1
|
Patwe PT, Deshpande SS, Mahajan GR. Stereotactic and fractionated stereotactic radiosurgery for single and multiple brain metastases: Results of multicenter planning studies. Phys Med 2025; 132:104950. [PMID: 40056703 DOI: 10.1016/j.ejmp.2025.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/10/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE Stereotactic and fractionated stereotactic radiosurgery (SRS/fSRS) utilization is growing in India, although planning studies are scarce. This study assessed clinical practices for SRS/fSRS treatment planning for brain metastases (BM) using ICRU-91 and explored the impact of planning tools. METHODS & MATERIALS Participants from 23 centers received two anonymized CT datasets with predrawn structures for single met (SM) and four BMs (MM) cases via email. Centers used local protocol to create plans. The plans were evaluated for target coverage, normal brain doses, and ICRU-91 dosimetric indices. RESULTS Monaco TPS overestimated mean GTV (PTV) by 3.7 (4.2)% and 2.1 (2.0)% for SM and MM respectively. Some institutions had good conformity and target coverage, whereas others had high OAR doses despite inadequate PTV dose coverage. Conformity index (CI) ranged from 1.07 to 1.45 (SM) and 1.06 to 1.25 (MM), and homogeneity index (HI) ranged from 0.07 to 0.28 (SM) and 0.13 to 0.32 (MM). Significant variation in GI and dose prescription isodose line selection was observed among centers. CONCLUSIONS There was a significant heterogeneity in the planning parameters noted among different centers. The study emphasized the importance of established planning protocols and comprehensive training for staff involved in SRS/fSRS. Notably, plans with finer MLC width outperformed, yet wider MLC plans achieved ICRU-91 indices comparable to published literature. The importance of our study is underscored by the absence of a national framework for SRS planning in India.
Collapse
Affiliation(s)
- Parimal T Patwe
- School of Physical Sciences, Swami Ramanand Tirth Marathwada University, Nanded, Maharashtra, India 431 606
| | - Sudesh S Deshpande
- Department of Radiation Oncology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, Maharashtra, India 400 016
| | - Gajanan R Mahajan
- Department of Physics, Shri Datta Arts, Commerce and Science College, Hadgaon, Nanded, Maharashtra 431 712, India.
| |
Collapse
|
2
|
Kihara S, Ohira S, Kanayama N, Ikawa T, Inui S, Isono M, Nitta Y, Ueda Y, Nishio T, Konishi K. Effects of Institutional Experience on Plan Quality in Stereotactic Radiotherapy Using HyperArc for Brain Metastases. In Vivo 2025; 39:210-217. [PMID: 39740907 PMCID: PMC11705131 DOI: 10.21873/invivo.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM HyperArc (HA) is an automated planning technique enabling single-isocenter brain stereotactic radiotherapy (SRT); however, dosimetric outcomes may be influenced by the planner's expertise. This study aimed to assess the impact of institutional experience on the plan quality of HA-SRT for both single and multiple brain metastases. MATERIALS AND METHODS Twenty patients who underwent HA-SRT for single metastasis between 2020 and 2021 comprised the earlier group, while those treated between 2022 and 2024 constituted the later group. For multiple metastases, 40 patients who received HA-SRT from 2020-2024 were divided into earlier and later treatment groups. Dosimetric parameters including gross tumor volume (GTV) doses (D98% and Dmean), volumes of the normal brain (Brain-GTV V25Gy and V30Gy), homogeneity index (HI), gradient index (GI), and total monitor unit (MU) were compared. A linear regression model was used to evaluate the effects of planning target volume (PTV) on volumes of normal brain via interaction between PTV volume and treatment era group (earlier vs. later). RESULTS The later group exhibited significantly higher D98% and Dmean values for both single and multiple metastases, while V25Gy and V30Gy and GI mean values were comparable. Consequently, mean HI and total MU values increased significantly. Both single and multiple metastases showed significant interaction between PTV volume and treatment era group. CONCLUSION Enhanced dosimetric outcomes in the later group suggested that accumulated experience contributed to improve GTV and brain dose in HA SRT. Institutional experience is important to improve the plan quality for SRT even with automatic planning such as HA.
Collapse
Affiliation(s)
- Sayaka Kihara
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan;
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuya Nitta
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
3
|
Sagawa T, Ikawa T, Ohira S, Kanayama N, Ueda Y, Inui S, Miyazaki M, Konishi K. What is the optimal isodose line for stereotactic radiotherapy for single brain metastases using HyperArc? J Appl Clin Med Phys 2024; 25:e14408. [PMID: 38863310 PMCID: PMC11492347 DOI: 10.1002/acm2.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE The study aimed to investigate the optimal isodose line (IDL) in linear accelerator-based stereotactic radiotherapy for single brain metastasis, using HyperArc. We compared the dosimetric parameters for target and normal brain tissue among six plans with different IDLs. METHODS This study included 30 patients with single brain metastasis. We retrospectively generated six plans for each tumor with different IDLs (80%, 70%, 60%, 50%, 40%, and 33%) using HyperArc. All treatment plans were normalized to the prescription dose of 35 Gy in five fractions which was covered by 95% of the planning target volume (PTV), defined by adding a 1.0 mm margin to the gross tumor volume (GTV). The dosimetric parameters were compared among the six plans. RESULTS For GTV > 0.1 cm3, the ratio of brain-GTV volumes receiving 25 Gy to PTV (V25Gy/PTV) was significantly lower at IDL 40%-70% than at IDL 80% and 33% (p < 0.01, retrospectively). For GTV < 0.1 cm3, V25Gy/PTV decreased continuously as IDL decreased. The values of D99% and D80% for GTV increased with decreasing IDL. An IDL of 50% or less was required to achieve D99% of greater than 43 Gy and D80% of greater than 50 Gy. The mean values of D99% and D80% for IDL 50% were 44.3 and 51.9 Gy. CONCLUSION The optimal IDL is 40%-50% for GTV > 0.1 cm3. These lower IDLs could increase D99% and D80% of GTV while lowering V25Gy of normal brain tissue, which may help reduce the risk of radiation necrosis and improve local control.
Collapse
Affiliation(s)
- Tomohiro Sagawa
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Toshiki Ikawa
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Shingo Ohira
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Naoyuki Kanayama
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Ueda
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Shoki Inui
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Masayoshi Miyazaki
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Koji Konishi
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| |
Collapse
|
4
|
Ahamed S, Suvarna RP. Evaluation of Normal Tissue Objective Function for Treatment Planning of Solitary Brain Metastasis Using Intensity-modulated Radiosurgery Techniques. J Med Phys 2024; 49:394-399. [PMID: 39526160 PMCID: PMC11548082 DOI: 10.4103/jmp.jmp_66_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The purpose of this study was to systematically examine the normal tissue objective (NTO) function by comparing its variations for planning solitary brain metastasis with intensity-modulated and volumetric-modulated arc radiosurgery techniques. Materials and Methods Twenty-two cases were retrospectively planned with two NTO parameter sets named A and B using intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques. The Type A set used slope, k = 0.4 mm-1 plus end dose, De = 20%, whereas the Type B set used k = 1.0 mm-1 plus De = 10%. The resulting four plan types were assessed using mean dose to 5 mm exterior ring, normal brain receiving 12 Gy (V12), 5 Gy total brain dose volume (V5), gradient index (R50%), focal index (FI), Paddick conformity index (PCI), prescription isodose surface (PIDS), and MU/Gy. Results Brain doses were significantly lower for VMAT than for IMRT. R50% was more favorable for VMAT than for IMRT for each planning target volume (PTV). The mean FI was comparable between the corresponding IMRT and VMAT plan types. PCI was better for the IMRT_A plan type. PIDS was significantly lower for Type B plans than Type A for both techniques. For PTVs <3 cm3, IMRT plans showed poor dosimetry and required NTO settings stricter than Type B. Conclusions The application of NTO variations demonstrated varied dosimetry for IMRT and VMAT techniques. The NTO parameter variations produced field size and/or beamlet size/shape variations. The strict NTO parameter set generated more conformal beam apertures to reduce the brain dose. VMAT plan types showed significantly lower brain doses and better dosimetry for all target sizes.
Collapse
Affiliation(s)
- Shabbir Ahamed
- Department of Physics, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh, India
- Department of Radiation Physics, MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, Telangana, India
| | - R. Padma Suvarna
- Department of Physics, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh, India
| |
Collapse
|
5
|
Berthet C, Lucia F, Bourbonne V, Schick U, Lecouillard I, Le Deroff C, Barateau A, de Crevoisier R, Castelli J. The dosimetric parameters impact on local recurrence in stereotactic radiotherapy for brain metastases. Br J Radiol 2024; 97:820-827. [PMID: 38377402 PMCID: PMC11025672 DOI: 10.1093/bjr/tqae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVES Stereotactic radiotherapy (SRT) for brain metastases (BM) allows very good local control (LC). However, approximately 20%-30% of these lesions will recur. The objective of this retrospective study was to evaluate the impact of dosimetric parameters on LC in cerebral SRT. METHODS Patients treated with SRT for 1-3 BM between January 2015 and December 2018 were retrospectively included. A total of 349 patients with 538 lesions were included. The median gross tumour volume (GTV) was 2 cm3 (IQR, 0-7). The median biological effective dose with α/β = 10 (BED10) was 60 Gy (IQR, 32-82). The median prescription isodose was 71% (IQR, 70-80). Correlations with LC were examined using the Cox regression model. RESULTS The median follow-up period was 55 months (min-max, 7-85). Median overall survival was 17.8 months (IQR, 15.2-21.9). There were 95 recurrences and LC at 1 and 2 years was 87.1% (95% CI, 84-90) and 78.1% (95% CI, 73.9-82.4), respectively. Univariate analysis showed that systemic treatment, dose to 2% and 50% of the planning target volume (PTV), BED10 > 50 Gy, and low PTV and GTV volume were significantly correlated with better LC. In the multivariate analysis, GTV volume, isodose, and BED10 were significantly associated with LC. CONCLUSION These results show the importance of a BED10 > 50 Gy associated with a prescription isodose <80% to optimize LC during SRT for BM. ADVANCES IN KNOWLEDGE Isodose, BED, and GTV volume were significantly associated with LC. A low isodose improves LC without increasing the risk of radionecrosis.
Collapse
Affiliation(s)
- Camille Berthet
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
| | - François Lucia
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | | | - Coralie Le Deroff
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
| | - Anais Barateau
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| | - Renaud de Crevoisier
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| | - Joel Castelli
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| |
Collapse
|
6
|
Brown MH, Marcrom SR, Patel MP, Popple RA, Travis RL, McDonald AM, Riley KO, Markert JM, Willey CD, Bredel M, Fiveash JB, Thomas EM. Understanding the Effect of Prescription Isodose in Single-Fraction Stereotactic Radiosurgery on Plan Quality and Clinical Outcomes for Solid Brain Metastases. Neurosurgery 2023; 93:1313-1318. [PMID: 37449861 PMCID: PMC10627625 DOI: 10.1227/neu.0000000000002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There is wide variation in treatment planning strategy for central nervous system (CNS) stereotactic radiosurgery. We sought to understand what relationships exist between intratumor maximum dose and local control (LC) or CNS toxicity, and dosimetric effects of constraining hotspots on plan quality of multiple metastases volumetric modulated arc therapy radiosurgery plans. METHODS We captured brain metastases from 2015 to 2017 treated with single-isocenter volumetric modulated arc therapy radiosurgery. Included tumors received single-fraction stereotactic radiosurgery, had no previous surgery or radiation, and available follow-up imaging. Our criterion for local failure was 25% increase in tumor diameter on follow-up MRI or pathologic confirmation of tumor recurrence. We defined significant CNS toxicity as Radiation Therapy Oncology Group irreversible Grade 3 or higher. We performed univariate and multivariate analyses evaluating factors affecting LC. We examined 10 stereotactic radiosurgery plans with prescriptions of 18 Gy to all targets originally planned without constraints on the maximum dose within the tumor. We replanned each with a constraint of Dmax 120%. We compared V50%, mean brain dose, and Dmax between plans. RESULTS Five hundred and thirty tumors in 116 patients were available for analysis. Median prescription dose was 18 Gy, and median prescription isodose line (IDL) was 73%. Kaplan-Meier estimate of 12-month LC only tumor volume (HR 1.43 [1.22-1.68] P < .001) was predictive of local failure on univariate analysis; prescription IDL and histology were not. In multivariate analysis, tumor volume impacted local failure (HR 1.43 [1.22-1.69] P < .001) but prescription IDL did not (HR 0.95 [0.86-1.05] P = .288). Only a single grade 3 and 2 grade 4 toxicities were observed; tumor volume was predictive of CNS toxicity (HR 1.58 [1.25-2.00]; P < .001), whereas prescription IDL was not (HR 1.01 [0.87-1.17] P = .940). CONCLUSION The prescription isodose line had no impact on local tumor control or CNS toxicity. Penalizing radiosurgery hotspots resulted in worse radiosurgery plans with poorer gradient. Limiting maximum dose in gross tumor causes increased collateral exposure to surrounding tissue and should be avoided.
Collapse
Affiliation(s)
- Matthew H. Brown
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland, USA
| | - Samuel R. Marcrom
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mayank P. Patel
- Department of Radiation Oncology, University of Miami, Coral Gables, Florida, USA
| | - Richard A. Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Roman L. Travis
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew M. McDonald
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristen O. Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John B. Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Evan M. Thomas
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Yamamoto Y, Ohira S, Kanayama N, Inui S, Ueda Y, Koike Y, Miyazaki M, Nishio T, Koizumi M, Konishi K. Comparison of dosimetric parameters and robustness for rotational errors in fractionated stereotactic irradiation using automated noncoplanar volumetric modulated arc therapy for patients with brain metastases: single- versus multi-isocentric technique. Radiol Phys Technol 2023; 16:310-318. [PMID: 37093409 DOI: 10.1007/s12194-023-00720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
To compare the dosimetric parameters of automated noncoplanar volumetric modulated arc therapy plans using single-isocentric (SIC) and multi-isocentric (MIC) techniques for patients with two brain metastases (BMs) in stereotactic irradiation and to evaluate the robustness of rotational errors. The SIC and MIC plans were retrospectively generated (35 Gy/five fractions) for 58 patients. Subsequently, a receiver operating characteristic curve analysis between the tumor surface distance (TSD) and V25Gy was performed to determine the thresholds for the brain tissue. The SIC and MIC plans were recalculated based on the rotational images to evaluate the dosimetric impact of rotational error. The MIC plans showed better brain tissue sparing for TSD > 6.6 cm. The SIC plans provided a significantly better conformity index for TSD ≤ 6.6 cm, while significantly lower gradient index was obtained (3.22 ± 0.56vs. 3.30 ± 0.57, p < 0.05) in the MIC plans with TSD > 6.6 cm. For organs at risk (OARs) (brainstem, chiasm, lens, optic nerves, and retinas), D0.1 cc was significantly lower (p < 0.05) in the MIC plans than in the SIC plans. The prescription dose could be delivered (D99%) to the gross tumor volume (GTV) for patients with TSD ≤ 6.6 cm when the rotational error was < 1°, whereas 31% of the D99% of GTV fell below the prescription dose with TSD > 6.6 cm. MIC plans can be an optimal approach for reducing doses to OARs and providing robustness against rotational errors in BMs with TSD > 6.6 cm.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan.
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| |
Collapse
|
8
|
Antończyk-Szewczyk K, Kozłowska B. Analysis of treatment planning parameters in the Gamma Knife® technique for different prescription isodoses and volumes of meningiomas. Appl Radiat Isot 2021; 172:109653. [PMID: 33735825 DOI: 10.1016/j.apradiso.2021.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The following Indexes: Homogeneity, Gradient, Conformity, Paddick Conformity and New Conformity of the dose distribution were compared. The parameters to assess a high dose to the organs at risk: V10/TV, V90%/TV and the Integral Dose were discussed. The higher the prescription isodose, the more uniform the dose distribution in the target, which is highly beneficial in the case of larger tumor sizes due to the lower risk of complications. For smaller tumors, higher dose heterogeneity is desirable. This can be obtained with a 40% prescription isodose.
Collapse
Affiliation(s)
- K Antończyk-Szewczyk
- University of Silesia in Katowice, August Chełkowski Institute of Physics, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland; University Clinical Center prof. K. Gibińskiego Medical University of Silesia in Katowice, Exira Gamma Knife, Ceglana 35, 40-514, Katowice, Poland.
| | - B Kozłowska
- University of Silesia in Katowice, August Chełkowski Institute of Physics, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland.
| |
Collapse
|
9
|
Desai DD, Johnson EL, Cordrey IL. An analytical expression for R50% dependent on PTV surface area and volume: A cranial SRS comparison. J Appl Clin Med Phys 2021; 22:203-210. [PMID: 33493385 PMCID: PMC7882107 DOI: 10.1002/acm2.13168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
The intermediate dose spill for a stereotactic radiosurgery (SRS) plan can be quantified with the metric R50%, defined as the 50% isodose cloud volume (VIDC50% ) divided by the volume of the planning target volume (PTV). By coupling sound physical principles with the basic definition of R50%, we derive an analytical expression for R50% for a spherical PTV. Our analytical expression depends on three quantities: the surface area of PTV (SAPTV ), the volume of PTV (VPTV ), and the distance of dose drop-off to 50% (Δr). The value of ∆r was obtained from a simple set of cranial phantom plan calculations. We generate values from our analytical expression for R50% (R50%Analytic ) and compare the values to clinical R50% values (R50%Clinical ) extracted from a previously published SRS data set that spans the VPTV range from 0.15 to 50.1 cm3 . R50%Analytic is smaller than R50%Clinical in all cases by an average of 15% ± 7%, and the general trend of R50%Clinical vs VPTV is reflected in the same trend of R50%Analytic . This comparison suggests that R50%Analytic could represent a theoretical lower limit for the clinical SRS data; further investigation is required to confirm this. R50%Analytic could provide useful guidance for what might be achievable in SRS planning.
Collapse
Affiliation(s)
- Dharmin D Desai
- Department of Radiation Oncology, CHI Memorial Hospital, Chattanooga, TN, USA
| | - E L Johnson
- Department of Radiation Medicine, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Ivan L Cordrey
- Department of Radiation Oncology, CHI Memorial Hospital, Chattanooga, TN, USA
| |
Collapse
|
10
|
Martos-Benítez FD, Soler-Morejón CDD, Lara-Ponce KX, Orama-Requejo V, Burgos-Aragüez D, Larrondo-Muguercia H, Lespoir RW. Critically ill patients with cancer: A clinical perspective. World J Clin Oncol 2020; 11:809-835. [PMID: 33200075 PMCID: PMC7643188 DOI: 10.5306/wjco.v11.i10.809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer patients account for 15% of all admissions to intensive care unit (ICU) and 5% will experience a critical illness resulting in ICU admission. Mortality rates have decreased during the last decades because of new anticancer therapies and advanced organ support methods. Since early critical care and organ support is associated with improved survival, timely identification of the onset of clinical signs indicating critical illness is crucial to avoid delaying. This article focused on relevant and current information on epidemiology, diagnosis, and treatment of the main clinical disorders experienced by critically ill cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rahim W Lespoir
- Intensive Care Unit 8B, Hermanos Ameijeiras Hospital, Havana 10300, Cuba
| |
Collapse
|
11
|
Massaccesi M, Boldrini L, Piras A, Stimato G, Quaranta F, Azario L, Mattiucci GC, Valentini V. Spatially fractionated radiotherapy (SFRT) targeting the hypoxic tumor segment for the intentional induction of non-targeted effects: An in silico study to exploit a new treatment paradigm. Tech Innov Patient Support Radiat Oncol 2020; 14:11-14. [PMID: 32154394 PMCID: PMC7052565 DOI: 10.1016/j.tipsro.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction The possibility of intentionally triggering non targeted effects (NTEs) using spatially fractionated radiotherapy (SFRT) alone or combined with immunotherapy is an intriguing and fascinating area of research. Among different techniques for SFRT, stereotactic body radiotherapy targeting exclusively the central hypoxic segment of bulky tumors, (SBRT-PATHY) might trigger immunogenic cell death more efficiently. This in silico study aims to identify the best possible dosimetric trade-off for prescribing SFRT with volumetric modulated arc (VMAT) based stereotactic radiotherapy (SRT). Material and methods Eight spherical volumes defined "Gross Tumor Volumes" (GTVs) were generated with diameters of 3-10 cm (with incremental steps of 1 cm), simulating tumor lesions. The inner third part of each GTV (GTVcentral) was selected to simulate the central hypoxic area and a ring structure was derived around it to simulate the tumor periphery (GTVperipheral). Volumetric modulated arc radiation treatment (VMAT) plans were calculated to deliver a single fraction of 10 Gy to each GTVcentral with different dose prescription methods: target mean and isodose driven (40, 50, 60, 70, 80 and 90%).The volume of GTVperipheral receiving less than 2 Gy was recorded as dosimetric performance indicator. Results 56 possible dosimetric scenarios were analyzed. The largest percentage of GTVperipheral spared from the dose of 2 Gy was achieved with dose prescription methods to the 70% isodose line for lesions smaller than 6 cm (range 42.9-48.4%) and to the target mean for larger ones (range 52.9-64.5%). Conclusions Optimizing the dose prescription method may reduce the dose to tumor periphery in VMAT-based SFRT, thus potentially sparing tumor infiltrating immune cells. The optimal method may vary according to the size of the lesion. This should be taken into account when designing prospective trials using SFRT.
Collapse
Affiliation(s)
- M Massaccesi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - L Boldrini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - A Piras
- Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - G Stimato
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Fisica Sanitaria, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - F Quaranta
- Università Cattolica del Sacro Cuore, Istituto di Fisica, Roma, Italy
| | - L Azario
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Fisica Sanitaria, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy.,Università Cattolica del Sacro Cuore, Istituto di Fisica, Roma, Italy
| | - G C Mattiucci
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy.,Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - V Valentini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy.,Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| |
Collapse
|