage NSCLC are summarized in this Expert Review article. Further prospective randomized trials are needed and are currently underway to compare outcomes after SABR with outcomes after sublobar resection to fully evaluate treatment options applicable this high-risk group of patients.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Thoracic Surgery, The Icahn School of Medicine at Mount Sinai and Mount Sinai Hospital, New York, New York
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Raymond H Mak
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Liptay
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Brian Pettiford
- Section of Cardiothoracic Surgery, Ochsner Health System, New Orleans, Louisiana
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert E Merritt
- Division of Thoracic Surgery, The Ohio State University-Wexner Medical Center, Columbus, Ohio
| | - Homa Keshavarz
- Department of Family Medicine, McMaster University, Ontario, Canada
| | - Robert D Suh
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alessandro Brunelli
- Department of Thoracic Surgery, St. James's University Hospital, Leeds, United Kingdom
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - Garrett Walsh
- Department of Thoracic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Q Eileen Wafford
- The American Association for Thoracic Surgery, Beverly, Massachusetts
| | - Sudish Murthy
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - M Blair Marshall
- Sarasota Memorial Hospital, Jellison Cancer Institute, Sarasota, Florida
| | - Betty Tong
- Department of Thoracic Surgery, Duke University Hospital, Durham, North Carolina
| | - James Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Matthew J Schuchert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Thomas K Varghese
- Division of Cardiothoracic Surgery, University of Utah, Huntsman Cancer Center, Salt Lake City, Utah
| | - Thomas A D'Amico
- Department of Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Scott J Swanson
- Division of Thoracic Surgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
7
|
Peeters S, Lau K, Stefanidis K, Yasufuku K, Ishiwata T, Rolfo C, Schneiter D, Hardavella G, Guckenberger M, Lauk O. New diagnostic and nonsurgical local treatment modalities for early stage lung cancer. Lung Cancer 2024; 196:107952. [PMID: 39236577 DOI: 10.1016/j.lungcan.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
This paper highlights developments in diagnostic and nonsurgical local treatment modalities that have changed the management of early-stage lung cancer. These innovations aim to enhance diagnostic accuracy, minimize invasiveness, and improve patient outcomes. Liquid biopsies are emerging as promising tools for non-invasive diagnosis and monitoring, enabling earlier intervention without being standardized yet as well as not yet anchored in the guidelines. Endobronchial navigation has emerged as an innovative tool. By combining electromagnetic or GPS-like technology with 3D imaging and a steerable catheter, it enables accurate biopsy of small, peripheral lesions that were once challenging to sample, with a very low pneumothorax rate. Regarding nonsurgical treatments, stereotactic body radiotherapy (SBRT) continues to shine as a non-invasive local treatment modality for early-stage lung cancer and is the guideline-recommended standard-of-care for inoperable patients and patients refusing the risk of surgical resection. The low toxicity and excellent local control has made it an attractive alternative to surgery even in fitter patients. Percutaneous ablative techniques utilising energies such as microwave or pulse-field electroporation are options for patients who are not candidates for surgery or SBRT. Bronchoscopic ablation delivers the same energies but with a very lower pneumothorax rate and it is therefore also open to patients with multiple and bilateral lesions.
Collapse
Affiliation(s)
- Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Kelvin Lau
- Barts Thorax Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Didier Schneiter
- Department of Thoracic Surgery, University Hospital Zürich, Zurich, Switzerland
| | - Georgia Hardavella
- 9th Department of Respiratory Medicine, "Sotiria" Athens Chest Diseases Hospital, Athens, Greece
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Olivia Lauk
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Zygogianni A, Koukourakis IM, Georgakopoulos J, Armpilia C, Liakouli Z, Desse D, Ntoumas G, Simopoulou F, Nikoloudi M, Kouloulias V. Robotic Stereotactic Ablative Radiotherapy for Patients with Early-Stage Lung Cancer: Results of an Interim Analysis. Cancers (Basel) 2024; 16:3227. [PMID: 39335198 PMCID: PMC11429671 DOI: 10.3390/cancers16183227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Surgery is the primary treatment for early-stage lung cancer. Patients with medically inoperable lung carcinomas and patients who refuse to undergo surgery are treated with definite radiotherapy. Stereotactic ablative radiotherapy (SABR) is a compelling non-invasive therapeutic modality for this group of patients that confers promising results. METHODS We report an interim analysis of an ongoing trial. Eighty-one patients with medically inoperable early-stage (T1,2N0) lung cancer underwent SABR in our institution. SABR was delivered via the CyberKnife M6 robotic radiosurgery system. The endpoints of the analysis were treatment efficacy and tolerance. RESULTS There were no acute or late toxicities from the skin or the connective tissue of the thorax. A grade 2/3 lung injury of non-clinical significance was noted in 6% of patients, which was directly related to a higher biologically effective dose (BEDα/β = 3) and larger irradiation lung volumes in both univariate and multivariate analyses. A local control (LC) was achieved in 100% of the patients at the first follow-up, and the projected 24-month local progression-free survival (LPFS) rate was 95%. The projected 24-month disease-specific overall survival (OS) was 94%. CONCLUSIONS High LC and OS rates can be achieved with SABR for early-stage lung cancer, with minimal toxicity. This study continues to recruit patients.
Collapse
Affiliation(s)
- Anna Zygogianni
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Ioannis M. Koukourakis
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - John Georgakopoulos
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Christina Armpilia
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Zoi Liakouli
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Dimitra Desse
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Georgios Ntoumas
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Foteini Simopoulou
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Maria Nikoloudi
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Vassilis Kouloulias
- Department of Clinical Radiation Oncology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
9
|
Chen X, Zhang W, Luo L, Fu S, Cao D, Su S, Li Q, Yang W, Geng Y, Lu B, Ouyang W. Effect of primary tumor volume on survival of concurrent chemoradiotherapy in stage IV non-small cell lung cancer. Cancer Med 2024; 13:e70221. [PMID: 39279741 PMCID: PMC11403300 DOI: 10.1002/cam4.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE To explore the survival effect of thoracic gross tumor volume (GTV) in three-dimensional (3D) radiotherapy for stage IV non-small cell lung cancer (NSCLC). METHODS The data cases were obtained from a single-center retrospective analysis. From May. From 2008 to August 2018, 377 treatment criteria were enrolled. GTV was defined as the volume of the primary lesion and the hilus as well as the mediastinal metastatic lymph node. Chemotherapy was a platinum-based combined regimen of two drugs. The number of median chemotherapy cycles was 4 (2-6), and the cut-off value of the planning target volume (PTV) dose of the primary tumor was 63 Gy (30-76.5 Gy). The cut-off value of GTV volume was 150 cm3 (5.83-3535.20 cm3). RESULTS The survival rate of patients with GTV <150 cm3 is better than patients with GTV ≥150 cm3. Multivariate Cox regression analyses suggested that peripheral lung cancer, radiation dose ≥63 Gy, GTV <150 cm3, 4-6 cycles of chemotherapy, and CR + PR are good prognostic factors for patients with stage IV non-small cell lung cancer. The survival rate of patients with GTV <150 cm3 was longer than patients with ≥150 cm3 when they underwent 2 to 3 cycles of chemotherapy concurrent 3D radiotherapy (p < 0.05). When performing 4 to 6 cycles of chemotherapy concurrent 3D radiotherapy, there was no significant difference between <150 cm3 and ≥150 cm3. CONCLUSIONS The volume of stage IV NSCLC primary tumor can affect the survival of patients. Appropriate treatment methods can be opted by considering the volume of tumors to extend patients' lifetime to the utmost.
Collapse
Affiliation(s)
- Xiaxia Chen
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Wei Zhang
- Department of OncologyGuizhou Hospital of the First Affiliated Hospital of Sun Yat‐sen UniversityGuiyangChina
| | - Lan Luo
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shimei Fu
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Dongdong Cao
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shengfa Su
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Qingsong Li
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Wengang Yang
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yichao Geng
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Bing Lu
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiwei Ouyang
- Department of OncologyThe Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
10
|
Ishida N, Nagata K, Fukuda J, Oguma Y, Hirashima T, Minami K, Nishimura Y, Matsuo Y. Stereotactic body radiation therapy for multiple lung cancers in a patient with six primary cancers: a case report. J Med Case Rep 2024; 18:316. [PMID: 38987857 PMCID: PMC11238481 DOI: 10.1186/s13256-024-04633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Surgery is the standard care for patients with early-stage lung cancer, and stereotactic body radiation therapy is an option for those who are medically inoperable or refuse surgery. Medical developments in diagnostic and therapeutic strategies would prolong prognosis of patients with cancer. The number of patients with multiple cancers has also increased. Duplex primary malignant neoplasms are the most common, and triple or more primary malignant neoplasms were extremely rare. This is the first case of sextuple primary malignant neoplasms with lung cancer. CASE PRESENTATION We report a case of two courses of stereotactic body radiation therapy for an 88-year-old Japanese male patient with six primary cancers in five organs. Cancers were detected in the thyroid, prostate, esophagus, bladder, and lungs. He also had a history of angina pectoris and had undergone percutaneous coronary intervention. Although he was capable of undergoing surgery for lung cancers, he refused it because he had experienced many invasive treatments, such as surgeries and percutaneous coronary intervention. In January 2020, the first stereotactic body radiation therapy was performed for the adenocarcinoma in the right lung. In March 2022, the second stereotactic body radiation therapy was performed for the nodule of the left lung. Although he complained of mild dyspnea after the first stereotactic body radiation therapy, we did not use steroids because his peripheral oxygen saturation was within the normal range. He had pleural effusion, cardiac dilatation, and pericardial effusion 2 months after the second stereotactic body radiation therapy, which improved with the use of compression stockings. CONCLUSION A total of 43 and 17 months have passed since the first and second stereotactic body radiation therapy, respectively, there is no local recurrence and the patient can walk independently. We safely performed stereotactic body radiation therapy twice for our older patient with metachronous early-stage lung cancers. If another new tumor is detected, stereotactic body radiation therapy would be a good treatment option for the functional preservation of organs.
Collapse
Affiliation(s)
- Naoko Ishida
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
- Department of Radiation Oncology, Ishikiriseiki Hospital, 18-28 Yayoi-cho, Higashiosaka, Osaka, 579-8026, Japan
| | - Kenji Nagata
- Department of Radiation Oncology, Ishikiriseiki Hospital, 18-28 Yayoi-cho, Higashiosaka, Osaka, 579-8026, Japan.
| | - Jyunki Fukuda
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasuo Oguma
- Department of Radiation Oncology, Kindai University Nara Hospital, 1248-1 Otoda Town, Ikoma, Nara, 630-0293, Japan
| | - Tomonori Hirashima
- Department of Thoracic Oncology, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Kenichi Minami
- Department of Respiratory Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Yasumasa Nishimura
- Radiation Therapy Center, Fuchu Hospital, 1-10-17 Hiko Town, Izumi, Osaka, 594-0076, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
11
|
Cheng SH, Tu KY, Lee HH. The dynamic duo: A narrative review on the synergy between stereotactic body radiotherapy and immunotherapy in lung cancer treatment (Review). Oncol Rep 2024; 52:96. [PMID: 38874014 PMCID: PMC11188053 DOI: 10.3892/or.2024.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors (ICIs), is undoubtedly one of the major breakthroughs in lung cancer research. Patient survival and prognosis have all been improved as a result, although numerous patients do not respond to immunotherapy due to various immune escape mechanisms of the tumor cells. Recent preclinical and clinical evidence has shown that stereotactic body radiotherapy (SBRT), also known as stereotactic ablative radiotherapy, has a prominent immune priming effect that could elicit antitumor immunity against specific tumor antigens and destroy distant tumor cells, thereby achieving the elusive abscopal effect, with the resulting immuno‑active tumor environment also being more conducive to ICIs. Some landmark trials have already demonstrated the survival benefit of the dynamic duo of SBRT plus immunotherapy in metastatic non‑small‑cell lung cancer, while others such as PEMBRO‑RT further suggest that the addition of SBRT to immunotherapy could expand the current indication to those who have historically responded poorly to ICIs. In the present review, the biological mechanisms that drive the synergistic effect of SBRT and immunotherapy were first briefly outlined; then, the current understanding from clinical trials was summarized and new insight into the evolving role of immunotherapy and SBRT synergy in lung cancer treatment was provided. Finally, novel avenues for discovery were highlighted. The innovation of the present review lies in the inclusion of non‑ICI immunotherapy in the discussion, which provides a more comprehensive view on the current development and future trend of SBRT + immunotherapy synergy.
Collapse
Affiliation(s)
- Sarah Hsin Cheng
- Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kuan-Yi Tu
- School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hsin-Hua Lee
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan, R.O.C
- Department of Radiation Oncology, Faculty of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
12
|
Garner JL, Shah PL, Herth F, Slebos DJ. ERJ Advances: interventional bronchoscopy. Eur Respir J 2024; 64:2301946. [PMID: 38991719 PMCID: PMC11540446 DOI: 10.1183/13993003.01946-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
The field of interventional bronchoscopy is rapidly growing, with the development of minimally invasive approaches and innovative devices to diagnose and treat a spectrum of respiratory diseases (figure 1 ), often as outpatient procedures, and supported by high quality collaborative research. This short review covers aspects related to COPD, peripheral pulmonary nodules, interstitial lung disease, and airway stenosis and malacia. This ERJ Advances article summarises the latest developments in the rapidly advancing field of interventional bronchoscopy https://bit.ly/44Qvgrm
Collapse
Affiliation(s)
- Justin L Garner
- Department of Lung Cancer and Interventional Bronchoscopy, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pallav L Shah
- Department of Lung Cancer and Interventional Bronchoscopy, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Felix Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and Translational Lung Research Center, Universität Heidelberg, Heidelberg, Germany
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Li C, Yu S, Shen J, Liang B, Fu X, Hua L, Hu H, Jiang P, Lei R, Guan Y, Li T, Li Q, Shi A, Zhang Y. Clinical association between plan complexity and the local-recurrence-free-survival of non-small-cell lung cancer patients receiving stereotactic body radiation therapy. Phys Med 2024; 122:103377. [PMID: 38838467 DOI: 10.1016/j.ejmp.2024.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE To investigate the clinical impact of plan complexity on the local recurrence-free survival (LRFS) of non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT). METHODS Data from 123 treatment plans for 113 NSCLC patients were analyzed. Plan-averaged beam modulation (PM), plan beam irregularity (PI), monitor unit/Gy (MU/Gy) and spherical disproportion (SD) were calculated. The γ passing rates (GPR) were measured using ArcCHECK 3D phantom with 2 %/2mm criteria. High complexity (HC) and low complexity (LC) groups were statistically stratified based on the aforementioned metrics, using cutoffs determined by their significance in correlation with survival time, as calculated using the R-3.6.1 packages. Kaplan-Meier analysis, Cox regression, and Random Survival Forest (RSF) models were employed for the analysis of local recurrence-free survival (LRFS). Propensity-score-matched pairs were generated to minimize bias in the analysis. RESULTS The median follow-up time for all patients was 25.5 months (interquartile range 13.4-41.2). The prognostic capacity of PM was suggested using RSF, based on Variable Importance and Minimal Depth methods. The 1-, 2-, and 3-year LRFS rates in the HC group were significantly lower than those in the LC group (p = 0.023), when plan complexity was defined by PM. However, no significant difference was observed between the HC and LC groups when defined by other metrics (p > 0.05). All γ passing rates exceeded 90.5 %. CONCLUSIONS This study revealed a significant association between higher PM and worse LRFS in NSCLC patients treated with SBRT. This finding offers additional clinical evidence supporting the potential optimization of pre-treatment quality assurance protocols.
Collapse
Affiliation(s)
- Chenguang Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shutong Yu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Junyue Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xinhui Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ling Hua
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huimin Hu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Runhong Lei
- Department of Radiation Oncology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Ying Guan
- Beijing United Family Hospital, Beijing 100015, China
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Quanfu Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos 017000, China.
| | - Anhui Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yibao Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
14
|
Liu F, Farris MK, Ververs JD, Hughes RT, Munley MT. Histology-driven hypofractionated radiation therapy schemes for early-stage lung adenocarcinoma and squamous cell carcinoma. Radiother Oncol 2024; 195:110257. [PMID: 38548113 PMCID: PMC11098686 DOI: 10.1016/j.radonc.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE Histology was found to be an important prognostic factor for local tumor control probability (TCP) after stereotactic body radiotherapy (SBRT) of early-stage non-small-cell lung cancer (NSCLC). A histology-driven SBRT approach has not been explored in routine clinical practice and histology-dependent fractionation schemes remain unknown. Here, we analyzed pooled histologic TCP data as a function of biologically effective dose (BED) to determine histology-driven fractionation schemes for SBRT and hypofractionated radiotherapy of two predominant early-stage NSCLC histologic subtypes adenocarcinoma (ADC) and squamous cell carcinoma (SCC). MATERIAL AND METHODS The least-χ2 method was used to fit the collected histologic TCP data of 8510 early-stage NSCLC patients to determine parameters for a well-developed radiobiological model per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative. RESULTS A fit to the histologic TCP data yielded independent radiobiological parameter sets for radiotherapy of early-stage lung ADC and SCC. TCP increases steeply with BED and reaches an asymptotic maximal plateau, allowing us to determine model-independent optimal fractionation schemes of least doses in 1-30 fractions to achieve maximal tumor control for early-stage lung ADC and SCC, e.g., 30, 44, 48, and 51 Gy for ADC, and 32, 48, 54, and 58 Gy for SCC in 1, 3, 4, and 5 fractions, respectively. CONCLUSION We presented the first determination of histology-dependent radiobiological parameters and model-independent histology-driven optimal SBRT and hypofractionated radiation therapy schemes for early-stage lung ADC and SCC. SCC requires substantially higher radiation doses to maximize tumor control than ADC, plausibly attributed to tumor genetic diversity and microenvironment. The determined optimal SBRT schemes agree well with clinical practice for early-stage lung ADC. These proposed optimal fractionation schemes provide first insights for histology-based personalized radiotherapy of two predominant early-stage NSCLC subtypes ADC and SCC, which require further validation with large-scale histologic TCP data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Michael K Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Ryan T Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
15
|
Csiki E, Simon M, Papp J, Barabás M, Mikáczó J, Gál K, Sipos D, Kovács Á. Stereotactic body radiotherapy in lung cancer: a contemporary review. Pathol Oncol Res 2024; 30:1611709. [PMID: 38476352 PMCID: PMC10928908 DOI: 10.3389/pore.2024.1611709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The treatment of early stage non-small cell lung cancer (NSCLC) has improved enormously in the last two decades. Although surgery is not the only choice, lobectomy is still the gold standard treatment type for operable patients. For inoperable patients stereotactic body radiotherapy (SBRT) should be offered, reaching very high local control and overall survival rates. With SBRT we can precisely irradiate small, well-defined lesions with high doses. To select the appropriate fractionation schedule it is important to determine the size, localization and extent of the lung tumor. The introduction of novel and further developed planning (contouring guidelines, diagnostic image application, planning systems) and delivery techniques (motion management, image guided radiotherapy) led to lower rates of side effects and more conformal target volume coverage. The purpose of this study is to summarize the current developments, randomised studies, guidelines about lung SBRT, with emphasis on the possibility of increasing local control and overall rates in "fit," operable patients as well, so SBRT would be eligible in place of surgery.
Collapse
Affiliation(s)
- Emese Csiki
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Papp
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Barabás
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mikáczó
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Gál
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Sipos
- Faculty of Health Sciences, University of Pécs, Pecs, Hungary
| | - Árpád Kovács
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Duan Y, Feng A, Wang H, Chen H, Gu H, Shao Y, Huang Y, Shen Z, Kong Q, Xu Z. Dosimetry and treatment efficiency of SBRT using TaiChiB radiotherapy system for two-lung lesions with one overlapping organs at risk. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:379-394. [PMID: 38217628 DOI: 10.3233/xst-230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Purpose This study aims to assess the dosimetry and treatment efficiency of TaiChiB-based Stereotactic Body Radiotherapy (SBRT) plans applying to treat two-lung lesions with one overlapping organs at risk. Methods For four retrospective patients diagnosed with two-lung lesions each patient, four treatment plans were designed including Plan Edge, TaiChiB linac-based, RGS-based, and a linac-RGS hybrid (Plan TCLinac, Plan TCRGS, and Plan TCHybrid). Dosimetric metrics and beam-on time were employed to evaluate and compare the TaiChiB-based plans against Plan Edge. Results For Conformity Index (CI), Plan TCRGS outperformed all other plans with an average CI of 1.06, as opposed to Plan Edge's 1.33. Similarly, for R50 %, Plan TCRGS was superior with an average R50 % of 3.79, better than Plan Edge's 4.28. In terms of D2 cm, Plan TCRGS also led with an average of 48.48%, compared to Plan Edge's 56.25%. For organ at risk (OAR) sparing, Plan TCRGS often displayed the lowest dosimetric values, notably for the spinal cord (Dmax 5.92 Gy) and lungs (D1500cc 1.00 Gy, D1000cc 2.61 Gy, V10 Gy 15.14%). However, its high Dmax values for the heart and great vessels sometimes exceeded safety thresholds. Plan TCHybrid presented a balanced approach, showing doses comparable to or better than Plan Edge without crossing safety limits. In terms of beam-on time, Plan TCLinac emerged as the most efficient treatment option in three out of four cases, followed closely by Plan Edge in one case. Plan TCRGS, despite its dosimetric advantages, was the least efficient, recording notably longer beam-on times, with a peak at 33.28 minutes in Case 2. Conclusion For patients with two-lung lesions treated by SBRT whose one lesion overlaps with OARs, the Plan TCHybrid delivered by TaiChiB digital radiotherapy system can be recommended as a clinical option.
Collapse
Affiliation(s)
- Yanhua Duan
- Institute of Modern Physics, Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihui Feng
- Institute of Modern Physics, Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hua Chen
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hengle Gu
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Yan Shao
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Ying Huang
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhenjiong Shen
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Thor M, Fitzgerald K, Apte A, Oh JH, Iyer A, Odiase O, Nadeem S, Yorke ED, Chaft J, Wu AJ, Offin M, Simone Ii CB, Preeshagul I, Gelblum DY, Gomez D, Deasy JO, Rimner A. Exploring published and novel pre-treatment CT and PET radiomics to stratify risk of progression among early-stage non-small cell lung cancer patients treated with stereotactic radiation. Radiother Oncol 2024; 190:109983. [PMID: 37926331 PMCID: PMC11233189 DOI: 10.1016/j.radonc.2023.109983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE Disease progression after definitive stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) occurs in 20-40% of patients. Here, we explored published and novel pre-treatment CT and PET radiomics features to identify patients at risk of progression. MATERIALS/METHODS Published CT and PET features were identified and explored along with 15 other CT and PET features in 408 consecutively treated early-stage NSCLC patients having CT and PET < 3 months pre-SBRT (training/set-aside validation subsets: n = 286/122). Features were associated with progression-free survival (PFS) using bootstrapped Cox regression (Bonferroni-corrected univariate predictor: p ≤ 0.002) and only non-strongly correlated predictors were retained (|Rs|<0.70) in forward-stepwise multivariate analysis. RESULTS Tumor diameter and SUVmax were the two most frequently reported features associated with progression/survival (in 6/20 and 10/20 identified studies). These two features and 12 of the 15 additional features (CT: 6; PET: 6) were candidate PFS predictors. A re-fitted model including diameter and SUVmax presented with the best performance (c-index: 0.78; log-rank p-value < 0.0001). A model built with the two best additional features (CTspiculation1 and SUVentropy) had a c-index of 0.75 (log-rank p-value < 0.0001). CONCLUSIONS A re-fitted pre-treatment model using the two most frequently published features - tumor diameter and SUVmax - successfully stratified early-stage NSCLC patients by PFS after receiving SBRT.
Collapse
Affiliation(s)
- Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA.
| | - Kelly Fitzgerald
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Aditi Iyer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Otasowie Odiase
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Jamie Chaft
- Department of Medicine, Memorial Sloan Kettering Cancer Center, USA
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, USA
| | - Charles B Simone Ii
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | | | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, USA
| |
Collapse
|
18
|
Luo Y, Zeng Z, Liu Y, Liu A. Reflecting on the cardiac toxicity in non-small cell lung cancer in the era of immune checkpoint inhibitors therapy combined with thoracic radiotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189008. [PMID: 37913939 DOI: 10.1016/j.bbcan.2023.189008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have become a widely used treatment for non-small cell lung cancer (NSCLC), and the combination with traditional radiotherapy (RT) has shown significant potential in prolonging patient survival. However, both thoracic RT and ICIs can lead to cardiac toxicity, including radiation-induced heart damage (RIHD) and immunotherapy-related heart damage (IRHD). It still remains uncertain whether the combination of thoracic RT and immunotherapy will exacerbate acute or late cardiovascular (CV) toxicity and incidence. In this review, we summarize safety data from relevant clinical studies regarding CV toxicity for the combination therapy in NSCLC patients, explore the underlying synergetic mechanisms and common risk factors, and proposed treatment and management strategies. We hope to increase emphasis on the long-term assessment of CV toxicity risks associated with the combination therapy, and reduce the incidence of CV deaths resulting from such regimens.
Collapse
Affiliation(s)
- Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yunwei Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
19
|
Zhou J, Wei Z, Yang C, Jia D, Pan B, Zeng Y, Sun D, Yu Y. APE1 promotes radiation resistance against radiation-induced pyroptosis by inhibiting the STING pathway in lung adenocarcinoma. Transl Oncol 2023; 36:101749. [PMID: 37544034 PMCID: PMC10424251 DOI: 10.1016/j.tranon.2023.101749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Mammalian apurinic/apyrimidinic endonuclease 1 (APE1, APEX1) is a multifunctional enzyme that maintains cellular homeostasis. It is involved in the base excision repair (BER) pathway and plays a key role in radiation-induced DNA damage response. However, the relationship between APE1-driven radiation resistance and pyroptosis in lung adenocarcinoma (LUAD) cells and the underlying molecular mechanisms remain unclear. We found that APE1 was significantly upregulated in LUAD tissues compared to para-carcinoma tissues and promoted the proliferation and invasion of LUAD cells in vitro and in vivo. Mechanistically, APE1 inhibited pyroptosis by inactivating the interferon gene stimulator (STING) pathway via direct interaction with AIM2 and DDX41, as detected by RNA-seq and co-immunoprecipitation. APE1 protects LUAD cells against radiation-induced damage and induces radio-resistance by targeting the STING pathway. It can induce pyroptosis and is negatively regulated by interactions with AIM2 and DDX41. Therefore, APE1 inhibitors should be considered to enhance the radiosensitivity of LUAD cells and improve patient prognosis and therapeutic outcomes. Thus, APE1 play a role in the tumor immune microenvironment and in tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Zixin Wei
- Department of Medical Oncology, Sichuan Cancer Hospital, Chengdu 610042, China
| | - Chuan Yang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Di Sun
- Department of Radiotherapy Technology Center, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China.
| |
Collapse
|
20
|
Chang JY, Lin SH, Dong W, Liao Z, Gandhi SJ, Gay CM, Zhang J, Chun SG, Elamin YY, Fossella FV, Blumenschein G, Cascone T, Le X, Pozadzides JV, Tsao A, Verma V, Welsh JW, Chen AB, Altan M, Mehran RJ, Vaporciyan AA, Swisher SG, Balter PA, Fujimoto J, Wistuba II, Feng L, Lee JJ, Heymach JV. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet 2023; 402:871-881. [PMID: 37478883 PMCID: PMC10529504 DOI: 10.1016/s0140-6736(23)01384-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.
Collapse
Affiliation(s)
- Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenli Dong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saumil J Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank V Fossella
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jenny V Pozadzides
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aileen B Chen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter A Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Owen D, Siva S, Salama JK, Daly M, Kruser TJ, Giuliani M. Some Like It Hot: The Value of Dose and Hot Spots in Lung Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 117:1-5. [PMID: 37574234 DOI: 10.1016/j.ijrobp.2023.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Center, Victoria, Australia
| | - Joseph K Salama
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Megan Daly
- Department of Radiation Oncology, University of California, Davis, California
| | - Timothy J Kruser
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Meredith Giuliani
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Wang X, Bai H, Gao M, Guan Y, Yu L, Li J, Dong Y, Song Y, Tao Z, Meng M, Wu Z, Zhao L, Yuan Z. Impact of radiation dose to the immune system on disease progression and survival for early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiother Oncol 2023; 186:109804. [PMID: 37437605 DOI: 10.1016/j.radonc.2023.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES Although the effects of estimated dose of radiation to immune cells (EDRIC) in stage III NSCLC, LA-NSCLC, LS-SCLC and esophageal cancer on clinical outcomes have been studied, its impact in early-stage non-small cell lung cancer (ES-NSCLC) is unknown. In this study, we evaluated the role of EDRIC and identified the factors influencing EDRIC in this population. METHODS AND MATERIALS We retrospectively analyzed 211 pathologically confirmed ES-NSCLC patients who were treated with SBRT between 2007 and 2020. EDRIC was calculated based on the model developed by Jin et al. and improved by Ladbury et al. Kaplan-Meier method and Cox proportional hazards regression were adopted to estimate CSS, PFS, LPFS, and DMFS. Pearson correlation was used to assess the correlation between variables. We further validated our findings in an independent cohort of 119 patients with ES-NSCLC. RESULTS A total of 211 patients were included with median follow-up of 48 months in the training cohort. The median EDRIC was 2.178 Gy (range: 0.426-6.015). GTV showed a positive correlation with EDRIC (r = 0.707, P = 0.000). In multivariate analysis, higher EDRIC was significantly associated with worse CSS (HR = 1.468, P = 0.009) and DMFS (HR = 1.491, P = 0.016). Considering each EDRIC quartile, there was a significant difference in CSS between 1st and 4th and 1st and 3rd quartile (P = 0.000, P = 0.004, respectively); and DMFS between 1st and 4th,1st and 3rd, and 1st and 2nd quartile (P = 0.000, P = 0.000, P = 0.008, respectively). In the subgroup and validation cohort, EDRIC was also the important prognostic predictor of CSS and DMFS using multivariate analysis. CONCLUSION EDRIC was an independent predictor of CSS and DMFS in ES-NSCLC, and it was affected by GTV and tumor location. Though EDRIC is a critical determinant of treatment outcomes, it is quantifiable and potentially modifiable. Additional researches exploring the feasibility of achieving lower EDRIC while maintaining adequate tumor coverage during radiotherapy are warranted.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Bai
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Miaomiao Gao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yong Guan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Junyi Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongchun Song
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Maobin Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
23
|
Patel VM, Elias R, Asokan A, Sharma A, Christie A, Pedrosa I, Chiu H, Reznik S, Hannan R, Timmerman R, Brugarolas J. Life-threatening hemoptysis in patients with metastatic kidney cancer. Clin Genitourin Cancer 2023; 21:497-506. [PMID: 37045713 PMCID: PMC10510952 DOI: 10.1016/j.clgc.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Hemoptysis is a complication of intrathoracic tumors, both primary and metastatic, and the risk may be increased by procedural interventions as well as Stereotactic Ablative Radiation (SAbR). The risk of hemoptysis with SAbR for lung cancer is well characterized, but there is a paucity of data about intrathoracic metastases. Here, we sought to evaluate the incidence of life-threatening/fatal hemoptysis (LTH) in patients with renal cell carcinoma (RCC) chest metastases with a focus on SAbR. We systematically evaluated patients with RCC at UT Southwestern Medical Center (UTSW) Kidney Cancer Program (KCP) from July 2005 to March 2020. We queried Kidney Cancer Explorer (KCE), a data portal with clinical, pathological, and experimental genomic data. Patients were included in the study based on mention of "hemoptysis" in clinical documentation, if they had a previous bronchoscopy, or had undergone SAbR to any site within the chest. Two hundred and thirty four patients met query criteria and their records were individually reviewed. We identified 10 patients who developed LTH. Of these, 4 had LTH as an immediate procedural complication whilst the remaining 6 had prior SAbR to ultra-central (UC; abutting the central bronchial tree) metastases. These 6 patients had a total of 10 lung lesions irradiated (UC, 8; central 1, peripheral 1), with a median total cumulative SAbR dose of 38 Gray (Gy/ lesion) (range: 25-50 Gy). Other risk factors included intrathoracic disease progression (n = 4, 67%), concurrent anticoagulant therapy (n = 1, 17%) and concurrent systemic therapy (n = 4, 67%). Median time to LTH from first SAbR was 26 months (range: 8-61 months). Considering that 130 patients received SAbR to a chest lesion during the study period, the overall incidence of LTH following SAbR was 4.6% (6/130). The patient population that received SAbR (n = 130) was at particularly high risk for complications, with 67 (52%) having two or more chest metastaes treated, and 29 (22%) receiving SAbR to three or more lesions. Overall, the risk of LTH following SAbR to a central or UC lesion was 10.5% (6/57). In conclusion, SAbR of RCC metastases located near the central bronchial tree may increase the risk of LTH.
Collapse
Affiliation(s)
- Viral M Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Elias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annapoorani Asokan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Akanksha Sharma
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Biostatistics Shared Resource, Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hsienchang Chiu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pulmonary Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raquibul Hannan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Timmerman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Stella GM, Lettieri S, Piloni D, Ferrarotti I, Perrotta F, Corsico AG, Bortolotto C. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1042. [PMID: 37513953 PMCID: PMC10385174 DOI: 10.3390/ph16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND RATIONALE The therapeutic interventions against lung cancer are currently based on a fully personalized approach to the disease with considerable improvement of patients' outcome. Alongside continuous scientific progresses and research investments, massive technologic efforts, innovative challenges, and consolidated achievements together with research investments are at the bases of the engineering and manufacturing revolution that allows a significant gain in clinical setting. AIM AND METHODS The scope of this review is thus to focus, rather than on the biologic traits, on the analysis of the precision sensors and novel generation materials, as semiconductors, which are below the clinical development of personalized diagnosis and treatment. In this perspective, a careful revision and analysis of the state of the art of the literature and experimental knowledge is presented. RESULTS Novel materials are being used in the development of personalized diagnosis and treatment for lung cancer. Among them, semiconductors are used to analyze volatile cancer compounds and allow early disease diagnosis. Moreover, they can be used to generate MEMS which have found an application in advanced imaging techniques as well as in drug delivery devices. CONCLUSIONS Overall, these issues represent critical issues only partially known and generally underestimated by the clinical community. These novel micro-technology-based biosensing devices, based on the use of molecules at atomic concentrations, are crucial for clinical innovation since they have allowed the recent significant advances in cancer biology deciphering as well as in disease detection and therapy. There is an urgent need to create a stronger dialogue between technologists, basic researchers, and clinicians to address all scientific and manufacturing efforts towards a real improvement in patients' outcome. Here, great attention is focused on their application against lung cancer, from their exploitations in translational research to their application in diagnosis and treatment development, to ensure early diagnosis and better clinical outcomes.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80131 Napoli, Italy
- U.O.C. Clinica Pneumologica "L. Vanvitelli", A.O. dei Colli, Ospedale Monaldi, 80131 Napoli, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy
- Department of Diagnostic Services and Imaging, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
25
|
Davey A, Thor M, van Herk M, Faivre-Finn C, Rimner A, Deasy JO, McWilliam A. Predicting cancer relapse following lung stereotactic radiotherapy: an external validation study using real-world evidence. Front Oncol 2023; 13:1156389. [PMID: 37503315 PMCID: PMC10369005 DOI: 10.3389/fonc.2023.1156389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose For patients receiving lung stereotactic ablative radiotherapy (SABR), evidence suggests that high peritumor density predicts an increased risk of microscopic disease (MDE) and local-regional failure, but only if there is low or heterogenous incidental dose surrounding the tumor (GTV). A data-mining method (Cox-per-radius) has been developed to investigate this dose-density interaction. We apply the method to predict local relapse (LR) and regional failure (RF) in patients with non-small cell lung cancer. Methods 199 patients treated in a routine setting were collated from a single institution for training, and 76 patients from an external institution for validation. Three density metrics (mean, 90th percentile, standard deviation (SD)) were studied in 1mm annuli between 0.5cm inside and 2cm outside the GTV boundary. Dose SD and fraction of volume receiving less than 30Gy were studied in annuli 0.5-2cm outside the GTV to describe incidental MDE dosage. Heat-maps were created that correlate with changes in LR and RF rates due to the interaction between dose heterogeneity and density at each distance combination. Regions of significant improvement were studied in Cox proportional hazards models, and explored with and without re-fitting in external data. Correlations between the dose component of the interaction and common dose metrics were reported. Results Local relapse occurred at a rate of 6.5% in the training cohort, and 18% in the validation cohort, which included larger and more centrally located tumors. High peritumor density in combination with high dose variability (0.5 - 1.6cm) predicts LR. No interactions predicted RF. The LR interaction improved the predictive ability compared to using clinical variables alone (optimism-adjusted C-index; 0.82 vs 0.76). Re-fitting model coefficients in external data confirmed the importance of this interaction (C-index; 0.86 vs 0.76). Dose variability in the 0.5-1.6 cm annular region strongly correlates with heterogeneity inside the target volume (SD; ρ = 0.53 training, ρ = 0.65 validation). Conclusion In these real-world cohorts, the combination of relatively high peritumor density and high dose variability predicts increase in LR, but not RF, following lung SABR. This external validation justifies potential use of the model to increase low-dose CTV margins for high-risk patients.
Collapse
Affiliation(s)
- Angela Davey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Wu L, Zhang Z, Bai M, Yan Y, Yu J, Xu Y. Radiation combined with immune checkpoint inhibitors for unresectable locally advanced non-small cell lung cancer: synergistic mechanisms, current state, challenges, and orientations. Cell Commun Signal 2023; 21:119. [PMID: 37221584 PMCID: PMC10207766 DOI: 10.1186/s12964-023-01139-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
Until the advent of immune checkpoint inhibitors (ICIs), definitive radiotherapy (RT) concurrently with chemotherapy was recommended for unresectable, locally advanced non-small cell lung cancer (LA-NSCLC). The trimodality paradigm with consolidation ICIs following definitive concurrent chemoradiotherapy has been the standard of care since the PACIFIC trial. Preclinical evidence has demonstrated the role of RT in the cancer-immune cycle and the synergistic effect of RT combined with ICIs (iRT). However, RT exerts a double-edged effect on immunity and the combination strategy still could be optimized in many areas. In the context of LA-NSCLC, optimized RT modality, choice, timing, and duration of ICIs, care for oncogenic addicted tumors, patient selection, and novel combination strategies require further investigation. Targeting these blind spots, novel approaches are being investigated to cross the borders of PACIFIC. We discussed the development history of iRT and summarized the updated rationale for the synergistic effect. We then summarized the available research data on the efficacy and toxicity of iRT in LA-NSCLC for cross-trial comparisons to eliminate barriers. Progression during and after ICIs consolidation therapy has been regarded as a distinct resistance scenario from primary or secondary resistance to ICIs, the subsequent management of which has also been discussed. Finally, based on unmet needs, we probed into the challenges, strategies, and auspicious orientations to optimize iRT in LA-NSCLC. In this review, we focus on the underlying mechanisms and recent advances of iRT with an emphasis on future challenges and directions that warrant further investigation. Taken together, iRT is a proven and potential strategy in LA-NSCLC, with multiple promising approaches to further improve the efficacy. Video Abstract.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Menglin Bai
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Chen K, Hou L, Chen M, Li S, Shi Y, Raynor WY, Yang H. Predicting the Efficacy of SBRT for Lung Cancer with 18F-FDG PET/CT Radiogenomics. Life (Basel) 2023; 13:life13040884. [PMID: 37109413 PMCID: PMC10142286 DOI: 10.3390/life13040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose: to develop a radiogenomic model on the basis of 18F-FDG PET/CT radiomics and clinical-parameter EGFR for predicting PFS stratification in lung-cancer patients after SBRT treatment. Methods: A total of 123 patients with lung cancer who had undergone 18F-FDG PET/CT examination before SBRT from September 2014 to December 2021 were retrospectively analyzed. All patients’ PET/CT images were manually segmented, and the radiomic features were extracted. LASSO regression was used to select radiomic features. Logistic regression analysis was used to screen clinical features to establish the clinical EGFR model, and a radiogenomic model was constructed by combining radiomics and clinical EGFR. We used the receiver operating characteristic curve and calibration curve to assess the efficacy of the models. The decision curve and influence curve analysis were used to evaluate the clinical value of the models. The bootstrap method was used to validate the radiogenomic model, and the mean AUC was calculated to assess the model. Results: A total of 2042 radiomics features were extracted. Five radiomic features were related to the PFS stratification of lung-cancer patients with SBRT. T-stage and overall stages (TNM) were independent factors for predicting PFS stratification. AUCs under the ROC curve of the radiomics, clinical EGFR, and radiogenomic models were 0.84, 0.67, and 0.86, respectively. The calibration curve shows that the predicted value of the radiogenomic model was in good agreement with the actual value. The decision and influence curve showed that the model had high clinical application values. After Bootstrap validation, the mean AUC of the radiogenomic model was 0.850(95%CI 0.849–0.851). Conclusions: The radiogenomic model based on 18F-FDG PET/CT radiomics and clinical EGFR has good application value in predicting the PFS stratification of lung-cancer patients after SBRT treatment.
Collapse
Affiliation(s)
- Kuifei Chen
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 317000, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Liqiao Hou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Meng Chen
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 317000, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Shuling Li
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 317000, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Yangyang Shi
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85724, USA
| | - William Y. Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Haihua Yang
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 317000, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
- Correspondence: or
| |
Collapse
|
28
|
Eisenberg M, Deboever N, Antonoff MB. Salvage surgery in lung cancer following definitive therapies. J Surg Oncol 2023; 127:319-328. [PMID: 36630094 DOI: 10.1002/jso.27155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2023]
Abstract
Salvage surgery refers to operative resection of persistent or recurrent disease in patients initially treated with intention-to-cure nonoperative management. In non-small-cell lung cancer, salvage surgery may be effective in treating selected patients with locally progressive tumors, recurrent local or locoregional disease, or local complications after nonoperative therapy. Importantly, those patients who may be candidates for salvage surgery are evolving, in terms of disease stage as well as the types of attempted definitive therapy received.
Collapse
Affiliation(s)
- Michael Eisenberg
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Zhu XR, Li Y, Yang M, Whitaker TJ, Taylor PA, Zhang X, Poenisch F, Sahoo N, Liao Z, Chang JY. Stereotactic body proton therapy for early stage non-small cell lung cancer - Technical challenges and solutions: The MD Anderson experience. JOURNAL OF RADIOSURGERY AND SBRT 2023; 9:75-82. [PMID: 38029015 PMCID: PMC10681148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023]
Abstract
Our randomized clinical study comparing stereotactic body radiotherapy (SBRT) and stereotactic body proton therapy (SBPT) for early stage non-small cell lung cancer (NSCLC) was closed prematurely owing to poor enrollment, largely because of lack of volumetric imaging and difficulty in obtaining insurance coverage for the SBPT group. In this article, we describe technology improvements in our new proton therapy center, particularly in image guidance with cone beam CT (CBCT) and CT on rail (CTOR), as well as motion management with real-time gated proton therapy (RGPT) and optical surface imaging. In addition, we have a treatment planning system that provides better treatment plan optimization and more accurate dose calculation. We expect to re-start the SBPT program, including for early stage NSCLC as well as for other disease sites soon after starting patient treatment at our new proton therapy center.
Collapse
Affiliation(s)
- X Ronald Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuting Li
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Yang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas J Whitaker
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Falk Poenisch
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Narayan Sahoo
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Esmonde-White C, Palma D, Mutsaers A. Mistaken Metastasis: Radiation-Induced Rib Fracture Mimicking Malignancy on Computerized Tomography Case Report. Case Rep Oncol 2023; 16:243-248. [PMID: 37092118 PMCID: PMC10114023 DOI: 10.1159/000528613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/02/2022] [Indexed: 04/25/2023] Open
Abstract
A 62-year-old woman with a 40-pack-year smoking history and severe chronic obstructive pulmonary disease with early-stage right upper lobe non-small cell lung cancer (NSCLC) was treated with stereotactic ablative radiotherapy (SABR). Two years after treatment, a surveillance computerized tomography scan showed lesions of the posterior 4th and 5th ribs including expansion of the medulla that was unusual and of concern for possible malignant infiltration. A follow-up magnetic resonance imaging (MRI) scan revealed these lesions to be healing fractures post-radiotherapy. Although generally well tolerated, SABR is known to produce inflammatory and fibrotic changes both in-field and in organs at risk, and rib fractures are a well-established adverse event. MRI has high diagnostic accuracy and sensitivity for rib fractures and was able to rule out malignant spread. This case demonstrates the need for regular follow-up following SABR for early-stage NSCLC, as well as the challenge of interpreting indeterminate post-SABR radiography findings.
Collapse
Affiliation(s)
| | - David Palma
- Radiation Oncology, London Health Sciences Center, London, ON, Canada
| | - Adam Mutsaers
- Radiation Oncology, London Health Sciences Center, London, ON, Canada
| |
Collapse
|
31
|
Li F, Jiang H, Bu M, Mu X, Zhao H. Dose-effect relationship of stereotactic body radiotherapy in non-small cell lung cancer patients. Radiat Oncol 2022; 17:211. [PMID: 36564845 PMCID: PMC9789627 DOI: 10.1186/s13014-022-02183-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To establish the dose effect relationship between the dose parameters of stereotactic body radiation therapy (SBRT) for early non-small cell lung cancer (NSCLC) and the local tumor control rate. MATERIALS AND METHODS A comprehensive literature search was conducted using PubMed, the Web of Science and the Cochrane databases to determine the articles treated with SBRT in early-stage NSCLC. Original studies with complete prescription dose information, tumor local control rate and other important parameters were screened and reported. Probit model in XLSTAT 2016 was used for regression analysis, and P < 0.05 was set as a statistically significant level. RESULTS After literature screening, 22 eligible studies were included in probit model regression analysis, involving 1861 patients. There is no significant dose effect relationship between nominal BED10 and peripheral BED10 versus 3 years local control probability. There were significant dose effect relationships between the center BED10 and the average BED10 versus the 3 years local control probability, with P values are 0.001 and < 0.0001, respectively. According to the results of this model, the 3 years local control rate of 90.5% (87.5-92.1%) and 89.5% (86.7-91.0%) can be expected at the center BED10 of 180 Gy or the average BED10 of 140 Gy, prospectively. CONCLUSIONS For NSCLC treated with SBRT, more attention should be paid to the central dose and average dose of PTV. A set of clear definition in the dose prescription should be established to ensure the effectiveness and comparability of treatment.
Collapse
Affiliation(s)
- Fei Li
- grid.415954.80000 0004 1771 3349Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Hairong Jiang
- Department of Geriatrics, Jilin City Hospital of Chemical Industry, Jilin, 130022 Jilin People’s Republic of China
| | - Mingwei Bu
- Department of Radiation Oncology, Guowen Medical Corporation Changchun Hospital, Changchun, 130028 Jilin People’s Republic of China
| | - Xin Mu
- Department of Radiation Oncology, Jilin City Hospital of Chemical Industry, Jilin, 130022 Jilin People’s Republic of China
| | - Hongfu Zhao
- grid.415954.80000 0004 1771 3349Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
32
|
Gao F, Niu Y, Sun L, Li W, Xia H, Zhang Y, Geng S, Guo Z, Lin H, Du G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115573. [PMID: 35917893 DOI: 10.1016/j.jep.2022.115573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mufangji decoction (MFJD), a famous traditional Chinese medicine formula in Synopsis of Golden Chamber (Jingui yaolue), has been utilized to treat cough and asthma and release chest pain over 2000 years in China. Chinese old herbalist doctor use MFJD to treat lung cancer and cancerous pleural fluid, but the preventive effect of MFJD on lung cancer and the underlying mechanism are indefinite. AIM OF THE STUDY The goal of this study is to explore the efficacy and mechanism of Mufangji decoction preventing lung cancer referring to the traditional use. MATERIALS AND METHODS Tumor allograft experiment and host versus tumor experiment were used to observe the direct anti-tumor effect and indirect anti-tumor immune effect, the mouse lung carcinogenic model was used to evaluate the dose-response and the preventive effect of MFJD on lung cancer. The active ingredients of MFJD were obtained by UPLC-MS/MS. The potential targets of MFJD were screened by network pharmacology and transcriptomics. The therapeutic targets and pathways of MFJD on lung cancer were obtained by protein-protein interaction, molecular docking and David database. The predicted results were verified in vitro and in vivo. RESULTS MFJD could significantly prevent tumor growth in host versus tumor experiment but could not in tumor allograft experiment, indicating an anti-tumor immune effect against lung cancer. MFJD could reduce lung nodules with a dose-response in mouse lung carcinogenic model. Myeloperoxidase (MPO) was selected as the core target due to the highest degree value in Protein-Protein interaction network and had potently binding activity to sinomenine and dehydrocostus lactone in molecular docking. In vivo, MPO-expressed neutrophils are negatively correlated with lung cancer progression and MFJD could promote the neutrophil-related immune surveillance. In vitro, sinomenine and dehydrocostus lactone could promote neutrophil phagocytosis, MPO and ROS production in a dose dependent manner. The major compounds from MFJD were identified to regulate 36 targets for lung cancer prevention by UPLC-MS/MS, network pharmacology and transcriptomics. David database exhibited that MFJD plays an important role in immunoregulation by modulating 4 immune-related biological processes and 3 immune-related pathways. CONCLUSIONS MFJD prevents lung cancer by mainly promoting MPO expression to maintain neutrophil immune surveillance, its key compounds are sinomenine and dehydrocostus lactone.
Collapse
Affiliation(s)
- Fan Gao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yuju Niu
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Luyao Sun
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Wenwen Li
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haojie Xia
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yaru Zhang
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| | - Zhenzhen Guo
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haihong Lin
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Gangjun Du
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| |
Collapse
|
33
|
Videtic GMM, Reddy CA, Woody NM, Stephans KL. Local Control With Single-Fraction Lung Stereotactic Body Radiotherapy is not influenced by Non-Small Cell Lung Cancer Histologic Subtype. Clin Lung Cancer 2022; 23:e428-e434. [PMID: 35750570 DOI: 10.1016/j.cllc.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION/BACKGROUND For early stage medically inoperable lung cancer treated with fractionated stereotactic body radiotherapy (SBRT), higher local failure is associated with squamous carcinoma (SqC) compared to adenocarcinoma (AC). This study explored whether histology influences single-fraction SBRT local control. MATERIALS AND METHODS We surveyed our prospective data registry from 12/2009 to 12/2019 for SF-SBRT cases with biopsy-proven AC or SqC only. Outcomes of interest included local (LF), nodal (NF), distant (DF) failure rates and overall survival (OS), as well as treatment-related toxicity. RESULTS For the 10-year interval surveyed, 113 patients met study criteria. There was no association between histology and dose received (34 Gy or 30 Gy). Median follow up was 22.9 months. Patient characteristics were balanced between histologic cohorts. Median tumor size was 1.9 cm. Comparing total AC vs. SqC cohorts, 2-year LF rates (%) were 7.3 vs. 9.6, respectively (P = .9805). In %, 2-year LF, NF, DF and OS rates for AC for 30 Gy and 34 Gy, respectively, were 10.8 vs. 6.4; 10.5 vs. 16.2; 15.8 vs. 13.0; 77.9 vs.71.2 (all P = non-significant). In %, 2-year LF, NF, DF, and OS rates for SqC for 30 Gy and 34 Gy, respectively, were 11.8 vs. 8.1; 5.9 vs. 18.0; 23.5 vs. 9.7; 70.6 vs. 77.1 (all P = non-significant). When considering toxicities, there were no grade 4/5 toxicities and no significant differences in any other toxicity rate by histology or dose. CONCLUSION SF-SBRT local control was not associated with histology, unlike fractionated schedules. This novel finding adds to the evolving understanding of this treatment schedule.
Collapse
Affiliation(s)
- Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Chandana A Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Neil M Woody
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
34
|
Ko EJ, Lee SJ. A Comparative analysis of type 2 diabetes management quality indicators in cancer survivors. Asia Pac J Oncol Nurs 2022; 9:100116. [PMID: 36158707 PMCID: PMC9500516 DOI: 10.1016/j.apjon.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to assess indicators of type 2 diabetes mellitus (DM) management, including adequate DM control, and treatment rates, in cancer survivors according to the time of DM diagnosis and to compare them with the DM management indicators of a non-cancer control group. Methods We used the 2013-2019 data of the Korea National Health and Nutrition Examination Survey for this study. To compare their adequate DM control, and treatment rates, we identified 4918 patients with type 2 DM aged ≥ 30 years and classified them into pre-existing diabetes, pre-existing cancer, and diabetes without cancer groups. Predictors of adequate glycemic control and diabetes treatment were analyzed using binary logistic regression. Results Diabetes without cancer group had higher fasting blood glucose and glycosylated hemoglobin A1c levels and lower adequate glycemic control than did the other two groups. The preexisting cancer group had low treatment rates. After adjusting for age, gender, employment status, and duration of diabetes, the preexisting cancer group had 0.51-fold lower odds of receiving treatment, such as insulin injection or oral diabetes medications, than the other two groups (adjusted odds ratio, 0.50; 95% confidence interval, 0.38-0.66). Conclusions Cancer survivors had lower fasting glucose and HbA1c than those with diabetes without cancer. However, as a result of the sub-analysis, the treatment rate of the pre-existing cancer group was significantly lower than that of diabetes without cancer. Based on these results, cancer survivors' care-related healthcare workers should be aware of the need for monitoring blood sugar even in cancer survivors without underlying diabetes mellitus and pay more attention to early detection and active treatment of diabetes.
Collapse
Affiliation(s)
- Eun J. Ko
- School of Nursing, Research Institute of Nursing Science, Hallym University, Gangwon-do, Republic of Korea
| | - Su J. Lee
- School of Nursing, Research Institute of Nursing Science, Hallym University, Gangwon-do, Republic of Korea
| |
Collapse
|
35
|
Eriguchi T, Takeda A, Nemoto T, Tsurugai Y, Sanuki N, Tateishi Y, Kibe Y, Akiba T, Inoue M, Nagashima K, Horita N. Relationship between Dose Prescription Methods and Local Control Rate in Stereotactic Body Radiotherapy for Early Stage Non-Small-Cell Lung Cancer: Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:3815. [PMID: 35954478 PMCID: PMC9367274 DOI: 10.3390/cancers14153815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Variations in dose prescription methods in stereotactic body radiotherapy (SBRT) for early stage non-small-cell lung cancer (ES-NSCLC) make it difficult to properly compare the outcomes of published studies. We conducted a comprehensive search of the published literature to summarize the outcomes by discerning the relationship between local control (LC) and dose prescription sites. We systematically searched PubMed to identify observational studies reporting LC after SBRT for peripheral ES-NSCLC. The correlations between LC and four types of biologically effective doses (BED) were evaluated, which were calculated from nominal, central, and peripheral prescription points and, from those, the average BED. To evaluate information on SBRT for peripheral ES-NSCLC, 188 studies were analyzed. The number of relevant articles increased over time. The use of an inhomogeneity correction was mentioned in less than half of the articles, even among the most recent. To evaluate the relationship between the four BEDs and LC, 33 studies were analyzed. Univariate meta-regression revealed that only the central BED significantly correlated with the 3-year LC of SBRT for ES-NSCLC (p = 0.03). As a limitation, tumor volume, which might affect the results of this study, could not be considered due to a lack of data. In conclusion, the central dose prescription is appropriate for evaluating the correlation between the dose and LC of SBRT for ES-NSCLC. The standardization of SBRT dose prescriptions is desirable.
Collapse
Affiliation(s)
- Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takafumi Nemoto
- Department of Radiation Oncology, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Naoko Sanuki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Yudai Tateishi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Yuichi Kibe
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University Hachioji Hospital, Hachioji 192-0032, Japan
| | - Mari Inoue
- Department of Respiratory Medicine, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama 236-0004, Japan
| |
Collapse
|
36
|
Ni Y, Huang G, Yang X, Ye X, Li X, Feng Q, Li Y, Li W, Wang J, Han X, Meng M, Zou Z, Wei Z. Microwave ablation treatment for medically inoperable stage I non-small cell lung cancers: long-term results. Eur Radiol 2022; 32:5616-5622. [PMID: 35226157 DOI: 10.1007/s00330-022-08615-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVES In the present study, we aim to show the results of microwave ablation (MWA) for medically inoperable stage I non-small cell lung cancers (NSCLCs) with long-term follow-up. METHODS From Feb 2011 to Mar 2016, patients with histologically proven clinical stage I NSCLC were treated with CT-guided MWA and retrospectively analyzed. The primary end point was overall survival (OS). Secondary end points included disease-free survival (DFS), cancer-specific survival (CSS), and complications. RESULTS A total of 105 patients with 105 lesions underwent MWA. The mean age was 70.7 years (range: 40-86 years), and the mean diameter of all lesions was 2.40 cm (range: 0.9-4.0 cm). Adenocarcinoma was the most common histological type (77, 73.3%), followed by squamous cell carcinomas (21, 20%) and undefined NSCLC (7, 6.7%). With a median follow-up of 54.8 months, the median DFS was 36.0 months, and 1-, 3-, and 5-year DFS rates were 89.5%, 49.4%, and 42.7%, respectively. The median CSS and OS were 89.8 and 64.2 months, respectively. The OS rate was 99% at 1 year, 75.6% at 3 years, and 54.1% at 5 years, while the CSS rates were 99%, 78.9%, and 60.9%, respectively. Patients with stage IB lesions had significant shorter DFS (22.3 months vs. undefined, HR: 11.5, 95%CI: 5.85-22.40) and OS (37.3 vs. 89.8 months, HR: 8.64, 95% CI: 4.49-16.60) than IA disease. CONCLUSION MWA is a safe, effective, and potentially curative therapy for medically inoperable stage I NSCLC patients. KEY POINTS • In this multicenter retrospective study which included 105 patients, we found the median overall survival (OS) was 64.2 months. The OS rate was 99% at 1 year, 75.6% at 3 years, and 54.1% at 5 years. • Procedures were technically successful and well tolerated in all patients. Most MWA complications were mild or moderate.
Collapse
Affiliation(s)
- Yang Ni
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Guanghui Huang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China.
| | - Xia Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China.
| | - Xin Ye
- Department of Oncology, Shandong Lung Cancer Institute, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingliang Feng
- Department of Oncology, Liaocheng Tumor Hospital, Liaocheng, China
| | - Yongjie Li
- Department of Oncology, Liaocheng Tumor Hospital, Liaocheng, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Jiao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Xiaoying Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Min Meng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Zhigeng Zou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong Province, China
| | - Zhigang Wei
- Department of Oncology, Shandong Lung Cancer Institute, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong Province, China
| |
Collapse
|
37
|
Folch E, Guo Y, Senitko M. Therapeutic Bronchoscopy for Lung Nodules: Where Are We Now? Semin Respir Crit Care Med 2022; 43:480-491. [PMID: 36104025 DOI: 10.1055/s-0042-1749368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lobar resection has been the established standard of care for peripheral early-stage non-small cell lung cancer (NSCLC). Over the last few years, surgical lung sparing approach (sublobar resection [SLR]) has been compared with lobar resection in T1N0 NSCLC. Three nonsurgical options are available in those patients who have a prohibitive surgical risk, and those who refuse surgery: stereotactic body radiotherapy (SBRT), percutaneous ablation, and bronchoscopic ablation. Local ablation involves placement of a probe into a tumor, and subsequent application of either heat or cold energy, pulsing electrical fields, or placement of radioactive source under an image guidance to create a zone of cell death that encompasses the targeted lesion and an ablation margin. Despite being in their infancy, the bronchoscopic ablative techniques are undergoing rapid research, as they extrapolate a significant knowledge-base from the percutaneous techniques that have been in the radiologist's armamentarium since 2000. Here, we discuss selected endoscopic and percutaneous thermal and non-thermal therapies with the focus on their efficacy and safety.
Collapse
Affiliation(s)
- Erik Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanglin Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Cardiothoracic Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
38
|
Chen D, Zhao M, Xiang X, Liang J. Percutaneous local tumor ablation vs. stereotactic body radiotherapy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. Chin Med J (Engl) 2022; 135:00029330-990000000-00031. [PMID: 35830244 PMCID: PMC9532043 DOI: 10.1097/cm9.0000000000002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Percutaneous local tumor ablation (LTA) and stereotactic body radiotherapy (SBRT) have been regarded as viable treatments for early-stage lung cancer patients. The purpose of this study was to compare the efficacy and safety of LTA with SBRT for early-stage non-small cell lung cancer (NSCLC). METHODS PubMed, Embase, Cochrane library, Ovid, Google scholar, CNKI, and CBMdisc were searched to identify potential eligible studies comparing the efficacy and safety of LTA with SBRT for early-stage NSCLC published between January 1, 1991, and May 31, 2021. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were applied to estimate the effect size for overall survival (OS), progression-free survival (PFS), locoregional progression (LP), and adverse events. RESULTS Five studies with 22,231 patients were enrolled, including 1443 patients in the LTA group and 20,788 patients in the SBRT group. The results showed that SBRT was not superior to LTA for OS (HR = 1.03, 95% CI: 0.87-1.22, P = 0.71). Similar results were observed for PFS (HR = 1.09, 95% CI: 0.71-1.67, P = 0.71) and LP (HR = 0.66, 95% CI: 0.25-1.77, P = 0.70). Subgroup analysis showed that the pooled HR for OS favored SBRT in patients with tumors sized >2 cm (HR = 1.32, 95% CI: 1.14-1.53, P = 0.0003), whereas there was no significant difference in patients with tumors sized ≤2 cm (HR = 0.93, 95% CI: 0.64-1.35, P = 0.70). Moreover, no significant differences were observed for the incidence of severe adverse events (≥grade 3) (OR = 1.95, 95% CI: 0.63-6.07, P = 0.25) between the LTA group and SBRT group. CONCLUSIONS Compared with SBRT, LTA appears to have similar OS, PFS, and LP. However, for tumors >2 cm, SBRT is superior to LTA in OS. Prospective randomized controlled trials are required to determine such findings. INPLASY REGISTRATION NUMBER INPLASY202160099.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Man Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Xiaoyong Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Jun Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| |
Collapse
|
39
|
Park HS, Detterbeck FC, Madoff DC, Bade BC, Kumbasar U, Mase VJ, Li AX, Blasberg JD, Woodard GA, Brandt WS, Decker RH. A guide for managing patients with stage I NSCLC: deciding between lobectomy, segmentectomy, wedge, SBRT and ablation-part 4: systematic review of evidence involving SBRT and ablation. J Thorac Dis 2022; 14:2412-2436. [PMID: 35813762 PMCID: PMC9264060 DOI: 10.21037/jtd-21-1826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Background Clinical decision-making for patients with stage I lung cancer is complex. It involves multiple options [lobectomy, segmentectomy, wedge, stereotactic body radiotherapy (SBRT), thermal ablation], weighing multiple outcomes (e.g., short-, intermediate-, long-term) and multiple aspects of each (e.g., magnitude of a difference, the degree of confidence in the evidence, and the applicability to the patient and setting at hand). A structure is needed to summarize the relevant evidence for an individual patient and to identify which outcomes have the greatest impact on the decision-making. Methods A PubMed systematic review from 2000-2021 of outcomes after SBRT or thermal ablation vs. resection is the focus of this paper. Evidence was abstracted from randomized trials and non-randomized comparisons with at least some adjustment for confounders. The analysis involved careful assessment, including characteristics of patients, settings, residual confounding etc. to expose degrees of uncertainty and applicability to individual patients. Evidence is summarized that provides an at-a-glance overall impression as well as the ability to delve into layers of details of the patients, settings and treatments involved. Results Short-term outcomes are meaningfully better after SBRT than resection. SBRT doesn't affect quality-of-life (QOL), on average pulmonary function is not altered, but a minority of patients may experience gradual late toxicity. Adjusted non-randomized comparisons demonstrate a clinically relevant detriment in long-term outcomes after SBRT vs. surgery. The short-term benefits of SBRT over surgery are accentuated with increasing age and compromised patients, but the long-term detriment remains. Ablation is associated with a higher rate of complications than SBRT, but there is little intermediate-term impact on quality-of-life or pulmonary function tests. Adjusted comparisons show a meaningful detriment in long-term outcomes after ablation vs. surgery; there is less difference between ablation and SBRT. Conclusions A systematic, comprehensive summary of evidence regarding Stereotactic Body Radiotherapy or thermal ablation vs. resection with attention to aspects of applicability, uncertainty and effect modifiers provides a foundation for a framework for individualized decision-making.
Collapse
Affiliation(s)
- Henry S. Park
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Frank C. Detterbeck
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - David C. Madoff
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Brett C. Bade
- Department of Pulmonary Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ulas Kumbasar
- Department of Thoracic Surgery, Hacettepe University School of Medicine, Ankara, Turkey
| | - Vincent J. Mase
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew X. Li
- Department of General Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Justin D. Blasberg
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Gavitt A. Woodard
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Whitney S. Brandt
- Department of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Roy H. Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Microwave Ablation versus Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer: A Cost-Effectiveness Analysis. J Vasc Interv Radiol 2022; 33:964-971.e2. [PMID: 35490932 DOI: 10.1016/j.jvir.2022.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To assess the cost-effectiveness of microwave ablation (MWA) and SBRT for patients with inoperable stage I non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A literature search was performed in MEDLINE with broad search clusters. A decision-analysis model was constructed over a 5-year period. The model incorporated treatment-related complications and long-term recurrence. All clinical parameters were derived from the literature with preference to long-term prospective trials. A healthcare payers' perspective was adopted. Outcomes were measured in quality-adjusted life years (QALY) extracted from prior studies and United States dollars from Medicare reimbursements and prior studies. Base case calculations, probabilistic sensitivity analysis with 10,000 Monte Carlo simulations, and multiple one- and two-way sensitivity analyses were performed. RESULTS MWA yielded a health benefit of 2.31 QALY at a cost of $195,331, whereas SBRT yielded a health benefit of 2.33 QALY at a cost of $225,271. The incremental cost-effectiveness ratio was $1,480,597/QALY, indicating that MWA is the more cost-effective strategy. The conclusion remains unchanged in probabilistic sensitivity analysis with MWA being the optimal cost strategy in 99.84% simulations. One-way sensitivity analyses revealed that MWA remains cost-effective when its annual recurrence risk is below 18.4% averaged over 5 years, when the SBRT annual recurrence risk is above 1.44% averaged over 5 years, or when MWA is at least $7,500 cheaper than SBRT. CONCLUSION Microwave ablation appears to be a more cost-effective than stereotactic body radiotherapy for patients with inoperable stage I non-small cell lung cancer.
Collapse
|
41
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
42
|
Samper Ots PM, Vallejo Ocaña C, Martin Martin M, Celada Álvarez FJ, Farga Albiol D, Almendros Blanco P, Hernandez Machancoses A, Rico Oses M, Flamarique Andueza S, Romero Ruperto F, Maria Bueno C, Amaya Escobar E, Guerrero Gómez LL, Couñago F, Del Pino Alcántara M, Ruiz Villar MJ, Monroy Antón JL, Saez Bueno P, Luna Tirado J, Del Mar Puertas M, Bobo A, Diaz de Cerio Martínez I, Gascon Costoso N, Ferrer Albiach C. Stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentre study by the Oncologic Group for the Study of Lung Cancer (Spanish Radiation Oncology Society). Clin Transl Oncol 2022; 24:342-349. [PMID: 34487307 DOI: 10.1007/s12094-021-02697-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE/OBJECTIVE(S) Stereotactic body radiotherapy (SBRT) has become the standard of care for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) and for patients who refuse surgery. The aim of this study was to evaluate the effectiveness and safety of primary SBRT in patients with early-stage NSCLC. MATERIALS/METHODS Retrospective multicenter study of 397 patients (416 primary lung tumours) treated with SBRT at 18 centres in Spain. 83.2% were men. The median age was 74.4 years. In 94.4% of cases, the tumour was inoperable. The pathological report was available in 54.6% of cases. SPSS vs 22.0. was used to perform all statistical analyses. RESULTS Complete response was obtained in 53.6% of cases. Significant prognostic factors were standard CT planning (p = 0.014) and 4D cone beam CT (p = 0.000). Acute and chronic toxicity ≥ grade 3 was observed in 1.2% of cases. At a median follow-up of 30 months, local relapse was 9.6%, lymph node relapse 12.8%, distant metastasis 16.6%, and another lung tumour 11.5%. Complete response was the only significant prognostic factor for local relapse (p = 0.012) and distant metastasis (p = 0.001). The local relapse-free survival was 88.7%. The overall survival was 75.7%. The cancer-specific survival was 92.7%. The disease-free survival was 78.7%. CONCLUSION SBRT is an effective and well-tolerated treatment option for patients with early-stage lung cancer who are not suitable for surgery. The most important prognostic factor for local and distant recurrence was complete response, which in our sample depended on the type of CT planning and the IGRT technique.
Collapse
Affiliation(s)
| | | | | | | | - D Farga Albiol
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - M Rico Oses
- Complejo Hospitalario de Navarra, Navarra, Spain
| | | | | | | | | | | | - F Couñago
- Hospital Universitario Quironsalud y Hospital La Luz Quironsalud, Madrid, Spain
| | | | | | | | - P Saez Bueno
- Hospital Universitario Central de la Defensa "Gómez Ulla", Madrid, Spain
| | - J Luna Tirado
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - A Bobo
- Hospital Ruber Internacional, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Payne RG, Anker CJ, Sprague BL, No HJ, Lin SH, Lester-Coll NH. Active Surveillance for Early Stage Lung Cancer. Clin Lung Cancer 2022; 23:226-235. [DOI: 10.1016/j.cllc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
|
44
|
Adachi T, Nagasawa R, Nakamura M, Kakino R, Mizowaki T. Vulnerabilities of radiomic features to respiratory motion on four-dimensional computed tomography-based average intensity projection images: A phantom study. J Appl Clin Med Phys 2022; 23:e13498. [PMID: 35088515 PMCID: PMC8906211 DOI: 10.1002/acm2.13498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To evaluate the influence of respiratory motion on the robustness of radiomic features on four-dimensional computed tomography (4DCT)-based average intensity projection (AIP) images by employing an anthropomorphic chest phantom. METHODS Three spherical objects (φ30 mm), namely, acrylic (100 Hounsfield unit [HU], homogeneous), rubber (-140 HU, homogeneous), and cork (-630 HU, heterogeneous), were moved with motion amplitudes of 0, 1, 2.5, 4, 6, 8, and 10 mm in the phantom, and 4DCT scans were repeated at four different locations. Thereafter, the AIP images were generated considering the average of the 10 respiratory phases of the 4DCT images. Further, the targets were manually delineated on the AIP images in the lung window setting. A total of 851 radiomic features, including 107 unfiltered features and 744 wavelet filter-based features, were extracted from the region of interest for each material. The feature robustness among the different target motion amplitude (ε) was evaluated by normalizing the feature variability of the target motion relative to the variability of data from 573 patients with early-stage non-small cell lung cancer. The features with absolute ε values ≤0.5 were considered highly robust to target motions. RESULTS The percentage of robust unfiltered and wavelet filter-based features with a motion amplitude of 1 mm was greater than 83.2% and 93.4%, respectively; however, the percentage decreased by more than 24.3% and 17.6%, respectively, for motion amplitudes greater than 2.5 mm. The movement of cork had a small effect on the feature robustness compared to that of acrylic and rubber, regardless of the target motion amplitudes. CONCLUSIONS Our phantom study demonstrated that target motion amplitudes ≤1 mm led to the robustness of radiomic features on the 4DCT-based AIP images of thoracic regions. The frequency components and directions of the wavelet filters may be essential factors in 4DCT-based radiomic analysis.
Collapse
Affiliation(s)
- Takanori Adachi
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan.,Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan
| | - Ryoko Nagasawa
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan.,Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan
| | - Ryo Kakino
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan.,Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Japan
| |
Collapse
|
45
|
Nakahama H, Jaradeh M, Abdelsattar ZM, Lubawski J, Vigneswaran WT. The impact of marginal lung function on outcomes in the era of minimally invasive thoracic surgery. J Thorac Dis 2022; 13:6800-6809. [PMID: 35070364 PMCID: PMC8743406 DOI: 10.21037/jtd-21-1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Background The effect of marginal lung function on outcomes after lung resection has traditionally been studied in the context of open thoracic surgery. Its impact on postoperative outcomes in the era of minimally invasive lung resection is unclear. Methods In this retrospective cohort study, we included adult patients who underwent minimally invasive lung resection at our institution between January 2017 and May 2020 for known malignancy or lung nodule. Marginal lung function was defined as pre-operative forced expiratory volume in 1 second (FEV1) and/or diffusion lung capacity of carbon monoxide <60% of predicted. Our outcomes included a composite outcome of pulmonary morbidity and/or 30- and 90-day mortality, and hospital length of stay. We used multivariable logistic and Poisson regression models to identify associations with outcomes, and Kaplan-Meier and Cox models to estimate survival. Results Of 300 patients, 88 (29%) had marginal lung function. Patients in the marginal group were more likely to be female (69% vs. 56%; P=0.028), and more likely to have: hypertension (HTN) (83% vs. 71%; P=0.028), chronic obstructive pulmonary disease (COPD) (38% vs. 12%; P<0.001), interstitial lung disease (ILD) (9% vs. 3%; P<0.019), and ischemic heart disease (28% vs. 18%; P=0.033). Patients were similar in terms of age (68±8 vs. 68±10 years; P=0.932), and other comorbidities. Anatomic lung resection comprised 56.8% of the marginal group vs. 74% in the non-marginal group (P=0.003). The most common complication was prolonged air leak (18.2% vs. 11.8%; P=0.479). Marginal lung function had a trend toward increased composite respiratory complications (22.7% vs. 15.1%; P=0.112) and 90-day mortality (5.7% vs. 4.2%; P=0.591), although they did not reach statistical significance. There was a statistically significant 1-day average increase in length of stay in the marginal lung function cohort (4.6 vs. 3.4 days; P<0.015) with a stronger association with diffusion lung capacity of carbon monoxide than FEV1. Survival was similar (marginal function HR =1.0; P=0.994). Conclusions In the era of minimally invasive thoracic surgery, lung resection in patients with marginal lung function may be considered in select patients. These findings aid in the selection consideration and counseling of this patient population.
Collapse
Affiliation(s)
- Hiroko Nakahama
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Mark Jaradeh
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Zaid M Abdelsattar
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - James Lubawski
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Wickii T Vigneswaran
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
46
|
[Stereotactic body radiotherapy compared to modern surgery for treatment of early stage non-small-cell lung cancer]. Strahlenther Onkol 2022; 198:315-318. [PMID: 35022819 DOI: 10.1007/s00066-021-01897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
47
|
Lena K, Yasser AM, Lena H, Manon S, Kerstin S, Marie-Kristin S, Michael E, Stieler F, Sven C, Lohr F, Jens F, Judit BH. Motion management in a patient with tracheostomy during lung-SBRT - Breath-hold is worth a try! Adv Radiat Oncol 2022; 7:100895. [PMID: 35198840 PMCID: PMC8850202 DOI: 10.1016/j.adro.2022.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
|
48
|
Li J, Zhang X, Pan Y, Zhuang H, Wang J, Yang R. Assessment of Delivery Quality Assurance for Stereotactic Radiosurgery With Cyberknife. Front Oncol 2021; 11:751922. [PMID: 34868957 PMCID: PMC8635503 DOI: 10.3389/fonc.2021.751922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study is to establish and assess a practical delivery quality assurance method for stereotactic radiosurgery with Cyberknife by analyzing the geometric and dosimetric accuracies obtained using a PTW31016 PinPoint ionization chamber and EBT3 films. Moreover, this study also explores the relationship between the parameters of plan complexity, target volume, and deliverability parameters and provides a valuable reference for improving plan optimization and validation. Methods One hundred fifty cases of delivery quality assurance plans were performed on Cyberknife to assess point dose and planar dose distribution, respectively, using a PTW31016 PinPoint ionization chamber and Gafchromic EBT3 films. The measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber, and the measured planar doses were compared with the calculated dose distribution using gamma index analysis. The gamma passing rates were evaluated using the criteria of 3%/1 mm and 2%/2 mm. The statistical significance of the correlations between the complexity metrics, target volume, and the gamma passing rate were analyzed using Spearman’s rank correlation coefficient. Results For point dose comparison, the averaged dose differences (± standard deviations) were 1.6 ± 0.73% for all the cases. For planar dose distribution, the mean gamma passing rate for 3%/1 mm, and 2%/2 mm evaluation criteria were 94.26% ± 1.89%, and 93.86% ± 2.16%, respectively. The gamma passing rates were higher than 90% for all the delivery quality assurance plans with the criteria of 3%/1 mm and 2%/2 mm. The difference in point dose was lowly correlated with volume of PTV, number of beams, and treatment time for 150 DQA plans, and highly correlated with volume of PTV for 18 DQA plans of small target. DQA gamma passing rate (2%/2 mm) was a moderate significant correlation for the number of nodes, number of beams and treatment time, and a low correlation with MU. Conclusion PTW31016 PinPoint ionization chamber and EBT3 film can be used for routine Cyberknife delivery quality assurance. The point dose difference should be within 3%. The gamma passing rate should be higher than 90% for the criteria of 3%/1 mm and 2%/2 mm. In addition, the plan complexity and PTV volume were found to have some influence on the plan deliverability.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xile Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Yuxi Pan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
49
|
Ji Z, Huo B, Liu S, Liang Q, Xing C, Hu M, Ma Y, Wang Z, Zhao X, Song Y, Wang Y, Han H, Zhang K, Wang R, Chai S, Huang X, Hu X, Wang J. Clinical Outcome of CT-Guided Stereotactic Ablative Brachytherapy for Unresectable Early Non-Small Cell Lung Cancer: A Retrospective, Multicenter Study. Front Oncol 2021; 11:706242. [PMID: 34604042 PMCID: PMC8480264 DOI: 10.3389/fonc.2021.706242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To analyze the efficacy and safety of low dose rate stereotactic ablative brachytherapy (L-SABT) for treatment of unresectable early-stage non-small cell lung cancer (NSCLC). Methods Data of patients with early-stage NSCLC who received CT-guided L-SABT (radioactive I-125 seeds implantation) at eight different centers from December 2010 to August 2020 were retrospectively analyzed. Treatment efficacy and complications were evaluated. Results A total of 99 patients were included in this study. Median follow-up duration was 46.3 months (6.1-119.3 months). The 1-year, 3-year, and 5-year local control rates were 89.1%, 77.5%, and 75.7%, respectively. The 1-year, 3-year, and 5-year overall survival rates were 96.7%, 70.1%, and 54.4%, respectively. Treatment failure occurred in 38.4% of patients. Local/regional recurrence, distant metastasis, and recurrence combined with metastasis accounted for 15.1%, 12.1%, and 11.1%, respectively. Pneumothorax occurred in 47 patients (47.5%) with 19 cases (19.2%) needing closed drainage. The only radiation-related adverse reaction was two cases of grade 2 radiation pneumonia. KPS 80-100, T1, the lesion was located in the left lobe, GTV D90 ≥150 Gy and the distance between the lesion and chest wall was < 1 cm, were associated with better local control (all P < 0.05); on multivariate analysis KPS, GTV D90, and the distance between the lesion and chest wall were independent prognostic factors for local control (all P < 0.05). KPS 80-100, T1, GTV D90 ≥150 Gy, and the distance between the lesion and chest wall was < 1 cm were also associated with better survival (all P < 0.05); on multivariate analysis KPS, T stage, and GTV D90 were independent prognostic factors for survival (all P < 0.05). The incidence of pneumothorax in patients with lesions <1 cm and ≥1cm from the chest wall was 33.3% and 56.7%, respectively, and the differences were statistically significant (P = 0.026). Conclusion L-SABT showed acceptable efficacy in the treatment of unresectable early-stage NSCLC. But the incidence of pneumothorax is high. For patients with T1 stage and lesions <1 cm from the chest wall, it may have better efficacy. Prescription dose greater than 150 Gy may bring better results.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Bin Huo
- Department of Thoracic Surgery/Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shifeng Liu
- Department of Intervention Therapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinghua Liang
- Center of Minimally Invasive Intervention, Southwest Hospital of Army Medical University (The First Hospital Affiliated to the Army Medical University), Chongqing, China
| | - Chao Xing
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, China
| | - Miaomiao Hu
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, China
| | - Yanli Ma
- Department of Oncology, Staff Hospital of Chengde Iron and Steel Group Co. Ltd., Chengde, China
| | - Zhe Wang
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinxin Zhao
- Department of Oncology Radiotherapy, The First People's Hospital of Kerqin District, Tongliao, China
| | - Yuqing Song
- Department of Oncology, Staff Hospital of Chengde Iron and Steel Group Co. Ltd., Chengde, China
| | - Yufeng Wang
- Department of Nuclear Medicine, Xuzhou Cancer Hospital, Xuzhou, China
| | - Hongmei Han
- Department of Oncology Radiotherapy, The First People's Hospital of Kerqin District, Tongliao, China
| | - Kaixian Zhang
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, China
| | - Ruoyu Wang
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Shude Chai
- Department of Thoracic Surgery/Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuequan Huang
- Center of Minimally Invasive Intervention, Southwest Hospital of Army Medical University (The First Hospital Affiliated to the Army Medical University), Chongqing, China
| | - Xiaokun Hu
- Department of Intervention Therapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
50
|
Lee S, Lee D, Verma V, Waters D, Oh S, Colonias A, Wegner R, Pavord D, Coopey B, Fuhrer R, Sohn JW. Dosimetric benefits of dynamic conformal arc therapy-combined with active breath-hold in lung stereotactic body radiotherapy. Med Dosim 2021; 47:54-60. [PMID: 34583857 DOI: 10.1016/j.meddos.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
To test the hypothesis that dynamic conformal arc therapy (DCAT) in Monaco, compared with volumetric modulated arc therapy (VMAT), maintains plan quality with higher delivery efficiency for lung stereotactic body radiotherapy (SBRT) and to investigate dosimetric benefits of DCAT with active breath-hold (DCAT+ABH), compared with free-breathing (DCAT+FB) for varying tumor sizes and motions. Fifty DCAT plans were used for lung SBRT. Randomly selected 17 DCAT plans were evaluated with respect to the retrospectively generated volumetric modulated arc therapy (VMAT) plans. The maximum dose at 2 cm from planning target volume (PTV) in any direction (D2cm/Rx), the ratio of 50% prescription isodose volume to the PTV (R50%), conformity index (CI), the lung volume receiving ≥20 Gy (V20), and monitor unit (MU) were evaluated. A t-test was used to evaluate the difference of plan quality between DCAT and VMAT. Internal target volume (ITV)/integrated-gross target volume (GTV) attributed by intra-fraction motion and lung V20 were stratified for DCAT+ABH and DCAT+FB across varying GTVs. DCAT maintained plan quality (p = 0.154 for D2cm/Rx, p = 0.089 for R50%, p = 0.064 for CI, and p = 0.780 for lung V20) while reducing MUs up to 30% (p <0.001) from 2748 MU (VMAT) to 1868 MU (DCAT). DCAT+ABH, compared to DCAT+FB, reduced tumor motion, resulting in 19% volume reduction of PTV and 60% reduction in lung V20, on average. The difference in lung V20 between DCAT+ABH and DCAT+FB increased as the target size increased. The DCAT is a favorable approach compared with VMAT. These results support the utility of DCAT as a routine planning platform for lung SBRT, especially when utilized with respiratory motion management using the ABH.
Collapse
Affiliation(s)
- Soyoung Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA.
| | - Danny Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Vivek Verma
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Danielle Waters
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Seungjong Oh
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Athanasios Colonias
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Rodney Wegner
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Daniel Pavord
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Bryan Coopey
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Russell Fuhrer
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| | - Jason W Sohn
- Division of Radiation Oncology, Allegheny Health Network Cancer Institution, 320 E North Ave, Ground Floor NW wing, Pittsburgh, PA 15212 USA
| |
Collapse
|