1
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
2
|
Huss M, Elger T, Kunst C, Loibl J, Krautbauer S, Liebisch G, Kandulski A, Müller M, Tews HC, Buechler C. Fecal Arachidonic Acid: A Potential Biomarker for Inflammatory Bowel Disease Severity. Int J Mol Sci 2025; 26:4034. [PMID: 40362272 PMCID: PMC12071911 DOI: 10.3390/ijms26094034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Arachidonic acid levels are elevated in the colonic mucosa of patients with inflammatory bowel disease (IBD). Fecal metabolites are emerging as valuable diagnostic tools for IBD. This study aimed to investigate associations between 31 fecal fatty acids, including arachidonic acid, to identify potential correlations with disease severity. Among the 31 fatty acids analyzed in feces, dihomo-γ-linolenic acid, arachidonic acid, and adrenic acid were significantly increased in patients with IBD compared to controls. In contrast, levels of linoleic acid and γ-linolenic acid, the precursors of arachidonic acid, were similar between both groups. No significant differences in fatty acid levels were observed between patients with Crohn's disease and ulcerative colitis. Arachidonic acid and adrenic acid levels positively correlated with fecal calprotectin, a clinically established marker of IBD severity, but showed no association with stool consistency or the Gastrointestinal Symptom Rating Scale. This suggests that these fatty acids are linked to disease severity rather than disease-related symptoms. Current IBD-specific medications had no significant impact on the fecal levels of any of the 31 fatty acids. In summary, this study demonstrates elevated fecal levels of dihomo-γ-linolenic acid, arachidonic acid, and adrenic acid in IBD patients. Normal levels of precursor fatty acids suggest that impaired downstream metabolism may contribute to the accumulation of these n-6 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (M.H.); (C.K.); (J.L.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
3
|
Higueras C, Ruiz-Capillas C, Herrero A, Sainz A, García-Sancho M, Rodríguez-Franco F, Larrosa M, Rey AI. Differentiating Canine Chronic Inflammatory Enteropathies Using Faecal Amino Acid Profiles: Potential and Limitations. Animals (Basel) 2025; 15:1185. [PMID: 40282019 PMCID: PMC12024043 DOI: 10.3390/ani15081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The aims of this study were to characterise the faecal amino acid profile of dogs with different chronic digestive diseases (food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE)) prior to dietary change, and Giardia infection (GIA), compared to healthy control (HC), and to evaluate their discriminating potential. The HC group presented lower faecal tyrosine (Tyr) and aromatic amino acids (AAAs) compared to FRE or IRE dogs (p = 0.0001). Additionally, the HC group had lower levels of threonine (Thr) (p = 0.0005) than the IRE group, while FRE dogs showed intermediate values. No statistically significant differences in faecal amino acids were observed between FRE and IRE dogs. In contrast, the GIA group had higher faecal amino acid values (except glutamic acid (Glu)) compared to the other dogs. The most determinant variables contributing to the discriminant functions were Tyr, Glu, arginine, and phenylalanine. Validation results of the discriminant functions showed that 44% of stool samples were misclassified, resulting in a 56% success rate. The faecal amino acid profile did not accurately distinguish FRE from IRE dogs; however, faecal excretion of AAs was generally higher in dogs with GIA.
Collapse
Affiliation(s)
- Cristina Higueras
- Animal Nutrition, Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain;
| | - Claudia Ruiz-Capillas
- Institute of Science and Technology of Food and Nutrition, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Ana Herrero
- Institute of Science and Technology of Food and Nutrition, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Angel Sainz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mercedes García-Sancho
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Fernando Rodríguez-Franco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mar Larrosa
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n., 28040 Madrid, Spain
| | - Ana I. Rey
- Animal Nutrition, Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain;
| |
Collapse
|
4
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
5
|
Lins LC, DE-Meira JEC, Pereira CW, Crispim AC, Gischewski MDR, Lins-Neto MÁDF, Moura FA. FECAL CALPROTECTIN AND INTESTINAL METABOLITES: WHAT IS THEIR IMPORTANCE IN THE ACTIVITY AND DIFFERENTIATION OF PATIENTS WITH INFLAMMATORY BOWEL DISEASES? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2025; 38:e1870. [PMID: 40052996 PMCID: PMC11870234 DOI: 10.1590/0102-6720202500001e1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/01/2024] [Indexed: 03/10/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), lacks a known etiology. Although clinical symptoms, imaging, and colonoscopy are common diagnostic tools, fecal calprotectin (FC) serves as a widely used biomarker to track disease activity. Metabolomics, within the omics sciences, holds promise for identifying disease progression biomarkers. This approach involves studying metabolites in biological media to uncover pathological factors. AIMS The purpose of this study was to explore fecal metabolomics in IBD patients, evaluate its potential in differentiating subtypes, and assess disease activity using FC. METHODS Cross-sectional study including IBD patients, clinical data, and FC measurements (=200 μg/g as an indicator of active disease). RESULTS Fecal metabolomics utilized chromatography mass spectrometry/solid phase microextraction with MetaboAnalyst 5.0 software for analysis. Of 52 patients (29 UC, 23 CD), 36 (69.2%) exhibited inflammatory activity. We identified 56 fecal metabolites, with hexadecanoic acid, squalene, and octadecanoic acid notably distinguishing CD from UC. For UC, octadecanoic and hexadecanoic acids correlated with disease activity, whereas octadecanoic acid was most relevant in CD. CONCLUSIONS These findings highlight the potential of metabolomics as a noninvasive complement for evaluating IBD, aiding diagnosis, and assessing disease activity.
Collapse
Affiliation(s)
- Lucas Correia Lins
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| | | | | | - Alessandre Carmo Crispim
- Universidade Federal de Alagoas, Postgraduate Program in Chemistry and Biotechnology - Maceió (AL), Brazil
| | | | | | - Fabiana Andréa Moura
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| |
Collapse
|
6
|
Ganesan R, Thirumurugan D, Vinayagam S, Kim DJ, Suk KT, Iyer M, Yadav MK, HariKrishnaReddy D, Parkash J, Wander A, Vellingiri B. A critical review of microbiome-derived metabolic functions and translational research in liver diseases. Front Cell Infect Microbiol 2025; 15:1488874. [PMID: 40066068 PMCID: PMC11891185 DOI: 10.3389/fcimb.2025.1488874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Significant changes in gut microbial composition are associated with chronic liver disease. Using preclinical models, it has been demonstrated that ethanol/alcohol-induced liver disease is transmissible through fecal microbiota transplantation (FMT). So, the survival rate of people with severe alcoholic hepatitis got better, which suggests that changes in the makeup and function of gut microbiota play a role in metabolic liver disease. The leaky intestinal barrier plays a major role in influencing metabolic-related liver disease development through the gut microbiota. As a result, viable bacteria and microbial products can be transported to the liver, causing inflammation, contributing to hepatocyte death, and causing the fibrotic response. As metabolic-related liver disease starts and gets worse, gut dysbiosis is linked to changes in the immune system, the bile acid composition, and the metabolic function of the microbiota in the gut. Metabolic-related liver disease, as well as its self-perpetuation, will be demonstrated using data from preclinical and human studies. Further, we summarize how untargeted treatment approaches affect the gut microbiota in metabolic-related liver disease, including dietary changes, probiotics, antibiotics, and FMT. It discusses how targeted therapies can improve liver disease in various areas. These approaches may improve metabolic-related liver disease treatment options.
Collapse
Affiliation(s)
- Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Bioscience, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dong Joon Kim
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mahalaxmi Iyer
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Parkash
- Neurochemistry and Neuroendocrinology Lab, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Arvinder Wander
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Liao Y, Wu S, Zhou G, Mei S, Ou B, Wen M, Yang Y, Wen G. Probiotic Bacillus cereus regulates metabolic disorders and activates the cholic acid-FXR axis to alleviate DSS-induced colitis. J Proteomics 2025; 312:105360. [PMID: 39631667 DOI: 10.1016/j.jprot.2024.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Inflammatory bowel disease is characterized by severe imbalance of intestinal flora and metabolic disorders. Recent studies have demonstrated that probiotics can effectively alleviate inflammatory bowel disease by restoring the intestinal flora structure and modulating the immune response. However, the role of probiotics in regulating intestinal metabolism disorders is still unclear. This study explores the role of probiotic B. cereus in alleviating DSS-induced colitis. The findings indicated probiotic B. cereus treatment mitigated tissue damage and apoptosis during inflammation. Metabolome and transcriptome analysis revealed B. cereus activated the cholic acid-FXR axis by increasing cholic acid levels, which promoted the gene expression level of NF-κB inhibitor α, reduced the IL-1β, IL-6, IL-18 and TNF-α concentrations. Furthermore, it effectively mitigated the DSS-induced disruption of bile acid metabolism, arginine metabolism, and linoleic acid metabolism. This study explores the effect and mechanisms of probiotic B. cereus on alleviating DSS-induced colitis. It aims to provide a theoretical basis for microbial therapy in inflammatory bowel disease. SIGNIFICANCE: This study used metabolome and transcriptome to reveal the roles and mechanisms, which probiotic Bacillus cereus modulates metabolic disorders and alleviate DSS-induced colitis. We identified the cholic acid-FXR axis as an important target for alleviating DSS-induced colitis. These findings provide new insights into microbial treatment strategies for IBD.
Collapse
Affiliation(s)
- Yixiao Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Wu
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Guixian Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Bingmin Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China.
| | - Guilan Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Cao B, Lu H, Liu P, Zhang Y, Wang C. Serum metabolomics signature of maternally inherited diabetes and deafness by gas chromatography-time of flight mass spectrometry. J Diabetes Investig 2025; 16:146-153. [PMID: 39480690 DOI: 10.1111/jdi.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
AIMS/INTRODUCTION The aim of this study was to identify a metabolic signature of MIDD as compared to healthy controls and other types of diabetes. METHODS We performed a comprehensive serum metabolomic analysis using gas chromatography-time of flight mass spectrometry (GC-TOFMS) in participants diagnosed with MIDD (n = 14), latent autoimmune diabetes in adults (LADA) (n = 14), type 2 diabetes mellitus (n = 14), and healthy controls (n = 14). Each group was matched for gender and age. RESULTS There were significant metabolic differences among MIDD and other diabetic and control groups. Compared with control, MIDD patients had high levels of carbohydrates (glucose, galactose, mannose, sorbose, and maltose), fatty acids (2-Hydroxybutyric acid, eicosapentaenoic acid, and octadecanoic acid), and other metabolites (alanine, threonic acid, cholesterol, lactic acid, and gluconic acid), but low level of threonine. Compared with LADA, MIDD patients had high levels of threonic acid and some amino acids (alanine, tryptophan, histidine, proline, glutamine, and creatine) but low levels of serine. Compared with type 2 diabetes mellitus, MIDD patients had high levels of citrulline, creatine, 3-Amino-2-piperidone, but low levels of ornithine, fatty acids (arachidonic acid and octadecanoic acid), and intermediates of the tricarboxylic acid cycle (malic acid and succinic acid). CONCLUSIONS Our study identified a specific metabolic profile related to glycolysis and the tricarboxylic acid cycle in MIDD that differs from healthy controls and other types of diabetes. This unique metabolic signature provides new perspectives for understanding the pathophysiology and underlying mechanisms of MIDD.
Collapse
Affiliation(s)
- Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Lu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinan Zhang
- The Metabolic Disease Biobank, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Boye TL, Hammerhøj A, Nielsen OH, Wang Y. Metabolomics for enhanced clinical understanding of inflammatory bowel disease. Life Sci 2024; 359:123238. [PMID: 39537099 DOI: 10.1016/j.lfs.2024.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Metabolomics is an emerging field involving the systematic identification and quantification of numerous metabolites in biological samples. Precision medicine applies multiomics systems biology to individual patients for reliable diagnostic classification, disease monitoring, and treatment. Multiomics systems biology encompasses genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Therefore, metabolomic techniques could be highly valuable for future clinical decision-making. This review provides a technical overview of two commonly used techniques for metabolomics measurements: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. We also discuss recent clinical advances in these techniques. Individuals with inflammatory bowel disease (IBD) exhibit significant variability in prognosis and response to treatment. Since both genetic predisposition and environmental factors contribute to this condition, targeting the metabolome may provide key insights for distinguishing and profiling patients with different clinical needs. Additionally, the considerable overlap in the clinical presentation of various disease subtypes emphasizes the need for enhanced diagnostic methods to improve patient care.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Zhang C, Sui C, Ma X, Ma C, Sun X, Zhai C, Cao P, Zhang Y, Cheng J, Li T, Sai J. Therapeutic potential of Xihuang Pill in colorectal cancer: Metabolomic and microbiome-driven approaches. Front Pharmacol 2024; 15:1402448. [PMID: 39687297 PMCID: PMC11646767 DOI: 10.3389/fphar.2024.1402448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction The Xihuang Pill (XHP), a venerated traditional Chinese medicine, has demonstrated significant anti-cancer capabilities. Despite its proven efficacy, the scarcity of comprehensive pharmacological studies limits the widespread application of XHP. This research endeavor seeks to demystify the therapeutic underpinnings of XHP, particularly in the realm of colorectal cancer (CRC) therapy. Methods In this study, mice harboring CT26 tumors were divided into four groups, each administered with either XHP monotherapy, 5-fluorouracil (5-FU), or a combination of both. The tumor growth trajectory was closely monitored to evaluate the effectiveness of these anti-neoplastic interventions. Advanced techniques, including 16S-rDNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), were harnessed to scrutinize the gut microbiota and serum metabolite profiles. Immunohistochemical assays were employed to gauge the expression levels of CD4, CD8, and Foxp3, thereby providing insights into the dynamics of tumor-infiltrating lymphocytes within the tumor microenvironment. Results Our findings indicate that XHP effectively suppresses the initiation and progression of colorectal tumors. The combinatorial therapy of XHP with 5-FU exhibited an enhanced inhibitory effect on tumor growth. Metabolic profiling revealed that XHP induced notable metabolic shifts, particularly impacting pathways such as steroid hormone synthesis, arachidonic acid metabolism, purine biosynthesis, and renin secretion. Notably, 17α-ethinyl estradiol and α-ergocryptine were identified as serum metabolites with the most substantial increase following XHP administration. Analysis of the gut microbiome suggested that XHP promoted the expansion of specific bacterial taxa, including Lachnospiraceae_NK4A136_group, Clostridiales, Desulfovibrionaceae, and Anaerotignum_sp., while suppressing the proliferation of others such as Ligilactobacilus, Lactobacillus_taiwanensis, and Candidatus_saccharimonas. Immunohistochemical staining indicated an upregulation of CD4 and CD8 post-XHP treatment. Conclusion This study delineates a potential mechanism by which XHP inhibits CRC tumorigenesis through modulating the gut microbiota, serum metabolites, and reshaping the tumor immune microenvironment in a murine CRC model. These findings contribute to a more profound understanding and potentially broaden the clinical utility of XHP in oncology.
Collapse
Affiliation(s)
- Chen Zhang
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Conglu Sui
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaona Ma
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinhui Sun
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Cao
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayang Sai
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Vignolle GA, Bauerstätter P, Schönthaler S, Nöhammer C, Olischar M, Berger A, Kasprian G, Langs G, Vierlinger K, Goeral K. Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage. Int J Mol Sci 2024; 25:10304. [PMID: 39408633 PMCID: PMC11477204 DOI: 10.3390/ijms251910304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Intraventricular hemorrhage (IVH) in preterm neonates presents a high risk for developing posthemorrhagic ventricular dilatation (PHVD), a severe complication that can impact survival and long-term outcomes. Early detection of PHVD before clinical onset is crucial for optimizing therapeutic interventions and providing accurate parental counseling. This study explores the potential of explainable machine learning models based on targeted liquid biopsy proteomics data to predict outcomes in preterm neonates with IVH. In recent years, research has focused on leveraging advanced proteomic technologies and machine learning to improve prediction of neonatal complications, particularly in relation to neurological outcomes. Machine learning (ML) approaches, combined with proteomics, offer a powerful tool to identify biomarkers and predict patient-specific risks. However, challenges remain in integrating large-scale, multiomic datasets and translating these findings into actionable clinical tools. Identifying reliable, disease-specific biomarkers and developing explainable ML models that clinicians can trust and understand are key barriers to widespread clinical adoption. In this prospective longitudinal cohort study, we analyzed 1109 liquid biopsy samples from 99 preterm neonates with IVH, collected at up to six timepoints over 13 years. Various explainable ML techniques-including statistical, regularization, deep learning, decision trees, and Bayesian methods-were employed to predict PHVD development and survival and to discover disease-specific protein biomarkers. Targeted proteomic analyses were conducted using serum and urine samples through a proximity extension assay capable of detecting low-concentration proteins in complex biofluids. The study identified 41 significant independent protein markers in the 1600 calculated ML models that surpassed our rigorous threshold (AUC-ROC of ≥0.7, sensitivity ≥ 0.6, and selectivity ≥ 0.6), alongside gestational age at birth, as predictive of PHVD development and survival. Both known biomarkers, such as neurofilament light chain (NEFL), and novel biomarkers were revealed. These findings underscore the potential of targeted proteomics combined with ML to enhance clinical decision-making and parental counseling, though further validation is required before clinical implementation.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Priska Bauerstätter
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Silvia Schönthaler
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Christa Nöhammer
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Monika Olischar
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Angelika Berger
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuro- and Musculosceletal Radiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Klemens Vierlinger
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Katharina Goeral
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| |
Collapse
|
15
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri BA, Blekhman R, Willis AD, Yu MK, Fernandez-Guerra A, Fussel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540289. [PMID: 37293035 PMCID: PMC10245760 DOI: 10.1101/2023.05.10.540289] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health versus IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
|
16
|
Onwuka S, Bravo-Merodio L, Gkoutos GV, Acharjee A. Explainable AI-prioritized plasma and fecal metabolites in inflammatory bowel disease and their dietary associations. iScience 2024; 27:110298. [PMID: 39040076 PMCID: PMC11261406 DOI: 10.1016/j.isci.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential associations with diet. Metabolomics and AI-based models, including explainable AI (XAI), play crucial roles in understanding IBD. Using datasets from the UK Biobank and the Human Microbiome Project Phase II IBD Multi'omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze their diet correlations. Key findings include the identification of discriminative metabolites like glycoprotein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metabolites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87-0.99]) compared to plasma metabolites (AUC [95%]: 0.74 [0.69-0.79]), with stronger and more group-differential diet-metabolite associations in feces. The study validates known metabolite associations and highlights the impact of IBD on the interplay between gut microbial metabolites and diet.
Collapse
Affiliation(s)
- Serena Onwuka
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Laura Bravo-Merodio
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Belnour S, Slater R, Tharmaratnam K, Karl‐Heinz Auth M, Muhammed R, Spray C, Wang D, Zeeshan Ijaz U, Probert C, Allen S. Faecal volatile organic compounds differ according to inflammatory bowel disease sub-type, severity, and response to treatment in paediatric patients. United European Gastroenterol J 2024; 12:780-792. [PMID: 38922802 PMCID: PMC11249809 DOI: 10.1002/ueg2.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Faecal volatile organic compounds (VOCs) differ with disease sub-type and activity in adults with established inflammatory bowel disease (IBD) taking therapy. OBJECTIVE To describe patterns of faecal VOCs in children newly presented with IBD according to disease sub-type, severity, and response to treatment. METHODS Children presenting with suspected IBD were recruited from three UK hospitals. Children in whom IBD was diagnosed were matched with a non-IBD child for age, sex, and recruitment site. Faecal VOCs were characterised by gas chromatography-mass spectrometry at presentation and 3 months later in children with IBD. RESULTS In 132 case/control pairs, median (inter-quartile range) age in IBD was 13.3 years (10.2-14.7) and 38.6% were female. Compared with controls, the mean abundance of 27/62 (43.6%) faecal VOCs was statistically significantly decreased in Crohn's disease (CD), ulcerative colitis (UC) or both especially amongst ketones/diketones, fatty acids, and alcohols (p < 0.05). Short-chain, medium chain, and branched chain fatty acids were markedly reduced in severe colitis (p < 0.05). Despite clinical improvement in many children with IBD, the number and abundance of almost all VOCs did not increase following treatment, suggesting persistent dysbiosis. Oct-1-en-3-ol was increased in CD (p = 0.001) and UC (p = 0.012) compared with controls and decreased following treatment in UC (p = 0.01). In CD, propan-1-ol was significantly greater than controls (p < 0.001) and extensive colitis (p = 0.001) and fell with treatment (p = 0.05). Phenol was significantly greater in CD (p < 0.001) and fell with treatment in both CD (p = 0.02) and UC (p = 0.01). CONCLUSION Characterisation of faecal VOCs in an inception cohort of children with IBD reveals patterns associated with diagnosis, disease activity, and extent. Further work should investigate the relationship between VOCs and the microbiome in IBD and their role in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Salma Belnour
- Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Slater
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | | | | | - Rafeeq Muhammed
- Gastroenterology and NutritionBirmingham Children's HospitalBirminghamUK
| | - Christine Spray
- Paediatric GastroenterologyBristol Royal Hospital for ChildrenBristolUK
| | - Duolao Wang
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Chris Probert
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | - Stephen Allen
- Paediatric GastroenterologyAlder Hey Children's NHS Foundation TrustLiverpoolUK
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
18
|
Park Y, Ahn JB, Kim DH, Park IS, Son M, Kim JH, Ma HW, Kim SW, Cheon JH. Integrated Analysis of Microbiome and Metabolome Reveals Disease-Specific Profiles in Inflammatory Bowel Diseases and Intestinal Behçet's Disease. Int J Mol Sci 2024; 25:6697. [PMID: 38928402 PMCID: PMC11203907 DOI: 10.3390/ijms25126697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbial and metabolic characteristics of intestinal Behçet's disease (BD), a condition sharing many clinical similarities with ulcerative colitis (UC) and Crohn's disease (CD), are largely unexplored. This study investigated the gut microbial and metabolic characteristics of intestinal BD as well as potential biomarkers, comparing them with those in UC, CD, and healthy controls. Colon tissue and stool samples from 100 patients (35 UC, 30 CD, and 35 intestinal BD) and 41 healthy volunteers were analyzed using 16S ribosomal RNA sequencing to assess microbial diversity, taxonomic composition, and functional profiling. Plasma metabolomic analyses were performed using gas chromatography and ultra-performance liquid chromatography-mass spectrometry. Results indicated reduced microbial diversity in CD but not in intestinal BD, with intestinal BD showing fewer changes compared to controls yet distinct taxonomic features from UC, CD, and controls. Common alterations across all diseases included a reduction in beneficial bacteria producing short-chain fatty acids. Intestinal BD-specific changes featured a decreased abundance of Bacteroides fragilis. Metabolomic profiles in intestinal BD were similar to those in CD but distinct from those in UC, displaying significant changes in energy metabolism and genetic information processing. This integrative analysis revealed both shared and unique profiles in intestinal BD compared with UC, CD, and controls, advancing our understanding of the distinctive features of these diseases.
Collapse
Affiliation(s)
- Yehyun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul 03760, Republic of Korea
| | - Jae Bum Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
| | - Da Hye Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
| | - I Seul Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mijeong Son
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Hyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Woo Ma
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Won Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
19
|
Giordano MV, Crisi PE, Gramenzi A, Cattaneo D, Corna L, Sung CH, Tolbert KM, Steiner JM, Suchodolski JS, Boari A. Fecal microbiota and concentrations of long-chain fatty acids, sterols, and unconjugated bile acids in cats with chronic enteropathy. Front Vet Sci 2024; 11:1401592. [PMID: 38933703 PMCID: PMC11199873 DOI: 10.3389/fvets.2024.1401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Feline chronic enteropathies (FCE) are common causes of chronic gastrointestinal signs in cats and include different diseases such as food-responsive enteropathy (FRE), inflammatory bowel diseases (IBD), and low-grade intestinal T-cell lymphoma (LGITL). Although changes in intestinal microbiota and fecal metabolites have been reported in dogs and humans with chronic enteropathy, research in cats has been limited. Therefore, this study aimed to evaluate the fecal microbiota and lipid-related fecal metabolites in cats with FCE to a clinically healthy comparison group (CG). A total of 34 cats with FCE (13 FRE, 15 IBD, and 6 LGITL) and 27 cats in the CG were enrolled in this study. The fecal microbiota was evaluated by the qPCR-based feline Dysbiosis Index (DI). The feline DI in cats with CE (median: 1.3, range: -2.4 to 3.8) was significantly higher (p < 0.0001) compared to CG (median: - 2.3, Range: -4.3 to 2.3), with no difference found among the FCE subgroups. The fecal abundances of Faecalibacterium (p < 0.0001), Bacteroides (p < 0.0001), Fusobacterium (p = 0.0398), Bifidobacterium (p = 0.0004), and total bacteria (p = 0.0337) significantly decreased in cats with FCE. Twenty-seven targeted metabolites were measured by gas chromatography-mass spectrometry, including long-chain fatty acids (LCFAs), sterols, and bile acids (BAs). Fecal concentrations of 5 of 12 LCFAs were significantly increased in cats with FCE compared to CG. Fecal concentrations of zoosterol (p = 0.0109), such as cholesterol (p < 0.001) were also significantly increased in cats with FCE, but those of phytosterols were significantly decreased in this group. No differences in fecal BAs were found between the groups. Although no differences were found between the four groups, the fecal metabolomic pattern of cats with FRE was more similar to that of the CG than to those with IBD or LGITL. This could be explained by the mild changes associated with FRE compared to IBD and LGITL. The study showed changes in intestinal microbiota and alteration of fecal metabolites in FCE cats compared to the CG. Changes in fecal lipids metabolites suggest a dysmetabolism of lipids, including LCFAs, sterols, and unconjugated BAs in cats with CE.
Collapse
Affiliation(s)
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | | | - Luca Corna
- Endovet Professional Association, Rome, Italy
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Katherine M. Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrea Boari
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| |
Collapse
|
20
|
Lewis JD, Daniel SG, Li H, Hao F, Patterson AD, Hecht AL, Brensinger CM, Wu GD, Bittinger K. Surgery for Crohn's Disease Is Associated With a Dysbiotic Microbiome and Metabolome: Results From Two Prospective Cohorts. Cell Mol Gastroenterol Hepatol 2024; 18:101357. [PMID: 38750900 PMCID: PMC11278594 DOI: 10.1016/j.jcmgh.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND & AIMS Crohn's disease is associated with alterations in the gut microbiome and metabolome described as dysbiosis. We characterized the microbial and metabolic consequences of ileal resection, the most common Crohn's disease surgery. METHODS Patients with and without intestinal resection were identified from the Diet to Induce Remission in Crohn's Disease and Study of a Prospective Adult Research Cohort with Inflammatory Bowel Disease studies. Stool samples were analyzed with shotgun metagenomics sequencing. Fecal butyrate was measured with 1H nuclear magnetic resonance spectroscopy. Fecal bile acids and plasma 7α-hydroxy-4-cholesten-3-one (C4) was measured with mass spectrometry. RESULTS Intestinal resection was associated with reduced alpha diversity and altered beta diversity with increased Proteobacteria and reduced Bacteroidetes and Firmicutes. Surgery was associated with higher representation of genes in the KEGG pathway for ABC transporters and reduction in genes related to bacterial metabolism. Surgery was associated with reduced concentration of the But gene but this did not translate to reduced fecal butyrate concentration. Surgery was associated with decreased abundance of bai operon genes, with increased plasma C4 concentration, increased primary bile acids and reduced secondary bile acids, including isoLCA. Additionally, Egerthella lenta, Adlercreutzia equalofaciens, and Gordonibacter pamelaeae were lower in abundance among patients with prior surgery in both cohorts. CONCLUSIONS In 2 different populations, prior surgery in Crohn's disease is associated with altered fecal microbiome. Patients who had undergone ileal resection had reduction in the potentially beneficial bacteria E lenta and related actinobacteria and secondary bile acids, including isoLCA, suggesting that these could be biomarkers of patients at higher risk for disease progression.
Collapse
Affiliation(s)
- James D Lewis
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Scott G Daniel
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, Pennsylvania
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, Pennsylvania
| | - Aaron L Hecht
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colleen M Brensinger
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Calzadilla N, Jayawardena D, Qazi A, Sharma A, Mongan K, Comiskey S, Eathara A, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Serotonin Transporter Deficiency Induces Metabolic Alterations in the Ileal Mucosa. Int J Mol Sci 2024; 25:4459. [PMID: 38674044 PMCID: PMC11049861 DOI: 10.3390/ijms25084459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Serotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Aisha Qazi
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Anchal Sharma
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Kai Mongan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Shane Comiskey
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Abhijith Eathara
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA. Trace Amine-Associated Receptors' Role in Immune System Functions. Biomedicines 2024; 12:893. [PMID: 38672247 PMCID: PMC11047934 DOI: 10.3390/biomedicines12040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
23
|
Xiao H, Yin D, Du L, Li G, Lin J, Fang C, Shen S, Xiao G, Fang R. Effects of pork sausage on intestinal microecology and metabolism in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3413-3427. [PMID: 38111159 DOI: 10.1002/jsfa.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Processed meat, as an important part of the human diet, has been recognized as a carcinogen by the International Agency for Research on Cancer (IARC). Although numerous epidemiological reports supported the IARC's view, the relevant evidence of a direct association between processed meat and carcinogenicity has been insufficient and the mechanism has been unclear. This study aims to investigate the effects of pork sausage (as a representative example of processed meat) intake on gut microbial communities and metabolites of mice. Microbial communities and metabolites from all groups were analyzed using 16S rRNA gene sequencing and Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer (UPLC-Q-TOF/MS), respectively. RESULTS The levels of Bacteroidetes, Bacteroides, Alloprevotella, Lactobacillus, Prevotella_9, Lachnospiraceae_NK4A136_group, Alistipes, Blautia, Proteobacteria, Firmicutes, Allobaculum, Helicobacter, Desulfovibrio, Clostridium_sensu_stricto_1, Ruminococcaceae_UCG-014, Lachnospiraceae_UCG-006 and Streptococcus (P < 0.05) were obviously altered in the mice fed a pork sausage diet. Twenty-seven metabolites from intestinal content samples and fourteen matabolites from whole blood samples were identified as potential biomarkers from multivariate analysis, including Phosphatidic acid (PA), Sphingomyelin (SM), Lysophosphatidylcholine (LysoPC), Diglyceride (DG), D-maltose, N-acylamides and so forth. The significant changes in these biomarkers demonstrate metabonomic variations in pork sausage treated rats, especially carbohydrate metabolism, lipid metabolism, and amino acid metabolism. CONCLUSION The present study provided evidence that a processed meat diet can increase the risk of colorectal cancer and other diseases significantly by altering the microbial community structure and disrupting the body's metabolic pathways. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailong Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Danhan Yin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Lidan Du
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Gaotian Li
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Jie Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Chenyu Fang
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Shaolin Shen
- Hangzhou Xiaoshan Institute of Measurement for Quality and Technique Supervision, Hangzhou, China
| | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
24
|
Wu J, Deng X, Sun Y, Li J, Dai H, Qi S, Huang Y, Sun W. Aged oolong tea alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and its metabolites. Food Chem X 2024; 21:101102. [PMID: 38268839 PMCID: PMC10805651 DOI: 10.1016/j.fochx.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.
Collapse
Affiliation(s)
- Jun Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Questa M, Weimer BC, Fiehn O, Chow B, Hill SL, Ackermann MR, Lidbury JA, Steiner JM, Suchodolski JS, Marsilio S. Unbiased serum metabolomic analysis in cats with naturally occurring chronic enteropathies before and after medical intervention. Sci Rep 2024; 14:6939. [PMID: 38521833 PMCID: PMC10960826 DOI: 10.1038/s41598-024-57004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Chronic enteropathies (CE) are common disorders in cats and the differentiation between the two main underlying diseases, inflammatory bowel disease (IBD) and low-grade intestinal T-cell lymphoma (LGITL), can be challenging. Characterization of the serum metabolome could provide further information on alterations of disease-associated metabolic pathways and may identify diagnostic or therapeutic targets. Unbiased metabolomics analysis of serum from 28 cats with CE (14 cats with IBD, 14 cats with LGITL) and 14 healthy controls identified 1,007 named metabolites, of which 129 were significantly different in cats with CE compared to healthy controls at baseline. Random Forest analysis revealed a predictive accuracy of 90% for differentiating controls from cats with chronic enteropathy. Metabolic pathways found to be significantly altered included phospholipids, amino acids, thiamine, and tryptophan metabolism. Several metabolites were found to be significantly different between cats with IBD versus LGITL, including several sphingolipids, phosphatidylcholine 40:7, uridine, pinitol, 3,4-dihydroxybenzoic acid, and glucuronic acid. However, random forest analysis revealed a poor group predictive accuracy of 60% for the differentiation of IBD from LGITL. Of 129 compounds found to be significantly different between healthy cats and cats with CE at baseline, 58 remained different following treatment.
Collapse
Affiliation(s)
- Maria Questa
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Betty Chow
- VCA Animal Specialty & Emergency Center, Los Angeles, CA, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA
| | - Mark R Ackermann
- US Department of Agriculture, National Animal Disease Center, Ames, IA, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Sina Marsilio
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
26
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
28
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
29
|
Kamal S, Parkash N, Beattie W, Christensen B, Segal JP. Are We Ready to Reclassify Crohn's Disease Using Molecular Classification? J Clin Med 2023; 12:5786. [PMID: 37762727 PMCID: PMC10532006 DOI: 10.3390/jcm12185786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease. The number of IBD cases worldwide was estimated to be 4.9 million in 2019. CD exhibits heterogeneity in clinical presentation, anatomical involvement, disease behaviour, clinical course and response to treatment. The classical description of CD involves transmural inflammation with skip lesions anywhere along the entire gastrointestinal tract. The complexity and heterogeneity of Crohn's disease is not currently reflected in the conventional classification system. Though the knowledge of Crohn's pathophysiology remains far from understood, the established complex interplay of the omics-genomics, transcriptomics, proteomics, epigenomics, metagenomics, metabolomics, lipidomics and immunophenomics-provides numerous targets for potential molecular markers of disease. Advancing technology has enabled identification of small molecules within these omics, which can be extrapolated to differentiate types of Crohn's disease. The multi-omic future of Crohn's disease is promising, with potential for advancements in understanding of its pathogenesis and implementation of personalised medicine.
Collapse
Affiliation(s)
- Shahed Kamal
- Department of Gastroenterology, Northern Hospital, Epping, Melbourne VIC 3076, Australia
| | - Nikita Parkash
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - William Beattie
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - Britt Christensen
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| | - Jonathan P. Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| |
Collapse
|
30
|
Vich Vila A, Hu S, Andreu-Sánchez S, Collij V, Jansen BH, Augustijn HE, Bolte LA, Ruigrok RAAA, Abu-Ali G, Giallourakis C, Schneider J, Parkinson J, Al-Garawi A, Zhernakova A, Gacesa R, Fu J, Weersma RK. Faecal metabolome and its determinants in inflammatory bowel disease. Gut 2023; 72:1472-1485. [PMID: 36958817 PMCID: PMC10359577 DOI: 10.1136/gutjnl-2022-328048] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/05/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Shixian Hu
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Groningen, The Netherlands
| | - Valerie Collij
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Bernadien H Jansen
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
| | - Hannah E Augustijn
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Laura A Bolte
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
| | - Renate A A A Ruigrok
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Galeb Abu-Ali
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
| | - Cosmas Giallourakis
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
| | - Jessica Schneider
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
| | - John Parkinson
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
| | - Amal Al-Garawi
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
| | | | - Ranko Gacesa
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University Medical Centre, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Genetics, University Medical Centre, Groningen, The Netherlands
| |
Collapse
|
31
|
Alsulaiman RM, Al-Quorain AA, Al-Muhanna FA, Piotrowski S, Kurdi EA, Vatte C, Alquorain AA, Alfaraj NH, Alrezuk AM, Robinson F, Dowdell AK, Alamri TA, Hamilton L, Lad H, Gao H, Gandla D, Keating BJ, Meng R, Piening B, Al-Ali AK. Gut microbiota analyses of inflammatory bowel diseases from a representative Saudi population. BMC Gastroenterol 2023; 23:258. [PMID: 37507685 PMCID: PMC10375692 DOI: 10.1186/s12876-023-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Crohn's diseases and ulcerative colitis, both of which are chronic immune-mediated disorders of the gastrointestinal tract are major contributors to the overarching Inflammatory bowel diseases. It has become increasingly evident that the pathological processes of IBDs results from interactions between genetic and environmental factors, which can skew immune responses against normal intestinal flora. METHODS The aim of this study is to assess and analyze the taxa diversity and relative abundances in CD and UC in the Saudi population. We utilized a sequencing strategy that targets all variable regions in the 16 S rRNA gene using the Swift Amplicon 16 S rRNA Panel on Illumina NovaSeq 6000. RESULTS The composition of stool 16 S rRNA was analyzed from 219 patients with inflammatory bowel disease and from 124 healthy controls. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples. At the genus level, two genera in particular, Veillonella and Lachnoclostridium showed significant association with CD versus controls. There were significant differences between subjects with CD versus UC, with the top differential genera spanning Akkermansia, Harryflintia, Maegamonas and Phascolarctobacterium. Furthermore, statistically significant taxa diversity in microbiome composition was observed within the UC and CD groups. CONCLUSIONS In conclusion we have shown that there are significant differences in gut microbiota between UC, CD and controls in a Saudi Arabian inflammatory bowel disease cohort. This reinforces the need for further studies in large populations that are ethnically and geographically diverse. In addition, our results show the potential to develop classifiers that may have add additional richness of context to clinical diagnosis of UC and CD with larger inflammatory bowel disease cohorts.
Collapse
Affiliation(s)
- Raed M Alsulaiman
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulaziz A Al-Quorain
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Fahad A Al-Muhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Stanley Piotrowski
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | | | - Chittibabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed A Alquorain
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | | | - Abdulaziz M Alrezuk
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Fred Robinson
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Turki A Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Lauren Hamilton
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Hetal Lad
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Hui Gao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Divya Gandla
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Ryan Meng
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Brian Piening
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
32
|
Calzadilla N, Qazi A, Sharma A, Mongan K, Comiskey S, Manne J, Youkhana AG, Khanna S, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Mucosal Metabolomic Signatures in Chronic Colitis: Novel Insights into the Pathophysiology of Inflammatory Bowel Disease. Metabolites 2023; 13:873. [PMID: 37512580 PMCID: PMC10386370 DOI: 10.3390/metabo13070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7-9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Aisha Qazi
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Anchal Sharma
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Kai Mongan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shane Comiskey
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jahnavi Manne
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alvin G Youkhana
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sonam Khanna
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Wang J, Dong P, Zheng S, Mai Y, Ding J, Pan P, Tang L, Wan Y, Liang H. Advances in gut microbiome in metabonomics perspective: based on bibliometrics methods and visualization analysis. Front Cell Infect Microbiol 2023; 13:1196967. [PMID: 37325519 PMCID: PMC10266355 DOI: 10.3389/fcimb.2023.1196967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background and aims Gastrointestinal microbial metabolomics is closely related to the state of the organism and has significant interaction with the pathogenesis of many diseases. Based on the publications in Web of Science Core Collection(WoSCC) from 2004 to 2022, this study conducted a bibliometric analysis of this field, aiming to understand its development trend and frontier, and provide basic information and potential points for in-depth exploration of this field. Methods All articles on gastrointestinal flora and metabolism published from 2004 to 2022 were collected and identified in WoCSS. CiteSpace v.6.1 and VOSviewer v.1.6.15.0 were used to calculate bibliometric indicators, including number of publications and citations, study categories, countries/institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords. A map was drawn to visualize the data based on the analysis results for a more intuitive view. Results There were 3811 articles in WoSCC that met our criteria. Analysis results show that the number of publications and citations in this field are increasing year by year. China is the country with the highest number of publications and USA owns the highest total link strength and citations. Chinese Acad Sci rank first for the number of institutional publications and total link strength. Journal of Proteome Research has the most publications. Nicholson, Jeremy K. is one of the most important scholars in this field. The most cited reference is "Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease". Burst detection indicates that Urine, spectroscopy, metabonomic and gut microflora are long-standing hot topics in this field, while autism spectrum disorder and omics are likely to be at the forefront of research. The study of related metabolic small molecules and the application of gastrointestinal microbiome metabolomics in various diseases are currently emerging research directions and frontier in this field. Conclusion This study is the first to make a bibliometric analysis of the studies related to gastrointestinal microbial metabolomics and reveal the development trends and current research hotspots in this field. This can contribute to the development of the field by providing relevant scholars with valuable and effective information about the current state of the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liugang Tang
- Tendon and Injury Department, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| |
Collapse
|
34
|
Zheng X, Nie K, Xu Y, Zhang H, Xie F, Xu L, Zhang Z, Ding Y, Yin Z, Zhang X. Fecal Microbial Structure and Metabolic Profile in Post-Weaning Diarrheic Piglets. Genes (Basel) 2023; 14:1166. [PMCID: PMC10298007 DOI: 10.3390/genes14061166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
(1) Background: Piglet diarrhea is one of the most serious diseases in pigs and has brought great economic losses to the pig industry. Alteration of the gut microbiota is an important factor in the etiology of piglet diarrhea. Therefore, this study aimed to analyze the differences in the gut microbial structures and fecal metabolic profile between post-weaning diarrhea and healthy Chinese Wannan Black pigs. (2) Methods: An integrated approach of 16S rRNA gene sequencing combined with LC/MS-based metabolomics was employed in this study. (3) Results: We found an increase in the relative abundance of the bacterial genus Campylobacter and a decrease in phylum Bacteroidetes and the species Streptococcus gallolyticus subsp. macedonicus. (S. macedonicus) in piglet diarrhea. Meanwhile, obvious changes in the fecal metabolic profile of diarrheic piglets were also detected, particularly higher levels of polyamines (spermine and spermidine). Moreover, there were substantial associations between the disturbed gut microbiota and the altered fecal metabolites, especially a strong positive relationship between spermidine and Campylobacter. (4) Conclusions: These observations may provide novel insights into potential etiologies related to post-weaning diarrhea and further enhance our understanding of the role of gut microbiota in host homeostasis and in modulating gut microbial structure.
Collapse
Affiliation(s)
- Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Ke Nie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Yiliang Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Huibin Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Fan Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Liming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Zhiyong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
35
|
Chiu O, Tal M, Sanmugam A, Hesta M, Gomez DE, Weese JS, Verbrugghe A. The effects of ambient temperature exposure on feline fecal metabolome. Front Vet Sci 2023; 10:1141881. [PMID: 37303717 PMCID: PMC10250732 DOI: 10.3389/fvets.2023.1141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The fecal metabolome provides insight into overall gastrointestinal and microbial health. Methods for fecal sample storage in metabolomics research vary, however, making comparisons within current literature difficult. This study investigated the effect of ambient temperature exposure on microbial-derived metabolites of feline fecal samples. Methods Fecal samples were collected from 11 healthy cats from a local boarding facility. Samples were manually homogenized and aliquoted. The first aliquot was frozen at -80°C within 1 hour of defecation, and remaining samples were exposed to ambient temperature for 2, 4, 6, 8, 12, and 24 h prior to freezing at -80°C. Fecal metabolites were quantified using 1H NMR spectroscopy. Fifty metabolites were grouped into six categories (27 amino acids, 8 fatty acids, 5 sugars, 3 alcohols, 2 nitrogenous bases, 5 miscellaneous). Results Concentrations of 20 out of 50 metabolites significantly differed due to ambient temperature exposure (7 amino acids, 6 fatty acids, 2 alcohols, 1 nitrogenous base, 4 miscellaneous). The earliest detected changes occurred 6 h post-defecation for cadaverine and fumaric acid. Discussion This study shows ambient temperature exposure alters the composition of the feline fecal metabolome, but short-term (up to 4 h) exposure prior to storage in the freezer seems to be acceptable.
Collapse
Affiliation(s)
- Olivia Chiu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Moran Tal
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abbinash Sanmugam
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Myriam Hesta
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jeffrey Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
37
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
38
|
Song Z, Ohnishi Y, Osada S, Gan L, Jiang J, Hu Z, Kumeta H, Kumaki Y, Yokoi Y, Nakamura K, Ayabe T, Yamauchi K, Aizawa T. Application of Benchtop NMR for Metabolomics Study Using Feces of Mice with DSS-Induced Colitis. Metabolites 2023; 13:metabo13050611. [PMID: 37233652 DOI: 10.3390/metabo13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics, which comprehensively measures metabolites in biological systems and investigates their response to various perturbations, is widely used in research to identify biomarkers and investigate the pathogenesis of underlying diseases. However, further applications of high-field superconducting NMR for medical purposes and field research are restricted by its high cost and low accessibility. In this study, we applied a low-field, benchtop NMR spectrometer (60 MHz) employing a permanent magnet to characterize the alterations in the metabolic profile of fecal extracts obtained from dextran sodium sulfate (DSS)-induced ulcerative colitis model mice and compared them with the data acquired from high-field NMR (800 MHz). Nineteen metabolites were assigned to the 60 MHz 1H NMR spectra. Non-targeted multivariate analysis successfully discriminated the DSS-induced group from the healthy control group and showed high comparability with high-field NMR. In addition, the concentration of acetate, identified as a metabolite with characteristic behavior, could be accurately quantified using a generalized Lorentzian curve fitting method based on the 60 MHz NMR spectra.
Collapse
Affiliation(s)
- Zihao Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | | | - Li Gan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Jiaxi Jiang
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Zhiyan Hu
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Hiroyuki Kumeta
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yasuhiro Kumaki
- High-Resolution NMR Laboratory, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kazuo Yamauchi
- Instrumental Analysis Section, Okinawa Institute of Science and Technology, Onna 904-0495, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
39
|
Szabó C, Kachungwa Lugata J, Ortega ADSV. Gut Health and Influencing Factors in Pigs. Animals (Basel) 2023; 13:ani13081350. [PMID: 37106913 PMCID: PMC10135089 DOI: 10.3390/ani13081350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex, dynamic, and critical part of the body, which plays an important role in the digestion and absorption of ingested nutrients and excreting waste products of digestion. In addition, GIT also plays a vital role in preventing the entry of harmful substances and potential pathogens into the bloodstream. The gastrointestinal tract hosts a significant number of microbes, which throughout their metabolites, directly interact with the hosts. In modern intensive animal farming, many factors can disrupt GIT functions. As dietary nutrients and biologically active substances play important roles in maintaining homeostasis and eubiosis in the GIT, this review aims to summarize the current status of our knowledge on the most important areas.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Arth David Sol Valmoria Ortega
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
40
|
Maroli AS, Powers R. Closing the gap between in vivo and in vitro omics: using QA/QC to strengthen ex vivo NMR metabolomics. NMR IN BIOMEDICINE 2023; 36:e4594. [PMID: 34369014 PMCID: PMC8821733 DOI: 10.1002/nbm.4594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 05/08/2023]
Abstract
Metabolomics aims to achieve a global quantitation of the pool of metabolites within a biological system. Importantly, metabolite concentrations serve as a sensitive marker of both genomic and phenotypic changes in response to both internal and external stimuli. NMR spectroscopy greatly aids in the understanding of both in vitro and in vivo physiological systems and in the identification of diagnostic and therapeutic biomarkers. Accordingly, NMR is widely utilized in metabolomics and fluxomics studies due to its limited requirements for sample preparation and chromatography, its non-destructive and quantitative nature, its utility in the structural elucidation of unknown compounds, and, importantly, its versatility in the analysis of in vitro, in vivo, and ex vivo samples. This review provides an overview of the strengths and limitations of in vitro and in vivo experiments for translational research and discusses how ex vivo studies may overcome these weaknesses to facilitate the extrapolation of in vitro insights to an in vivo system. The application of NMR-based metabolomics to ex vivo samples, tissues, and biofluids can provide essential information that is close to a living system (in vivo) with sensitivity and resolution comparable to those of in vitro studies. The success of this extrapolation process is critically dependent on high-quality and reproducible data. Thus, the incorporation of robust quality assurance and quality control checks into the experimental design and execution of NMR-based metabolomics experiments will ensure the successful extrapolation of ex vivo studies to benefit translational medicine.
Collapse
Affiliation(s)
- Amith Sadananda Maroli
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Robert Powers
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
41
|
Alexander JL, Mullish BH, Danckert NP, Liu Z, Olbei ML, Saifuddin A, Torkizadeh M, Ibraheim H, Blanco JM, Roberts LA, Bewshea CM, Nice R, Lin S, Prabhudev H, Sands C, Horneffer-van der Sluis V, Lewis M, Sebastian S, Lees CW, Teare JP, Hart A, Goodhand JR, Kennedy NA, Korcsmaros T, Marchesi JR, Ahmad T, Powell N. The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients. EBioMedicine 2023; 88:104430. [PMID: 36634565 PMCID: PMC9831064 DOI: 10.1016/j.ebiom.2022.104430] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. METHODS Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. FINDINGS Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. INTERPRETATION Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. FUNDING JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.
Collapse
Affiliation(s)
- James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nathan P Danckert
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhigang Liu
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Marton L Olbei
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aamir Saifuddin
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - Melissa Torkizadeh
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; King's College London, London, United Kingdom
| | - Hajir Ibraheim
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jesús Miguéns Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Rachel Nice
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Simeng Lin
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Hemanth Prabhudev
- Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shaji Sebastian
- Hull University Teaching Hospitals NHS Trust, Gastroenterology, Hull, United Kingdom; University of Hull, Hull York Medical School, Hull, United Kingdom
| | - Charlie W Lees
- Western General Hospital, Edinburgh, United Kingdom; The University of Edinburgh Centre for Genomic and Experimental Medicine, Edinburgh, United Kingdom
| | - Julian P Teare
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ailsa Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - James R Goodhand
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nicholas A Kennedy
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Earlham Institute, Norwich, United Kingdom; Quadram Institute Bioscience, Norwich, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tariq Ahmad
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nick Powell
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
42
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
43
|
Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol 2022; 13:1021924. [PMID: 36569849 PMCID: PMC9768584 DOI: 10.3389/fimmu.2022.1021924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Department of Bioengineering, University of Illinois, Chicago, IL, United States
| | - Shane M. Comiskey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
44
|
Zhou Q, Shen Y, Chou L, Guo J, Zhang X, Shi W. Identification of Glucocorticoid Receptor Antagonistic Activities and Responsible Compounds in House Dust: Bioaccessibility Should Not Be Ignored. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16768-16779. [PMID: 36345731 DOI: 10.1021/acs.est.2c04183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More and more contaminants in dust have been found to be glucocorticoid receptor (GR) disrupting chemicals. However, little is known about the related potency and responsible toxicants, especially for the main bioaccessible ones in dust. An effect-directed analysis (EDA)-based workflow was developed, including solvent-based exhaustive extraction/tenax-assisted bioaccessible extraction (TBE), high-throughput bioassays, suspect and non-target analysis, as well as in silico candidate selection, for a more realistic identification of responsible contaminants in dust. None of the 39 dust samples from 23 cities in China exhibited GR agonistic activity, while GR antagonistic potencies were detected in 34.8% of samples, being significantly different from the high detection frequency of GR agonistic activities in other environmental media. The GR antagonistic potencies of the dust samples were all reduced after bioaccessible extraction. The mean bioaccessibility of GR antagonistic potency compared with the related exhaustive extracts was 36.8%, and the lowest value was 9%. By using in silico candidate selection, greater than 99% candidate chemical structures which were found by a non-target screening strategy were removed. Di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and nicotine (NIC) were responsible for the activities of the exhaustive extracts of dust, contributing up to 91% potencies. DiBP and DnBP were also responsible for the bioaccessible activities, contributing up to 79% potencies. However, the contribution from NIC decreased significantly and can be ignored because of its low bioaccessibility. This study suggests that the improved workflow combining extraction, reporter gene bioassays, suspect and non-target analysis, as well as in silico candidate selection is useful for EDA analysis in dust samples. In addition, exhaustive extraction may overestimate the risk of contaminants, while bioaccessibility evaluation based on bioaccessible extraction is essential in both effect evaluation and toxicant identification.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Environmental Monitoring Station of Suzhou Industrial Park, Suzhou215027, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing210023, China
| |
Collapse
|
45
|
Taylor SJ, Winter MG, Gillis CC, Silva LAD, Dobbins AL, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Llano EM, Rojas VK, Kim J, Santos RL, Zhu W, Winter SE. Colonocyte-derived lactate promotes E. coli fitness in the context of inflammation-associated gut microbiota dysbiosis. MICROBIOME 2022; 10:200. [PMID: 36434690 PMCID: PMC9701030 DOI: 10.1186/s40168-022-01389-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology. RESULTS We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis. CONCLUSIONS The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition. Video Abstract.
Collapse
Affiliation(s)
- Savannah J Taylor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Caroline C Gillis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Novome Biotechnologies, South San Francisco, CA, 94080, USA
| | - Laice Alves da Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | - Amanda L Dobbins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew K Muramatsu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Angel G Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Infectious Diseases, Genentech, South San Francisco, CA, 94080, USA
| | - Rachael B Chanin
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Medicine, Hematology, Blood and Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Ernesto M Llano
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vivian K Rojas
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Rosso AD, Aguilera P, Quesada S, Mascardi F, Mascuka SN, Cimolai MC, Cerezo J, Spiazzi R, Conlon C, Milano C, Iraola GM, Penas-Steinhardt A, Belforte FS. Comprehensive Phenotyping in Inflammatory Bowel Disease: Search for Biomarker Algorithms in the Transkingdom Interactions Context. Microorganisms 2022; 10:2190. [PMID: 36363782 PMCID: PMC9698371 DOI: 10.3390/microorganisms10112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Inflammatory bowel disease (IBD) is the most common form of intestinal inflammation associated with a dysregulated immune system response to the commensal microbiota in a genetically susceptible host. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), both of which are remarkably heterogeneous in their clinical presentation and response to treatment. This translates into a notable diagnostic challenge, especially in underdeveloped countries where IBD is on the rise and access to diagnosis or treatment is not always accessible for chronic diseases. The present work characterized, for the first time in our region, epigenetic biomarkers and gut microbial profiles associated with UC and CD patients in the Buenos Aires Metropolitan area and revealed differences between non-IBD controls and IBD patients. General metabolic functions associated with the gut microbiota, as well as core microorganisms within groups, were also analyzed. Additionally, the gut microbiota analysis was integrated with relevant clinical, biochemical and epigenetic markers considered in the follow-up of patients with IBD, with the aim of generating more powerful diagnostic tools to discriminate phenotypes. Overall, our study provides new insights into data analysis algorithms to promote comprehensive phenotyping tools using quantitative and qualitative analysis in a transkingdom interactions network context.
Collapse
Affiliation(s)
- Ayelén D. Rosso
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - Pablo Aguilera
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Sofía Quesada
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Florencia Mascardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de Buenos Aires (HIBA), Ciudad Autónoma de Buenos Aires C1199, Argentina
| | - Sebastian N. Mascuka
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - María C. Cimolai
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - Jimena Cerezo
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Renata Spiazzi
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Carolina Conlon
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Claudia Milano
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Gregorio M. Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay
- Centro de Biología Integrativa, Universidad Mayor, Santiago 7510041, Chile
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire CB10 1SA, UK
| | - Alberto Penas-Steinhardt
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Ciudad Autónoma de Buenos Aires 1127, Argentina
| | - Fiorella S. Belforte
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| |
Collapse
|
47
|
Kocak OF, Atakay M, Yaman ME, Senol O, Erkayman MH, Esen BS, Salih B. Chemometrics assisted untargeted metabolomic analysis to explore metabolic alterations in chronic urticaria via LC/Q-TOF/MS/MS. Scand J Clin Lab Invest 2022; 82:533-540. [PMID: 36218334 DOI: 10.1080/00365513.2022.2129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 01/05/2023]
Abstract
Chronic urticaria (CU) is a common disease characterized by the development of recurrent itchy blisters and/or angioedema lasting longer than 6 weeks. The evidence-based diagnosis of CU is described in the most recent urticaria guideline. Metabolomics has the potential to offer diagnostic biomarkers for the detection and prognosis of diseases and predict the efficacy and safety of pharmaceutical interventions. Determining the variation in metabolites found in the plasma of CU patients (n = 20) and 20 controls has therefore been the goal of this investigation. Samples were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry after applying acetonitrile precipitation. For the purpose of identifying and characterizing metabolites, the METLIN database was utilized. According to results, 21 metabolites were found to be significantly (VIP score > 0.7, p < .05 and fold analysis >1.5) altered. Differentiations between each group were successful via both OPLS-DA and ROC analysis. While plasma allantoate, homogentisate, indole acetate, proline, phenylalanine levels decreased in CU patients compared to healthy subjects, tryptophan, spermidine, phenyl pyruvate, oleic acid, lysine, valine, ornithine, histidine, glutamate, leucine, kynurenine, hypoxanthine, tyrosine, glucose, creatine and cortisol levels were significantly increased. Diagnosis of CU could be achieved by evaluating the metabolic profile of patients.
Collapse
Affiliation(s)
- Omer Faruk Kocak
- Department of Chemical Technology, Erzurum Vocational Training Collage, Ataturk University, Erzurum, Turkey
| | - Mehmet Atakay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mehmet Emrah Yaman
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Onur Senol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Merve Hatun Erkayman
- Department of Dermatology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Busra Solak Esen
- Department of Dermatology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
48
|
Discovery and Validation of Potential Serum Biomarkers with Pro-Inflammatory and DNA Damage Activities in Ulcerative Colitis: A Comprehensive Untargeted Metabolomic Study. Metabolites 2022; 12:metabo12100997. [PMID: 36295899 PMCID: PMC9609580 DOI: 10.3390/metabo12100997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis is a type of non-specific inflammatory bowel disease with unclear etiology. It is considered a progressive disease with risks of bowel motility disorders, anorectal dysfunction, and even colorectal cancer. Commonly used diagnostic markers have poor specificity and cannot predict the development of ulcerative colitis. In this study, 77 serum samples (31 patients, 46 healthy controls) were analyzed using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and 31 metabolites with significant level changes were found, revealing the relationship of ulcerative colitis to disturbed glutathione metabolism and caffeine metabolism. In addition, pyroglutamic acid, a biomarker of cervical cancer and gastric cancer, was identified with elevated levels in the serum of ulcerative colitis patients. The role of pyroglutamic acid was further analyzed, and the results indicated its positive correlation with the upregulation of inflammatory factors and increased levels of phosphorylated histone H2AX (γH2AX) in IEC-6 cells, which are related to DNA damage. All these results suggest that pyroglutamic acid is not only a biomarker for distinguishing ulcerative colitis status, but that it is also a potential effective metabolite that promotes the transformation of ulcerative colitis to colorectal cancer.
Collapse
|
49
|
Abstract
The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways, especially by triggering inflammatory pathways in disease. At present, much remains to be learned about the identity of key effectors and their causal roles.
Collapse
|
50
|
Chen D, Su M, Zhu H, Zhong G, Wang X, Ma W, Wanapat M, Tan Z. Using Untargeted LC-MS Metabolomics to Identify the Association of Biomarkers in Cattle Feces with Marbling Standard Longissimus Lumborum. Animals (Basel) 2022; 12:2243. [PMID: 36077963 PMCID: PMC9455031 DOI: 10.3390/ani12172243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To improve the grade of beef marbling has great economic value in the cattle industry since marbling has the traits of high quality and comprehensive nutrition. And because of the marbling’s importance and complexity, it is indispensable to explore marbled beef at multiple levels. This experiment studied the relationship between fecal metabolites and marbling characters, and further screened biomarkers. Results: We performed fecal metabolomics analysis on 30 individuals selected from 100 crossbreed cattle (Luxi Yellow cattle ♀ × Japanese Wagyu cattle ♂), 15 with an extremely high-grade marbling beef and 15 with an extremely low-grade marbling beef. A total of 9959 and 8389 m/z features were detected in positive ionization and negative ionization mode by liquid chromatography-mass spectrometry (LC-MS). Unfortunately, the sample separation in the PCA is not obvious, and the predictive ability of the orthogonal partial least squares discrimination analysis (OPLS-DA) model is not good. However, we got six differential metabolites filtered by VIP > 1 and p < 0.05. After that, we used weighted correlation network analysis (WGCNA) and found out a module in each positive and negative mode most related to the trait of marbling beef, and then identified three metabolites in positive mode. By further annotation of the Kyoto encyclopedia of genes and genomes (KEGG), it was found that these metabolites involved a variety of metabolic ways, including sphingomyelin metabolism, linoleic acid metabolism, glycerophospholipid metabolism, and so on. Finally, receiver operating characteristic (ROC) analysis was used to evaluate the predictability of metabolites, and the result showed that SM(d18:0/16:1(9Z)) (AUC = 0.72), PC(15:0/18:2(9Z,12Z)) (AUC = 0.72), ADP (AUC = 0.71), PC(16:0/16:0) (AUC = 0.73), and 3-O-Sulfogalactosylceramide (d18:1/18:0) (AUC = 0.69) have an accuracy diagnosis. Conclusions: In conclusion, this study supports new opinions for the successive evaluation of marbling beef through metabolites. Furthermore, six non-invasive fecal metabolites that can evaluate beef marbling grade were found, including SM(d18:0/16:1(9Z)), PC(15:0/18:2(9Z,12Z)), ADP, PC(16:0/16:0), and 3-O-Sulfogalactosylceramide.
Collapse
Affiliation(s)
- Dong Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Minchao Su
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - He Zhu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Gang Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weimin Ma
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Facully of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhiliang Tan
- Institute of Subtropical Agriculture of the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|