1
|
Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Neurobiol Dis 2025; 208:106848. [PMID: 40023327 DOI: 10.1016/j.nbd.2025.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease is diagnosed based on motor symptoms, but non-motor symptoms of the disease, such as cognitive impairment, autonomic dysfunction, hyposmia, sleep disorders, and psychiatric disorders heavily impact patient and caregiver quality of life. It has proven challenging to faithfully reproduce and quantify these non-motor phenotypes. Indeed, many non-motor signs in animals that may phenotypically resemble features in patients may be caused by different mechanisms or may not be consistent within the same or similar models. In this review, we survey the existing literature on the assessment of non-motor signs in parkinsonian rodents and non-human primates. We highlight the gaps in our understanding and suggest how researchers might improve experimental designs to produce more meaningful results with the hope of better understanding the disease and developing better therapies.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Nelson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Eileen Ruth S Torres
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Roberta Marongiu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, New-York Hospital-Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Institute, New-York Hospital-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Han MN, Di Natale MR, Lei E, Furness JB, Finkelstein DI, Hao MM, Diwakarla S, McQuade RM. Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson's disease. Acta Neuropathol Commun 2025; 13:58. [PMID: 40075409 PMCID: PMC11899089 DOI: 10.1186/s40478-025-01956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) dysfunctions, including constipation and delayed stomach emptying, are prevalent and debilitating non-motor symptoms of Parkinson's disease (PD). These symptoms have been associated with damage in the enteric nervous system (ENS) and the accumulation of pathogenic alpha-synuclein (α-Syn) within the GI tract. While motor deficits and dopaminergic neuron loss in the central nervous system (CNS) of the A53T mouse model are well-characterised, the temporal relationship between GI dysfunction, ENS pathology, and motor symptoms remains unclear. This study aimed to investigate functional alterations in the GI tract at the early stages of the disease, before the appearance of motor deficits, both in vivo and ex vivo. Early colonic motility deficits observed in A53T mice, measured via bead expulsion, preceded motor impairments emerged at 36 weeks. Although whole-gut transit remained unchanged, reduced faecal output was concurrent with marked colonic dysmotility at 36 weeks. Despite a lack of significant neuronal loss, a greater number of enteric neurons in A53T mice showed signs of neuronal hypertrophy and increased nuclear translocation of HuC/D proteins indicative of neuronal stress at 12 and 36 weeks. Calcium imaging revealed differential enteric neuron activity, characterised by exaggerated calcium transients at 12 weeks that normalized by 36 weeks. Furthermore, a reduction in enteric glial populations was observed as early as 12 weeks in both the ileum and colon of A53T mice. These findings provide compelling evidence that ENS pathology, including neuronal stress, disrupted calcium signalling, and glial cell loss, precedes the onset of motor symptoms and may contribute to early GI dysfunction in PD.
Collapse
Affiliation(s)
- Myat Noe Han
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Madeleine R Di Natale
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
| |
Collapse
|
3
|
Sampson TR, Tansey MG, West AB, Liddle RA. Lewy body diseases and the gut. Mol Neurodegener 2025; 20:14. [PMID: 39885558 PMCID: PMC11783828 DOI: 10.1186/s13024-025-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Malú Gámez Tansey
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Normal Fixel Institute of Neurological Diseases, Gainesville, FL, 32608, USA
| | - Andrew B West
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Center for Neurodegeneration and Neurotherapeutic Research, Department of Pharmacology and Cancer Biology, Durham, NC, 27710, USA.
| | - Rodger A Liddle
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University and Department of Veterans Affairs Health Care System, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Isaacson S, Phillips O, Jimenez-Shahed J. Hope vs. Hype III: Rescue/on-demand therapies are preferable to device-assisted therapies in Parkinson disease. Parkinsonism Relat Disord 2024; 126:106079. [PMID: 38503575 DOI: 10.1016/j.parkreldis.2024.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Affiliation(s)
- Stuart Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, 951 NW 13th St, Bldg. 5-E, Boca Raton, FL, 33486, USA.
| | - Oliver Phillips
- Geisel School of Medicine at Dartmouth, Hanover, 18 Old Etna Road, Lebanon, NH, 03756, USA.
| | - Joohi Jimenez-Shahed
- Icahn School of Medicine at Mount Sinai, Mount Sinai West, 1000 10th Ave. Suite 10c, New York City, NY, 10019, USA.
| |
Collapse
|
5
|
Oertel WH, Paule E, Hasemann T, Sittig E, Belke M, Unger MM, Mayer G, Werner R, Jansen A, Pape H, Höglinger GU, Vadasz D, Müller HH, Knake S, Janzen A. Reduced Gastric Contraction in Rapid-Eye-Movement Sleep Behavior Disorder and De Novo Parkinson's Disease. Mov Disord 2024; 39:53-63. [PMID: 37955157 DOI: 10.1002/mds.29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Reduced gastric motility in Parkinson's disease (PD) has been reported, but hardly any study exists in subjects with isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD), a specific prodrome of α-synucleinopathies. OBJECTIVES We compared the gastric motility of 17 iRBD subjects with that of 18 PD subjects (15 drug naive, 3 early treated in defined off) and 15 healthy controls (HC) with real-time magnetic resonance imaging (rtMRI). METHODS After overnight fasting, participants consumed a standardized breakfast and underwent a 3-T rtMRI of the stomach. Amplitude and velocity of the peristaltic waves were analyzed under blinded conditions. Gastric motility index (GMI) was calculated. The procedure was repeated in 12 of 17 iRBD subjects ~2.5 years later. Nine of these 12 iRBD subjects were hyposmic. RESULTS In iRBD and PD subjects the amplitude of the peristaltic waves was significantly reduced compared with HCs (iRBD vs. HC: 8.7 ± 3.7 vs. 11.9 ± 4.1 mm, P = 0.0097; PD vs. HC: 6.8 ± 2.2 vs. 11.9 ± 4.1 mm, P = 0.0001). The amplitude in iRBD and PD subjects was decreased to the same extent. The GMI was reduced in only PD subjects (PD vs. HC: P = 0.0027; PD vs. iRBD: P = 0.0203). After ~2.5 years the amplitude in iRBD subjects did not significantly decrease further. CONCLUSION The amplitude of the peristaltic waves was markedly reduced in iRBD, a prodrome of α-synucleinopathies. This reduction was similar to the extent observed already in manifest early PD. This finding implies that the α-synuclein pathology affects the innervation of the stomach already in the prodromal stage. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolfgang H Oertel
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Esther Paule
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Theresa Hasemann
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus M Unger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, Saarland University, Saarbrücken, Germany
- Department of Neurology, SHG Kliniken Sonnenberg, Saarbruecken, Germany
| | - Geert Mayer
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Rita Werner
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Andreas Jansen
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Heidi Pape
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Günter U Höglinger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University Munich, München, Germany
| | - Dávid Vadasz
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Hans-Helge Müller
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Marburg, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| |
Collapse
|
6
|
Andriolo IRL, Longo B, de Melo DM, de Souza MM, Prediger RD, da Silva LM. Gastrointestinal Issues in Depression, Anxiety, and Neurodegenerative Diseases: A Systematic Review on Pathways and Clinical Targets Implications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1371-1391. [PMID: 38500273 DOI: 10.2174/0118715273289138240306050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Multiple illnesses commonly involve both the Central Nervous System (CNS) and the Gastrointestinal Tract (GI) simultaneously. Consistent evidence suggests that neurological disorders impair GI tract function and worsen the symptomatology and pathophysiology of digestive disorders. On the other hand, it has been proposed that early functional changes in the GI tract contribute to the genesis of several CNS illnesses. Additionally, the role played by the gut in these diseases can be seen as a paradigm for how the gut and the brain interact. METHODS We mentioned significant GI symptoms and discussed how the GI tract affects central nervous system illnesses, including depression, anxiety, Alzheimer's disease, and Parkinson's disease in this study. We also explored potential pathophysiological underpinnings and novel targets for the creation of future therapies targeted at gut-brain connections. RESULTS & DISCUSSION In this situation, modulating the gut microbiota through the administration of fecal microbiota transplants or probiotics may represent a new therapeutic option for this population, not only to treat GI problems but also behavioral problems, given the role that dysbiosis and leaky gut play in many neurological disorders. CONCLUSION Accurate diagnosis and treatment of co-existing illnesses also require coordination between psychiatrists, neurologists, gastroenterologists, and other specialties, as well as a thorough history and thorough physical examination.
Collapse
Affiliation(s)
| | - Bruna Longo
- Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Dayse Machado de Melo
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Márcia Maria de Souza
- Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
de Waal T, Brouwers J, Berben P, Flanagan T, Tack J, Vandenberghe W, Vanuytsel T, Augustijns P. Characterization of Aspirated Duodenal Fluids from Parkinson's Disease Patients. Pharmaceutics 2023; 15:pharmaceutics15041243. [PMID: 37111729 PMCID: PMC10145225 DOI: 10.3390/pharmaceutics15041243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease, one of the most common neurodegenerative diseases, may not only affect the motor system, but also the physiology of the gastrointestinal tract. Delayed gastric emptying, impaired motility and altered intestinal bacteria are well-established consequences of the disease, which can have a pronounced effect on the absorption of orally administered drugs. In contrast, no studies have been performed into the composition of intestinal fluids. It is not unlikely that Parkinson's disease also affects the composition of intestinal fluids, a critical factor in the in vitro and in silico simulation of drug dissolution, solubilization and absorption. In the current study, duodenal fluids were aspirated from Parkinson's disease (PD) patients and age-matched healthy controls (healthy controls, HC) consecutively in fasted and fed conditions. The fluids were then characterized for pH, buffer capacity, osmolality, total protein, phospholipids, bile salts, cholesterol and lipids. In a fasted state, the intestinal fluid composition was highly similar in PD patients and healthy controls. In general, the same was true for fed-state fluids, apart from a slightly slower and less pronounced initial change in factors directly affected by the meal (i.e., buffer capacity, osmolality, total protein and lipids) in PD patients. The absence of a fast initial increase for these factors immediately after meal intake, as was observed in healthy controls, might result from slower gastric emptying in PD patients. Irrespective of the prandial state, a higher relative amount of secondary bile salts was observed in PD patients, potentially indicating altered intestinal bacterial metabolism. Overall, the data from this study indicate that only minor disease-specific adjustments in small intestinal fluid composition should be considered when simulating intestinal drug absorption in PD patients.
Collapse
Affiliation(s)
- Tom de Waal
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium
| | | | - Philippe Berben
- Pharmaceutical Sciences, UCB Pharma SA, 1420 Braine-l'Alleud, Belgium
| | - Talia Flanagan
- Pharmaceutical Sciences, UCB Pharma SA, 1420 Braine-l'Alleud, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
8
|
6-OHDA-Induced Changes in Colonic Segment Contractility in the Rat Model of Parkinson's Disease. Gastroenterol Res Pract 2023; 2023:9090524. [PMID: 36743531 PMCID: PMC9897937 DOI: 10.1155/2023/9090524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023] Open
Abstract
Background Gastrointestinal dysfunction is one of the most common non-motor symptoms in Parkinson's disease (PD). The exact mechanisms behind these symptoms are not clearly understood. Studies in the well-established 6-hydroxydopamine (6-OHDA) lesioned rats of PD have shown altered contractility in isolated circular and longitudinal smooth muscle strips of distal colon. Contractile changes in proximal colon and distal ileum are nevertheless poorly studied. Moreover, segments may serve as better tissue preparations to understand the interplay between circular and longitudinal smooth muscle. This study aimed to compare changes in contractility between isolated full-thickness distal colon muscle strips and segments, and extend the investigation to proximal colon and distal ileum in the 6-OHDA rat model. Methods Spontaneous contractions and contractions induced by electrical field stimulation (EFS) and by the non-selective muscarinic agonist methacholine were investigated in strip and/or segment preparations of smooth muscle tissue from distal and proximal colon and distal ileum in an in vitro organ bath comparing 6-OHDA-lesioned rats with Sham-operated animals. Key Results. Our data showed increased contractility evoked by EFS and methacholine in segments, but not in circular and longitudinal tissue strips of distal colon after central 6-OHDA-induced dopamine denervation. Changes in proximal colon segments were also displayed in high K+ Krebs-induced contractility and spontaneous contractions. Conclusions This study further confirms changes in smooth muscle contractility in distal colon and to some extent in proximal colon, but not in distal ileum in the 6-OHDA rat model of PD. However, the changes depended on tissue preparation.
Collapse
|
9
|
Safarpour D, Brumbach BH, Arena M, Quinn J, Diamond S, Nutt JG, Pfeiffer R. Gastrointestinal Motility and Response to Levodopa in Parkinson's Disease: A Proof-of-Concept Study. Mov Disord 2022; 37:2153-2158. [PMID: 35969014 DOI: 10.1002/mds.29176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Simultaneous measurement of gastrointestinal transit time (GITT) and plasma levodopa concentration (PLC) is crucial to understanding the effect of dysfunctional motility on levodopa response in patients with Parkinson's disease (PwPD). OBJECTIVE The aim is to determine if altered segmental GITT correlates with clinical response and PLC variability in PwPD. METHODS Ten typical and 10 erratic responders ingested the SmartPill (SP) wireless motility capsule. Serial PLC and finger tapping, obtained every 30 minutes for 3 hours after SP/levodopa ingestion, evaluated the correlation between GITT, clinical response, and PLC. Glucose breath testing assessed small intestinal bacterial overgrowth (SIBO). RESULTS GITT was not significantly different in "typical" and "erratic" responders. SIBO was positive in half of the erratic and negative in most typical responders. CONCLUSION SP is a feasible technology for assessing GITT in PwPD. A larger study may be able to significantly differentiate/correlate GITT in different segments of the GI tract with response to levodopa. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Delaram Safarpour
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Barbara H Brumbach
- OHSU-PSU School of Public Health, Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica Arena
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Quinn
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Sarah Diamond
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jay G Nutt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - RonaldF Pfeiffer
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Fan YY, Zhang Y, Fan RF, Wang T, Yu X, Zheng LF, Zhu JX. Impaired nitrergic relaxation in pyloric sphincter of the 6-OHDA Parkinson's disease rat. Am J Physiol Gastrointest Liver Physiol 2022; 322:G553-G560. [PMID: 35380456 DOI: 10.1152/ajpgi.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with Parkinson's disease (PD) often suffer from delayed gastric emptying, but the underlying mechanism remains unclear. We have shown previously that a PD rat model comprising bilateral substantia nigra destruction by 6-hydroxydopamine (6-OHDA rats) exhibits gastroparesis with alteration of neural nitric oxide synthase (nNOS) and acetylcholine in gastric corpus. However, changes in pyloric motility in the 6-OHDA rats have not been characterized. Solid gastric emptying test, immunofluorescence, Western blot, and in vitro pyloric motility recordings were used to assess pyloric motor function in the 6-OHDA rats. The 6-OHDA-treated rats displayed delayed solid gastric emptying and a lower basal pyloric motility index. In the 6-OHDA rats, high K+-induced transient contractions were weaker in pyloric sphincters. Electric field stimulation (EFS)-induced pyloric sphincter relaxation was lower in the 6-OHDA rats. NG-nitro-l-arginine methyl ester (l-NAME), a nonselective inhibitor of NOS, markedly inhibited the EFS-induced relaxation in both control and 6-OHDA rats. Pretreatment of tetrodotoxin abolished the effect of EFS on the pyloric motility. In addition, nNOS-positive neurons were extensively distributed in the pyloric myenteric plexus, whereas the number of nNOS-immunoreactive neurons and the protein expression of nNOS were significantly decreased in the pyloric muscularis of 6-OHDA rats. However, sodium nitroprusside-induced pyloric relaxations were similar between the control and 6-OHDA rats. These results indicate that the pyloric sphincters of 6-OHDA rats exhibit both weakened contraction and relaxation. The latter may be due to reduced nNOS in the pyloric myenteric plexus. The dysfunction of the pyloric sphincter might be involved in the delayed gastric emptying.NEW & NOTEWORTHY Reduced nitrergic neurons in pyloric myenteric plexus potently contributed to the attenuated relaxation in 6-hydroxydopamine (6-OHDA) rats, subsequently affecting gastric emptying. SNP could well improve the relaxation of pylori in 6-OHDA rats. The present study provides new insight into the diagnosis and treatment of delayed gastric emptying in patients with PD.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Rui-Fang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Tao Wang
- Department of Physiology, Xingtai Medical College, Xingtai, People's Republic of China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, He X, Qian Y, Xu S, Mo C, Yan Z, Yang X, Xiao Q. Plasma branched-chain and aromatic amino acids correlate with the gut microbiota and severity of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:48. [PMID: 35449203 PMCID: PMC9023571 DOI: 10.1038/s41531-022-00312-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Disturbances of circulating amino acids have been demonstrated in patients with Parkinson’s disease (PD). However, there have been no consistent results for branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs), and related factors have not been explored. We aimed to explore plasma BCAA and AAA profiles in PD patients, and identify their correlations with clinical characteristics and the gut microbiota. Plasma BCAA (leucine, isoleucine, and valine) and AAA (tyrosine and phenylalanine) levels were measured in 106 PD patients and 114 controls. Fecal samples were collected from PD patients for microbiota sequencing and functional analysis. We found that plasma BCAAs and tyrosine were decreased in PD patients. BCAAs and AAAs were correlated with clinical characteristics and microbial taxa, and, in particular, they were negatively correlated with the Hoehn and Yahr stage. Compared with early PD patients, BCAA and AAA levels were even lower, and microbial composition was altered in advanced PD patients. Predictive functional analysis indicated that predicted genes numbers involved in BCAA biosynthesis were lower in advanced PD patients. What’s more, the fecal abundances of critical genes (ilvB, ilvC, ilvD, and ilvN) involved in BCAA biosynthesis were reduced and fecal BCAA concentrations were lower in advanced PD patients. In conclusion, the disturbances of plasma BCAAs and AAAs in PD patients may be related to the gut microbiota and exacerbated with PD severity. The microbial amino acid metabolism may serve as a potential mechanistic link.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
|
13
|
Han MN, Finkelstein DI, McQuade RM, Diwakarla S. Gastrointestinal Dysfunction in Parkinson’s Disease: Current and Potential Therapeutics. J Pers Med 2022; 12:jpm12020144. [PMID: 35207632 PMCID: PMC8875119 DOI: 10.3390/jpm12020144] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in the gastrointestinal (GI) tract of Parkinson’s disease (PD) sufferers were first reported over 200 years ago; however, the extent and role of GI dysfunction in PD disease progression is still unknown. GI dysfunctions, including dysphagia, gastroparesis, and constipation, are amongst the most prevalent non-motor symptoms in PD. These symptoms not only impact patient quality of life, but also complicate disease management. Conventional treatment pathways for GI dysfunctions (i.e., constipation), such as increasing fibre and fluid intake, and the use of over-the-counter laxatives, are generally ineffective in PD patients, and approved compounds such as guanylate cyclase C agonists and selective 5-hyroxytryptamine 4 receptor agonists have demonstrated limited efficacy. Thus, identification of potential targets for novel therapies to alleviate PD-induced GI dysfunctions are essential to improve clinical outcomes and quality of life in people with PD. Unlike the central nervous system (CNS), where PD pathology and the mechanisms involved in CNS damage are relatively well characterised, the effect of PD at the cellular and tissue level in the enteric nervous system (ENS) remains unclear, making it difficult to alleviate or reverse GI symptoms. However, the resurgence of interest in understanding how the GI tract is involved in various disease states, such as PD, has resulted in the identification of novel therapeutic avenues. This review focuses on common PD-related GI symptoms, and summarizes the current treatments available and their limitations. We propose that by targeting the intestinal barrier, ENS, and/or the gut microbiome, may prove successful in alleviating PD-related GI symptoms, and discuss emerging therapies and potential drugs that could be repurposed to target these areas.
Collapse
Affiliation(s)
- Myat Noe Han
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - David I. Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia;
| | - Rachel M. McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence: ; Tel.: +61-3-8395-8114
| | - Shanti Diwakarla
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
14
|
Ivan IF, Irincu VL, Diaconu Ș, Falup-Pecurariu O, Ciopleiaș B, Falup-Pecurariu C. Gastro-intestinal dysfunctions in Parkinson's disease (Review). Exp Ther Med 2021; 22:1083. [PMID: 34447476 DOI: 10.3892/etm.2021.10517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
In patients with Parkinson's disease (PD), gastrointestinal dysfunction occurs from the early stages of the disease and even in the pre-motor phase. This condition can include the entire digestive tract, with symptoms ranging from delays in gastric emptying to dysphagia, constipation and even malnutrition. Excess saliva accumulates in the mouth due to the low frequency of swallowing. Dysphagia develops in about 50% of patients and may be a reflection of both central nervous system and enteric nervous system disorder. Gastroparesis can cause a variety of symptoms, including nausea, and also may be responsible for some of the motor fluctuations observed with levodopa therapy. Intestinal dysfunction in PD may be the result of both delayed colon transit and impaired anorectal muscle coordination. In addition, recent studies have demonstrated the role of Helicobacter pylori infection in the pathogenesis of diseases but also the occurrence of motor fluctuations by affecting the absorption of anti-parkinsonian medication. In this review, the main gastrointestinal dysfunctions associated with PD are presented.
Collapse
Affiliation(s)
- Irina-Florina Ivan
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania
| | | | - Ștefania Diaconu
- Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| | | | - Bogdan Ciopleiaș
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania
| | - Cristian Falup-Pecurariu
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania.,Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| |
Collapse
|
15
|
Soliman H, Coffin B, Gourcerol G. Gastroparesis in Parkinson Disease: Pathophysiology, and Clinical Management. Brain Sci 2021; 11:831. [PMID: 34201699 PMCID: PMC8301889 DOI: 10.3390/brainsci11070831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with Parkinson disease (PD) experience a range of non-motor symptoms, including gastrointestinal symptoms. These symptoms can be present in the prodromal phase of the disease. Recent advances in pathophysiology reveal that α-synuclein aggregates that form Lewy bodies and neurites, the hallmark of PD, are present in the enteric nervous system and may precede motor symptoms. Gastroparesis is one of the gastrointestinal involvements of PD and is characterized by delayed gastric emptying of solid food in the absence of mechanical obstruction. Gastroparesis has been reported in nearly 45% of PD. The cardinal symptoms include early satiety, postprandial fullness, nausea, and vomiting. The diagnosis requires an appropriate test to confirm delayed gastric emptying, such as gastric scintigraphy, or breath test. Gastroparesis can lead to malnutrition and impairment of quality of life. Moreover, it might interfere with the absorption of antiparkinsonian drugs. The treatment includes dietary modifications, and pharmacologic agents both to accelerate gastric emptying and relieve symptoms. Alternative treatments have been recently developed in the management of gastroparesis, and their use in patients with PD will be reported in this review.
Collapse
Affiliation(s)
- Heithem Soliman
- Centre de Recherche sur l’Inflammation, Université de Paris, Inserm UMRS 1149, 75018 Paris, France;
- Département d’Hépato Gastro Entérologie, Hôpital Louis Mourier, DMU ESPRIT—GHU (AP-HP), 92700 Colombes, France
| | - Benoit Coffin
- Centre de Recherche sur l’Inflammation, Université de Paris, Inserm UMRS 1149, 75018 Paris, France;
- Département d’Hépato Gastro Entérologie, Hôpital Louis Mourier, DMU ESPRIT—GHU (AP-HP), 92700 Colombes, France
| | - Guillaume Gourcerol
- Centre Hospitalo-Universitaire de Rouen, INSERM UMR 1073, CIC-CRB 1404, 76000 Rouen, France;
| |
Collapse
|
16
|
Schaefer R. [Update nausea and vomiting amongst the elderly]. Dtsch Med Wochenschr 2021; 146:446-450. [PMID: 33780989 DOI: 10.1055/a-1202-9366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nausea (like vomiting) is a symptom and not an independent disease pattern. This makes it difficult to give an accurate number of the incidences in the elderly population. Approximately every 2nd to 3rd elderly person is affected.There are many possible causes of nausea (cerebrally caused, cerebrally controlled or caused by gastrointestinal disease). The physiological aging of the gastrointestinal tract on its own does not cause nausea.The diagnosis is based on a detailed medical history and an in-depth physical examination. Further diagnostic steps have to be customized to each patient. An official guidelines for diagnostics is not established.Initially the therapy aims to treat the cause (underlying disease or polypharmacy). Symptom-oriented medication should only be considered as secondary meassure. However, numerous possible drugs are inadequate for elderly people.
Collapse
Affiliation(s)
- Rolf Schaefer
- Facharzt für Innere Medizin, Geriatrie, Palliativmedizin, internistische Intensivmedizin
| |
Collapse
|
17
|
Ghourchian S, Gruber-Baldini AL, Shakya S, Herndon J, Reich SG, von Coelln R, Savitt JM, Shulman LM. Weight loss and weight gain in Parkinson disease. Parkinsonism Relat Disord 2021; 83:31-36. [PMID: 33465545 DOI: 10.1016/j.parkreldis.2020.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Parkinson disease (PD) has been associated with both weight loss and gain in different stages of the disease. Our study aimed to determine the prevalence and associations with weight change over two years based on 3% and 5% weight change. METHODS In this longitudinal analysis, weight at baseline and follow-up was used to classify patients into groups of weight loss, stable, and weight gain. Differences between these groups at baseline and then with change over time were tested. RESULTS The sample was 668 patients with mean(SD) age 66.1(10) and disease duration 5.3(5.4) years. Using 3% weight change criteria: 32.6% lost, 23.1% gained, and 55.7% had stable weight. Using 5% criteria: 22.6% lost, 15.7% gained, and 61.7% had stable weight. Age was associated with both 3% and 5% change in weight. Other associations with 5% weight change were disease duration, Total and Motor Unified Parkinson's Disease Rating Scale, Older Americans Resource and Services disability, and Hoehn & Yahr staging. The effects of 3% weight loss on Motor UPDRS, IADLs, and depression, and the effects of 5% weight loss on IADLs remained statistically significant when controlling for baseline differences in age, levodopa use, and Total UPDRS. CONCLUSION PD patients are more likely to experience 3% than 5% weight change and this lower threshold of weight change was associated with greater disease severity and disability over time. Attention to more subtle weight change may help identify those at greater risk of disability.
Collapse
Affiliation(s)
- Shadi Ghourchian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann L Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunita Shakya
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Herndon
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen G Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph M Savitt
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa M Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Autonomic Dysfunctions in Parkinson's Disease: Prevalence, Clinical Characteristics, Potential Diagnostic Markers, and Treatment. PARKINSON'S DISEASE 2021; 2020:8740732. [PMID: 33425317 PMCID: PMC7775181 DOI: 10.1155/2020/8740732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in the middle-aged and the elderly. Symptoms of autonomic dysfunctions are frequently seen in PD patients, severely affecting the quality of life. This review summarizes the epidemiology, clinical manifestations, and treatment options of autonomic dysfunctions. The clinical significance of autonomic dysfunctions in PD early diagnosis and differential diagnosis is also discussed.
Collapse
|
19
|
Sendzischew Shane MA, Moshiree B. Esophageal and Gastric Motility Disorders in the Elderly. Clin Geriatr Med 2020; 37:1-16. [PMID: 33213764 DOI: 10.1016/j.cger.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The elderly are particularly prone to developing upper gastrointestinal disturbances. Changes are due to the aging process, diabetes, cardiovascular risk factors, and neurologic issues. Medications used to treat these underlying conditions can cause gastrointestinal symptoms. Dysphagia is common and can be oropharyngeal and/or esophageal. Gastroparesis is due to either medications such opiates, or due to neurologic sequala of diabetes, cerebrovascular accidents, or neurologic diseases such as Parkinson's disease. Given limitations in many commonly used prokinetics with a wide range of side effect profiles including neurologic and cardiac, the focus of treatment should be on symptom management with dietary changes.
Collapse
Affiliation(s)
- Morgan A Sendzischew Shane
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, CRB 1184, Miami, FL 33136, USA.
| | - Baharak Moshiree
- Atrium Health-Charlotte, UNC School of Medicine, Charlotte Campus, 1025 Morehead Medical Drive, Suite 300, Charlotte, NC 28204, USA
| |
Collapse
|
20
|
Ruck L, Unger MM, Spiegel J, Bürmann J, Dillmann U, Faßbender K, Reith W, Backens M, Mühl-Benninghaus R, Yilmaz U. Gastric Motility in Parkinson's Disease is Altered Depending on the Digestive Phase and Does Not Correlate with Patient-Reported Motor Fluctuations. JOURNAL OF PARKINSONS DISEASE 2020; 10:1699-1707. [PMID: 32804102 PMCID: PMC7683086 DOI: 10.3233/jpd-202144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Altered gastric motility is a frequent non-motor symptom of Parkinson’s disease (PD). It has been hypothesized that disturbed gastric motility contributes to motor fluctuations in PD due to an erratic gastro-duodenal transport and an unpredictable absorption of drugs. Objective: We investigated whether patient-reported fluctuations are associated with parameters of gastric motility visualized by real-time magnetic resonance imaging (MRI) of the stomach. Methods: We analyzed real-time MRI-scans of the stomach after an overnight fasting period in 16 PD patients and 20 controls. MRI was performed 1) in the fasting state, 2) directly after a test meal, and 3) 4 hours postprandially. Gastric motility indices were calculated and compared between groups. Results: MRI showed an attenuated gastric motility in PD patients compared to controls. The difference was most obvious in the early postprandial phase. Gastric motility was not associated with patient-reported motor fluctuations. Using an iron-containing capsule we were able to retrace retention of drugs in the stomach. Conclusion: The results of this study stress the importance of considering the phase of digestion when investigating gastric motility in PD. Despite theoretical considerations, we did not find robust evidence for an association between MRI parameters of gastric motility and patient-reported motor fluctuations. For future studies that aim to investigate gastric motility in PD by MRI, we suggest multiple short-time MRIs to better track the whole gastro-duodenal phase in PD. Such an approach would also allow to retrace the retention of drugs in the stomach as shown by our approach using an iron-containing capsule.
Collapse
Affiliation(s)
- Laura Ruck
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Marcus M Unger
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Jörg Spiegel
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Jan Bürmann
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Ulrich Dillmann
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Klaus Faßbender
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Martin Backens
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | | | - Umut Yilmaz
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| |
Collapse
|
21
|
Pfeiffer RF, Isaacson SH, Pahwa R. Clinical implications of gastric complications on levodopa treatment in Parkinson's disease. Parkinsonism Relat Disord 2020; 76:63-71. [PMID: 32461054 DOI: 10.1016/j.parkreldis.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Disorders of the gastrointestinal (GI) tract are common and distressing nonmotor symptoms of Parkinson's disease (PD) that can adversely affect levodopa absorption and lead to OFF periods, also known as motor fluctuations. Gastroparesis, which is primarily defined as delayed gastric emptying (DGE), and Helicobacter pylori infection, which is present with increased frequency in PD, are among the most common and important GI disorders reported in PD that may impair oral levodopa absorption and increase OFF time. Symptoms of gastroparesis include nausea, vomiting, postprandial bloating, fullness, early satiety, abdominal pain, and weight loss. DGE has been reported in a substantial fraction of individuals with PD. Symptoms of H. pylori infection include gastritis and peptic ulcers. Studies have found that DGE and H. pylori infection are correlated with delayed peak levodopa plasma levels and increased incidence of motor fluctuations. Therapeutic strategies devised to minimize the potential that gastric complications will impair oral levodopa absorption and efficacy in PD patients include treatments that circumvent the GI tract, such as apomorphine injection, levodopa intestinal gel delivery, levodopa inhalation powder, and deep brain stimulation. Other strategies aim at improving gastric emptying in PD patients, primarily including prokinetic agents.
Collapse
Affiliation(s)
- Ronald F Pfeiffer
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Rajesh Pahwa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Taylor JP, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, Allan LM, Thomas AJ, O'Brien JT. New evidence on the management of Lewy body dementia. Lancet Neurol 2020; 19:157-169. [PMID: 31519472 PMCID: PMC7017451 DOI: 10.1016/s1474-4422(19)30153-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia, jointly known as Lewy body dementia, are common neurodegenerative conditions. Patients with Lewy body dementia present with a wide range of cognitive, neuropsychiatric, sleep, motor, and autonomic symptoms. Presentation varies between patients and can vary over time within an individual. Treatments can address one symptom but worsen another, which makes disease management difficult. Symptoms are often managed in isolation and by different specialists, which makes high-quality care difficult to accomplish. Clinical trials and meta-analyses now provide an evidence base for the treatment of cognitive, neuropsychiatric, and motor symptoms in patients with Lewy body dementia. Furthermore, consensus opinion from experts supports the application of treatments for related conditions, such as Parkinson's disease, for the management of common symptoms (eg, autonomic dysfunction) in patients with Lewy body dementia. However, evidence gaps remain and future clinical trials need to focus on the treatment of symptoms specific to patients with Lewy body dementia.
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | - Ian G McKeith
- Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - David J Burn
- Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Brad F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Weintraub
- Department of Psychiatry and Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Claire Bamford
- Institute of Health and Society, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Louise M Allan
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alan J Thomas
- Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
23
|
Wu YN, Chen MH, Chiang PL, Lu CH, Chen HL, Yu CC, Chen YS, Chang YY, Lin WC. Associations between Brain Structural Damage and Core Muscle Loss in Patients with Parkinson's Disease. J Clin Med 2020; 9:jcm9010239. [PMID: 31963202 PMCID: PMC7019762 DOI: 10.3390/jcm9010239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease associated with progressive gray matter atrophy. In addition to motor function disorder, frailty and decreased muscle mass potentially contribute to increased morbidity risk. OBJECTIVE This study aimed to investigate the associations between lean muscle loss and gray matter volume (GMV) in PD patients. METHODS Thirty patients with PD and fifteen healthy controls underwent brain and bilateral thigh MRIs. The IDEAL sequence was employed, measuring the regions of interest (ROI) of fat percentage at the 50% point of femur length. Voxel-base morphometry (VBM) was used to assess regional gray matter volume differences between groups. Further correlation analysis was performed to evaluate the changes between gray matter volume and fatty percentage of the bilateral thigh after adjusting for age and gender. Multiple linear regression analysis was applied to evaluate the risk factor of core muscle loss in PD patients. RESULTS Compared with controls, patients with PD had significantly higher thigh fat percentage and smaller gray matter volume of several brain locations of the default mode network (DMN), specifically the left superior temporal gyrus, right uncus, and left inferior temporal gyrus, revealing association with higher thigh fat percentage. Further multiple linear regression analysis indicated that higher thigh fat percentage is associated with gender (female), increased disease duration, and smaller gray matter volume of the left superior temporal gyrus and right uncus in PD patients. CONCLUSIONS Patients with PD experience core muscle loss in the thigh, associated with default mode network (DMN) degeneration, longer disease duration, and female gender. Identification of risk factors associated with lean muscle mass loss may assist in early prevention of comorbidities such as sarcopenia.
Collapse
Affiliation(s)
- Ying-Nong Wu
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Pi-Ling Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (C.-H.L.); (Y.-Y.C.)
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Chiun-Chieh Yu
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (C.-H.L.); (Y.-Y.C.)
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 83305, Taiwan; (Y.-N.W.); (M.-H.C.); (P.-L.C.); (H.-L.C.); (C.-C.Y.); (Y.-S.C.)
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 3027); Fax: +886-7-731-7123 (ext. 2523)
| |
Collapse
|
24
|
Ghaisas S, Langley MR, Palanisamy BN, Dutta S, Narayanaswamy K, Plummer PJ, Sarkar S, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gut-microbiome changes of Parkinson's disease. Neurotoxicology 2019; 75:186-199. [PMID: 31505196 DOI: 10.1016/j.neuro.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) disturbances are one of the earliest symptoms affecting most patients with Parkinson's disease (PD). In many cases, these symptoms are observed years before motor impairments become apparent. Hence, the molecular and cellular underpinnings that contribute to this early GI dysfunction in PD have actively been explored using a relevant animal model. The MitoPark model is a chronic, progressive mouse model recapitulating several key pathophysiological aspects of PD. However, GI dysfunction and gut microbiome changes have not been categorized in this model. Herein, we show that decreased GI motility was one of the first non-motor symptoms to develop, evident as early as 8 weeks with significantly different transit times from 12 weeks onwards. These symptoms were observed well before motor symptoms developed, thereby paralleling PD progression in humans. At age 24 weeks, we observed increased colon transit time and reduced fecal water content, indicative of constipation. Intestinal inflammation was evidenced with increased expression of iNOS and TNFα in the small and large intestine. Specifically, iNOS was observed mainly in the enteric plexi, indicating enteric glial cell activation. A pronounced loss of tyrosine hydroxylase-positive neurons occurred at 24 weeks both in the mid-brain region as well as the gut, leading to a corresponding decrease in dopamine (DA) production. We also observed decreased DARPP-32 expression in the colon, validating the loss of DAergic neurons in the gut. However, the total number of enteric neurons did not significantly differ between the two groups. Metabolomic gas chromatography-mass spectrometry analysis of fecal samples showed increased sterol, glycerol, and tocopherol production in MitoPark mice compared to age-matched littermate controls at 20 weeks of age while 16 s microbiome sequencing showed a transient temporal increase in the genus Prevotella. Altogether, the data shed more light on the role of the gut dopaminergic system in maintaining intestinal health. Importantly, this model recapitulates the chronology and development of GI dysfunction along with other non-motor symptoms and can become an attractive translational animal model for pre-clinical assessment of the efficacy of new anti-Parkinsonian drugs that can alleviate GI dysfunction in PD.
Collapse
Affiliation(s)
- Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Kirthi Narayanaswamy
- W M Keck Metabolomics Research Laboratory, Office of Biotechnology, ISU, Ames, IA, USA
| | - Paul J Plummer
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, ISU, Ames, IA, USA; Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, ISU, Ames, IA, USA
| | - Souvarish Sarkar
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University (ISU), Ames, IA, 50011, USA.
| |
Collapse
|
25
|
Abstract
This article reviews the most common gastrointestinal (GI) problems that occur in patients with Parkinson disease, including weight loss, drooling, dysphagia, delayed gastric emptying, constipation, and defecatory dysfunction. Appropriate workup and treatment options are reviewed in detail in order to provide clinicians with a comprehensive and practical guide to managing these problems in Parkinson disease patients. GI adverse effects of commonly used Parkinson disease motor medications are also reviewed.
Collapse
Affiliation(s)
- John Legge
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; VCU NOW Center, 11958 West Broad Street, 4th Floor, Box 980220, Henrico, VA 23298-0220, USA
| | - Nicholas Fleming
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; VCU NOW Center, 11958 West Broad Street, 4th Floor, Box 980220, Henrico, VA 23298-0220, USA
| | - Leslie Jameleh Cloud
- VCU NOW Center, 11958 West Broad Street, 4th Floor, Box 980220, Henrico, VA 23298-0220, USA; Parkinson's and Movement Disorders Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
26
|
Mou L, Ding W, Fernandez-Funez P. Open questions on the nature of Parkinson's disease: from triggers to spreading pathology. J Med Genet 2019; 57:73-81. [PMID: 31484719 DOI: 10.1136/jmedgenet-2019-106210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is a movement disorder identified more than 200 years ago; today it is defined by specific motor symptoms that together receive the name of parkinsonism. PD diagnosis is reached with the full parkinsonian syndrome, but in recent years, a series of non-motor symptoms have arisen as intrinsic components of PD. These non-motor symptoms are variable, creating a widely heterogenous disease presentation. Some non-motor symptoms appear in late disease stages and are explained as the natural progression of PD pathology into other brain centres, including the frontal cortex. Other symptoms can appear a decade or earlier preceding PD diagnosis, particularly hyposmia (loss of smell) and constipation. These early symptoms and the accompanying protein pathology have stimulated a lively conversation about the origin and nature of PD and other related conditions: some authors propose that PD starts in the olfactory mucosa and the gut due to direct exposure to toxins or pathogens. This pathology then travels by anatomically interconnected networks to the midbrain to cause motor symptoms and the cortex to cause late complications. Other models propose that PD develops in multiple independent foci that do not require pathology spread. We will review these hypotheses in the context of recent developments regarding the spread of amyloids and propose a mixed model where a multifocal origin explains the variable presentation of PD, while cell-to-cell spread explains stereotypical disease progression.
Collapse
Affiliation(s)
- Lei Mou
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Wei Ding
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Pedro Fernandez-Funez
- Biomedical Sciences, University of Minnesota Medical School - Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
27
|
Gastrointestinal Dysfunction in Chinese Patients with Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:3897315. [PMID: 31531219 PMCID: PMC6721428 DOI: 10.1155/2019/3897315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 01/29/2023]
Abstract
Purpose To observe the occurrence and influencing factors of the symptoms related to the digestive system of people at the early and middle stages of PD and of healthy controls (HCs) using a questionnaire. Method The questionnaire was given to 108 PD patients at early and middle stages. Twelve symptoms related to the digestive system, of which seven were listed on the Parkinson's Disease Non-Motor Symptom Scale (PD-NMSS) and the Scale for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT) (dysgeusia, dysphagia/choking, salivation, early satiety, constipation, loose stools, and fecal incontinence) and five symptoms used in the diagnosis and treatment of PD (loss of appetite, dry mouth, mouth pain, nausea and vomiting), were used. The questionnaire was also given to HCs. Results There was no significant difference in age, sex, height, weight, or body mass index (BMI) between the PD group and HCs. Of the 108 people at the early and middle stages of PD, the most common symptoms related to the digestive system were 64 cases of dry mouth (59.26%), 53 cases of constipation (49.07%), and 40 cases of dysgeusia (37.04%). Multivariate binary logistics regression revealed that dysgeusia (P < 0.001), dysphagia (P = 0.004), early satiety (P = 0.001), and constipation (P = 0.007) were more likely to occur in males. BMI, disease duration, and motor symptoms had no significant correlation with the symptoms related to the digestive system (P > 0.05 for all). Conclusions Dry mouth, constipation, dysgeusia, loss of appetite, early satiety, and dysphagia are the most common (and possibly characteristic symptoms) related to the digestive system in people at the early and middle stages of PD. Being male is a risk factor for dysgeusia, dysphagia, early satiety, and constipation.
Collapse
|
28
|
Gastric dysmotility in Parkinson's disease is not caused by alterations of the gastric pacemaker cells. NPJ PARKINSONS DISEASE 2019; 5:15. [PMID: 31372495 PMCID: PMC6659650 DOI: 10.1038/s41531-019-0087-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023]
Abstract
The enteric nervous system is involved in the pathology of Parkinson´s disease and patients frequently have symptoms related to delayed gastric emptying. However, the pathophysiology of gastric dysmotility is yet not well understood. The objective of this study was to assess interdigestive gastric motility in Parkinson´s disease. Using an electromagnetic capsule system, the dominant gastric contraction frequency (primary outcome measure) and the gastric transit time were assessed in 16 patients with Parkinson´s disease and 15 young healthy controls after a fasting period of 8 h. Motor and non-motor symptoms were assessed using the Movement Disorder Society Unified Parkinson´s Disease Rating Scale III (MDS-UPDRS III), the Non-Motor Symptoms Questionnaire (NMS-Quest), and Hoehn & Yahr staging. The Gastroparesis Cardinal Symptom Index was used to record symptoms related to delayed gastric emptying. In healthy controls and patients with Parkinson's disease, the dominant contraction frequency was 3.0 cpm indicating normal function of interstitial cells of Cajal. In patients with Parkinson's disease, the gastric transit time was longer than in younger controls (56 vs. 21 min). The dominant contraction frequency and gastric transit time did not correlate with age, disease duration, Hoehn & Yahr stage, levodopa equivalent daily dose, MDS-UPDRS III, NMS-Quest, and Gastroparesis Cardinal Symptom Index. Changes of gastric motility in Parkinson´s disease are not caused by functional deficits of the gastric pacemaker cells, the interstitial cells of Cajal. Therefore, gastroparesis in Parkinson's disease can be attributed to disturbances in neurohumoral signals via the vagus nerve and myenteric plexus.
Collapse
|
29
|
Quantitative MRI evaluation of gastric motility in patients with Parkinson's disease: Correlation of dyspeptic symptoms with volumetry and motility indices. PLoS One 2019; 14:e0216396. [PMID: 31050679 PMCID: PMC6499432 DOI: 10.1371/journal.pone.0216396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the correlation between dyspeptic symptoms and gastric motility parameters measured by magnetic resonance imaging (MRI) using volumetry and motility indices in patients with Parkinson’s disease (PD). Materials and methods In this IRB-approved study, MRI datasets obtained from August 2014 to May 2016 in 38 PD patients were retrospectively analyzed. Patients underwent a 120-minute-long MRI study using a liquid test meal and 8 sets of scans. Gastric content volume (GCV) and total volume (TGV), gastric half emptying time (T1/2), motility index (GMI), accommodation (GA), and emptying (GE) values were acquired. These measurements were compared between patients according to the presence of gastric symptoms: early satiety (n = 25), epigastric pain (n = 13), and dyspepsia (n = 28). Results Patients with early satiety showed significantly decreased GE of GCV and TGV (p < 0.001 and p = 0.017). Dyspeptic patients had significantly decreased GE of GCV and GMI (p = 0.001 and p = 0.029). GE of GCV at 90 and 120 minutes were significantly lower in patients with early satiety (p = 0.001 and p = 0.002). GE of GCV and GMI at 90 minutes were significantly decreased in patients with dyspepsia (p = 0.004 and p = 0.002). T1/2 of GCV was prolonged in patients with early satiety, epigastric pain, and dyspepsia (p = 0.004, p = 0.041, and p = 0.023). T1/2 of TGV also delayed in patients with early satiety (p = 0.023). GMI at 90 minutes was significantly correlated with dyspepsia on multivariable analysis (p = 0.028). Conclusions Gastric motility can be quantitatively assessed by MRI, showing decreased GMI, delayed GE, and prolonged T1/2 in PD patients with early satiety or dyspepsia.
Collapse
|
30
|
Yang YL, Ran XR, Li Y, Zhou L, Zheng LF, Han Y, Cai QQ, Wang ZY, Zhu JX. Expression of Dopamine Receptors in the Lateral Hypothalamic Nucleus and Their Potential Regulation of Gastric Motility in Rats With Lesions of Bilateral Substantia Nigra. Front Neurosci 2019; 13:195. [PMID: 30923496 PMCID: PMC6426751 DOI: 10.3389/fnins.2019.00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 11/27/2022] Open
Abstract
Most Parkinson’s Disease (PD) patients experience gastrointestinal (GI) dysfunction especially the gastroparesis, but its underlying mechanism is not clear. We have previously demonstrated that the neurons in the substantia nigra (SN) project to the lateral hypothalamic nucleus (LH) and the dorsal motor nucleus of vagus (DMV) receives the neural projection from LH by the means of anterograde and retrograde neural tracing technology. Orexin A (OXA) is predominately expressed in the LH. It has been reported that OXA can alter the gastric motility through the orexin receptor 1 (OX1R) in DMV. We speculated that this SN-LH-DMV pathway could modulate the motility of stomach because of the important role of LH and DMV in the regulation of gastric motility. However, the distribution and expression of dopamine receptors (DR) in the LH is unknown. In the present study, using a double-labeling immunofluorescence technique combined with confocal microscopy, we significantly extend our understanding of the SN-LH-DMV pathway by showing that (1) a considerable quantity of dopamine receptor 1 and 2 (D1 and D2) was expressed in the LH as well as the OX1R was expressed in the DMV; (2) Nearly all of the D1-immuoreactve (IR) neurons were also OXA-positive while only a few neurons express both D2 and OXA in the LH, and the DR-positive neurons were surrounded by the dopaminergic neural fibers; In the DMV, OX1R were colocalized with choline acetyltransferase (ChAT)-labeled motor neurons; (3) When the gastroparesis was induced by the destruction of dopaminergic neurons in the SN, the decreased expression of D1 and OXA was observed in the LH as well as the reduced OX1R and ChAT expression in the DMV. These findings suggest that SN might regulate the function of OXA-positive neurons via D1 receptor, which then affect the motor neurons in the DMV through OX1R. If the SN is damaged the vagal pathway would be affected, which may lead to gastric dysfunction. The present study raises the possibility that the SN-LH-DMV pathway can regulate the movement of stomach.
Collapse
Affiliation(s)
- Yan-Li Yang
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xue-Rui Ran
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yong Li
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Li Zhou
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu Han
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing-Qing Cai
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Yong Wang
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jin-Xia Zhu
- Xinxiang Key Laboratory of Molecular Neurology, Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Doi H, Sakakibara R, Masuda M, Tateno F, Aiba Y, Kishi M, Yamanishi T, Yamamoto T, Matsuoka K. Gastrointestinal function in dementia with Lewy bodies: a comparison with Parkinson disease. Clin Auton Res 2019; 29:633-638. [PMID: 30741396 DOI: 10.1007/s10286-019-00597-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate gastrointestinal function in dementia with Lewy bodies and Parkinson disease. METHODS We examined gastric emptying and colonic transit time in 19 dementia with Lewy bodies and 46 Parkinson disease patients. RESULTS Gastric emptying was longer in dementia with Lewy bodies than in Parkinson disease (p = 0.014). Colonic transit time tended to be longer in dementia with Lewy bodies than in Parkinson disease. There was no relationship between gastric emptying and colonic transit time, nor between gastric emptying, colonic transit time and age. CONCLUSION Gastric emptying was prolonged in dementia with Lewy bodies compared to Parkinson disease.
Collapse
Affiliation(s)
- Hirokazu Doi
- Pharmaceutical Unit, Sakura Medical Center, Toho University, Sakura, Japan
| | - Ryuji Sakakibara
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura, 285-8741, Japan.
| | - Masayuki Masuda
- Pharmaceutical Unit, Sakura Medical Center, Toho University, Sakura, Japan
| | - Fuyuki Tateno
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Yosuke Aiba
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Masahiko Kishi
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | | | | | - Katsuyoshi Matsuoka
- Gastroenterology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| |
Collapse
|
32
|
Moshiree B, Potter M, Talley NJ. Epidemiology and Pathophysiology of Gastroparesis. Gastrointest Endosc Clin N Am 2019; 29:1-14. [PMID: 30396519 DOI: 10.1016/j.giec.2018.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastroparesis is a complex syndrome with symptoms that include nausea, vomiting, and postprandial abdominal pain, and is frequently accompanied by significant delays in gastric emptying. The pathophysiology of diabetic gastroparesis is fairly well understood; however, idiopathic gastroparesis, which accounts for one-third of all cases, may stem from infections, or autoimmune or neurologic disorders, among other causes. To date, few population-based studies have estimated the true prevalence and incidence of gastroparesis. Nonetheless, its prevalence appears to be rising, as does its incidence among minority populations, documented via hospitalizations, which can impose significant economic burdens on patients.
Collapse
Affiliation(s)
- Baha Moshiree
- Division of Gastroenterology, University of North Carolina, 1025 Morehead Medical Drive Suite 300, Charlotte, NC 28204, USA; Atrium Health, Carolinas HealthCare System, Digestive Health-Morehead Medical Plaza, 1025 Morehead Medical Drive, Suite 300, Charlotte, NC 28204, USA.
| | - Michael Potter
- Department of Gastroenterology, University of Newcastle, HMRI Building, Kookaburra Circuit, New Lambton Heights, New South Wales 2305, Australia; Department of Gastroenterology, John Hunter Hospital, Lookout Road, New Lambton Heights, New South Wales 2305, Australia
| | - Nicholas J Talley
- Global Research, Digestive and Health Neurogastroenterology, New Lambton, NSW 2305, Australia
| |
Collapse
|
33
|
Knudsen K, Szwebs M, Hansen AK, Borghammer P. Gastric emptying in Parkinson's disease - A mini-review. Parkinsonism Relat Disord 2018; 55:18-25. [PMID: 29891432 DOI: 10.1016/j.parkreldis.2018.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/30/2018] [Accepted: 06/03/2018] [Indexed: 02/06/2023]
Abstract
Patients with Parkinson's disease (PD) experience a range of non-motor symptoms, including constipation and other gastrointestinal problems. These symptoms are sometimes present in the prodromal disease phase. An improved understanding of the underlying pathophysiology is needed considering that PD has been hypothesized to originate in the gut. Delayed gastric emptying time (GET) is often listed as a prevalent gastrointestinal symptom in PD, but the true prevalence is controversial. The aim of this short review was to investigate if GET in PD is dependent on the applied measuring methodology. A systemic search of Pubmed identified 15 relevant studies, including six using gold standard method gastric scintigraphy and nine using 13C-octanoate breath tests. Overall, gastric scintigraphy studies showed a non-significant GET delay (standardized mean difference (SMD) 0.42) in PD patients. After exclusion of one outlier study, GET was significantly increased (SMD 0.59). In contrast, highly significant GET delay (SMD 1.70) was seen in breath test studies. A limitation of the meta-analyses was reuse of the same control group in some studies. In summary, the marked GET delay observed in breath test studies is not confirmed by gold standard gastric scintigraphy studies. This discrepancy can perhaps be explained by breath test being an indirect GET measure, depending not only on mechanic stomach emptying but also intestinal absorption and liver metabolism. Thus, multi-modality studies under standardized conditions are needed to elucidate the prevalence and severity of gastric dysmotility in PD, along with contributions from other factors including intestinal absorption and permeability.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark.
| | - Martha Szwebs
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| |
Collapse
|
34
|
DA-9701 on gastric motility in patients with Parkinson's disease: A randomized controlled trial. Parkinsonism Relat Disord 2018; 54:84-89. [PMID: 29705555 DOI: 10.1016/j.parkreldis.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To evaluate the effect of DA-9701, a novel prokinetic drug, on gastric motility evaluated by magnetic resonance imaging in patients with Parkinson's disease (PD). METHODS Forty PD patients were randomly allocated to receive either domperidone or DA-9701. Their gastric functions were evaluated using magnetic resonance imaging before and after 4-week treatment period. Information on levodopa daily dose, disease duration, and Unified PD Rating Scale scores was collected. In 18 patients (domperidone: 9, DA-9701: 9), plasma levodopa concentrations were determined. Primary outcome was assessed by a one-sided 95% confidence interval to show non-inferiority of DA-9701 vs. domperidone with a pre-determined non-inferiority margin of -10%. RESULTS Thirty-eight participants (19 men and 19 women; mean age, 67.1 years) completed the study protocol (domperidone: DA-9701 = 19:19). Gastric emptying rate at 120 min (2-hr GER) was comparable between the 2 groups; it was not correlated with levodopa daily dose or disease duration or Unified PD Rating Scale scores (all p > 0.05). DA-9701 was not inferior to domperidone in changes of 2-hr GERs before and after the treatment (absolute difference, 4.0 %; one-sided 95% confidence interval, - 3.7 to infinity). However, a significant increase in 2-hr GER was observed only in DA-9701 group (54.5% and 61.8%, before and after treatment, respectively, p < 0.05). Plasma levodopa concentration showed an insignificant but increasing trend in DA-9701 group. There were neither adverse reactions nor deteriorations of parkinsonian symptoms observed in the study participants. CONCLUSION DA-9701 can be used for the patients with PD to enhance gastric motility without aggravating PD symptoms (ClinicalTrials.gov number: NCT03022201).
Collapse
|
35
|
Ma K, Xiong N, Shen Y, Han C, Liu L, Zhang G, Wang L, Guo S, Guo X, Xia Y, Wan F, Huang J, Lin Z, Wang T. Weight Loss and Malnutrition in Patients with Parkinson's Disease: Current Knowledge and Future Prospects. Front Aging Neurosci 2018; 10:1. [PMID: 29403371 PMCID: PMC5780404 DOI: 10.3389/fnagi.2018.00001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
Parkinson's Disease (PD) is currently considered a systemic neurodegenerative disease manifested with not only motor but also non-motor symptoms. In particular, weight loss and malnutrition, a set of frequently neglected non-motor symptoms, are indeed negatively associated with the life quality of PD patients. Moreover, comorbidity of weight loss and malnutrition may impact disease progression, giving rise to dyskinesia, cognitive decline and orthostatic hypotension, and even resulting in disability and mortality. Nevertheless, the underlying mechanism of weight loss and malnutrition in PD remains obscure and possibly involving multitudinous, exogenous or endogenous, factors. What is more, there still does not exist any weight loss and malnutrition appraision standards and management strategies. Given this, here in this review, we elaborate the weight loss and malnutrition study status in PD and summarize potential determinants and mechanisms as well. In conclusion, we present current knowledge and future prospects of weight loss and malnutrition in the context of PD, aiming to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Basic Neuroscience, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, United States
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
LeWitt PA, Pahwa R, Sedkov A, Corbin A, Batycky R, Murck H. Pulmonary Safety and Tolerability of Inhaled Levodopa (CVT-301) Administered to Patients with Parkinson's Disease. J Aerosol Med Pulm Drug Deliv 2017; 31:155-161. [PMID: 29161531 PMCID: PMC5994675 DOI: 10.1089/jamp.2016.1354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: CVT-301, an inhaled levodopa (LD) formulation, is under development for relief of OFF periods in Parkinson's disease (PD). Previously, we reported that CVT-301 improved OFF symptoms relative to placebo. In this study, we evaluate pulmonary function in patients treated with a single dose of CVT-301 or placebo for 3 hours, or received multiple doses/day for 4 weeks. Methods: As part of two phase 2 studies, pulmonary safety and tolerability of CVT-301 were evaluated in PD patients experiencing motor fluctuations (≥2 hours OFF/day), Hoehn and Yahr stage 1–3, and forced expiratory volume in 1 second/forced vital capacity ratio ≥75% of predicted (in ON state). In study A, patients received single doses of oral carbidopa/LD and each of the following via the inhaled route: placebo and 25 and 50 mg LD fine particle dose (FPD) CVT-301. In study B, patients received up to 3 inhaled doses/day of 35 mg (weeks 1–2) and 50 mg LD FPD CVT-301 (weeks 3–4) versus placebo. Assessments included spirometry and treatment-emergent adverse events (TEAEs). Results: In study A, (n = 24) mean age ± standard deviation was 61.3 ± 7.4 years, mean time since diagnosis was 10.5 ± 4.6 years, and mean duration of LD treatment 8.4 ± 3.7 years. Assessment of pulmonary function (predose to 3 hours postdose) showed that spirometry findings were within normal ranges, regardless of treatment groups, or motor status at screening. In study B, (n = 86) mean age was 62.4 ± 8.7 years, time since PD diagnosis was 9.4 ± 3.9 years, and duration of LD treatment 7.8 ± 3.9 years. Longitudinal assessment of pulmonary function over 4 weeks showed no significant difference in spirometry between CVT-301 versus placebo groups. In both studies, the most common CVT-301 TEAE was mild-to-moderate cough (study A: 21%; study B: 7% vs. 2% in placebo). Other common TEAEs in study B were dizziness and nausea. Conclusion: Acute and longitudinal assessment of pulmonary function showed that CVT-301 treatment was not associated with acute airflow obstruction in this population. CVT-301 was generally safe and well tolerated.
Collapse
Affiliation(s)
- Peter A LeWitt
- 1 Department of Neurology, Henry Ford Hospital-West Bloomfield, West Bloomfield, Michigan
| | - Rajesh Pahwa
- 2 Department of Neurology, University of Kansas Medical Center , Kansas City, Kansas
| | | | - Ann Corbin
- 3 Acorda Therapeutics, Inc. , Ardsley, New York
| | | | | |
Collapse
|
37
|
Wollmer E, Klein S. A review of patient-specific gastrointestinal parameters as a platform for developing in vitro models for predicting the in vivo performance of oral dosage forms in patients with Parkinson’s disease. Int J Pharm 2017; 533:298-314. [DOI: 10.1016/j.ijpharm.2017.08.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
|
38
|
Müller T. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease. Expert Opin Pharmacother 2017; 18:1457-1465. [PMID: 28847181 DOI: 10.1080/14656566.2017.1373089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.
Collapse
Affiliation(s)
- Thomas Müller
- a Department of Neurology , St. Joseph Hospital Berlin-Weißensee , Berlin , Germany
| |
Collapse
|
39
|
Objective Measurement and Monitoring of Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017. [PMID: 28802925 DOI: 10.1016/bs.irn.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The comprehensive evaluation of nonmotor symptoms (NMS) in Parkinson's disease (PD) starts with the awareness of physicians, patients, and caregivers on their nature, clinical presentation, and effect on patient's daily activities and quality of life. This awareness can be better achieved if the symptoms can be visualized, measured, and monitored. As NMS are largely subjective in nature, a majority of them cannot be visualized (unlike tremor, which is easily seen), making their identification and quantification difficult. While symptoms are nonmotor, it does not mean that they are not measurable, as many NMS are integral to motor symptoms of Parkinson's, yet often neglected. In this review, we attempt to provide the most up-to-date and comprehensive literature review on the objective measurement and monitoring of NMS in PD. The aim is to make it clinically relevant by approaching NMS by domains as identified in the NMS Questionnaire. A section on the assessment of nonmotor fluctuations is also included, providing prospects for future objective monitoring. With the advances of technology, it is likely that many NMS will have objective outcomes, thus making these symptoms easily measurable and hopefully lead to future clinical trials that incorporate nonmotor outcomes. Nevertheless, it still requires a physician's judgment to determine which method, scales, objective measures, or monitoring devices or a combination of these is most appropriate to the individual patient in order to answer a particular clinical question.
Collapse
|
40
|
Vazquez-Sandoval A, Ghamande S, Surani S. Critically ill patients and gut motility: Are we addressing it? World J Gastrointest Pharmacol Ther 2017; 8:174-179. [PMID: 28828195 PMCID: PMC5547375 DOI: 10.4292/wjgpt.v8.i3.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) dysmotility is a common problem in the critically ill population. It can be a reflection and an early sign of patient deterioration or it can be an independent cause of morbidity and mortality. GI dysmotility can be divided for clinical purposes on upper GI dysmotility and lower GI dysmotility. Upper GI dysmotility manifests by nausea, feeding intolerance and vomiting; its implications include aspiration into the airway of abdominal contents and underfeeding. Several strategies to prevent and treat this condition can be tried and they include prokinetics and post-pyloric feeds. It is important to note that upper GI dysmotility should be treated only when there are clinical signs of intolerance (nausea, vomiting) and not based on measurement of gastric residual volumes. Lower GI dysmotility manifests throughout the spectrum of ileus and diarrhea. Ileus can present in the small bowel and the large bowel as well. In both scenarios the initial treatment is correction of electrolyte abnormalities, avoiding drugs that can decrease motility and patient mobilization. When this fails, in the case of small bowel ileus, lactulose and polyethylene glycol solutions can be useful. In the case of colonic pseudo obstruction, neostigmine, endoscopic decompression and cecostomy can be tried when the situation reaches the risk of rupture. Diarrhea is also a common manifestation of GI dysmotility and the most important step is to differentiate between infectious sources and non-infectious sources.
Collapse
|
41
|
The Gut and Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:787-809. [PMID: 28805583 DOI: 10.1016/bs.irn.2017.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal (GI) symptoms are one of the most common nonmotor symptoms (NMS) in patients with Parkinson's disease (PD) involving the whole GI tract (GIT) and being evident throughout the whole course of the disease. Furthermore, constipation serves as a risk factor for PD as well as an early prodromal NMS of PD. The gut as gateway to the environment with its enteric nervous system (ENS) plays a crucial role in the neurodegenerative process that leads to PD. Alpha-synucleinopathy as the pathological hallmark of PD could be found within the whole GIT in a rostrocaudal gradient interacting with the ENS, the gut microbiome, and enteric glial cells. Bidirectional interactions between the ENS and the central nervous system (CNS) via a brain-gut-enteric microbiota axis have been reported. As well as there is evidence out of animal, autopsy, and epidemiological studies that α-synuclein spreads via rostrocranial transmission by transsynaptic cell-to-cell transfer via the sympathetic and parasympathetic nervous system to the CNS causing the typical neuropathological changes of PD. Recognition of GI NMS as prodromal markers of PD as well as a better understanding of the brain-gut connection offers new insights in the pathophysiology of PD and might provide the opportunity of PD diagnosis before CNS involvement. Hereby the opportunity for development of neuroprotective and disease-modifying therapeutics, respectively, seem to be promising. This chapter covers the variety of GI NMS and its consequences in PD as well as the important role of the gut as part of the pathological process in PD.
Collapse
|
42
|
Abstract
Research and clinical experience with vagotomy have confirmed that damage to the central nervous system severely affects physiological movement in the gastrointestinal system. The aim of this study was to investigate the effects of synchronized dual-pulse gastric electrical stimulation (SGES) on the apoptosis of enteric neurons and the possible pathways involved in these effects in vagotomized rats. For this purpose, Male Sprague-Dawley (SD) rats were randomized into a control group, an early subdiaphragmatic vagotomized group (ESDV group), an early subdiaphragmatic vagotomized group with short-term SGES (ESDV + SSGES group), a terminal subdiaphragmatic vagotomized group (TSDV group) and a terminal subdiaphragmatic vagotomized group with long-term SGES (TSDV + LSGES group). The expression levels of connexin 43 (Cx43), glial cell line-derived neurotrophic factor (GDNF), p-Akt, pan-Akt and PGP9.5 were assessed by RT-qPCR, western blot analysis and immunofluorescence staining. Apoptosis was determined by terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assay. We found that Cx43 expression was decreased in the ESDV and TSDV groups, but was significantly upregulated in the SSGES and LSGES groups. In addition, the GDNF and PGP9.5 expression levels were significantly decreased in the ESDV group compared with the control and TSDV groups and were upregulated in both the SSGES and LSGES groups. The LSGES group exhibited a clear increase in p-Akt expression compared with the TSDV group. Fewer TUNEL-positive cells were observed in the SSGES and LSGES groups than in the ESDV and TSDV groups. More TUNEL-positive cells were found in the stomach of rats subjected to subdiaphragmatic vagotomy. On the whole, our data indicate that SGES improved enteric neuronal survival, possibly through GDNF and the phosphatidylinositol 3-kinase (PI3K)/Akt pathways.
Collapse
Affiliation(s)
- Nian Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuangning Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
43
|
Borghammer P, Knudsen K, Fedorova TD, Brooks DJ. Imaging Parkinson's disease below the neck. NPJ Parkinsons Dis 2017; 3:15. [PMID: 28649615 PMCID: PMC5460119 DOI: 10.1038/s41531-017-0017-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease is a systemic disorder with widespread and early α-synuclein pathology in the autonomic and enteric nervous systems, which is present throughout the gastrointestinal canal prior to diagnosis. Gastrointestinal and genitourinary autonomic symptoms often predate clinical diagnosis by several years. It has been hypothesized that progressive α-synuclein aggregation is initiated in hyperbranched, non-myelinated neuron terminals, and may subsequently spread via retrograde axonal transport. This would explain why autonomic nerves are so prone to formation of α-synuclein pathology. However, the hypothesis remains unproven and in vivo imaging methods of peripheral organs may be essential to study this important research field. The loss of sympathetic and parasympathetic nerve terminal function in Parkinson's disease has been demonstrated using radiotracers such as 123I-meta-iodobenzylguanidin, 18F-dopamine, and 11C-donepezil. Other radiotracer and radiological imaging methods have shown highly prevalent dysfunction of pharyngeal and esophageal motility, gastric emptying, colonic transit time, and anorectal function. Here, we summarize the methodology and main findings of radio-isotope and radiological modalities for imaging peripheral pathology in Parkinson's disease.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D. Fedorova
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. Brooks
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Delayed Gastric Emptying in Advanced Parkinson Disease: Correlation With Therapeutic Doses. Clin Nucl Med 2017; 42:83-87. [PMID: 27941374 DOI: 10.1097/rlu.0000000000001470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gastrointestinal dysfunction is often described in patients with Parkinson disease (PD), and gastrointestinal symptoms are usually attributed to gastroparesis. The consequent delayed gastric emptying (GE) may be an important pharmacokinetic mechanism underlying some of the response fluctuations that develop after long-term levodopa (L-dopa) therapy.The aim of this prospective study was to assess GE time by a liquid meal scintigraphy, in PD patients, and to correlate them with demographic, clinical, and therapeutic data. METHODS Scintigraphy with radiolabeled albumin nanocolloids added to acidified orange juice was performed in 51 consecutive PD patients 1 hour after their usual dopaminergic therapy first dose and after a 12-hour fast. Demographic, neurologic, gastrointestinal, and pharmacologic data were collected. RESULTS Fifty-one patients were divided into 2 groups using the cutoff point obtained in normal subjects (40 minutes): group 1 included 29 patients with GE T½ of 27.60 ± 7.30 minutes (normal), group 2 showed a GE T½ of 84.90 ± 53.80 minutes (delayed). The most striking significant difference between the 2 groups was the dopa-decarboxylase inhibitor mean dose that was significantly higher in the group of patients with delayed GE (201.32 ± 97.26 vs 127.65 ± 79.74; P = 0.005). CONCLUSIONS The impairment of gastric motility, frequently represented in PD patients, occurs in approximately 42% of patients with motor complications. A mechanism that may explain the GE delay is the effect of L-dopa on dopaminergic receptors in the stomach. Therefore, the dosage of dopa-decarboxylase inhibitor, increasing the L-dopa concentration, may contribute to GE delay and its consequent effect on drug delivery and efficacy.
Collapse
|
45
|
Nord M, Kullman A, Hannestad U, Dizdar N. Is Levodopa Pharmacokinetics in Patients with Parkinson’s Disease Depending on Gastric Emptying? ACTA ACUST UNITED AC 2017. [DOI: 10.4236/apd.2017.61001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Gastrointestinal Dysfunctions in Parkinson's Disease: Symptoms and Treatments. PARKINSONS DISEASE 2016; 2016:6762528. [PMID: 28050310 PMCID: PMC5168460 DOI: 10.1155/2016/6762528] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/16/2016] [Indexed: 12/21/2022]
Abstract
A diagnosis of Parkinson's disease is classically established after the manifestation of motor symptoms such as rigidity, bradykinesia, and tremor. However, a growing body of evidence supports the hypothesis that nonmotor symptoms, especially gastrointestinal dysfunctions, could be considered as early biomarkers since they are ubiquitously found among confirmed patients and occur much earlier than their motor manifestations. According to Braak's hypothesis, the disease is postulated to originate in the intestine and then spread to the brain via the vagus nerve, a phenomenon that would involve other neuronal types than the well-established dopaminergic population. It has therefore been proposed that peripheral nondopaminergic impairments might precede the alteration of dopaminergic neurons in the central nervous system and, ultimately, the emergence of motor symptoms. Considering the growing interest in the gut-brain axis in Parkinson's disease, this review aims at providing a comprehensive picture of the multiple gastrointestinal features of the disease, along with the therapeutic approaches used to reduce their burden. Moreover, we highlight the importance of gastrointestinal symptoms with respect to the patients' responses towards medical treatments and discuss the various possible adverse interactions that can potentially occur, which are still poorly understood.
Collapse
|
47
|
Mukherjee A, Biswas A, Das SK. Gut dysfunction in Parkinson's disease. World J Gastroenterol 2016; 22:5742-5752. [PMID: 27433087 PMCID: PMC4932209 DOI: 10.3748/wjg.v22.i25.5742] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required.
Collapse
|
48
|
Trahair LG, Kimber TE, Flabouris K, Horowitz M, Jones KL. Gastric emptying, postprandial blood pressure, glycaemia and splanchnic flow in Parkinson’s disease. World J Gastroenterol 2016; 22:4860-4867. [PMID: 27239112 PMCID: PMC4873878 DOI: 10.3748/wjg.v22.i20.4860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine gastric emptying, blood pressure, mesenteric artery blood flow, and blood glucose responses to oral glucose in Parkinson’s disease.
METHODS: Twenty-one subjects (13 M, 8 F; age 64.2 ± 1.6 years) with mild to moderate Parkinson’s disease (Hoehn and Yahr score 1.4 ± 0.1, duration of known disease 6.3 ± 0.9 years) consumed a 75 g glucose drink, labelled with 20 MBq 99mTc-calcium phytate. Gastric emptying was quantified with scintigraphy, blood pressure and heart rate with an automated device, superior mesenteric artery blood flow by Doppler ultrasonography and blood glucose by glucometer for 180 min. Autonomic nerve function was evaluated with cardiovascular reflex tests and upper gastrointestinal symptoms by questionnaire.
RESULTS: The mean gastric half-emptying time was 106 ± 9.1 min, gastric emptying was abnormally delayed in 3 subjects (14%). Systolic and diastolic blood pressure fell (P < 0.001) and mesenteric blood flow and blood glucose (P < 0.001 for both) increased, following the drink. Three subjects (14%) had definite autonomic neuropathy and 8 (38%) had postprandial hypotension. There were no significant relationships between changes in blood pressure, heart rate or mesenteric artery blood flow with gastric emptying. Gastric emptying was related to the score for autonomic nerve function (R = 0.55, P < 0.01). There was an inverse relationship between the blood glucose at t = 30 min (R = -0.52, P < 0.05), while the blood glucose at t = 180 min was related directly (R = 0.49, P < 0.05), with gastric emptying.
CONCLUSION: In mild to moderate Parkinson’s disease, gastric emptying is related to autonomic dysfunction and a determinant of the glycaemic response to oral glucose.
Collapse
|
49
|
Borghammer P, Knudsen K, Brooks DJ. Imaging Systemic Dysfunction in Parkinson’s Disease. Curr Neurol Neurosci Rep 2016; 16:51. [DOI: 10.1007/s11910-016-0655-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Kwon KY, Jo KD, Lee MK, Oh M, Kim EN, Park J, Kim JS, Youn J, Oh E, Kim HT, Oh MY, Jang W. Low Serum Vitamin D Levels May Contribute to Gastric Dysmotility in de novo Parkinson's Disease. NEURODEGENER DIS 2016; 16:199-205. [PMID: 26735311 DOI: 10.1159/000441917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Gastrointestinal dysfunction is a common non motor symptom in Parkinson's disease (PD). However, the potential association between vitamin D and gastroparesis in PD has not been previously investigated. The aim of this study was to compare vitamin D levels between drug-naive de novo PD patients with normal gastric emptying and those with delayed gastric emptying. METHODS Fifty-one patients with drug-naive de novo PD and 20 age-matched healthy controls were enrolled in this study. Gastric emptying time (GET) was assessed by scintigraphy, and gastric emptying half-time (T1/2) was determined. The PD patients were divided into a delayed-GET group and a normal-GET group. RESULTS The serum 25-hydroxyvitamin D3 levels were decreased in the delayed-GET group compared with the normal-GET and control groups (11.59 ± 4.90 vs. 19.43 ± 6.91 and 32.69 ± 4.93, respectively, p < 0.01). In the multivariate model, the serum 25-hydroxyvitamin D3 level was independently associated with delayed gastric emptying in PD patients. CONCLUSIONS Vitamin D status may be an independent factor for gastric dysmotility in PD. Although the underlying mechanism remains to be characterized, vitamin D status may play a role in the pathogenesis of delayed gastric emptying in drug-naive PD.
Collapse
Affiliation(s)
- Ki Young Kwon
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|