1
|
Afshari A, Azarpira N, Pakbaz S. Differentiation of Wharton's jelly-derived mesenchymal stromal cells into hepatocyte-like cells using a refined method. BMC Mol Cell Biol 2025; 26:9. [PMID: 40033232 PMCID: PMC11874389 DOI: 10.1186/s12860-025-00534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The production of functional hepatocyte cells in enough quantities is of paramount importance for the replacement of lost hepatocytes. In this investigation, a series of 7-mimic microRNAs was harnessed to induce the differentiation of Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) into hepatocyte-like cells (HLC) through the application of two distinct techniques: transfection agents and electroporation. The results were then compared with those of HLCs differentiated through the consumption of chemical compounds. RESULTS Different time points (48 h, 72 h, and 96 h), unlike concentrations of mimic miRNAs (100 pM, and 200 pM), and dissimilar combinations of mimic-miRNAs (4-mimic and 7-mimic miRNAs) were selected to assess the stage of differentiated cells through electroporation and lipofection methods. For chemical differentiation, a two-step chemical hepatic differentiation protocol was used (for 21 days). The expression level of eleven key genes that were selected to estimate the stage of produced HLCs by each method were tested at different time points, concentrations and combination of mimic-miRNA. Results demonstrated that the 7-miR-mimics/72 h culture method by electroporation, then the 7-miR-mimics/72 h culture method by lipofection, and finally the chemical differentiation (72 h culture) showed the best result for differentiation. Furthermore, the period in which HLCs are maintained under culture conditions is important, as prolonged culture (more than 72 h) leads to cell loss. CONCLUSION In conclusion, the results demonstrated that the 7-miR cocktail delivered by electroporation after 72 h effectively promoted the acquisition of hepatocyte-like characteristics which was evidenced by a significant decrease in the Oct4 stemness factor and an increase in the expression of ALB, TAT, AAT, CYP, G6P and HNF4A.
Collapse
Affiliation(s)
- Afsoon Afshari
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, 7193711351, Iran.
| | - Sara Pakbaz
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Lo Iacono M, Corrao S, Alberti G, Amico G, Timoneri F, Russo E, Cucina A, Indelicato S, Rappa F, Corsello T, Saieva S, Di Stefano A, Di Gaudio F, Conaldi PG, La Rocca G. Characterization and Proteomic Profiling of Hepatocyte-like Cells Derived from Human Wharton's Jelly Mesenchymal Stromal Cells: De Novo Expression of Liver-Specific Enzymes. BIOLOGY 2025; 14:124. [PMID: 40001892 PMCID: PMC11851833 DOI: 10.3390/biology14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
End-stage liver disease (ESLD), affecting millions worldwide, represents a challenging issue for clinical research and global public health. Liver transplantation is the gold standard therapeutic approach but shows some drawbacks. Hepatocyte transplantation could be a reliable alternative for patient treatment. Mesenchymal stromal cells derived from Wharton's jelly of the umbilical cord (WJ-MSCs) can differentiate into hepatocyte-like cells (HLCs) and show immunomodulatory functions. Due to the increasing demand for fully characterized cell therapy vehicles warranting both the safety and efficacy of treatments, in this work, we extensively characterized WJ-MSCs before and after the application of a hepatocyte-directed differentiation protocol. HLCs exhibited a morphology resembling that of hepatocytes, expressed early and late hepatic markers (α-fetoprotein, albumin, CK18, HNF4-α), and acquired hepatic functions (glycogen synthesis, xenobiotics detoxification), as also revealed by the shotgun proteomics approach. HLCs maintained the same pattern of immunomodulatory molecule expression and mesenchymal markers, other than displaying specific enzymes, suggesting these cells as promising candidates for cellular therapy of ESLD. Our work shed new light on the basic biology of HLCs, suggesting new therapeutic approaches to treat ESLD.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| | - Simona Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| | - Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| | - Giandomenico Amico
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
- Unit of Regenerative Medicine and Immunotherapy, Ri.MED Foundation, 90133 Palermo, Italy
| | - Francesca Timoneri
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
- Unit of Regenerative Medicine and Immunotherapy, Ri.MED Foundation, 90133 Palermo, Italy
| | - Eleonora Russo
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Annamaria Cucina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Sergio Indelicato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Tiziana Corsello
- Department of Pediatrics, Division of Clinical and Experimental Immunology and Infectious Diseases (CEIID), University of Texas Medical Branch, Galveston, TX 77550, USA;
| | - Salvatore Saieva
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Antonino Di Stefano
- Laboratory of Cardio-Respiratory Apparatus Cytoimmunopathology, “S. Maugeri” Foundation, IRCCS, Medical Center of Veruno, 281010 Novara, Italy;
| | - Francesca Di Gaudio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| |
Collapse
|
3
|
Wang F, Wang J, Zhang L, Fan S, Liu S. The effect of human umbilical cord mesenchymal stem cells combined with concentrated growth factor on repairing necrotic pulp caused by dental caries. Dent Mater J 2024; 43:842-849. [PMID: 39462611 DOI: 10.4012/dmj.2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study investigated the impact of combining human umbilical cord mesenchymal stem cells (hUC-MSCs) with concentrated growth factor (CGF) on regenerating necrotic pulp. Ten-month-old male Bama miniature pigs were divided into control and caries groups. The experimental teeth were randomly divided into three groups: caries untreated, Ca(OH)2, and engineering dental pulp-like tissue (EDPT). hUC-MSCs and CGF scaffold were combined to construct EDPT, and the histological structure was observed. Odontoblasts and dental pulp cells were counted in each group. The results showed that hUC-MSCs adhered firmly to the porous mesh CGF scaffold, grew vigorously, and stretched sufficiently. In the EDPT group, odontoblasts in the root canal were arranged neatly, and predentin was formed. The odontoblast and dental pulp cell counts in the EDPT group were statistically significant compared to the caries untreated and Ca(OH)2 groups. The hUC-MSCs-CGF could successfully repair necrotic pulp in animals with dental caries.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Jie Wang
- Department of Oral Pathology, Hospital of Stomatology Hebei Medical University
| | - Lijie Zhang
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University
| | - Shifeng Fan
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Siyu Liu
- Department of Stomatology, Tangshan People's Hospital
| |
Collapse
|
4
|
Wang X, Xu Y, Wang Y, Tang X, Zhou X, Lu W, Chen W, Li L, Zhou L, Ye J. S-Nitrosylation of NOTCH1 Regulates Mesenchymal Stem Cells Differentiation Into Hepatocyte-Like Cells by Inhibiting Notch Signalling Pathway. J Cell Mol Med 2024; 28:e70274. [PMID: 39656437 PMCID: PMC11629812 DOI: 10.1111/jcmm.70274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells (HLCs) is considered one of the most promising strategies for alternative hepatocyte transplantation to treat end-stage liver disease. To advance this method, it is crucial to gain a deeper understanding of the mechanisms governing hepatogenic differentiation. The study demonstrated that suppression of the intracellular domain release of the Notch pathway receptor via the γ-secretase inhibitor N-[(3, 5-difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1, 1-dimethylethyl ester (DAPT) significantly promotes the expression of hepatocyte-related genes and proteins in HLCs. Increased expression of intracellular inducible NO synthase (iNOS) during differentiation led to elevated endogenous NO production. Biotin switch assays revealed a gradual increase in S-nitrosylation (SNO)-NOTCH1 and a decrease in overall NOTCH1 expression during hepatogenic differentiation. The addition of the exogenous NO donor S-nitrosoglutathione (GSNO) and the SNO inhibitor dithiothreitol (DTT) further demonstrated that the elevated expression of SNO-NOTCH1 promotes the differentiation of MSCs into mature hepatocytes. Briefly, our results fully demonstrated that the modification of the extracellular domain of NOTCH1 by NO, leading to the formation of SNO-NOTCH1, significantly promotes hepatogenic differentiation by inhibiting the Notch signalling pathway. Our study highlights the critical role of SNO-NOTCH1 in regulating the Notch signalling pathway and offers new insights into the mechanisms driving this differentiation process.
Collapse
Affiliation(s)
- Xuesong Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yan Xu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yue Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- College of Nursing, Gannan Medical UniversityGanzhouJiangxiChina
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenming Lu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenjie Chen
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Lincai Li
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Lin Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Junsong Ye
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
5
|
Choi J, Kang S, An HI, Kim CE, Lee S, Pack CG, Yoon YI, Jin H, Cho YP, Kim CJ, Namgoong JM, Kim JK, Tak E. Fasudil and viscosity of gelatin promote hepatic differentiation by regulating organelles in human umbilical cord matrix-mesenchymal stem cells. Stem Cell Res Ther 2024; 15:229. [PMID: 39075621 PMCID: PMC11288082 DOI: 10.1186/s13287-024-03851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Eun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation (AMIT), University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, Pan M, Gao Y, Xu S, Zhang Y, Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024; 27:108912. [PMID: 38323006 PMCID: PMC10844828 DOI: 10.1016/j.isci.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 μM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi 844000, China
| | - Wei Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
- Anesthesiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
7
|
Fu Y, Zhang C, Xie H, Wu Z, Tao Y, Wang Z, Gu M, Wei P, Lin S, Li R, He Y, Sheng J, Xu J, Wang J, Pan Y. Human umbilical cord mesenchymal stem cells alleviated TNBS-induced colitis in mice by restoring the balance of intestinal microbes and immunoregulation. Life Sci 2023; 334:122189. [PMID: 37865178 DOI: 10.1016/j.lfs.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
AIMS Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-β1 (TGF-β1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- Chinese PLA General Hospital and Medical School, Beijing 100853, China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Zisheng Wu
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yurong Tao
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ruoran Li
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Junfeng Xu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
8
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
9
|
Shibu MA, Huang CY, Ding DC. Comparison of two hepatocyte differentiation protocols in human umbilical cord mesenchymal stem cells: In vitro study. Tissue Cell 2023; 83:102153. [PMID: 37413859 DOI: 10.1016/j.tice.2023.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Human umbilical cord mesenchymal stromal cells (HUCMSCs) are an emerging source of cell therapy due to their self-renew and differentiation ability. They can differentiate into three germ layers, including the potential to generate hepatocytes. This study determined the transplantation efficiency and suitability of HUCMSCs-derived hepatocyte-like cells (HLCs) for their therapeutic application for liver diseases. This study aims to formulate ideal conditions to induce HUCMSCs into the hepatic lineage and investigate the efficiency of the differentiated HLCs based on their expression characteristics and capacity to integrate into the damaged liver of CCl4-challenged mice. Hepatocyte growth factor (HGF) and Activin A, Wnt3a were found to optimally promote the endodermal expansion of HUCMSCs, which showed phenomenal expression of hepatic markers upon differentiation in the presence of oncostatin M and dexamethasone. HUCMSCs expressed MSC-related surface markers and could undergo tri-lineage differentiations. Two hepatogenic differentiation protocols (differentiated hepatocyte protocol 1 [DHC1]: 32 days and DHC2: 15 days) were experimented with. The proliferation rate was faster in DHC2 than in DHC1 on day 7 of differentiation. The migration capability was the same in both DHC1 and DHC2. Hepatic markers like CK18, CK19, ALB, and AFP were upregulated. The mRNA levels of albumin, α1AT, αFP, CK18, TDO2, CYP3A4, CYP7A1, HNF4A, CEBPA, PPARA, and PAH were even higher in the HUCMSCs-derived HCLs than in the primary hepatocytes. Western blot confirmed HNF3B and CK18 protein expression in a step-wise manner differentiated from HUCMSCs. The metabolic function of differentiated hepatocytes was evident by increasing PAS staining and urea production. Pre-treating HUCMSCs with a hepatic differentiation medium containing HGF can drive their differentiation towards endodermal and hepatic lineages, enabling efficient integration into the damaged liver. This approach represents a potential alternative protocol for cell-based therapy that could enhance the integration potential of HUCMSC-derived HLCs.
Collapse
Affiliation(s)
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University Hospital, Taichung 404, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan; Graduate Institute of Medical Science, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
10
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
11
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 PMCID: PMC10297457 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia;
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
12
|
Dvorakova J, Wiesnerova L, Chocholata P, Kulda V, Landsmann L, Cedikova M, Kripnerova M, Eberlova L, Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22:33. [PMID: 37013601 PMCID: PMC10069154 DOI: 10.1186/s12938-023-01096-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
Collapse
Affiliation(s)
- Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lukas Landsmann
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Miroslava Cedikova
- Biomedical Center, Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lada Eberlova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
13
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
14
|
Van Campenhout R, Leroy K, Cooreman A, Tabernilla A, Cogliati B, Kadam P, Vinken M. Connexin-Based Channels in the Liver. Compr Physiol 2022; 12:4147-4163. [PMID: 35950654 DOI: 10.1002/cphy.c220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
16
|
Yao L, Hu X, Dai K, Yuan M, Liu P, Zhang Q, Jiang Y. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther 2022; 13:308. [PMID: 35841079 PMCID: PMC9284869 DOI: 10.1186/s13287-022-03001-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
17
|
Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review. Cells 2022; 11:cells11131998. [PMID: 35805080 PMCID: PMC9265349 DOI: 10.3390/cells11131998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a leading cause of mortality worldwide, resulting in 1.3 million deaths annually. The vast majority of liver disease is caused by metabolic disease (i.e., NASH) and alcohol-induced hepatitis, and to a lesser extent by acute and chronic viral infection. Furthermore, multiple insults to the liver is becoming common due to the prevalence of metabolic and alcohol-related liver diseases. Despite this rising prevalence of liver disease, there are few treatment options: there are treatments for viral hepatitis C and there is vaccination for hepatitis B. Aside from the management of metabolic syndrome, no direct liver therapy has shown clinical efficacy for metabolic liver disease, there is very little for acute alcohol-induced liver disease, and liver transplantation remains the only effective treatment for late-stage liver disease. Traditional pharmacologic interventions have failed to appreciably impact the pathophysiology of alcohol-related liver disease or end-stage liver disease. The difficulties associated with developing liver-specific therapies result from three factors that are common to late-stage liver disease arising from any cause: hepatocyte injury, inflammation, and aberrant tissue healing. Hepatocyte injury results in tissue damage with inflammation, which sensitizes the liver to additional hepatocyte injury and stimulates hepatic stellate cells and aberrant tissue healing responses. In the setting of chronic liver insults, there is progressive scarring, the loss of hepatocyte function, and hemodynamic dysregulation. Regenerative strategies using hepatocyte-like cells that are manufactured from mesenchymal stromal cells may be able to correct this pathophysiology through multiple mechanisms of action. Preclinical studies support their effectiveness and recent clinical studies suggest that cell replacement therapy can be safe and effective in patients with liver disease for whom there is no other option.
Collapse
|
18
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Rodrigues JS, Faria-Pereira A, Camões SP, Serras AS, Morais VA, Ruas JL, Miranda JP. Improving human mesenchymal stem cell-derived hepatic cell energy metabolism by manipulating glucose homeostasis and glucocorticoid signaling. Front Endocrinol (Lausanne) 2022; 13:1043543. [PMID: 36714559 PMCID: PMC9880320 DOI: 10.3389/fendo.2022.1043543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. METHODS We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. RESULTS Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. CONCLUSION HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Joana Saraiva Rodrigues
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Serras
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Lira Ruas
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joana Paiva Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Joana Paiva Miranda,
| |
Collapse
|
20
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
21
|
Choi J, Kang S, Kim B, So S, Han J, Kim GN, Lee MY, Roh S, Lee JY, Oh SJ, Sung YH, Lee Y, Kim SH, Kang E. Efficient hepatic differentiation and regeneration potential under xeno-free conditions using mass-producible amnion-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:569. [PMID: 34772451 PMCID: PMC8588618 DOI: 10.1186/s13287-021-02470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amnion-derived mesenchymal stem cells (AM-MSCs) are an attractive source of stem cell therapy for patients with irreversible liver disease. However, there are obstacles to their use due to low efficiency and xeno-contamination for hepatic differentiation. METHODS We established an efficient protocol for differentiating AM-MSCs into hepatic progenitor cells (HPCs) by analyzing transcriptome-sequencing data. Furthermore, to generate the xeno-free conditioned differentiation protocol, we replaced fetal bovine serum (FBS) with polyvinyl alcohol (PVA). We investigated the hepatocyte functions with the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4. Finally, to test the transplantable potential of HPCs, we transferred AM-MSCs along with hepatic progenitors after differentiated days 11, 12, and 13 based on the expression of hepatocyte-related genes and mitochondrial function. Further, we established a mouse model of acute liver failure using a thioacetamide (TAA) and cyclophosphamide monohydrate (CTX) and transplanted AM-HPCs in the mouse model through splenic injection. RESULTS We analyzed gene expression from RNA sequencing data in AM-MSCs and detected downregulation of hepatic development-associated genes including GATA6, KIT, AFP, c-MET, FGF2, EGF, and c-JUN, and upregulation of GSK3. Based on this result, we established an efficient hepatic differentiation protocol using the GSK3 inhibitor, CHIR99021. Replacing FBS with PVA resulted in improved differentiation ability, such as upregulation of hepatic maturation markers. The differentiated hepatocyte-like cells (HLCs) not only synthesized and secreted albumin, but also metabolized drugs by the CYP3A4 enzyme. The best time for translation of AM-HPCs was 12 days from the start of differentiation. When the AM-HPCs were transplanted into the liver failure mouse model, they settled in the damaged livers and differentiated into hepatocytes. CONCLUSION This study offers an efficient and xeno-free conditioned hepatic differentiation protocol and shows that AM-HPCs could be used as transplantable therapeutic materials. Thus, we suggest that AM-MSC-derived HPCs are promising cells for treating liver disease.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seoon Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Bitnara Kim
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seongjun So
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Gyeong-Nam Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seonae Roh
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Young Hoon Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Sung Hoon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| | - Eunju Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea.
| |
Collapse
|
22
|
Wu MC, Meng QH. Current understanding of mesenchymal stem cells in liver diseases. World J Stem Cells 2021; 13:1349-1359. [PMID: 34630867 PMCID: PMC8474713 DOI: 10.4252/wjsc.v13.i9.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Liver diseases caused by various factors have become a significant threat to public health worldwide. Liver transplantation has been considered as the only effective treatment for end-stage liver diseases; however, it is limited by the shortage of donor organs, postoperative complications, long-term immunosuppression, and high cost of treatment. Thus, it is not available for all patients. Recently, mesenchymal stem cells (MSCs) transplantation has been extensively explored for repairing hepatic injury in various liver diseases. MSCs are multipotent adult progenitor cells originated from the embryonic mesoderm, and can be found in mesenchymal tissues including the bone marrow, umbilical cord blood, adipose tissue, liver, lung, and others. Although the precise mechanisms of MSC transplantation remain mysterious, MSCs have been demonstrated to be able to prevent the progression of liver injury and improve liver function. MSCs can self-renew by dividing, migrating to injury sites and differentiating into multiple cell types including hepatocytes. Additionally, MSCs have immune-modulatory properties and release paracrine soluble factors. Indeed, the safety and effectiveness of MSC therapy for liver diseases have been demonstrated in animals. However, pre-clinical and clinical trials are largely required to confirm its safety and efficacy before large scale clinical application. In this review, we will explore the molecular mechanisms underlying therapeutic effects of MSCs on liver diseases. We also summarize clinical advances in MSC-based therapies.
Collapse
Affiliation(s)
- Mu-Chen Wu
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
23
|
Luo S, Ai Y, Xiao S, Wang B, Wang Y. Functional hit 1 (FH1)-based rapid and efficient generation of functional hepatocytes from human mesenchymal stem cells: a novel strategy for hepatic differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1087. [PMID: 34422999 PMCID: PMC8339809 DOI: 10.21037/atm-21-2829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Background Because the liver is central to the physiology of the body, primary hepatocytes are widely used in liver pathology and physiological research, such as liver drug screening, bioartificial liver support system, and cell therapy for liver diseases. However, the source of primary hepatocytes is limited. We describe a novel non-transgenic protocol that facilitates the rapid generation of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), providing a new source of functional hepatocytes. Methods In this study, we used hUC-MSCs and human induced pluripotent cells (iPSCs) derived mesenchymal stem cells (iMSCs) to investigate the new induction strategy. Passage 3 MSCs were induced into hepatocyte-like cells using small-molecule compounds combined with cell factors in vitro. Functional hit 1 (FH1), a promising small molecule compound was achieved to replace HGF in the hepatocyte maturation stage to induce the hepatocyte-like cells differentiation. Results We rapidly induced hUC-MSCs and human iMSCs into hepatocyte-like cells within 10 days in vitro, and the cells were morphologically similarly to both hepatocytes derived from the hepatocyte growth factor (HGF)-based method and the primary hepatocytes. They expressed mature hepatocyte special genes and achieved functions such as glycogen storage, albumin expression, urea secretion, cytochrome P450 activity, Low-density lipoprotein (LDL) uptake, and indocyanine green (ICG) uptake. Conclusions We successfully established a small-molecule protocol without using HGF to differentiate MSCs into hepatocyte-like cells, which provides a rapid and cost-effective platform for in vitro studies of liver disease.
Collapse
Affiliation(s)
- Sang Luo
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Ai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Xiao
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Ben Wang
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Yefu Wang
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
CGF Membrane Promotes Periodontal Tissue Regeneration Mediated by hUCMSCs through Upregulating TAZ and Osteogenic Differentiation Genes. Stem Cells Int 2021; 2021:6644366. [PMID: 34394357 PMCID: PMC8360720 DOI: 10.1155/2021/6644366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023] Open
Abstract
Concentrated growth factor (CGF) membranes are widely used in basic and clinical research of soft and hard tissue regeneration, but its effect on periodontal tissue regeneration is less studied. This study explored the role of CGF membranes in periodontal tissue regeneration mediated by human umbilical cord mesenchymal stem cells (hUCMSCs). HUCMSCs and human periodontal ligament fibroblasts (HPLFs) were extracted and identified by microscope and flow cytometry. The effects of the extracted CGF membrane on cell viability, osteogenic differentiation ability, osteopontin (OPN) expression, alkaline phosphatase (ALP) content, and osteogenic differentiation-related genes (Runt-related transcription factor 2 (RUNX2); osteocalcin (OCN); ALP), Tafazzin (TAZ) expression, and nuclear transfer were examined by MTT assay, alizarin red staining, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Rescue experiments were performed to examine the effects of TAZ transfection and cell coculture. In the identified hUCMSCs (positive expressions of CD29, CD44, CD146, and CD105), overexpressed TAZ (pc-TAZ) enhanced the promotive effect of CGF membrane on cell viability, cell cycle, mineralization, ALP content and expressions of OPN, TAZ and osteogenic differentiation-related genes, and nuclear transfer. However, silencing TAZ showed opposite effects. The coculture of hUCMSCs and HPLFs further promoted the basic biological functions of HPLFs by upregulating osteogenic differentiation-related genes and COL-1 but downregulated MMP1 expression. Pc-TAZ could enhance the effect of CGF membrane on promoting periodontal tissue regeneration. CGF membrane promoted periodontal tissue regeneration through upregulating TAZ and osteogenic differentiation-related genes.
Collapse
|
25
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Liu J, Peng D, You J, Zhou O, Qiu H, Hao C, Chen H, Fu Z, Zou L. Type 2 Alveolar Epithelial Cells Differentiated from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Mouse Pulmonary Fibrosis Through β-Catenin-Regulated Cell Apoptosis. Stem Cells Dev 2021; 30:660-670. [PMID: 33899513 DOI: 10.1089/scd.2020.0208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, and lethal disease with little response to available therapies. One of the major mechanisms of PF is the repeated injury and inadequate regeneration of the alveolar epithelium. In this study, we induced human umbilical cord mesenchymal stem cells (hUC-MSCs) to differentiate into type 2 alveolar epithelial cells (AEC2s), and we provided evidence that intratracheal transplantation of hUC-MSC-derived AEC2s (MSC-AEC2s) could improve mortality and alleviate fibrosis in bleomycin-induced PF mice. Transplantation of MSC-AEC2s could increase the AEC2 cell count in these mice, and the results of the cell tracing experiment exhibited that the increased AEC2s originated from the self-renewal of mouse alveolar epithelium. The AEC2 survival was controlled by the apoptosis of AEC2s via the expression of β-catenin in PF mice. In in vitro experiments, MSC-AEC2s could alleviate the apoptosis of MLE-12 cells induced by transforming growth factor beta (TGF-β1), which could be eliminated by using PRI-724, a β-catenin inhibitor, suggesting β-catenin signaling involved in the protection against apoptosis provided by MSC-AEC2s. Our study demonstrated that MSC-AEC2s could protect PF mice through regulating apoptosis mediated by β-catenin, which provided a viable strategy for the treatment of PF.
Collapse
Affiliation(s)
- Jiang Liu
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danyi Peng
- Department of Respiratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyi You
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ou Zhou
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huijun Qiu
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Hao
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Pediatric, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Zhou Fu
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zou
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy; Children's Hospital of Chongqing Medical University, Chongqing, China.,Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Clinical Research Unit, Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Corneal Epithelial Repair In Vitro. Cells 2021; 10:cells10051254. [PMID: 34069578 PMCID: PMC8160941 DOI: 10.3390/cells10051254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.
Collapse
|
28
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 2021; 12:84. [PMID: 33494782 PMCID: PMC7836452 DOI: 10.1186/s13287-021-02152-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of clinical trial failures and high drug attrition rates. Currently, the commonly used hepatocyte models include primary human hepatocytes (PHHs), animal models, and hepatic cell lines. However, these models have disadvantages that include species-specific differences or inconvenient cell extraction methods. Therefore, a novel, inexpensive, efficient, and accurate model that can be applied to drug screening is urgently needed. Owing to their self-renewable ability, source abundance, and multipotent competence, stem cells are stable sources of drug hepatotoxicity screening models. Because 3D culture can mimic the in vivo microenvironment more accurately than can 2D culture, the former is commonly used for hepatocyte culture and drug screening. In this review, we introduce the different sources of stem cells used to generate hepatocyte-like cells and the models for hepatotoxicity testing that use stem cell-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021; 74:185-199. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.
Collapse
|
31
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:6. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
Affiliation(s)
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n, 28041 Madrid, Spain;
| |
Collapse
|
32
|
Gong B, Zheng L, Lu Z, Huang J, Pu J, Pan S, Zhang M, Liu J, Tang J. Mesenchymal stem cells negatively regulate CD4<sup>+</sup> T cell activation in patients with primary Sjögren syndrome through the miRNA‑125b and miRNA‑155 TCR pathway. Mol Med Rep 2020; 23:43. [PMID: 33179091 DOI: 10.3892/mmr.2020.11681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment with mesenchymal stem cells (MSCs) has been revealed to suppress CD4<sup>+</sup> T cells and autoimmunity in both mouse models and patients with primary Sjögren syndrome (pSS); however, the underlying mechanism remains unclear. MicroRNAs (miRNAs or miRs) mediate CD4<sup>+</sup> T cell activation, but the mechanism is not understood, particularly for CD4<sup>+</sup> T cells treated with MSCs. Characterization of miRNAs may reveal pSS pathogenesis, guide MSC treatment and provide more personalized management options. The present study aimed to perform an miRNome analysis of quiescent and T cell receptor (TCR)‑activated CD4<sup>+</sup> T cells treated with MSCs via miRNA profiles and bioinformatics. Following 72 h of co‑culture, MSCs inhibited TCR‑induced CD4<sup>+</sup> T cell activation and decreased IFN‑γ levels. The numbers of aberrant miRNAs in pSS naïve (vs. healthy naïve), pSS activation (vs. pSS naïve), MSC treatment and pre‑IFN‑γ MSC treatment (vs. pSS activation) groups were 42, 55, 27 and 32, respectively. Gene enrichment analysis revealed that 259 pathways were associated with CD4<sup>+</sup> T cell stimulation, and 240 pathways were associated with MSC treatment. Increased miRNA‑7150 and miRNA‑5096 and decreased miRNA‑125b‑5p and miRNA‑22‑3p levels in activated CD4<sup>+</sup> T cells from patients with pSS were reversed by MSC treatment. Notably, the proliferation of CD4<sup>+</sup> T cells and CD4<sup>+</sup> IFN‑γ<sup>+</sup> cells, expression levels of miRNA‑125b‑5p and miRNA‑155 in CD4<sup>+</sup> T cells and supernatant IFN‑γ secretion were associated with disease activity. miRNA may play a vital role in MSC treatment for activated CD4<sup>+</sup> T cells. The results indicated that the expression levels of miRNA‑125b‑5p and miRNA‑155 in TCR‑activated CD4<sup>+</sup> T cells from patients with pSS may provide insight regarding autoimmune diseases and offer a novel target for prospective treatment. Therefore, these results may be crucial in providing MSC treatment for pSS.
Collapse
Affiliation(s)
- Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ling Zheng
- Division of Respiratory Medicine, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhenhao Lu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jiashu Huang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jincheng Pu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shengnan Pan
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Min Zhang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jie Liu
- Center for Regenerative Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Jianping Tang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
33
|
Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020; 9:cells9061521. [PMID: 32580448 PMCID: PMC7348751 DOI: 10.3390/cells9061521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022] Open
Abstract
Human liver-derived stem cells (hLD-SCs) have been proposed as a possible resource for stem cell therapy in patients with irreversible liver diseases. However, it is not known whether liver resident hLD-SCs can differentiate toward a hepatic fate better than mesenchymal stem cells (MSCs) obtained from other origins. In this study, we compared the differentiation ability and regeneration potency of hLD-SCs with those of human umbilical cord matrix-derived stem cells (hUC-MSCs) by inducing hepatic differentiation. Undifferentiated hLD-SCs expressed relatively high levels of endoderm-related markers (GATA4 and FOXA1). During directed hepatic differentiation supported by two small molecules (Fasudil and 5-azacytidine), hLD-SCs presented more advanced mitochondrial respiration compared to hUC-MSCs. Moreover, hLD-SCs featured higher numbers of hepatic progenitor cell markers on day 14 of differentiation (CPM and CD133) and matured into hepatocyte-like cells by day 7 through 21 with increased hepatocyte markers (ALB, HNF4A, and AFP). During in vivo cell transplantation, hLD-SCs migrated into the liver of ischemia-reperfusion injury-induced mice within 2 h and relieved liver injury. In the thioacetamide (TAA)-induced liver injury mouse model, transplanted hLD-SCs trafficked into the liver and spontaneously matured into hepatocyte-like cells within 14 days. These results collectively suggest that hLD-SCs hold greater hepatogenic potential, and hepatic differentiation-induced hLD-SCs may be a promising source of stem cells for liver regeneration.
Collapse
|
34
|
Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials. J Clin Med 2020; 9:jcm9041102. [PMID: 32290584 PMCID: PMC7230974 DOI: 10.3390/jcm9041102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.
Collapse
|
35
|
Eissa M, Elarabany N, Hyder A. In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation. In Vitro Cell Dev Biol Anim 2020; 56:341-348. [PMID: 32270392 DOI: 10.1007/s11626-020-00436-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an interesting alternative to liver or hepatocyte transplantation to treat liver injuries. Many studies have reported that MSCs can treat several diseases, including liver damage, just by injection into the bloodstream, without evidence of differentiation. The improvements were attributed to the organotrophic factors, low immunogenicity, immunomodulatory, and anti-inflammatory effects of MSCs, rather than their differentiation. The aim of the present study was to answer the question of whether the presence of BM-MSCs in the hepatic microenvironment will lead to their differentiation to functional hepatocyte-like cells. The hepatic microenvironment was mimicked in vitro by culture for 21 d with liver extract. The resulted cells expressed marker genes of the hepatic lineage including AFP, CK18, and Hnf4a. Functionally, they were able to detoxify ammonia into urea, to store glycogen as observed by PAS staining, and to synthesize glucose from pyruvate/lactate mixture. Phenotypically, the expression of MSC surface markers CD90 and CD105 decreased by differentiation. This evidenced differentiation into hepatocyte-like cells was accompanied by a downregulation of the stem cell marker genes sox2 and Nanog and the cell cycle regulatory genes ANAPC2, CDC2, Cyclin A1, and ABL1. The present results suggest a clear differentiation of BM-MSCs into functional hepatocyte-like cells by the extracted liver microenvironment. This differentiation is confirmed by a decrease in the stemness and mitotic activities. Tracking transplanted BM-MSCs and proving their in vivo differentiation remains to be elucidated.
Collapse
Affiliation(s)
- Manar Eissa
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Naglaa Elarabany
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
36
|
Abstract
Alcoholic liver diseases (ALD) are a wide spectrum of liver diseases caused by excessive alcohol consumption, from steatosis to cirrhosis. The pathogenesis of ALD is insufficiently understood, but mainly involves oxidative stress, inflammation, bacterial translocation, cell death, and impaired regeneration. Despite numerous attempts to improve patient prognosis, the treatment of advanced ALD is still based on abstinence, brief exposure to corticosteroids, or liver transplantation. However, poor response to corticosteroids and the shortage of liver donors leaves patients helpless towards the end stages. Advances in basic research have contributed to a better understanding of ALD pathophysiology, which offers new options for treatment. In recent years, several therapies related to liver regeneration have been tested with promising prospects, including molecule-induced liver regeneration, stem cell transplantation, and full-function 3D artificial liver assembly. This review discusses mechanisms underlying ALD that can be considered therapeutic targets for regeneration-based treatments.
Collapse
Affiliation(s)
- Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Kwok Fai So
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Tricot T, De Boeck J, Verfaillie C. Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand? Cells 2020; 9:E566. [PMID: 32121068 PMCID: PMC7140465 DOI: 10.3390/cells9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.
Collapse
|
38
|
Afshari A, Shamdani S, Uzan G, Naserian S, Azarpira N. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther 2020; 11:54. [PMID: 32033595 PMCID: PMC7007672 DOI: 10.1186/s13287-020-1555-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Due to the prominent role of the liver in the body and detoxification, its functionality can be affected in an irreversible manner by diseases. This phenomenon renders the liver to stop working, leading to morbidity and mortality. Therefore, liver transplantation is the only way to tackle this issue.In order to compensate for the lack of adequate healthy liver tissue for transplantation, therapeutic approaches such as hepatocyte transplantation have been proposed as an alternative. Recognizing the fact that mesenchymal stem cells are adult stem cells with the capacity to differentiate into several cell types, different methods have been invented to produce hepatocyte-like cells from mesenchymal stem cells. They can be divided into three main categories, such as addition of cytokines and growth factors, genetic modifications, and adjustment of microenvironment as well as physical parameters.In this review, we attempted to introduce diverse efficient methods for differentiating mesenchymal stem cells and their capability for transformation into hepatocyte-like cells.
Collapse
Affiliation(s)
- Afsoon Afshari
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili street, Shiraz, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France.,SivanCell, Tehran, Iran.,CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France.,SivanCell, Tehran, Iran.,CellMedEx, Saint Maur Des Fossés, France
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili street, Shiraz, Iran.
| |
Collapse
|
39
|
Hara H, Sano K, Ishikawa H, Ohkoshi S. Differentiation of Dental Pulp-Derived MSCs into Hepatocyte-Like Cells and Their Therapeutic Use for Chemical Liver Injuries of Rats. J HARD TISSUE BIOL 2020; 29:215-222. [DOI: 10.2485/jhtb.29.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hajime Hara
- Department of Internal Medicine, School of Life Dentistry at Niigata, The Nippon Dental University
| | - Kimito Sano
- Department of Dental Anesthesiology, School of Life Dentistry at Niigata, The Nippon Dental University
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Faculty of Medicine, University of Tsukuba
| | - Shogo Ohkoshi
- Department of Internal Medicine, School of Life Dentistry at Niigata, The Nippon Dental University
| |
Collapse
|
40
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
41
|
Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med 2019; 68:5-16. [PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Collapse
Affiliation(s)
- L L Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - B H I Ruszymah
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - J X Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
43
|
Panta W, Imsoonthornruksa S, Yoisungnern T, Suksaweang S, Ketudat-Cairns M, Parnpai R. Enhanced Hepatogenic Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells by Using Three-Step Protocol. Int J Mol Sci 2019; 20:ijms20123016. [PMID: 31226809 PMCID: PMC6627410 DOI: 10.3390/ijms20123016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate the effects of sodium butyrate (NaBu), an epigenetic regulator that directly inhibits histone deacetylase, on hepatic endodermal lineage differentiation of hWJ-MSCs. NaBu, at 1 mM, optimally promoted endodermal differentiation of hWJ-MSCs, along with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) supplementation. CXCR4, HNF3β, SOX17 (endodermal), and GATA6 (mesendodermal) mRNAs were also up-regulated (p < 0.001). Immunocytochemistry and a Western blot analysis of SOX17 and HNF3β confirmed that the 1 mM NaBu along with EGF and bFGF supplementation condition was appropriately pre-treated with hWJ-MSCs before hepatogenic differentiation. Furthermore, the hepatic differentiation medium with NaBu pre-treatment up-regulated hepatoblast (AFP and HNF3β) and hepatic (CK18 and ALB) markers, and increased the proportion of mature hepatocyte functions, including G6P, C/EBPα, and CYP2B6 mRNAs, glycogen storage and urea secretion. The hepatic differentiation medium with NaBu in the pre-treatment step can induce hWJ-MSC differentiation toward endodermal, hepatoblastic, and hepatic lineages. Therefore, the hepatic differentiation medium with NaBu pre-treatment for differentiating hWJ-MSCs could represent an alternative protocol for cell-based therapy and drug screening in clinical applications.
Collapse
Affiliation(s)
- Wachira Panta
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Ton Yoisungnern
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Sanong Suksaweang
- School of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
44
|
In vitro differentiation of human umbilical cord blood mesenchymal stem cells into functioning hepatocytes. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Fu Q, Ren H, Zheng C, Zhuang C, Wu T, Qin J, Wang Z, Chen Y, Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. J Biomater Appl 2018; 33:477-487. [PMID: 30217134 DOI: 10.1177/0885328218799162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental pulp stem cell is a new type of mesenchymal stem cell that has a potential for tissue regeneration. Gelatin sponges are often used for hemostasis in dental surgery. In this study, we aimed to evaluate the dental pulp stem cells' proliferation and osteogenic differentiation in different layer-by-layer-modified gelatin sponge scaffolds including the G, G + P (gelatin sponge+ poly-l-lysine modification), G + M (gelatin sponge + mineralization modification), and G + M + P (gelatin sponge + mineralization modification + poly-l-lysine modification) groups in vitro and assessed them in vivo. The results showed that dental pulp stem cells had a great potential for osteogenic differentiation. In vitro, the G + M + P group not only enhanced the adhesion and proliferation of dental pulp stem cells but also facilitated their osteogenic differentiation. However, alkaline phosphatase activity was prohibited after modification. In vivo, both dental pulp stem cells and cells from nude mice grew well on the scaffold, and G + M and G + M + P groups could promote the mineralization deposit formation and the expression of osteocalcin in osteogenic differentiation of dental pulp stem cells. In conclusion, the combination of dental pulp stem cells and G + M + P scaffold has a great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Qiang Fu
- 1 Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huaijuan Ren
- 2 China Stem Cell Therapy Co. Ltd, Shanghai, China
| | - Chen Zheng
- 3 Hainan Medical University, Haikou, China
| | - Chao Zhuang
- 1 Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Wu
- 3 Hainan Medical University, Haikou, China
| | - Jinyan Qin
- 2 China Stem Cell Therapy Co. Ltd, Shanghai, China
| | | | | | - Nianmin Qi
- 3 Hainan Medical University, Haikou, China
| |
Collapse
|
46
|
Yu YB, Song Y, Chen Y, Zhang F, Qi FZ. Differentiation of umbilical cord mesenchymal stem cells into hepatocytes in comparison with bone marrow mesenchymal stem cells. Mol Med Rep 2018; 18:2009-2016. [PMID: 29916543 PMCID: PMC6072226 DOI: 10.3892/mmr.2018.9181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/22/2018] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be an ideal source for the cell therapy of end-stage liver diseases. Umbilical cord (UC)-MSCs can be obtained via a non-invasive procedure and can be easily cultured, making them potentially superior candidates for cell transplantation when compared with MSCs from other sources. In the present study, UC-MSCs were induced to differentiate into hepatocytes and were compared with bone marrow (BM)-MSCs for their hepatic differentiation potential. UC-MSCs showed significantly higher proliferation than BM-MSCs. Under hepatic induction, UC-MSCs and BM-MSCs could differentiate into hepatocytes. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that a higher expression of the hepatocyte-specific genes albumin, cytochrome P450 3A4 (CYP3A4), tyrosine-aminotransferase, glucose-6phosphate, α1 antitrypsin and α-fetoprotein was detected in differentiated UC-MSCs when compared with differentiated BM-MSCs. The results of ELISA and western blotting were in accordance with those of RT-qPCR. Theses results indicated that UC-MSCs had higher hepatic differentiation potential than BM-MSCs. Therefore, UC-MSCs may be advantageous over BM-MSCs for the treatment of end-stage liver disease.
Collapse
Affiliation(s)
- Ya-Bin Yu
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Surgery, The First Affiliated of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Song
- Department of Hepatobiliary Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ya Chen
- Department of Hepatobiliary Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Zhang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Surgery, The First Affiliated of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fu-Zhen Qi
- Department of Hepatobiliary Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
47
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
48
|
Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2017; 326:86-93. [PMID: 29221689 DOI: 10.1016/j.cellimm.2017.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) exist in almost all tissues with the capability to differentiate into several different cell types and hold great promise in tissue repairs in a cell replacement manner. The study of the bidirectional regulation between MSCs and immune response has ushered an age of rethinking of tissue regeneration in the process of stem cell-based tissue repairs. By sensing damaged signals, both endogenous and exogenous MSCs migrate to the damaged site where they involve in the reconstitution of the immune microenvironment and empower tissue stem/progenitor cells and other resident cells, whereby facilitate tissue repairs. This MSC-based therapeutic manner is conferred as cell empowerment. In this process, MSCs have been found to exert extensive immunosuppression on both innate and adaptive immune response, while such regulation needs to be licensed by inflammation. More importantly, the immunoregulation of MSCs is highly plastic, especially in the context of pathological microenvironment. Understanding the immunoregulatory properties of MSCs is necessary for appropriate application of MSCs. Here we review the current studies on the crosstalk of MSCs and immune response in disease pathogenesis and therapy.
Collapse
|
49
|
Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J, Teoh N, Farrell G, Riehle KJ, Lin JS, Su LL, Chan JK, Choolani M, Wong PC, Wee A, Lim SG, Campbell J, Fausto N, Dan YY. Long-Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers. Stem Cells 2017; 36:103-113. [PMID: 28960647 DOI: 10.1002/stem.2710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Liver progenitor cells have the potential to repair and regenerate a diseased liver. The success of any translational efforts, however, hinges on thorough understanding of the fate of these cells after transplant, especially in terms of long-term safety and efficacy. Here, we report transplantation of a liver progenitor population isolated from human fetal livers into immune-permissive mice with follow-up up to 36 weeks after transplant. We found that human progenitor cells engraft and differentiate into functional human hepatocytes in the mouse, producing albumin, alpha-1-antitrypsin, and glycogen. They create tight junctions with mouse hepatocytes, with no evidence of cell fusion. Interestingly, they also differentiate into functional endothelial cell and bile duct cells. Transplantation of progenitor cells abrogated carbon tetrachloride-induced fibrosis in recipient mice, with downregulation of procollagen and anti-smooth muscle actin. Paradoxically, the degree of engraftment of human hepatocytes correlated negatively with the anti-fibrotic effect. Progenitor cell expansion was most prominent in cirrhotic animals, and correlated with transcript levels of pro-fibrotic genes. Animals that had resolution of fibrosis had quiescent native progenitor cells in their livers. No evidence of neoplasia was observed, even up to 9 months after transplantation. Human fetal liver progenitor cells successfully attenuate liver fibrosis in mice. They are activated in the setting of liver injury, but become quiescent when injury resolves, mimicking the behavior of de novo progenitor cells. Our data suggest that liver progenitor cells transplanted into injured livers maintain a functional role in the repair and regeneration of the liver. Stem Cells 2018;36:103-113.
Collapse
Affiliation(s)
| | - Mark Muthiah
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Lei Zhou
- Department of Medicine, National University Singapore, Singapore
| | - Hau Hung
- Department of Medicine, National University Singapore, Singapore
| | | | - Jamil Haque
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Narcissus Teoh
- Department of Medicine, Australian National University, Canberra, Australia
| | - Geoffrey Farrell
- Department of Medicine, Australian National University, Canberra, Australia
| | - Kimberly J Riehle
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Jaymie Siqi Lin
- Department of Medicine, National University Singapore, Singapore
| | - Lin Lin Su
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Jerry Ky Chan
- Department of Obstetrics and Gynecology, National University Singapore, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Peng Cheang Wong
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Singapore, Singapore
| | - Seng Gee Lim
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Jean Campbell
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Yock Young Dan
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore.,Cancer Science Institute, National University Singapore, Singapore.,Genome Institute Singapore, ASTAR, Singapore
| |
Collapse
|
50
|
Sargiacomo C, El-Kehdy H, Dallmeier K, de Kock J, Hernandez-Kelly C, Rogiers V, Ortega A, Neyts J, Sokal E, Najimi M. Upregulation of sodium taurocholate cotransporter polypeptide during hepatogenic differentiation of umbilical cord matrix mesenchymal stem cells facilitates hepatitis B entry. Stem Cell Res Ther 2017; 8:204. [PMID: 28962642 PMCID: PMC5622580 DOI: 10.1186/s13287-017-0656-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) carriers worldwide number approximately 240 million people and around 780,000 people die every year from HBV infection. HBV entry and uptake are functionally linked to the presence of the human sodium-taurocholate cotransporting peptide (hNTCP) receptor. Recently, our group demonstrated that human umbilical cord matrix stem cells (UCMSCs) become susceptible to HBV after in-vitro hepatogenic differentiation (D-UCMSCs). METHODS In the present study, we examined the involvement of hNTCP in governing D-UCMSC susceptibility to HBV infection by characterizing the modulation of this transporter expression during hepatogenic differentiation and by appreciating the inhibition of its activity on infection efficacy. RESULTS We show here that in-vitro hepatogenic differentiation upregulated hNTCP mRNA and protein expression as well as its activity in D-UCMSCs. Pre-treatment of D-UCMSCs with taurocholate, a specific NTCP substrate, blocked their infection by HBV which supports the crucial involvement of this transporter in the early steps of the virus entry. CONCLUSION Altogether, our data support the usefulness of D-UCMSCs as a unique human and non-transformed in-vitro model to study the early stages of HBV infection thanks to its ability to endogenously regulate the expression of hNTCP.
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Institute of Experimental and Clinical Research (IREC), Laboratory of Pediatric Hepatology & Cell Therapy, Université Catholique de Louvain, Avenue Mounier, 52, 1200 Brussels, Belgium
| | - Hoda El-Kehdy
- Institute of Experimental and Clinical Research (IREC), Laboratory of Pediatric Hepatology & Cell Therapy, Université Catholique de Louvain, Avenue Mounier, 52, 1200 Brussels, Belgium
| | - Kai Dallmeier
- Rega Institute for Medical Research, Department of Microbiology & Immunology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Joery de Kock
- Faculty of Medicine and Pharmacy, Department of Toxicology, Dermato-Cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Clara Hernandez-Kelly
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN),Departamento de Genética y Biología Molecular, México D.F, Mexico
| | - Vera Rogiers
- Faculty of Medicine and Pharmacy, Department of Toxicology, Dermato-Cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Arturo Ortega
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN),Departamento de Genética y Biología Molecular, México D.F, Mexico
| | - Johan Neyts
- Rega Institute for Medical Research, Department of Microbiology & Immunology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Etienne Sokal
- Institute of Experimental and Clinical Research (IREC), Laboratory of Pediatric Hepatology & Cell Therapy, Université Catholique de Louvain, Avenue Mounier, 52, 1200 Brussels, Belgium
| | - Mustapha Najimi
- Institute of Experimental and Clinical Research (IREC), Laboratory of Pediatric Hepatology & Cell Therapy, Université Catholique de Louvain, Avenue Mounier, 52, 1200 Brussels, Belgium
| |
Collapse
|