1
|
Elsabbagh RA, Abdelhady G, Urlaub D, Sandusky M, Khorshid O, Gad MZ, Abou-Aisha K, Watzl C, Rady M. N 6-methyladenosine RNA base modification regulates NKG2D-dependent and cytotoxic genes expression in natural killer cells. BMC Med Genomics 2025; 18:91. [PMID: 40389988 PMCID: PMC12090489 DOI: 10.1186/s12920-025-02147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer in women. N6-methyladenosine (m6A) is the most prevalent internal modification in mammalian mRNAs and plays a crucial role in various biological processes. However, its function in Natural killer (NK) cells in BC remains unclear. NK cells are essential for cancer immunosurveillance. This study aims to assess m6A levels in transcripts involved in the NKG2D cytotoxicity signaling pathway in NK cells of BC patients compared to controls and find out its impact on mRNA levels. Additionally, it evaluates how deliberately altering m6A levels in NK cells affects mRNA and protein expression of NKG2D pathway genes and NK cell functionality. METHODS m6A methylation in transcripts of NKG2D-pathway-related genes in BC patients and controls was determined using methylated RNA immunoprecipitation-reverse transcription-PCR (MERIP-RT-PCR). To deliberately alter m6A levels in primary cultured human NK cells, the m6A demethylases, FTO and ALKBH5, were knocked out using the CRISPR-CAS9 system, and FTO was inhibited using Meclofenamic acid (MA). The impact of m6A alteration on corresponding mRNA and protein levels was assessed using RT-qPCR and Western blot analysis or flow cytometry, respectively. Additionally, NK cell functionality was evaluated through degranulation and 51Cr release cytotoxicity assays. RESULTS Transcripts of NKG2D, an activating receptor that detects stressed non-self tumour cells, had significantly higher m6A levels in the 3' untranslated region (3'UTR) accompanied by a marked reduction in their corresponding mRNA levels in BC patients compared to controls. Conversely, transcripts of ERK2 and PRF1 exhibited significantly lower m6A levels escorted with higher mRNA expression in BC patients relative to controls. The mRNA levels of PI3K, PAK1 and GZMH were also significantly elevated in BC patients. Furthermore, artificially increasing transcripts' m6A levels via MA in cultured primary NK cells reduced mRNA levels of NKG2D pathway genes and death receptor ligands but did not affect protein expression or NK cell functionality. CONCLUSION Transcripts with higher m6A levels in the 3'UTR region were less abundant, and vice versa. However, changes in mRNA levels of the target genes didn't impact their corresponding protein levels or NK cell functionality.
Collapse
Affiliation(s)
- Raghda A Elsabbagh
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Ghada Abdelhady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Doris Urlaub
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Ola Khorshid
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Khaled Abou-Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany.
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, Egypt.
- Faculty of Biotechnology, German International University, New Administrative Capital, Egypt.
| |
Collapse
|
2
|
Qiu Y, Lu M, Han Y, Zhou W, Zhao Y, Han L, Zang Y. A model-free phase I/II dose optimization design for immunotherapy trials. Stat Methods Med Res 2025:9622802251340246. [PMID: 40372142 DOI: 10.1177/09622802251340246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
We present a model-free phase I/II clinical trial design, referred to as the UFO design, to optimize the dose of immunotherapy by jointly modeling toxicity, efficacy, and immune response outcomes. Instead of relying on complex parametric modeling approaches, we propose a model-free approach that uses the inherent correlations among different types of outcomes in immunotherapy and the constrained dose-outcome order to facilitate information sharing across different doses. This approach ensures the efficiency and transparency of the UFO design to be implemented in clinical practice. The UFO design is also extended to accommodate the delayed outcomes. It demonstrates favorable operating characteristics through simulation studies. The R Shniy app for simulation and trial implementation using the UFO design is also provided at iusccc.shinyapps.io/smartdesign.
Collapse
Affiliation(s)
- Yingjie Qiu
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengyi Lu
- Department of Biostatistics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Han
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenxian Zhou
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leng Han
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
4
|
Luo JQ, Huang YC, Zhang JY, Tong QS, Batool A, Duan Y, Du JZ. Tumor pH-triggered PEG detachable nanoparticles for TLR7/8 agonist delivery to improve cancer immunotherapy. Biomater Sci 2025; 13:2794-2805. [PMID: 40231708 DOI: 10.1039/d5bm00243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Antigen-presenting cells (APCs), such as macrophages and dendritic cells (DCs) are key players in modulating the immune responses of cytotoxic T lymphocytes (CTLs). Resiquimod (R848), a toll-like receptor (TLR) agonist, has demonstrated the capacity to enhance APC function and reprogram the phenotype of macrophages; however, the unfavorable in vivo performance constrains its therapeutic potential. Here, we developed R848-loaded mesoporous silica nanoparticles (denoted as R848@MSN-bi-PEG) with pH-responsive surface polyethylene glycol (PEG) detachment to effectively modulate APCs. The acidic tumor pH triggered PEG detachment when R848@MSN-bi-PEG accumulated at the tumor site, thereby promoting APC uptake and R848 release, which facilitated DCs maturation and macrophage repolarization to a pro-inflammatory phenotype. The in vivo antitumor study indicated that R848@MSN-bi-PEG led to potent anti-tumor immunity by modulating the immunosuppressive tumor microenvironment. This approach offers a novel strategy to improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Qi Luo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China.
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yong-Cong Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Qi-Song Tong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Areesha Batool
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China.
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Peng S, Hou X, Liu J, Huang F. Advances in polymer nanomaterials targeting cGAS-STING pathway for enhanced cancer immunotherapy. J Control Release 2025; 381:113560. [PMID: 40023225 DOI: 10.1016/j.jconrel.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists. In particular, polymer nanomaterials possess inherent advantages including controllable structure, tunable function and degradability. These properties afford them the capacity to serve as delivery vehicles for small-molecule STING agonists. Furthermore, the superior characteristics of polymer nanomaterials can enable their utilization as a novel STING agonist to stimulate anti-tumor immunity. In this review, the molecular mechanisms of cGAS-STING pathway activation are discussed. The recent development of small-molecules STING agonists is described. Then polymer nanomaterials are discussed as carriers for STING agonists in cancer immunotherapy, including polymersomes, polymer micelles, polymer capsules, and polymer nanogels. Additionally, polymer nanomaterials are identified as a novel class of STING agonists for efficient cancer immunotherapy, encompassing both polymer materials and polymer-STING agonists conjugates. The review also presents the combination of polymer-based cGAS-STING immunotherapy with chemotherapy, radiotherapy, phototherapy (both photodynamic and photothermal), chemodynamic therapy, and other therapeutic strategies. Furthermore, the discussion highlights recent advancements targeting the cGAS-STING pathway in clinically approved polymer nanomaterials and corresponding potent innovations. Finally, the potential challenges and perspectives of polymer nanomaterials for activating cGAS-STING pathway are outlined, emphasizing the critical scientific issue and hoping to offer guidance for their clinical translation.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
6
|
Yan Y, Yu J, Wang W, Xu Y, Tison K, Xiao R, Grove S, Wei S, Vatan L, Wicha M, Kryczek I, Zou W. Palmitoylation prevents B7-H4 lysosomal degradation sustaining tumor immune evasion. Nat Commun 2025; 16:4254. [PMID: 40341398 PMCID: PMC12062253 DOI: 10.1038/s41467-025-58552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/26/2025] [Indexed: 05/10/2025] Open
Abstract
B7-H4 functions as an immune checkpoint in the tumor microenvironment (TME). However, the post-translational modification (PTM) of B7-H4 and its translational potential in cancer remains incompletely understood. We find that ZDHHC3, a zinc finger DHHC-type palmitoyltransferase, palmitoylates B7-H4 at Cys130 in breast cancer cells, preventing its lysosomal degradation and sustaining B7-H4-mediated immunosuppression. Knockdown of ZDHHC3 in tumors results in robust anti-tumor immunity and reduces tumor progression in murine models. Moreover, abemaciclib, a CDK4/6 inhibitor, primes lysosome activation and promotes lysosomal degradation of B7-H4 independently of the tumor cell cycle. Treatment with abemaciclib results in T cell activation and mitigates B7-H4-mediated immune suppression via inducing B7-H4 degradation in preclinical tumor models. Thus, B7-H4 palmitoylation is an important PTM controlling B7-H4 protein stability and abemaciclib may be repurposed to promote B7-H4 degradation, thereby treating patients with B7-H4 expressing tumors.
Collapse
Affiliation(s)
- Yijian Yan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kole Tison
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Rongxin Xiao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Max Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Xu QH, Yin XY, Chen ZQ, Huang EK, Yao X, Li X, Liu PN. Construction of In Situ Personalized Cancer Vaccines by Bioorthogonal Catalytic Microneedles for Augmented Melanoma Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500015. [PMID: 40130650 DOI: 10.1002/smll.202500015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/06/2025] [Indexed: 03/26/2025]
Abstract
In situ personalized tumor vaccines are produced directly at the primary tumor site by killing cancer cells and stimulating immune cells, they are effective against individuals and bypass the complexity and high cost of in vitro vaccine production. However, their clinical application is hindered by insufficient efficiency in inducing immunogenic cancer cell death (ICD) and systemic inflammation caused by immune adjuvants. Here, personalized cancer vaccines are constructed in situ for melanoma immunotherapy based on bioorthogonal catalytic microneedles, which enable the catalytic release of prodrugs at tumor sites and mediate strong ICD and an enhanced tumor immune response while avoiding systemic immune storms and toxic side effects. By incorporating TiO2 nanosheets supported Pd into swellable microneedles, the bioorthogonal microneedles are constructed to catalyze the depropargylation reaction of doxorubicin (DOX) prodrug and imiquimod (IMQ) prodrug in situ. The activated DOX at subcutaneous tumor sites induced strong ICD and released tumor-associated antigens. Concurrently, the activated IMQ acts as a Toll-like receptor (TLR7) agonist, enhancing the anti-tumor immune response. In vivo experiments demonstrate that this immunotherapy achieves ≈97% inhibition of primary tumors and effectively inhibits untreated distant tumors (≈94% inhibition) and lung metastasis (≈92% inhibition).
Collapse
Affiliation(s)
- Qian-He Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiu-Yuan Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhen-Qiang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - En-Kui Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
8
|
Afyouni A, Kotaich J, Sarout S, Chamoun A, Chkayban G, El Hariri S, Baroud T, Fatfat A, El Masri J, Salemeh P. Immunotherapy research in the Arab world: A bibliometric analysis. Transpl Immunol 2025; 90:102218. [PMID: 40101862 DOI: 10.1016/j.trim.2025.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Immunotherapy is the concept of leveraging the immune system to treat diseases. Developing countries, including the Arab countries, have continued to lag in terms of biomedical research compared to other nations for several decades. Immunotherapy has been used in several fields, including cancer, transplantation, and vaccination. This article examined the activity and trend of immunotherapy research in the Arab world between 2000 and 2024. METHODS The number of immunotherapy-related articles published by each Arab country, was assessed using the PubMed database between 2000 and 2024. Numbers were normalized with respect to each country's average population and average Gross Domestic Product (GDP). RESULTS Arab countries contributed to 1.73 % of total immunotherapy papers. The number of immunotherapy publications has grown from 2000 to 2022, then decreased in the past 2 years. In terms of publications per million persons, Qatar ranked first (130.08 per million persons), while in terms of publications per national GDP, Lebanon ranked first (11.09 per billion US dollars). MeSH keywords VOSviewer showed a focus on vaccination, COVID-19, COVID-19 vaccines, and transplantation conditioning in the Arab world. CONCLUSIONS This bibliometric analysis provides insight into the actualities and trends of immunotherapy research in the Arab world. This offers a general background for scientists, clinicians, funders, and decision-makers. Addressing the barriers that face immunotherapy research remains a cornerstone in the plan to improve the Arab world's output and contribution to this field.
Collapse
Affiliation(s)
- Ahmad Afyouni
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon; MEDICA Research Investigation, Beirut, Lebanon
| | - Jana Kotaich
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon; MEDICA Research Investigation, Beirut, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon
| | - Sara Sarout
- University of Balamand, Faculty of Medicine, Beirut, Lebanon
| | - Amarelle Chamoun
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Georgia Chkayban
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Saad El Hariri
- Beirut Arab University, Faculty of Medicine, Beirut, Lebanon
| | - Tarek Baroud
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Adnan Fatfat
- American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Jad El Masri
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon; American University of Beirut, Faculty of Medicine, Beirut, Lebanon.
| | - Pascale Salemeh
- Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2408 Nicosia, Cyprus
| |
Collapse
|
9
|
Li L, Wu J, Cao W, Zhang W, Wu Q, Li Y, Yang Y, Shan Z, Zheng Z, Ge X, Lin L, Wang P. N-deglycosylation targeting chimera (DGlyTAC): a strategy for immune checkpoint proteins inactivation by specifically removing N-glycan. Signal Transduct Target Ther 2025; 10:139. [PMID: 40289109 PMCID: PMC12034804 DOI: 10.1038/s41392-025-02219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Among the leading methods for triggering therapeutic anti-cancer immunity is the inhibition of immune checkpoint pathways. N-glycosylation is found to be essential for the function of various immune checkpoint proteins, playing a critical role in their stability and interaction with immune cells. Removing the N-glycans of these proteins seems to be an alternative therapy, but there is a lack of a de-N-glycosylation technique for target protein specificity, which limits its clinical application. Here, we developed a novel technique for specifically removing N-glycans from a target protein on the cell surface, named deglycosylation targeting chimera (DGlyTAC), which employs a fusing protein consisting of Peptide-N-glycosidase F (PNGF) and target-specific nanobody/affibody (Nb/Af). The DGlyTAC technique was developed to target a range of glycosylated surface proteins, especially these immune checkpoints-CD24, CD47, and PD-L1, which minimally affected the overall N-glycosylation landscape and the N-glycosylation of other representative membrane proteins, ensuring high specificity and minimal off-target effects. Importantly, DGlyTAC technique was successfully applied to lead inactivation of these immune checkpoints, especially PD-L1, and showed more potential in cancer immunotherapy than inhibitors. Finally, PD-L1 targeted DGlyTAC showed therapeutic effects on several tumors in vivo, even better than PD-L1 antibody. Overall, we created a novel target-specific N-glysocylation erasing technique that establishes a modular strategy for directing membrane proteins inactivation, with broad implications on tumor immune therapeutics.
Collapse
Affiliation(s)
- Li Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajia Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Weiqian Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxu Li
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yanrong Yang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zening Zheng
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Medina-Ceballos E, Giner F, Machado I, Heras-Morán B, Espino M, Navarro S, Llombart-Bosch A. The Prognostic Impact of the Tumor Immune Microenvironment in Synovial Sarcoma: An Immunohistochemical Analysis Using Digital Pathology and Conventional Interpretation. J Pers Med 2025; 15:169. [PMID: 40423041 DOI: 10.3390/jpm15050169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Innate and adaptive immune responses serve a crucial role in neoplasms. The interaction of immune cells with the neoplastic tissue influences tumor behavior, resulting in either pro-tumorigenic or anti-tumorigenic effects. However, the prognostic significance of the tumor immune microenvironment (TIME) in synovial sarcoma (SS) remains poorly studied. This study aimed to analyze the TIME of SS to determine its impact on the prognosis by examining the intratumoral lymphocytic and macrophagic infiltrate and its potential correlation with survival and recurrence. METHODS We conducted a retrospective observational study of 49 fusion-confirmed SS cases collected from two different institutions. We obtained clinical and follow-up data, and SSs were histologically classified according to WHO criteria. Immunohistochemical analysis, including of CD163, CD68, CD3, CD8, and CD20, was conducted in tissue microarrays using an analog scale. We examined the whole-slide tissue for the 23 cases with sufficient material available and then assessed the positive area by scanning the slides and analyzing the images using QuPath (0.4.4, Belfast, Northern Ireland) to calculate the positive area in an immune hotspot. We correlated the expression of these markers with clinical outcomes. A log-rank test and Kaplan-Meyer curves were used as appropriate (significance: p ≤ 0.05). RESULTS The most frequent morphological subtype was monophasic (59.6%), followed by biphasic (26.9%) and undifferentiated (7%). The mean disease specific survival (DSS) was 55.3 months, with a median of 33 months. The median overall survival (OS) was 50 months (range: 2-336 months). Both evaluation methods showed a good correlation for all antibodies, with Chi-square values of p < 0.05. All cases showed variable amounts of CD163-positive macrophages. The cases that showed a higher density of CD163-positive macrophages in whole-slide images subjected to digital analysis demonstrated an improved OS and DSS on Kaplan-Meier curves. Cases with lower CD8 and CD3 positivity showed a tendency toward faster progression and a slightly worse prognosis. CONCLUSIONS The tumor immune microenvironment in sarcomas is a complex system that requires further investigation to fully understand its impact on tumorigenesis and patient clinical outcomes. Our results demonstrate that a higher amount of intratumoral CD163-positive macrophage infiltrate is associated with an increased OS and DSS. Our findings show that digital pathology is more precise than subjective quantitative analysis.
Collapse
Affiliation(s)
| | - Francisco Giner
- Pathology Department, University of Valencia, 46010 Valencia, Spain
- Pathology Department, University Hospital La Fe, 46010 Valencia, Spain
| | - Isidro Machado
- Pathology Department, University of Valencia, 46010 Valencia, Spain
- Pathology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain
- Patologika Laboratory, Quirón-Salud, 46010 Valencia, Spain
- Cancer CIBER (CIBERONC), 28029 Madrid, Spain
| | - Begoña Heras-Morán
- Pathology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Mónica Espino
- Pathology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Pathology Department, University of Valencia, 46010 Valencia, Spain
- Cancer CIBER (CIBERONC), 28029 Madrid, Spain
| | | |
Collapse
|
11
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
13
|
Ikeda H. Cancer immunotherapy in progress-an overview of the past 130 years. Int Immunol 2025; 37:253-260. [PMID: 39792088 PMCID: PMC11975553 DOI: 10.1093/intimm/dxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025] Open
Abstract
Since the first approval of an immune checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy. Now, we face the next step of issues to be solved in this field, such as tumor heterogeneity, the tumor microenvironment, the metabolism of tumors and the immune system, and personalized approaches for patients, aiming to expand the population benefitted by the therapies.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
- Leading Medical Research Core Unit, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
14
|
Jamal A, Aldreiwish AD, Banawas SS, Alqurashi YE, Kamal MA, Ahmad F. The paths toward immunotherapy of esophageal cancer: An overview of clinical trials. Int Immunopharmacol 2025; 151:114261. [PMID: 40015204 DOI: 10.1016/j.intimp.2025.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
As the seventh-leading contributor to global cancer-related deaths, esophageal cancer (EC) is one of the most challenging types of cancer. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the five-year survival rate remains low, underscoring the need for the development of more efficacious treatment approaches. Immunotherapy has emerged as a promising treatment approach, offering new hope for EC patients. This review provides an in-depth examination of the latest immunotherapeutic strategies for EC, focusing on immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and oncolytic virotherapy. We critically analyze the current clinical data to highlight the progress and pitfalls of each immunotherapeutic approach for EC. Additionally, we explore the potential for combination therapies, which could overcome the resistance often seen with monotherapies. Finally, we discuss the limitations of current treatments and outline key areas for future research to improve patient outcomes and survival.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed S Banawas
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yaser E Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
15
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
16
|
Tong QS, Huang H, Yu HH, Liu R, Shen S, Du JZ. A size-switchable nanocluster remodels the immunosuppressive microenvironment of tumor and tumor-draining lymph nodes for improved cancer immunotherapy. Biomaterials 2025; 315:122910. [PMID: 39467399 DOI: 10.1016/j.biomaterials.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Remodeling the immunosuppressive tumor microenvironment (TME) by immunomodulators has been well studied in the past years. However, strategies that enable concurrent modulation of both the immunosuppressive TME and tumor-draining lymph nodes (TDLNs) are still in the infancy. Here, we report a pH-sensitive size-switchable nanocluster, SPN-R848, to achieve simultaneous accumulation in tumor and TDLNs for immune activation. SPN-R848 with original size around 150 nm was formed by self-assembly of resiquimod (R848)-conjugated polyamidoamine (PAMAM) derivative, which could disintegrate into its small constituents (~ 8 nm) upon exposure to tumor acidity. The size reduction not only enhanced their accumulation and perfusion in the primary tumor, but promoted their transport and distribution in TDLNs. Accordingly, SPN-R848 remarkably remodeled the immunosuppressive TME by polarizing M2 to M1 macrophages and activated dendritic cells (DCs) in TDLNs, which synergistically facilitated the production and stimulation of cytotoxic T cells, and inhibited tumor growth in breast cancer and melanoma mouse models. Our study suggests that co-activation of immune microenvironments in both tumor and TDLNs may represent a promising direction to elicit strong antitumor immunity.
Collapse
Affiliation(s)
- Qi-Song Tong
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hua Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hui-Han Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
18
|
Matheson BE, Jaremko JL, Dowhanik A, Gill J, Gallant C, Walker J, Armani N, Leslie WD, Kolinsky M, Boyd SK, Ye C. Assessing the effects of immune checkpoint inhibitors on bone utilizing machine learning-assisted opportunistic quantitative computed tomography. J Bone Miner Res 2025; 40:396-403. [PMID: 39849845 PMCID: PMC11909731 DOI: 10.1093/jbmr/zjaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are widely used in cancer treatment, yet their impact on bone health remains unclear. This study aimed to perform a retrospective cohort study utilizing routine CT scans from patients with melanoma to perform opportunistic QCT analysis to investigate the effects of ICI treatment on skeletal health, including volumetric BMD (vBMD) measurements and osteoarthritis (OA) parameters. A previously established machine learning-assisted opportunistic QCT pipeline was used to estimate lumbar spine vBMD from baseline and 12-mo follow-up CT scans in patients with melanoma treated with ICI therapy and those not treated with ICI therapy. Facet joint OA, osteophyte formation, and endplate sclerosis were also graded. Independent and paired t tests were used to determine any differences in vBMD and OA parameters between ICI users and non-ICI users. Multivariable linear regression models were used to control for confounding variables. Non-ICI users had a significant decrease in vBMD of -6.96 mg/cm3 from baseline to follow-up, whereas the ICI users had no significant change. There was a significant difference in change in vBMD from baseline to follow-up between the 2 groups, with the non-ICI users experiencing a 11.22 mg/cm3 larger decrease in vBMD. After adjusting for baseline age, sex, baseline vBMD, and change in OA parameters, this difference remained significant at -13.04 mg/cm3. Among the ICI users, those who had a decline in vBMD had a lower baseline vBMD compared with those who had increased vBMD. Neither group showed a significant change in OA parameters over the follow-up period, nor a difference in change between ICI and non-ICI users, even after adjusting for sex, age, and baseline OA parameters. While the effects of ICI treatment on vBMD may vary based on baseline bone health, ICIs do not significantly impact OA parameters in the short term.
Collapse
Affiliation(s)
- Bryn E Matheson
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jacob L Jaremko
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Alexandra Dowhanik
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Jasmine Gill
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Cassandra Gallant
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - John Walker
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Nathan Armani
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - William D Leslie
- Departments of Internal Medicine and Radiology, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Michael Kolinsky
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carrie Ye
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
19
|
Ward FJ, Kennedy PT, Al-Fatyan F, Dahal LN, Abu-Eid R. CTLA-4-two pathways to anti-tumour immunity? IMMUNOTHERAPY ADVANCES 2025; 5:ltaf008. [PMID: 40265076 PMCID: PMC12012449 DOI: 10.1093/immadv/ltaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/02/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have revolutionized cancer therapy and improved patient outcomes in a range of cancers. ICIs enhance anti-tumour immunity by targeting the inhibitory checkpoint receptors CTLA-4, PD-1, PD-L1, and LAG-3. Despite their success, efficacy, and tolerance vary between patients, raising new challenges to improve these therapies. These could be addressed by the identification of robust biomarkers to predict patient outcome and a more complete understanding of how ICIs affect and are affected by the tumour microenvironment (TME). Despite being the first ICIs to be introduced, anti-CTLA-4 antibodies have underperformed compared with antibodies that target the PD-1/PDL-1 axis. This is due to the complexity regarding their precise mechanism of action, with two possible routes to efficacy identified. The first is a direct enhancement of effector T-cell responses through simple blockade of CTLA-4-'releasing the brakes', while the second requires prior elimination of regulatory T cells (TREG) to allow emergence of T-cell-mediated destruction of tumour cells. We examine evidence indicating both mechanisms exist but offer different antagonistic characteristics. Further, we investigate the potential of the soluble isoform of CTLA-4, sCTLA-4, as a confounding factor for current therapies, but also as a therapeutic for delivering antigen-specific anti-tumour immunity.
Collapse
Affiliation(s)
- Frank J Ward
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul T Kennedy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Farah Al-Fatyan
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Rasha Abu-Eid
- Medical Sciences and Nutrition, Institute of Dentistry, School of Medicine, Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Dentistry, College of Medicine and Health, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Qiao W, Li S, Luo L, Chen M, Zheng X, Ye J, Liang Z, Wang Q, Hu T, Zhou L, Wang J, Ge X, Feng G, Hu F, Liu R, Li J, Yang J. Ce6-GFFY is a novel photosensitizer for colorectal cancer therapy. Genes Dis 2025; 12:101441. [PMID: 39759121 PMCID: PMC11697048 DOI: 10.1016/j.gendis.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Abstract
Photodynamic therapy is an "old" strategy for cancer therapy featuring clinical safety and rapid working, but suitable photosensitizers for colorectal cancer therapy remain lacking. This study synthesized a novel photosensitizer termed Ce6-GFFY based on a self-assembling peptide GFFY and a photo-responsive molecule chlorin e6 (Ce6). Ce6-GFFY forms macroparticles with a diameter of ∼160 nm and possesses a half-life of 10 h, as well as an ideal tumor-targeting ability in mouse models. Ce6-GFFY effectively penetrates cells and generates numerous reactive oxygen species upon 660 nm laser irradiation. The reactive oxygen species promotes the accumulation of cytotoxic T cells and decrease of myeloid-derived suppressor cells in the tumor microenvironment through immunogenic cell death, thus prohibiting the growth of both primary and metastatic tumors after once treatment. This study not only provides a strategy for photosensitizer development but also confirms a promising application of Ce6-GFFY for colorectal cancer therapy.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Linna Luo
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Meiling Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhaohui Liang
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ting Hu
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaosong Ge
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianjun Li
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
21
|
Gao Z, Azar J, Erstad D, Sun Z, Janakiraman H, Chung D, Lewin D, Lee HS, Van Buren G, Fisher W, Rubinstein MP, Camp ER. Tumor Immune Microenvironment Differences Associated With Racial Disparities in Pancreatic Cancer. J Surg Res 2025; 307:21-32. [PMID: 39970547 DOI: 10.1016/j.jss.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Racial differences in antitumoral immunity have been identified in a variety of cancers and may contribute to survival disparities, but limited data exist exploring the molecular differences in pancreatic adenocarcinoma (PDAC). Using racially diverse PDAC datasets, we explored biologic differences that may drive disparities between African American (AA) and European American (EA) PDAC patients. METHODS Genomic PDAC mutational data was analyzed for mutational differences based on race. In a separate cohort, surgical PDAC specimens were processed for both tissue microarray and multiplex gene expression analysis using NanoString. RESULTS Of the 4679 patient samples in the mutational dataset, AA PDAC patients had significantly more TP53 mutations compared to the EA cohort. The tissue microarray included 12 AA and 41 EA surgically resected treatment-naive PDAC samples. NanoString analysis revealed significant differences between AA and EA groups in immunologic gene annotations (P < 0.05). CONCLUSIONS In the present study, we demonstrated that across racially diverse datasets, there exist molecular and microenvironmental differences between AA and EA patients that may contribute to cancer survival disparities. Defining molecular differences underlying PDAC racial disparities is an essential step in advancing care and improving outcomes for AA patients that suffer worse survival across cancer types.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, Illinois
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - Mark P Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Zhang K, Li S, Li J, Zhou X, Qin Y, Wu L, Ling J. Ultra-pH-sensitive nanoplatform for precise tumor therapy. Biomaterials 2025; 314:122858. [PMID: 39366182 DOI: 10.1016/j.biomaterials.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jiaying Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
23
|
Chen EYT, Dickman PW, Clements MS. A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment. PHARMACOECONOMICS 2025; 43:297-310. [PMID: 39586963 PMCID: PMC11825556 DOI: 10.1007/s40273-024-01457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Multistate models have been widely applied in health technology assessment. However, extrapolating survival in a multistate model setting presents challenges in terms of precision and bias. In this article, we develop an individual-level continuous-time multistate model that integrates relative survival extrapolation and mixed time scales. METHODS We illustrate our proposed model using an illness-death model. We model the transition rates using flexible parametric models. We update the hesim package and the microsimulation package in R to simulate event times from models with mixed time scales. This feature allows us to incorporate relative survival extrapolation in a multistate setting. We compare several multistate settings with different parametric models (standard vs. flexible parametric models), and survival frameworks (all-cause vs. relative survival framework) using a previous clinical trial as an illustrative example. RESULTS Our proposed approach allows relative survival extrapolation to be carried out in a multistate model. In the example case study, the results agreed better with the observed data than did the commonly applied approach using standard parametric models within an all-cause survival framework. CONCLUSIONS We introduce a multistate model that uses flexible parametric models and integrates relative survival extrapolation with mixed time scales. It provides an alternative to combine short-term trial data with long-term external data within a multistate model context in health technology assessment.
Collapse
Affiliation(s)
- Enoch Yi-Tung Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden.
| | - Paul W Dickman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden
| | - Mark S Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden
| |
Collapse
|
24
|
Shrestha P, Ghoreyshi ZS, George JT. How modulation of the tumor microenvironment drives cancer immune escape dynamics. Sci Rep 2025; 15:7308. [PMID: 40025156 PMCID: PMC11873109 DOI: 10.1038/s41598-025-91396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Metastatic disease is the leading cause of cancer-related death, despite recent advances in therapeutic interventions. Prior modeling approaches have accounted for the adaptive immune system's role in combating tumors, which has led to the development of stochastic models that explain cancer immunoediting and tumor-immune co-evolution. However, cancer immune-mediated dormancy, wherein the adaptive immune system maintains a micrometastatic population by keeping its growth in check, remains poorly understood. Immune-mediated dormancy can significantly delay the emergence (and therefore detection) of metastasis. An improved quantitative understanding of this process will thereby improve our ability to identify and treat cancer during the micrometastatic period. Here, we introduce a generalized stochastic model that incorporates the dynamic effects of immunomodulation within the tumor microenvironment on T cell-mediated cancer killing. This broad class of nonlinear birth-death model can account for a variety of cytotoxic T cell immunosuppressive effects, including regulatory T cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells. We develop analytic expressions for the likelihood and mean time of immune escape. We also develop a method for identifying a corresponding diffusion approximation applicable to estimating population dynamics across a wide range of nonlinear birth-death processes. Lastly, we apply our model to estimate the nature and extent of immunomodulation that best explains the timing of disease recurrence in bladder and breast cancer patients. Our findings quantify the effects that stochastic tumor-immune interaction dynamics can play in the timing and likelihood of disease progression. Our analytical approximations provide a method of studying population escape in other ecological contexts involving nonlinear transition rates.
Collapse
Affiliation(s)
- Pujan Shrestha
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Zahra S Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
25
|
Li Z, Liu XM, Tan F, Wang JQ, Qiao X, Feng YK, Xu JY, Hao JH. Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo. J Med Chem 2025; 68:4352-4372. [PMID: 39918588 DOI: 10.1021/acs.jmedchem.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Convincing evidence revealed that some platinum-based drugs could stimulate immunological recognition, thereby inducing immunogenic cell death (ICD). Indoleamine-2,3-dioxygenase (IDO) is overexpressed in tumors, which caused exhaustion of tryptophan (T-cell energy) and constructed an immunosuppressive tumor microenvironment. Herein, considering IDO inhibition to improve chemotherapy, a series of IDOi-Pt(IV) prodrugs were designed to not only target DNA and IDO but also facilitate tumor-antigen exposure and immunomodulation. The optimal IDOi-Pt(IV) prodrugs (named compound 10) significantly enhanced intracellular accumulation 22.4-fold and cytotoxicity 61.75-fold superior to cisplatin in HeLa cells. Moreover, immunofluorescence and enzyme-linked immunosorbent assays revealed that 10 induced reactive oxygen species-mediated endoplasmic reticulum stress and secretion of damage-associated molecular patterns, thereby presenting ICD effects. Molecular docking, enzyme inhibition, and Western blot assays demonstrated that 10 could effectively inhibit IDO1 and reverse immunosuppression, as further verified by mixed leukocyte reactions. In vivo tests showed that 10 exhibited high-efficiency and low-toxicity antitumor effects compared to cisplatin, presenting successful chemoimmunotherapy.
Collapse
Affiliation(s)
- Zhe Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fei Tan
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Qian Wang
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jing-Yuan Xu
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ji-Hui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
26
|
Ronemus M, Bradford D, Laster Z, Li S. Exploring genome-transcriptome correlations in cancer. Biochem Soc Trans 2025; 53:BST20240108. [PMID: 39910794 DOI: 10.1042/bst20240108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
We examine the complex relationship between genomic copy number variation (CNV) and gene expression, highlighting the relevance to cancer biology and other biological contexts. By tracing the history of genometranscriptome correlations, we emphasize the complexity and challenges in understanding these interactions, particularly within the heterogeneous landscape of human cancers. Recent advances in computational algorithms and high-throughput single-cell multi-omic sequencing technologies are discussed, demonstrating their potential to refine our understanding of cancer biology and their limitations. The integration of genomic and transcriptomic analyses, which offers novel insights into tumor evolution and heterogeneity as well as therapeutic strategies, is presented as a crucial approach for advancing cancer research.
Collapse
Affiliation(s)
- Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Daniel Bradford
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Zachary Laster
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| |
Collapse
|
27
|
Bose S, Do V, Testini C, Jadhav SS, Sailliet N, Kho AT, Komatsu M, Boneschansker L, Kong SW, Wedel J, Briscoe DM. Immunomodulation by allograft endothelial cells. FRONTIERS IN TRANSPLANTATION 2025; 4:1518772. [PMID: 39967861 PMCID: PMC11832486 DOI: 10.3389/frtra.2025.1518772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
It is increasingly appreciated that the expression of immunoregulatory molecules within tumors have potential to shape a microenvironment that promotes local immunoevasion and immunoregulation. However, little is known about tissue-intrinsic immunomodulatory mechanisms following transplantation. We propose that differences in the phenotype of microvascular endothelial cells impact the alloantigenicity of the graft and its potential to promote immunoregulation following transplantation. We focus this review on the concept that graft-dependent immunoregulation may evolve post-transplantation, and that it is dependent on the phenotype of select subsets of intragraft endothelial cells. We also discuss evidence that long-term graft survival is critically dependent on adaptive interactions among immune cells and endothelial cells within the transplanted tissue microenvironment.
Collapse
Affiliation(s)
- Sayantan Bose
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vicki Do
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
| | - Chiara Testini
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Suchita S. Jadhav
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicolas Sailliet
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Alvin T. Kho
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Masaki Komatsu
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Leo Boneschansker
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sek Won Kong
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Johannes Wedel
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - David M. Briscoe
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Alqarni KA. Recent Advances in Immunotherapy for Bladder Cancer Treatment. Cureus 2025; 17:e79002. [PMID: 40091960 PMCID: PMC11910973 DOI: 10.7759/cureus.79002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Bladder cancer is one of the most common malignancies worldwide. Standard neoadjuvant or metastatic therapy used to be cisplatin-based chemotherapy, but many patients are ineligible due to age, renal impairment, or frailty. Checkpoint inhibitors (e.g., atezolizumab and pembrolizumab) enhance survival in cisplatin-ineligible patients. Originally approved as second-line therapy for patients after platinum-based chemotherapy, nivolumab was approved by the FDA for adjuvant therapy of high-risk muscle-invasive urothelial cancer following the Checkmate 274 trial. It is indicated for patients with resected disease or cisplatin ineligibility. Recent developments focused on the contribution of nivolumab to outcomes have been complemented by ongoing investigations on atezolizumab as a monotherapy or in combinations for muscle-invasive bladder cancer, providing further hope for improved control. This narrative review aims to clarify the current applications of immunotherapy in treating bladder cancer and to explore the future outlook based on ongoing clinical trials.
Collapse
Affiliation(s)
- Khaled A Alqarni
- Department of Surgery, Faculty of Medicine, University of Jeddah, Jeddah, SAU
| |
Collapse
|
29
|
Takenaka M, Kuroda K, Tanaka F. Adjuvant and neo-adjuvant therapy for non-small cell lung cancer without EGFR mutations or ALK rearrangements. Int J Clin Oncol 2025; 30:215-228. [PMID: 38281195 DOI: 10.1007/s10147-023-02459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Surgical resection is the most effective therapeutic option for the cure in early stage resectable non-small-cell lung cancer (NSCLC). However, despite complete resection, up to 70% of patients die within 5 years mainly due to tumor recurrence in extra-thoracic organs. Adjuvant or neoadjuvant platinum-based chemotherapy may improve postoperative survival, but the absolute survival benefit is modest with an around 5% improvement at 5 years. Recent advance in systemic therapy has changed treatment strategy for advanced unresectable NSCLC, and also has provided a paradigm shift in treatment strategy for resectable NSCLC. For NSCLC without oncogenic driver alterations, immunotherapy using immune-checkpoint inhibitors may improve clinical outcomes in preoperative neoadjuvant setting as well as in postoperative adjuvant setting. Here, we overview recent evidence of adjuvant and neoadjuvant therapy and discuss emerging clinical questions in decision-making of treatment for potentially resectable patients with NSCLC harboring no oncogenic alterations.
Collapse
Affiliation(s)
- Masaru Takenaka
- Second Department of Surgery (Chest Surgery), University of Occupational and Environmental Health, Iseigaoka 1-1, Yahata-Nishi-Ku, Kitakyushu, 8078555, Japan
| | - Koji Kuroda
- Second Department of Surgery (Chest Surgery), University of Occupational and Environmental Health, Iseigaoka 1-1, Yahata-Nishi-Ku, Kitakyushu, 8078555, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery (Chest Surgery), University of Occupational and Environmental Health, Iseigaoka 1-1, Yahata-Nishi-Ku, Kitakyushu, 8078555, Japan.
| |
Collapse
|
30
|
Ebinama U, George B. Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies. Discov Oncol 2025; 16:89. [PMID: 39864030 PMCID: PMC11769894 DOI: 10.1007/s12672-025-01797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment. This comprehensive review article specifically examines classical unconjugated and toxin-conjugated monoclonal antibodies, which are currently in the preclinical phase or undergoing evaluation in clinical trials. The review delves into the proposed mechanisms through which these monoclonal antibodies elicit anti-tumor activity and identifies the challenges associated with designing targeted immunotherapy. The review focuses on targeting specific antigens in AML, including FLT3/CD125, CLL-1, CD33, CD38, CD47, CD70, and CD123.
Collapse
Affiliation(s)
- Ugochi Ebinama
- Department of Internal Medicine, The University of Texas Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Binsah George
- Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Zhao Z, Fetse J, Mamani UF, Guo Y, Li Y, Patel P, Liu Y, Lin CY, Li Y, Mustafa B, Cheng K. Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy. Acta Biomater 2025; 193:484-497. [PMID: 39716541 PMCID: PMC11788053 DOI: 10.1016/j.actbio.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction. The peptide was modified with a PEG chain through a novel matrix metalloproteinase-2 (MMP-2)-specific cleavage linker. The modified TR3 peptide self-assembles into a micelle-like nanoparticle (TR3-M-NP), which remains inactive and unable to block the PD-1/PD-L1 interaction in its native form. However, upon cleavage by MMP-2 in tumors, it releases the active peptide. The TR3-M-NP5k nanoparticle was specifically activated in tumors through enzyme-mediated cleavage, leading to the inhibition of tumor growth and extended survival compared to control groups. In summary, TR3-M-NP shows great potential as a tumor-responsive immunotherapy agent with reduced toxicities. STATEMENT OF SIGNIFICANCE: In this study, we developed a bioactive peptide-based checkpoint inhibitor that is active only in tumors and not in normal tissues, thereby potentially avoiding immune-related adverse effects. We discovered a short anti-PD-L1 peptide, TR3, that blocks the PD-1/PD-L1 interaction. We chemically modified the TR3 peptide to self-assemble into a micelle-like nanoparticle (TR3-M-NP), which itself cannot block the PD-1/PD-L1 interaction but releases the active TR3 peptide in tumors upon cleavage by MMP-2. In contrast, the nanoparticle is randomly degraded in normal tissues into peptides fragments that cannot block the PD-1/PD-L1 interaction. Upon intraperitoneal injection, TR3-M-NP5k was activated specifically in tumors through enzyme cleavage, leading to the inhibition of tumor growth and extended survival compared to the control groups. In summary, TR3-M-NP holds significant promise as a tumor-responsive immunotherapy agent with reduced toxicities. The bioactive platform has the potential to be used for other types of checkpoint inhibitor.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yongren Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
32
|
Yan G, Huang H, Lu Z, Chen M, Wang X, Zhong P, Qin C, Mo S, Han C, Luo X, Ye X. Comprehensive Pan-Cancer Analysis and Functional Studies Reveal SLC2A6 as a Ferroptosis Modulator in Hepatocellular carcinoma. Sci Rep 2025; 15:2545. [PMID: 39833197 PMCID: PMC11747078 DOI: 10.1038/s41598-025-85504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Soluble vector family member 6 (SLC2A6) has been implicated in the aggressiveness and poor prognosis of various cancers, yet its specific role in hepatocellular carcinoma (HCC) remains to be fully elucidated. This study utilized multiple databases to investigate the relationship between SLC2A6 expression and clinical stage, methylation status, drug sensitivity, immune infiltration, and immune checkpoint regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Furthermore, in vitro and in vivo experiments were performed to assess the impact of SLC2A6 knockout on the proliferation, migration, invasion, and underlying mechanisms in hepatocellular carcinoma (LIHC) cells. SLC2A6 expression was significantly correlated with tumor prognosis, clinical stage, and methylation levels, and was found to influence immune cell infiltration and immune checkpoint gene expression. In LIHC, SLC2A6 was associated with key biological processes, including the cell cycle, P53 signaling, and ferroptosis. Knockdown of SLC2A6 markedly suppressed the proliferation, migration, and invasion of HCC cells, with this inhibition being closely tied to the ferroptosis pathway. SLC2A6 plays a pivotal role in the regulation of pan-cancer processes, particularly in tumor prognosis and immune-related mechanisms. In LIHC, it emerges as a potential prognostic biomarker and therapeutic target for the regulation of ferroptosis, offering new insights for targeted cancer therapies.
Collapse
Affiliation(s)
- Guohong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Hailian Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Ziyan Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Meifeng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pei Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoling Luo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Department of Experimental Research, Cancer Hospital of Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China.
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
33
|
Wang R, Liu G, Wang K, Pan Z, Pei Z, Hu X. Hypoxia signature derived from tumor-associated endothelial cells predict prognosis in gastric cancer. Front Cell Dev Biol 2025; 13:1515681. [PMID: 39901877 PMCID: PMC11788339 DOI: 10.3389/fcell.2025.1515681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Background A hypoxic metabolism environment in the tumors is often associated with poor prognostic events such as tumor progression and treatment resistance. In gastric cancer, the mechanism of how hypoxia metabolism affects the tumor microenvironment and immunotherapy efficacy remains to be elucidated. Methods We used the bulk-mapping method to analyze the signatures correlated with the response of immunotherapy in the single-cell dataset. Cellular, pathway, and gene were systematically analyzed in both single-cell and bulk validation datasets. Results The most significant cell proportion difference between the response and non-response groups was in endothelial cells, which represent the malignant cells. VWF was specifically overexpressed in endothelial cells and was the hub gene of differential genes. EPAS1 was a VWF trans-regulated gene and highly positively correlated with VWF in expression. Knockdown experiments demonstrated that siVWF reduced the expression of VWF, EPAS1, and HIF1A, as well as the synthesis of lactate and adenosine which are indicators of hypoxic metabolism. These results suggest that the overexpression of core malign endothelial genes such as VWF drives hypoxic metabolism in tumors and creates an immunosuppressive environment that reduces the efficacy of immunotherapy. The adverse prognosis of the hypoxia signature was validated in the bulk cohort and significance was further enhanced after selecting core genes and combined survival weight scoring. Conclusion In summary, high expression of the malignant endothelial cell driver genes VWF and EPAS1 enhances hypoxic metabolism, and malignant cell-immune cell interactions suppress the immune response. Therefore, the two core genes of hypoxic metabolism might represent potential therapeutic and predicting biomarkers for immunotherapy of gastric cancer in the future.
Collapse
Affiliation(s)
- Ruiheng Wang
- Surgical Ward, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guijun Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of administrative, The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Wang
- Endoscopy Room, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhanglei Pan
- Surgical Ward, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihua Pei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xijiao Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Skalickova M, Hadrava Vanova K, Uher O, Leischner Fialova J, Petrlakova K, Masarik M, Kejík Z, Martasek P, Pacak K, Jakubek M. Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer. Front Immunol 2025; 15:1479483. [PMID: 39850897 PMCID: PMC11754201 DOI: 10.3389/fimmu.2024.1479483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
Collapse
Affiliation(s)
- Marketa Skalickova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jindriska Leischner Fialova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Petrlakova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michal Masarik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
35
|
Lim MY, Hong S, Nam YD. Understanding the role of the gut microbiome in solid tumor responses to immune checkpoint inhibitors for personalized therapeutic strategies: a review. Front Immunol 2025; 15:1512683. [PMID: 39840031 PMCID: PMC11747443 DOI: 10.3389/fimmu.2024.1512683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitor (ICI) therapy, has yielded remarkable outcomes for some patients with solid cancers, but others do not respond to these treatments. Recent research has identified the gut microbiota as a key modulator of immune responses, suggesting that its composition is closely linked to responses to ICI therapy in cancer treatment. As a result, the gut microbiome is gaining attention as a potential biomarker for predicting individual responses to ICI therapy and as a target for enhancing treatment efficacy. In this review, we discuss key findings from human observational studies assessing the effect of antibiotic use prior to ICI therapy on outcomes and identifying specific gut bacteria associated with favorable and unfavorable responses. Moreover, we review studies investigating the possibility of patient outcome prediction using machine learning models based on gut microbiome data before starting ICI therapy and clinical trials exploring whether gut microbiota modulation, for example via fecal microbiota transplantation or live biotherapeutic products, can improve results of ICI therapy in patients with cancer. We also briefly discuss the mechanisms through which the gut microbial-derived products influence immunotherapy effectiveness. Further research is necessary to fully understand the complex interactions between the host, gut microbiota, and immunotherapy and to develop personalized strategies that optimize responses to ICI therapy.
Collapse
Affiliation(s)
- Mi Young Lim
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
36
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
37
|
Huang Y, Lin G, Liu S, Chen M, Yang C, Song Y. Aptamer-based Immune Checkpoint Inhibition for Cancer Immunotherapy. Chembiochem 2025; 26:e202400599. [PMID: 39417693 DOI: 10.1002/cbic.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Cancer has long been a significant threat to human life and health. The advent of immune checkpoint blockade strategies has reversed cancer-induced immune suppression, advanced the development of immunotherapy, and offered new hope in the fight against cancer. Aptamers, which possess the same specificity and affinity as antibodies, are advantageous due to their synthetic accessibility and ease of modification, providing novel insights for immune checkpoint research. In this review, we outline the key aptamers currently developed for immune checkpoints such as CTLA-4, PD-1, PD-L1 and Siglec-15. We explore their potential in therapeutic strategies, including functionalizing or engineering aptamers for covalent binding, valency control, and nanostructure assembly, as well as investigating molecular mechanisms such as glycosylated protein functions and cell-cell interactions. Finally, the future applications of aptamers in immunotherapy are discussed.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guihong Lin
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
38
|
Ismail FS, Gallus M, Meuth SG, Okada H, Hartung HP, Melzer N. Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy in Neurology: A Review. JAMA Neurol 2025; 82:93-103. [PMID: 39585688 DOI: 10.1001/jamaneurol.2024.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Importance Advancements in molecular engineering have facilitated the creation of engineered T cells that express synthetic receptors, termed chimeric antigen receptors (CARs). This is promising not only in cancer treatment but also in addressing a spectrum of other conditions. This review provides a comprehensive overview of the current approaches and future potential of CAR T-cell therapy in the field of neurology, particularly for primary brain tumors and autoimmune neurological disorders. Observations CAR T-cell therapy for glioblastoma is promising; however, first-in-human trials did not yield significant success or showed only limited success in a subset of patients. To date, the efficacy of CAR T-cell therapies has been demonstrated in animal models of multiple sclerosis, but larger human studies to corroborate the efficacy remain pending. CAR T cells showed efficacy in treatment of patients with relapsed or refractory aquaporin 4-immunoglobulin G-seropositive neuromyelitis optica spectrum disorders. Further studies with larger patient populations are needed to confirm these results. Success was reported also for treatment of cases with generalized myasthenia gravis using CAR T cells. Chimeric autoantibody receptor T cells, representing a modified form of CAR T cells directed against autoreactive B cells secreting autoantibodies, were used to selectively target autoreactive anti-N-methyl-d-aspartate B cells under in vitro and in vivo conditions, providing the basis for human studies and application to other types of autoimmune encephalitis associated with neuronal or glial antibodies. Conclusions and Relevance CAR T cells herald a new era in the therapeutic landscape of neurological disorders. While their application in solid tumors, such as glioblastoma, has not universally yielded robust success, emerging innovative strategies show promise, and there is optimism for their effectiveness in certain autoimmune neurological disorders.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310308. [PMID: 39482885 PMCID: PMC11714253 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haiqi Zhu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ka Man So
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Naresh Singh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jia Wang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Division of Hematology/Oncology, Department of MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Chi Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biomedical Engineering and Knight Cancer InstituteOregon Health & Science UniversityPortlandOR97239USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
40
|
Huang Y, Chen Z, Shen G, Fang S, Zheng J, Chi Z, Zhang Y, Zou Y, Gan Q, Liao C, Yao Y, Kong J, Fan X. Immune regulation and the tumor microenvironment in anti-PD-1/PDL-1 and anti-CTLA-4 therapies for cancer immune evasion: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2318815. [PMID: 38419524 PMCID: PMC11789735 DOI: 10.1080/21645515.2024.2318815] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
This study aims to conduct a bibliometric analysis, employing visualization tools to examine literature pertaining to tumor immune evasion related to anti-CTLA-4 and anti-PD-1/PD-L1 therapy from 1999 to 2022. A special emphasis is placed on the interplay between tumor microenvironment, signaling pathways, immune cells and immune evasion, with data sourced from the Web of Science core collection (WoSCC). Advanced tools, including VOSviewer, Citespace, and Scimago Graphica, were utilized to analyze various parameters, such as co-authorship/co-citation patterns, regional contributions, journal preferences, keyword co-occurrences, and significant citation bursts. Out of 4778 publications reviewed, there was a marked increase in research focusing on immune evasion, with bladder cancer being notably prominent. Geographically, China, the USA, and Japan were the leading contributors. Prestigious institutions like MD Anderson Cancer Center, Harvard Medical School, Fudan University, and Sun Yat Sen University emerged as major players. Renowned journals in this domain included Frontiers in Immunology, Cancers, and Frontiers in Oncology. Ehen LP and Wang W were identified as prolific authors on this topic, while Topalian SL stood out as one of the most cited. Research current situation is notably pivoting toward challenges like immunotherapy resistance and the intricate signaling pathways driving drug resistance. This bibliometric study seeks to provide a comprehensive overview of past and current research trends, emphasizing the potential role of tumor microenvironment, signaling pathways and immune cells in the context of immune checkpoint inhibitors (ICIs) and tumor immune evasion.
Collapse
Affiliation(s)
- Yi Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zhijian Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Gang Shen
- Department of Urology, DUSHU Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Shuogui Fang
- Department of Radiotherapy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zepai Chi
- Department of urology, Shantou Central Hospital, Shantou, China
| | - Yuanfeng Zhang
- Department of urology, Shantou Central Hospital, Shantou, China
| | - Yitong Zou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Qinghua Gan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chengxiao Liao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yuhui Yao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
41
|
Paredes-Moscosso SR, Nathwani AC. 10 years of BiTE immunotherapy: an overview with a focus on pancreatic cancer. Front Oncol 2024; 14:1429330. [PMID: 39759138 PMCID: PMC11696039 DOI: 10.3389/fonc.2024.1429330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Various therapeutic strategies have been developed to treat Pancreatic Cancer (PaCa). Unfortunately, most efforts have proved unfruitful, as the poor prognosis observed in this disease has only attained little improvement in the past 40 years. Recently, deeper understanding of the immune system and its interaction with malignant tumors have allowed significant advances in immunotherapy. Consistent with this, some of the most promising approaches are those that involve T-cell redirection to the tumor site, such as bispecific T-cell engagers (BiTEs). These recombinant antibodies bridge cytotoxic T-cells to tumor cells, inducing target cell-dependent polyclonal T-cell activation/proliferation, which in turn results in elimination of bound tumor cells. Blinatumomab, an anti-CD19 BiTE, received FDA approval in 2014 for Precursor B-cell Acute Lymphoblastic Leukemia. In the past decade, it has demonstrated impressive clinical benefit in patients with B-cell leukemias; and other T-cell engagers have been FDA-approved for hematological malignancies and other diseases, yet limited effect has been observed with other BiTEs against solid cancers, including PaCa. Nevertheless, on May 2024, Tarlatamab, an anti-DLL3 BiTE was approved by the FDA for extensive small cell lung cancer, becoming the first BiTE for solid tumors. In this review, the generation of BiTEs, therapeutic features, manufacturing issues as well as the remaining challenges and novel strategies of BiTE therapy in the context of PaCa, including the lessons we can learn from the use of BiTEs on other types of cancer will be explored.
Collapse
Affiliation(s)
- Solange R. Paredes-Moscosso
- Centro de Genética y Biología Molecular, Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Amit C. Nathwani
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Jureczek J, Kałwak K, Dzięgiel P. Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies. Cancers (Basel) 2024; 16:4181. [PMID: 39766080 PMCID: PMC11674729 DOI: 10.3390/cancers16244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components. Currently, immunotherapy is counted as the fourth pillar of oncological treatment (together with surgery, chemo- and radiotherapy) and is becoming standard in the treatment regimen, alone or in combination therapy. Several categories of immunotherapies have been developed and are currently being assessed in clinical trials for the treatment of blood cancers, including immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. However, monoclonal antibodies (mAbs) and their derivatives have achieved the most notable clinical outcome so far. Since the approval of rituximab for treating B-cell malignancies, the availability of mAbs against tumor-specific surface molecules for clinical use has flourished. Antibody-based therapy has become one of the most successful strategies for immunotherapeutic cancer treatment in the last few decades, and many mAbs have already been introduced into standard treatment protocols for some hematologic malignancies. To further increase the efficacy of mAbs, they can be conjugated to radioisotopes or cytostatic drugs, so-called antibody-drug conjugates. Moreover, with the growing recognition of T-cell immunity's role in cancer development, strategies aimed at enhancing T cell activation and inhibiting mechanisms that suppress T cell function are actively being developed. This review provides a comprehensive overview of the current status of immunotherapeutic strategies based on monoclonal antibodies and their derivatives, including antibody-drug conjugates, bispecific T-cell engagers, and checkpoint inhibitors, approved for the treatment of various HMs.
Collapse
Affiliation(s)
- Justyna Jureczek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Kałwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
43
|
Chiapperino L, Graber N, Panese F. A precision immuno-oncology turn? Hybridizing cancer genomics and immunotherapy through neoantigens-based adoptive cell therapies. SOCIAL STUDIES OF SCIENCE 2024:3063127241303720. [PMID: 39676262 DOI: 10.1177/03063127241303720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This article explores the development of T cell-based therapies in Switzerland. These therapies, which elicit the immunological potential of each patient to respond to tumor development, constitute a major promise for so-called 'precision oncology'. We document how immunological concepts, technologies, and practices are articulated given the centrality of genomics in 'precision oncology'. We consider 'precision immunotherapies' to probe whether and how change ensues in these established sociotechnical regimes of biomedicine. The case of genomics and immunology in oncology offers a unique insight into the conditions of possibility for change in such regimes. How does the present new wave of cancer immunotherapies challenge, integrate, and complement the centrality of genomics in 'precision oncology'? What are the specific processes that make possible the convergence, competition, or co-existence of distinct conceptions, infrastructures, and programs of innovative cancer medicine? Drawing from observations and interviews with researchers and clinicians, we qualify these sociotechnical processes as hybridizations. Bringing together different sociotechnical regimes of biomedical research is conditional to the articulation of core concepts, technologies, and translational practices of genomics and immunology. Pivotal to this objective are neoantigens, cell surface proteins originating from the somatic genetic mutations of tumors and which activate a patient's immune response. While neoantigens are an unstable entity in experimentation, they offer a conceptual and material substrate to renegotiate the dominance of cancer genomics, and initiate the production of a new, hybrid regime of 'immunogenomic precision' in oncology.
Collapse
Affiliation(s)
| | - Nils Graber
- University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
44
|
Li N, Wang M, Liu F, Wu P, Wu F, Xiao H, Kang Q, Li Z, Yang S, Wu G, Tan X, Yang Q. Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced Immunotherapy. Anal Chem 2024; 96:19585-19596. [PMID: 39603824 DOI: 10.1021/acs.analchem.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy.
Collapse
Affiliation(s)
- Na Li
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Minghui Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peixian Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hao Xiao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiang Kang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zelong Li
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sha Yang
- Pathology Research Group & Department of Pathology Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Guilong Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
45
|
Wang X, Ma T, Liu H, Zhang S, Yang G, Zhao Y, Kong L, Gao R, Chen X. Heterogeneous immune landscapes and macrophage dynamics in primary and lung metastatic adenoid cystic carcinoma of the head and neck. Front Immunol 2024; 15:1483887. [PMID: 39697346 PMCID: PMC11653016 DOI: 10.3389/fimmu.2024.1483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Recurrent or metastatic adenoid cystic carcinoma (ACC) of the head and neck is rare and highly aggressive. Due to the ineffectiveness of immune checkpoint therapies, this study aims to investigate the tumor immune microenvironment of primary tumor tissues and lung metastatic tissues and to comprehend the challenges of immunotherapy. Methods We analyzed RNA sequencing data and constructed immune landscapes from 25 primary tumors and 34 lung metastases. The data were then validated by immunohistochemistry and single-cell sequencing analysis. Results Compared to adjacent normal tissues, both primary and lung metastatic ACC showed low immune infiltration. Lung metastases had higher immune infiltration levels and antigen presentation scores but also higher T cell exclusion and dysfunction scores. Single-cell sequencing data and immunohistochemistry revealed abundant immunosuppressive tumor-associated macrophages in lung metastases. Patients with high M2 macrophage infiltration had shorter lung metastasis-free survival. Discussion Primary and lung metastatic ACC exhibit heterogeneous tumor immune microenvironments. Higher immune cell infiltration in lung metastases is countered by the presence of suppressive tumor-associated macrophages, which may limit effective anti-tumor responses.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Tingyao Ma
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongfei Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shujing Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guoliang Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Fan Y, Sun L, He J, Chen Y, Ma H, Ding H. Siglec15 in blood system diseases: from bench to bedside. Front Immunol 2024; 15:1490505. [PMID: 39697338 PMCID: PMC11652361 DOI: 10.3389/fimmu.2024.1490505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting the PD-1/PD-L1 pathway using immunomodulators has demonstrated promising outcomes in clinics. Immunomodulators can effectively target immune checkpoints with a strong preference for the tumor microenvironment (TME). Besides, immunomodulators specifically target the recently discovered inhibitory immune checkpoint, sialic acid-binding immunoglobulin-like lectin (Siglec-15). Distinctive in its molecular composition, Siglec-15 has a unique molecular composition and been shown to be highly prevalent in numerous solid tumor tissues and tumor-associated macrophages (TAMs) in human subjects. Notably, Siglec-15 is up-regulated across various cancer types. As a result, Siglec-15 has attracted significant attention due to its exclusive nature concerning PD-L1 expression, suggesting its role in immune evasion in patients lacking PD-L1. Siglec-15 predominantly appears in certain populations and can promote tumor development by repressing T lymphocyte activation and proliferation, thereby facilitating tumor cell immune escape. Furthermore, Siglec-15 is implicated in osteoclast differentiation and bone remodeling, indicating that it is a promising target for next-generation cancer immunotherapies. Additionally, Siglec-15 can modulate immune responses to microbial infections. The current treatment strategies for hematological conditions predominantly include conventional intensive chemotherapy and transplantation methods. However, emerging immunotherapeutic approaches are increasingly recognized for their overall effectiveness, indicating that specific molecular targets should be identified. The expression of Siglec-15 within tumor cells may indicate a novel pathway for treating hematological malignancies. In this study, the biological attributes, expression patterns, and pathogenic mechanisms of Siglec-15 across various diseases were reviewed. The role of Siglec-15 in the pathogenesis and laboratory diagnosis of hematological disorders was also evaluated.
Collapse
Affiliation(s)
- Yujia Fan
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liangliang Sun
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuetong Chen
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Hongli Ma
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Haitao Ding
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
47
|
Akagi H, Katsumata N, Suzuki K, Masukawa K, Morita T, Kizawa Y, Tsuneto S, Shima Y, Miyashita M. Unapproved and unproven cancer treatments in patients admitted to palliative care units. Support Care Cancer 2024; 32:841. [PMID: 39621134 DOI: 10.1007/s00520-024-09057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE To clarify the current use of unapproved and unproven cancer treatment (UUCT) among the bereaved families of patients with cancer who died in palliative care units, the financial burden and psychological experiences of the families, and the relationship between patients in palliative care who used UUCT and communication with their physicians'. METHODS This study was conducted as part of a cross-sectional, anonymous nationwide survey of the bereaved family members of cancer patients who died in palliative care unit in Japan. RESULTS Questionnaires were sent to 1,039 bereaved family members, and responses were received from 661 (64%). Of these, 558 were included in the study after excluding the 103 who did not complete the questionnaire. A total of 7.3% (41 of 558) of patients received UUCT. Of these, 34% (14 of 41) of patients were informed that the treatment was in the research phase, and 49% (20 of 41) were informed that the efficacy of the treatment was unknown. Regarding expectations for UUCT, 61% (25/41) expected to be cured, and 80% (33/41) expected it to slow disease progression. In multivariate logistic regression analysis, use of complementary and alternative medicine (CAM) was associated with receiving UUCT (p = 0.024), and patients who could discuss CAM with their doctors tended to receive UUCT (p = 0.054). CONCLUSION Patients in palliative care unit who expect to cure tended to receive UUCT. These results highlight the challenge of telling patients that UUCT is ineffective and informing them of their prognosis and severe medical conditions.
Collapse
Affiliation(s)
- Hideko Akagi
- Department of Medical Oncology, Nippon Medical School Musashi-Kosugi Hospital, 1-396 Kosugi-Cho, Nakahara-Ku, Kawasaki-Shi, Kanagawa, 211-8533, Japan.
| | - Noriyuki Katsumata
- Department of Medical Oncology, Nippon Medical School Musashi-Kosugi Hospital, 1-396 Kosugi-Cho, Nakahara-Ku, Kawasaki-Shi, Kanagawa, 211-8533, Japan
| | - Kozue Suzuki
- Department of Palliative Care, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kento Masukawa
- Department of Palliative Nursing, Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuya Morita
- Department of Palliative and Supportive Care Division, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Yoshiyuki Kizawa
- Department of Palliative and Supportive Care, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Tsuneto
- Department of Palliative Medicine, Palliative Care Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuo Shima
- Department of Palliative Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Mitsunori Miyashita
- Department of Palliative Nursing, Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Leitner J, Aigner‐Radakovics K, Steinberger P. LAG-3-An incompletely understood target in cancer therapy. FASEB J 2024; 38:e70190. [PMID: 39560030 PMCID: PMC11698013 DOI: 10.1096/fj.202401639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
LAG-3 is a member of the immunoglobulin superfamily expressed on activated T cells, but also on other immune cells. It has significant homology to CD4. Both molecules have four extracellular Ig-like domains with similar structural motifs but the sequence identity between LAG-3 and CD4 is low. Furthermore, unlike CD4 LAG-3 restrains T cell responses and antibodies targeting this receptor are emerging drugs in cancer immunotherapy. A combination of LAG-3 and PD-1 antibodies has already been approved for the treatment of metastatic melanoma. Despite this success, its biology is still not well understood. Here we summarize the current knowledge on expression, ligands, and function of LAG-3. We point to the differences between LAG-3 and other inhibitory immune checkpoints and describe obstacles to study the role of this receptor in T cell activation processes. Finally, we discuss future directions for scientific efforts to come to a more complete understanding of the biology of this eminent immune checkpoint.
Collapse
Affiliation(s)
- Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Katharina Aigner‐Radakovics
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
49
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
50
|
Geng S, Fang B, Wang K, Wang F, Zhou Y, Hou Y, Iqbal MZ, Chen Y, Yu Z. Polydopamine Nanoformulations Induced ICD and M1 Phenotype Macrophage Polarization for Enhanced TNBC Synergistic Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59814-59832. [PMID: 39450881 DOI: 10.1021/acsami.4c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time. Herein, we select polydopamine (PDA) nanoparticles to serve as the carrier for our nanomedicine as well as a potent photothermal agent and modulator of macrophage polarization. PDA nanoparticles are loaded with the insoluble immune adjuvant Imiquimod (R837) to construct PDA(R837) nanoformulations. These straightforward yet highly effective nanoformulations demonstrate excellent performance, allowing for successful triple-negative breast cancer (TNBC) treatment through synergistic photothermal immunotherapy. Moreover, experimental results showed that PDA(R837) implementation of PTT is effective in the thermal ablation of primary tumors while causing ICD and releasing R837, further promoting dendritic cell (DC) maturation and activating the systemic antitumor immune response. Furthermore, PDA(R837) nanoformulations inhibit tumor metastasis and recurrence and achieve M1 phenotype macrophage polarization, achieving long-term and excellent antitumor efficacy. Therefore, the structurally simple PDA(R837) nanoformulations provide cancer treatment and have excellent clinical translational application prospects.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Fang Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| |
Collapse
|