1
|
Buttler L, Velázquez-Ramírez DA, Tiede A, Conradi AM, Woltemate S, Geffers R, Bremer B, Spielmann V, Kahlhöfer J, Kraft AR, Schlüter D, Wedemeyer H, Cornberg M, Falk C, Vital M, Maasoumy B. Distinct clusters of bacterial and fungal microbiota in end-stage liver cirrhosis correlate with antibiotic treatment, intestinal barrier impairment, and systemic inflammation. Gut Microbes 2025; 17:2487209. [PMID: 40255076 PMCID: PMC12054929 DOI: 10.1080/19490976.2025.2487209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Decompensated liver cirrhosis (dLC) is associated with intestinal dysbiosis, however, underlying reasons and clinical consequences remain largely unexplored. We investigated bacterial and fungal microbiota, their relation with gut barrier integrity, inflammation, and cirrhosis-specific complications in dLC-patients. Competing-risk analyses were performed to investigate clinical outcomes within 90 days. Samples were prospectively collected from 95 dLC-patients between 2017 and 2022. Quantitative metagenomic analyses clustered patients into three groups (G1-G3) showing distinct microbial patterns. G1 (n = 39) displayed lowest diversity and highest Enterococcus abundance, G2 (n = 24) was dominated by Bifidobacteria, G3 (n = 29) was most diverse and clustered most closely with healthy controls (HC). Of note, bacterial concentrations were significantly lower in cirrhosis compared with HC, especially for G1 that also showed the lowest capacity to produce short chain fatty acids and secondary bile acids. Consequently, fungal overgrowth, dominated by Candida spp. (51.63%), was observed in G1. Moreover, G1-patients most frequently received antibiotics (n = 33; 86.8%), had highest plasma-levels of Zonulin (p = 0.044) and a proinflammatory cytokine profile along with numerically higher incidences of subsequent infections (p = 0.09). In conclusion, distinct bacterial clusters were observed at qualitative and quantitative levels and correlated with fungal abundances. Antibiotic treatment significantly contributed to dysbiosis, which translated into intestinal barrier impairment and systemic inflammation.
Collapse
Affiliation(s)
- Laura Buttler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - David A. Velázquez-Ramírez
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Anja Tiede
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Anna M. Conradi
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Vera Spielmann
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House/German Liver Foundation, Hannover, Germany
| | - Julia Kahlhöfer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House/German Liver Foundation, Hannover, Germany
| | - Anke R.M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Centre for Experimental and Clinical Infection Research, A Joint Venture Between Helmholtz-Centre for Infection Research and Hannover Medical School, TWINCORE, Hannover, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Centre for Experimental and Clinical Infection Research, A Joint Venture Between Helmholtz-Centre for Infection Research and Hannover Medical School, TWINCORE, Hannover, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Christine Falk
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| |
Collapse
|
2
|
Chen J, Guo Y, Zhang X, Zhou D, Zhou Y, Pan Q, Chai J, Gao J. Disruption of Hepatic Sinusoidal Homeostasis Leads to Hepatopulmonary Syndrome. J Cell Mol Med 2025; 29:e70585. [PMID: 40344298 PMCID: PMC12061640 DOI: 10.1111/jcmm.70585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Hepatopulmonary syndrome (HPS) is a pulmonary vascular complication of liver disease and/or portal hypertension. HPS manifests as impaired gas exchange and hypoxemia due to intrapulmonary vascular dilatations and shunts. In response to primary liver disease, the abnormal adaptation of respiratory epithelial cells, pulmonary endothelial cells and immune cells leads to pulmonary microenvironment disequilibrium and HPS. In this review, we explore the pathophysiologic mechanisms of HPS, including vascular dilation, angiogenesis and alveolar dysfunction. The liver is the primary contributor to HPS, and liver transplantation is the only treatment that generally reverses HPS. We then discuss how disruption of hepatic sinusoidal homeostasis may impact the progression of HPS, mainly focusing on hepatocytes, cholangiocytes, LSECs and macrophages. As HPS occurs more commonly in advanced liver cirrhosis, we also discuss that normalisation of liver dysfunction and portal hypertension is crucial for the resolution of HPS. In conclusion, liver-targeted therapies may be effective in treating HPS.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Yangkun Guo
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Dengcheng Zhou
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life SciencesSichuan UniversityChengduChina
| | - Yongfang Zhou
- Department of Respiratory CareWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver DiseaseThe First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University)ChongqingChina
| | - Jinhang Gao
- Department of Gastroenterology, Lab of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
4
|
Lee S, Arefaine B, Begum N, Stamouli M, Witherden E, Mohamad M, Harzandi A, Zamalloa A, Cai H, Williams R, Curtis MA, Edwards LA, Chokshi S, Mardinoglu A, Proctor G, Moyes DL, McPhail MJ, Shawcross DL, Uhlen M, Shoaie S, Patel VC. Oral-gut microbiome interactions in advanced cirrhosis: characterisation of pathogenic enterotypes and salivatypes, virulence factors and antimicrobial resistance. J Hepatol 2025; 82:622-633. [PMID: 39447963 DOI: 10.1016/j.jhep.2024.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND & AIMS Cirrhosis complications are often triggered by bacterial infections with multidrug-resistant organisms. Alterations in the gut and oral microbiome in decompensated cirrhosis (DC) influence clinical outcomes. We interrogated: (i) gut and oral microbiome community structures, (ii) virulence factors (VFs) and antimicrobial resistance genes (ARGs) and (iii) oral-gut microbial overlap in patients with differing cirrhosis severity. METHODS Fifteen healthy controls (HCs), as well as 26 patients with stable cirrhosis (SC), 46 with DC, 14 with acute-on-chronic liver failure (ACLF) and 14 with severe infection without cirrhosis participated. Metagenomic sequencing was undertaken on paired saliva and faecal samples. 'Salivatypes' and 'enterotypes' based on genera clustering were assessed against cirrhosis severity and clinical parameters. VFs and ARGs were evaluated in oral and gut niches, and distinct resistotypes identified. RESULTS Salivatypes and enterotypes revealed a greater proportion of pathobionts with concomitant reduction in autochthonous genera with increasing cirrhosis severity and hyperammonaemia. Increasing overlap between oral and gut microbiome communities was observed in DC and ACLF vs. SC and HCs, independent of antimicrobial, beta-blocker and gastric acid-suppressing therapies. Two distinct gut microbiome clusters harboured genes encoding for the PTS (phosphoenolpyruvate:sugar phosphotransferase system) and other VFs in DC and ACLF. Substantial ARGs (oral: 1,218 and gut: 672) were detected (575 common to both sites). The cirrhosis resistome was distinct, with three oral and four gut resistotypes identified, respectively. CONCLUSIONS The degree of oral-gut microbial community overlap, frequency of VFs and ARGs all increase significantly with cirrhosis severity, with progressive dominance of pathobionts and loss of commensals. Despite similar antimicrobial exposure, patients with DC and ACLF have reduced microbial richness compared to patients with severe infection without cirrhosis, supporting the additive pathobiological effect of cirrhosis. IMPACT AND IMPLICATIONS This research underscores the crucial role of microbiome alterations in the progression of cirrhosis in an era of escalating multidrug resistant infections, highlighting the association and potential impact of increased oral-gut microbial overlap, virulence factors, and antimicrobial resistance genes on clinical outcomes. These findings are particularly significant for patients with decompensated cirrhosis and acute-on-chronic liver failure, as they reveal the intricate relationship between microbiome alterations and cirrhosis complications. This is relevant in the context of multidrug-resistant organisms and reduced oral-gut microbial diversity that exacerbate cirrhosis severity, drive hepatic decompensation and complicate treatment. For practical applications, these insights could guide the development of targeted microbiome-based therapeutics and personalised antimicrobial regimens for patients with cirrhosis to mitigate infectious complications and improve clinical outcomes.
Collapse
Affiliation(s)
- Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bethlehem Arefaine
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Marilena Stamouli
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Elizabeth Witherden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Merianne Mohamad
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Haizhuang Cai
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Roger Williams
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom; Dental Clinical Academic Group, King's Health Partners, United Kingdom
| | - Lindsey A Edwards
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Shilpa Chokshi
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom; Dental Clinical Academic Group, King's Health Partners, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | - Mark J McPhail
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Debbie L Shawcross
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| | - Vishal C Patel
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
5
|
Sen BK, Pan K, Chakravarty A. Hepatic Encephalopathy: Current Thoughts on Pathophysiology and Management. Curr Neurol Neurosci Rep 2025; 25:28. [PMID: 40153081 DOI: 10.1007/s11910-025-01415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE OF REVIEW This review highlights the causes, types and clinical staging of hepatic encephalopathy (HE). Current concepts on the probable pathogenetic mechanisms and currently practiced therapeutic options are discussed. RECENT FINDINGS HE may be covert and overt. Also known as minimal HE. Covert HE, where there are behavioral abnormalities and impairment in activities of daily living with intact sensorium. The pathophysiology of HE remains poorly understood. There is disturbance of the urea cycle due to liver disease leading to increased production of ammonia. The ammonium ion enters the astrocytes along with glutamate (converted to glutamine by ammonia) and myo-inositol, thereby increasing the osmolality of the astrocytic cytoplasm. This osmotic gradient results in accumulation of water inside the astrocytes resulting in cerebral edema and increase in brain volume. Additionally, current research has noted the role of cerebral oxidative/nitrosative stress and the synergistic effects of increased cerebral ammonia and alteration in neurotransmitters, neurometabolites, and cortical excitability due to systemic inflammation. In advanced liver disease with systemic infection or inflammation, neuroinflammatory processes play significant role in the development of HE. Inflammatory cytokines like TNF-α, IL-6, IL-17 in presence of hyperammonemia have been found to induce neurotoxicity of ammonia by passing through the blood brain barrier and causing enlarged/swollen pale astrocytes, resulting in HE. Disrupted enterohepatic circulation in end stage liver disease also causes elevation of bile acids which induces neuroinflammation. Manganese and zinc play as co-factors of enzymatic reaction. These metal deposition causes multiple psychomotor symptoms observed in HE. The gut environment has a major impact on brain function in patients with HE. Toxins such as ammonia and inflammatory cytokines produced by this impaired intestinal flora access the circulation through porto-systemic anastomoses and exacerbate or precipitate HE. Finally, as a result of recurrent cerebral edema from astrocytic dysfunction and neuroinflammation, permanent neurodegeneration occurs with cognitive decline and motor disturbances, especially parkinsonian features and gait disturbances. This is the stage of chronic hepatic encephalopathy. Currently L-ornithine L-aspartate (LOLA) is being used to lower the ammonia level by stimulating the urea cycle. HE comprises a broad spectrum of neurological and/or psychiatric abnormalities caused by hepatic insufficiency and/or portal-systemic shunting in the absence of any other causes of brain dysfunction. HE may be caused or precipitated by several factors like infections, intoxications and drugs. The encephalopathic features may be covert or overt. The pathogenetic mechanisms for HE may be different. In the presence of liver disease, HE primarily results from disturbed urea cycle with hyperammonemia causing astrocytic swelling and cerebral edema. Porto-systemic anastomoses with intact liver function can cause HE by allowing ammonia and other toxins produced by the gut microbial flora and allowing these to bypass detoxification by the liver and exposing the brain to their harmful effects. Principles of therapy are twofold. First protecting the liver and the brain from gut generated ammonia and other toxins by ensuring smooth bowel function and avoiding stagnation with the use of osmotic laxatives like lactulose or lactitol and also reducing the gut microbial load with use of anti-bacterials/bacteriophages like neomycin and rifaximin along with metronidazole. Second, reducing the already generated cerebral edema by use of mannitol and appropriate ventilatory support. Currently L-ornithine L-aspartate (LOLA) is being used to reduce the ammonia load to the liver. LOLA is a stable compound formed from two amino acids. L-ornithine plays a crucial role in stimulating the urea cycle, leading to a reduction in ammonia levels. Both L-ornithine and L-aspartate serve as substrates for the enzyme glutamate transaminase, and their administration results in elevated glutamate concentrations. Ammonia is subsequently utilized in the conversion of glutamate to glutamine through the action of glutamine synthetase. Finally in resistant cases the use of liver transplant needs to be considered. Alternatively extracorporeal liver assist devices may be used like Molecular Adsorbent Recirculating System (MARS) or Single-Pass Albumin Dialysis (SPAD).
Collapse
Affiliation(s)
- Barun Kumar Sen
- Department of Neurology, Vivekananda Institute of Medical Sciences, Kolkata, West Bengal, India
| | - Kausik Pan
- Department of Neurology, Vivekananda Institute of Medical Sciences, Kolkata, West Bengal, India
| | - Ambar Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Sciences, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Kreimeyer H, Llorente C, Schnabl B. Influence of Alcohol on the Intestinal Immune System. Alcohol Res 2025; 45:03. [PMID: 40151622 PMCID: PMC11913448 DOI: 10.35946/arcr.v45.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Alcohol misuse is associated with disruption of the microbial homeostasis (dysbiosis) and microbial overgrowth in the gut, gut barrier disruption, and translocation of microbes into the systemic circulation. It also induces changes in regulatory mechanisms of the gut, which is the largest peripheral immune organ. The gut-liver axis is important for health and disease, and alterations in the intestinal immune system contribute to alcohol-associated liver disease (ALD). Understanding these changes might help discover new targets for drugs and therapeutic approaches. SEARCH METHODS A systematic literature search was conducted in PubMed, Medline, and Embase of manuscripts published between January 2000 and November 2023 using the terms ("alcohol" or "ethanol") AND ("immune" or "immunol") AND ("intestine," "colon," or "gut"). Eligible manuscripts included studies and reviews that discussed the effects of ethanol on immune cells in the intestine. SEARCH RESULTS A total of 506 publications were found in the databases on November 20, 2023. After excluding duplicates and research not covering ALD (415 articles), 91 studies were reviewed. Also included were manuscripts covering specific immune cells in the context of ALD. DISCUSSION AND CONCLUSIONS Balancing immune tolerance vs. initiating an immune response challenges the intestinal immune system. Alcohol induces disruption of the intestinal barrier, which is accompanied by a thicker mucus layer and reduced anti-microbial peptides. This leads to longer attachment of bacteria to epithelial cells and consequently greater translocation into the circulation. Bacterial translocation activates the immune system, reducing the activity of regulatory T cells and inducing T helper 17 response via a variety of pathways. The role of innate immune cells, especially Type 3 innate lymphoid cells, and of specific B- and T-cell subsets in ALD remains elusive. Gut dysbiosis, translocation of viable bacteria and bacterial products into the circulation, and changes in the intestinal barrier have been linked to immune deficiency and infections in patients with cirrhosis. Modifying the intestinal immune system could reduce intestinal inflammation and alcohol-induced liver injury. Understanding the underlying pathophysiology can help to detect new targets for drugs and design therapeutic strategies.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, U.S. Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
7
|
Pose E, Jiménez C, Zaccherini G, Campion D, Piano S, Uschner FE, de Wit K, Roux O, Gananandan K, Laleman W, Solé C, Alonso S, Cuyàs B, Ariza X, Juanola A, Ma AT, Napoleone L, Gratacós-Ginès J, Tonon M, Pompili E, Sánchez-Delgado J, Allegretti AS, Morales-Ruiz M, Carol M, Pérez-Guasch M, Fabrellas N, Pich J, Martell C, Joyera M, Domenech G, Ríos J, Torres F, Serra-Burriel M, Hernáez R, Solà E, Graupera I, Watson H, Soriano G, Bañares R, Mookerjee RP, Francoz C, Beuers U, Trebicka J, Angeli P, Alessandria C, Caraceni P, Vargas VM, Abraldes JG, Kamath PS, Ginès P. Simvastatin and Rifaximin in Decompensated Cirrhosis: A Randomized Clinical Trial. JAMA 2025; 333:864-874. [PMID: 39908052 PMCID: PMC11800124 DOI: 10.1001/jama.2024.27441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
Importance There are no useful treatments to prevent the development of severe complications of liver cirrhosis. Simvastatin and rifaximin have shown beneficial effects in liver cirrhosis. Objective To assess whether simvastatin combined with rifaximin improves outcomes in patients with decompensated cirrhosis. Design, Setting, and Participants Double-blind, placebo-controlled, phase 3 trial conducted among patients with decompensated cirrhosis in 14 European hospitals between January 2019 and December 2022. The last date of follow-up was December 2022. Interventions Patients were randomly assigned to receive simvastatin, 20 mg/d, plus rifaximin, 1200 mg/d (n = 117), or identical-appearing placebo (n = 120) for 12 months in addition to standard therapy, stratified according to Child-Pugh class B or C. Main Outcomes and Measures The primary end point was incidence of severe complications of liver cirrhosis associated with organ failure meeting criteria for acute-on-chronic liver failure. Secondary outcomes included transplant or death and a composite end point of complications of cirrhosis (ascites, hepatic encephalopathy, variceal bleeding, acute kidney injury, and infection). Results Among the 237 participants randomized (Child-Pugh class B: n = 194; Child-Pugh class C: n = 43), 72% were male and the mean age was 57 years. There were no differences between the 2 groups in terms of development of acute-on-chronic liver failure (21 [17.9%] vs 17 [14.2%] patients in the treatment and placebo groups, respectively; hazard ratio, 1.23; 95% CI, 0.65-2.34; P = .52); transplant or death (22 [18.8%] vs 29 [24.2%] patients in the treatment and placebo groups, respectively; hazard ratio, 0.75; 95% CI, 0.43-1.32; P = .32); or development of complications of cirrhosis (50 [42.7%] vs 55 [45.8%] patients in the treatment and placebo groups, respectively; hazard ratio, 0.93; 95% CI, 0.63-1.36; P = .70). Incidence of adverse events was similar in both groups (426 vs 419; P = .59), but 3 patients in the treatment group (2.6%) developed rhabdomyolysis. Conclusions and Relevance The addition of simvastatin plus rifaximin to standard therapy does not improve outcomes in patients with decompensated liver cirrhosis. Trial Registration ClinicalTrials.gov Identifier: NCT03780673.
Collapse
Affiliation(s)
- Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
| | - César Jiménez
- Liver Unit, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Vall d’Hebron Institut de Recerca, Liver Unit, Universitat Autonoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Daniela Campion
- Division of Gastroenterology and Hepatology, A. O. U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine–DIMED, University and Hospital of Padova, Padova, Italy
| | - Frank Erhard Uschner
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Internal Medicine B, University Hospital Münster, Münster, Germany
| | - Koos de Wit
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Olivier Roux
- Service d’Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, Clichy, France
- Centre de Recherche sur l’Inflammation, Inserm, UMR, Paris, France
| | - Kohilan Gananandan
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Wim Laleman
- Department of Internal Medicine B, University Hospital Münster, Münster, Germany
- Department of Gastroenterology and Hepatology, Cluster of Liver and Biliopancreatic Disorders and Liver Transplantation, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Cristina Solé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Department of Gastroenterology and Hepatology, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Sonia Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Digestive Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Berta Cuyàs
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Ariza
- Digestive Diseases Unit, Hospital Moisès Broggi, Sant Joan Despí, Barcelona, Spain
| | - Adrià Juanola
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Ann T. Ma
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
| | - Laura Napoleone
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Jordi Gratacós-Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Marta Tonon
- Unit of Internal Medicine and Hepatology, Department of Medicine–DIMED, University and Hospital of Padova, Padova, Italy
| | - Enrico Pompili
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Jordi Sánchez-Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Department of Gastroenterology and Hepatology, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston
| | - Manuel Morales-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedicine Department, University of Barcelona, Barcelona, Spain
| | - Marta Carol
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Martina Pérez-Guasch
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Núria Fabrellas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Judit Pich
- Clinical Trial Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Claudia Martell
- Clinical Trial Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - María Joyera
- Clinical Trial Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Gemma Domenech
- Biostatistics and Data Management Core Facility, Institut D’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clínic of Barcelona, Barcelona, Spain
| | - José Ríos
- Biostatistics and Data Management Core Facility, Institut D’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clínic of Barcelona, Barcelona, Spain
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferrán Torres
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Serra-Burriel
- Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Rubén Hernáez
- Section of Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
- VA Health Services Research and Development, Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Elsa Solà
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Isabel Graupera
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Hugh Watson
- Medical Development and Translational Science, Evotec, Lyon, France
- Department of Hepatology and Gastroenterology, Aarhus University, Aarhus, Denmark
| | - Germán Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Bañares
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Digestive Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rajeshwar P. Mookerjee
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
- Department of Hepatology and Gastroenterology, Aarhus University, Aarhus, Denmark
| | - Claire Francoz
- Service d’Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, Clichy, France
- Centre de Recherche sur l’Inflammation, Inserm, UMR, Paris, France
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Münster, Münster, Germany
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, Department of Medicine–DIMED, University and Hospital of Padova, Padova, Italy
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, A. O. U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Víctor M. Vargas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- Liver Unit, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Juan G. Abraldes
- Division of Gastroenterology, Liver Unit, University of Alberta, Edmonton, Canada
| | - Patrick S. Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Pere Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Madrid, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Torre A, Córdova-Gallardo J, Martínez-Sánchez FD. Hepatic encephalopathy: risk identification and prophylaxis approaches. Metab Brain Dis 2025; 40:138. [PMID: 40053146 DOI: 10.1007/s11011-025-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/08/2025] [Indexed: 03/26/2025]
Abstract
Hepatic encephalopathy (HE) is a debilitating neurological condition associated with cirrhosis, characterized by cognitive impairment ranging from minimal to overt symptoms. It significantly impacts patients' quality of life and substantially burdens healthcare systems. This review examines current prophylactic strategies for HE, focusing on established treatments, emerging therapies, and predictive tools to identify high-risk patients. Traditional treatments such as lactulose and rifaximin remain the cornerstone of HE management, effectively reducing ammonia levels and preventing recurrence. However, novel approaches like L-ornithine L-aspartate, albumin infusions, and antioxidants like resveratrol show promise in further improving outcomes by addressing underlying pathophysiological mechanisms, including systemic inflammation and gut dysbiosis. Developing predictive models, such as the AMMON-OHE score and clinical-genetic risk assessments, enhances the ability to tailor preventive interventions to individual patient profiles. These advancements are crucial in mitigating the incidence of overt HE, reducing hospital admissions, and improving patient survival rates. The future of HE management lies in personalized medicine, targeting specific inflammatory and metabolic pathways, with the potential integration of genetic manipulation. Continued research is essential to refine these strategies, ultimately aiming to improve the prognosis and quality of life for cirrhotic patients at risk of HE.
Collapse
Affiliation(s)
- Aldo Torre
- Metabolic Unit, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubiran", Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México, 14080, Mexico.
- Department of Gastroenterology, Medical Center ABC, Sur 136 116, Las Américas, Álvaro Obregón, 01120, Ciudad de México, Mexico.
| | - Jacqueline Córdova-Gallardo
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Escolar 411A, Copilco Universidad, Coyoacán, Ciudad de México, 04360, Mexico.
- Department of Hepatology, Hospital General "Dr. Manuel Gea González", Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México, 14080, Mexico.
| | - Froylan David Martínez-Sánchez
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Escolar 411A, Copilco Universidad, Coyoacán, Ciudad de México, 04360, Mexico
- Department of Internal Medicine, Hospital General "Dr. Manuel Gea González", 14080 Mexico City, Mexico. Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, Mexico
| |
Collapse
|
9
|
Pohl J, Aretakis D, Tacke F, Engelmann C, Sigal M. Role of Intestinal Barrier Disruption to Acute-on-Chronic Liver Failure. Semin Liver Dis 2025; 45:52-65. [PMID: 40081417 DOI: 10.1055/a-2516-2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Acute-on-chronic liver failure (ACLF) is a severe condition in patients with decompensated liver cirrhosis, marked by high short-term mortality. Recent experimental and clinical evidence has linked intestinal dysfunction to both the initiation of ACLF as well as disease outcome. This review discusses the significant role of the gut-liver axis in ACLF pathogenesis, highlighting recent advances. Gut mucosal barrier disruption, gut dysbiosis, and bacterial translocation emerge as key factors contributing to systemic inflammation in ACLF. Different approaches of therapeutically targeting the gut-liver axis via farnesoid X receptor agonists, nonselective beta receptor blockers, antibiotics, and probiotics are discussed as potential strategies mitigating ACLF progression. The importance of understanding the distinct pathophysiology of ACLF compared with other stages of liver cirrhosis is highlighted. In conclusion, research findings suggest that disruption of intestinal integrity may be an integral component of ACLF pathogenesis, paving the way for novel diagnostic and therapeutic approaches to manage this syndrome more effectively.
Collapse
Affiliation(s)
- Julian Pohl
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios Aretakis
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
10
|
Marin J, Ghalayini M, Kaoudji Y, Dziri S, Zylberfajn C, Blaise L, Hoogvorst A, Charpentier S, Chaillou V, Beauchamp S, Donneger S, Barget N, Touvier M, Nahon P, Amathieu R, Lescat M. Comprehensive toolkit integrating lifestyle and clinical questionnaires with gut microbiota profiling via rectal swabs: application in intensive care cirrhotic patients. J Med Microbiol 2025; 74:001964. [PMID: 40047237 PMCID: PMC11936375 DOI: 10.1099/jmm.0.001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/19/2024] [Indexed: 03/27/2025] Open
Abstract
Introduction. The study of gut microbiota is now an essential dimension in many clinical studies. For instance, microbiota diversity investigation can help us to better manage cirrhotic patients by the identification of markers of severity and the identification of possible sources of pathogens.Hypothesis/Gap Statement. Conducting clinical research on gut microbiota for fragile patients in intensive care units, such as cirrhotic patients, poses significant challenges.Aim. In this study, we developed a comprehensive toolkit for investigating gut microbiota in fragile patients using rectal swabbing combined with straightforward lifestyle and clinical questionnaires.Methodology . We applied this prospective approach to 49 well-phenotyped cirrhotic patients as a function of their compensation status (compensated patients with outpatients' recruitment vs decompensated patients in intensive care units).Results . Our results, consistent with the literature, showed that liver function impairment is associated with lower microbiota diversity. Additionally, we monitored aerobic microbiota in decompensated cirrhotic patients, observing the invasion of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in the gut's aerobic microbiota prior to severe infection caused by these pathogens.Conclusion. We propose this pragmatic methodology for larger cohort studies, aiming to enhance the monitoring of immunocompromised patients by using microbiota analysis as a predictive tool for the severity of associated pathologies and the identification of agents responsible for severe infections.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000 Bobigny, France
| | - Mohamed Ghalayini
- Université Sorbonne Paris Nord and Centre hospitalier de Gonesse, Gonesse, France
| | - Younes Kaoudji
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000 Bobigny, France
| | - Samira Dziri
- Service Microbiologie, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis France, Paris, France
| | - Cecile Zylberfajn
- Service de Réanimation, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Lorraine Blaise
- Université Sorbonne Paris Nord and Service d’Hépatologie, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Astrid Hoogvorst
- Service de Réanimation, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Stephane Charpentier
- Service de Réanimation, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Virginie Chaillou
- Service Microbiologie, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis France, Paris, France
| | - Sylvie Beauchamp
- Service Microbiologie, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis France, Paris, France
| | - Séverine Donneger
- Centre de Ressources biologiques, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Nathalie Barget
- Centre de Ressources biologiques, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, EREN, F-93000 Bobigny, France
| | - Pierre Nahon
- Université Sorbonne Paris Nord and Service d’Hépatologie, AP-HP, Hôpitaux Universitaires de Paris Seine Saint Denis, Paris, France
| | - Roland Amathieu
- Université Sorbonne Paris Nord and Centre hospitalier de Gonesse, Gonesse, France
| | - Mathilde Lescat
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000 Bobigny, France
- Université Paris Cité, Inserm, Institut Cochin, F-75014 Paris, France
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France and Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| |
Collapse
|
11
|
Li P, Liang X, Luo J, Li J. Omics in acute-on-chronic liver failure. Liver Int 2025; 45:e15634. [PMID: 37288724 DOI: 10.1111/liv.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a critical syndrome that develops in patients with chronic liver disease and is characterized by acute decompensation, single- or multiple-organ failure and high short-term mortality. Over the past few decades, ACLF has been progressively recognized as an independent clinical entity, and several criteria and prognostic scores have been proposed and validated by different scientific societies. However, controversies still exist in some aspects across regions, which mainly involve whether the definition of underlying liver diseases should include cirrhosis and non-cirrhosis. The pathophysiology of ACLF is complicated and remains unclear, although accumulating evidence based on different aetiologies of ACLF shows that it is closely associated with intense systemic inflammation and immune-metabolism disorder, which result in mitochondrial dysfunction and microenvironment imbalance, leading to disease development and organ failure. In-depth insight into the biological pathways involved in the mechanisms of ACLF and potential mechanistic targets that improve patient survival still needs to be investigated. Omics-based analytical techniques, including genomics, transcriptomics, proteomics, metabolomics and microbiomes, have developed rapidly and can offer novel insights into the essential pathophysiologic process of ACLF. In this paper, we briefly reviewed and summarized the current knowledge and recent advances in the definitions, criteria and prognostic assessments of ACLF; we also described the omics techniques and how omics-based analyses have been applied to investigate and characterize the biological mechanisms of ACLF and identify potential predictive biomarkers and therapeutic targets for ACLF. We also outline the challenges, future directions and limitations presented by omics-based analyses in clinical ACLF research.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhou Y, Ding Y, Li Y, Sheng Q, Han C, Fan Y, Wang Z, Lu B, Dou X, Zhang C. Sodium Butyrate Inhibits Necroptosis by Regulating MLKL via E2F1 in Intestinal Epithelial Cells of Liver Cirrhosis. J Clin Transl Hepatol 2025; 13:105-117. [PMID: 39917471 PMCID: PMC11797820 DOI: 10.14218/jcth.2024.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 02/09/2025] Open
Abstract
Background and Aims Necroptosis is critical for regulating intestinal epithelial cells (IECs). Butyric acid (BA), produced during intestinal microbial metabolism, protects the intestinal epithelial barrier. However, whether necroptosis occurs in IECs during liver cirrhosis and whether sodium butyrate (NaB) can regulate necroptosis have not yet been reported. In this study, we aimed to investigate whether IECs undergo necroptosis in cirrhosis and whether NaB can regulate necroptosis and the related regulatory mechanisms. Methods Serum levels of RIPK3, MLKL, and Zonulin, as well as fecal BA levels, were measured and correlated in 48 patients with liver cirrhosis and 20 healthy controls. A rat model of liver cirrhosis was established, and NaB was administered. The expressions of MLKL, p-MLKL, and tight junction proteins were measured. We conducted an in vitro investigation of the effect of NaB on necroptosis in the HT29 cell line. Results Serum levels of RIPK3, MLKL, and Zonulin in the liver cirrhosis group were higher, while fecal BA levels were lower than those in the control group. Zonulin levels were positively correlated with RIPK3 and MLKL levels, while fecal BA levels were negatively correlated with serum MLKL levels, but not with RIPK3 levels. NaB reduced the mRNA and protein expression of MLKL but had no effect on RIPK1 and RIPK3 in vitro. Rescue experiments demonstrated that NaB inhibited necroptosis through E2F1-mediated regulation of MLKL. Conclusions NaB alleviates intestinal mucosal injury and reduces necroptosis in IECs in liver cirrhosis. It also inhibits the necroptosis of IECs and protects the intestinal barrier by reducing E2F1 expression and downregulating MLKL expression levels. These results can be employed to develop a novel strategy for treating complications arising from liver cirrhosis.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Viral Hepatitis, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Viral Hepatitis, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaoxin Fan
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Viral Hepatitis, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyi Wang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bingchao Lu
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Viral Hepatitis, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Viral Hepatitis, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Luo SH, Wang ZH, Chen J, Chen JY. Numerous liver abscesses after transjugular intrahepatic portosystemic shunt for decompensated liver cirrhosis: A case report. World J Radiol 2025; 17:101932. [DOI: 10.4329/wjr.v17.i2.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Liver cirrhosis patients can develop various complications including bacteremia as the intestinal flora is heterologous. In those with low immunity, trauma, or following surgery, etc., the body is susceptible to concurrent systemic or local infections. Under these circumstances, even minimally invasive treatment methods such as interventional therapy like transjugular intrahepatic portosystemic shunt (TIPS) for liver cirrhosis patients can also result in complications such as infections.
CASE SUMMARY A male patient with decompensated cirrhosis experienced multiple episodes of gastrointestinal bleeding and hypersplenism. He was admitted to hospital due to voluntary remedial TIPS. The patient developed a numerous intrahepatic liver abscess postoperatively. Following initial conservative treatment with intravenous antibiotics and parenteral nutrition, three months after TIPS, the liver abscess had disappeared on imaging examination. At the 6-month postoperative follow-up, outpatient re-examination showed that the patient had recovered and the liver abscess had resolved.
CONCLUSION Attention should be paid to decreased blood cell counts, especially low leukocyte levels in patients with liver cirrhosis as the presence of intestinal microbiota dysregulation and portal pyemia can result in liver abscess and sepsis during invasive diagnostic and therapeutic procedures like TIPS. The addition of probiotics might reduce the risk in such patients.
Collapse
Affiliation(s)
- Shi-Hua Luo
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Zhao-Han Wang
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Jie Chen
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Jian-Yong Chen
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
14
|
Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, Suleman, Ullah I, Hassan IU, Tian Y, Li K. Gut microbiota therapy in gastrointestinal diseases. Front Cell Dev Biol 2025; 13:1514636. [PMID: 40078367 PMCID: PMC11897527 DOI: 10.3389/fcell.2025.1514636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chengting Chang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Saira Bibi
- Department of Zoology Hazara University Manshera, Dhodial, Pakistan
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sajid Ur Rehman
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Suleman
- Department of Zoology, Government Post Graduate Collage, Swabi, Pakistan
- Higher Education Department, Civil Secretariat Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Biotechnology and Genetics Engineering, Hazara University, Manshera, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Gu W, Huang Z, Fan Y, Li T, Yu X, Chen Z, Hu Y, Li A, Zhang F, Fu Y. Peripheral blood microbiome signature and Mycobacterium tuberculosis-derived rsRNA as diagnostic biomarkers for tuberculosis in human. J Transl Med 2025; 23:204. [PMID: 39972378 PMCID: PMC11837313 DOI: 10.1186/s12967-025-06190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major global health issue. Early diagnosis of TB is still a challenge. Studies are seeking non-sputum biomarker-based TB test. Emerging evidence indicates potential significance of blood microbiome signatures for diseases. However, blood microbiome RNA profiles are unknown in TB. We aimed to characterize the blood microbiome of TB patients and identify Mycobacterium tuberculosis (Mtb) genome-derived small RNA molecules to serve as diagnostic biomarkers for TB. METHODS RNA sequencing data of the blood from TB patients and healthy controls were retrieved from the NCBI-SRA database for analyzing the blood microbiome and identifying rRNA-derived small RNA (rsRNA) of Mtb. Small RNA-seq was performed on plasma exosomes from TB patients and healthy controls. The levels of the candidate Mtb rsRNAs were determined by real-time quantitative reverse transcription PCR (RT-qPCR) on plasma from a separate cohort of 73 TB patients and 62 healthy controls. RESULTS The blood microbiome of TB patients consisted of RNA signals from bacteria, fungi, archaea, and viruses, with bacteria accounting for more than 97% of the total. Reduced blood microbial diversity and abundance of 6 Mycobacterium-associated bacterial genera, including Mycobacterium, Priestia, Nocardioides, Agrobacterium, Bradyrhizobium, and Escherichia, were significantly altered in the blood of TB patients. A diagnostic model for TB based on the 6 genera achieved an area under the curve (AUC) of 0.8945. rsRNAs mapped to the Mtb genome were identified from blood and plasma exosomes of TB patients. RT-qPCR results showed that 2 Mtb-derived rsRNAs, 16 S-L1 and 16 S-L2, could be used as diagnostic biomarkers to differentiate TB patients from healthy controls, with a high co-diagnostic efficacy (AUC = 0.7197). CONCLUSIONS A panel of blood microbiome signatures and Mtb-derived rsRNAs can serve as blood biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Wei Gu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zhigang Huang
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yunfan Fan
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Ting Li
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Xinyuan Yu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zhiyuan Chen
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yan Hu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Aimei Li
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yingmei Fu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
17
|
Yang F, Li X, Sun J, Pang X, Sun Q, Lu Y. Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39905925 DOI: 10.1080/10408398.2025.2455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
18
|
Alvarado-Tapias E, Pose E, Gratacós-Ginès J, Clemente-Sánchez A, López-Pelayo H, Bataller R. Alcohol-associated liver disease: Natural history, management and novel targeted therapies. Clin Mol Hepatol 2025; 31:S112-S133. [PMID: 39481875 PMCID: PMC11925442 DOI: 10.3350/cmh.2024.0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Alcohol consumption is a leading cause of preventable morbidity and mortality worldwide and the primary cause of advanced liver disease. Alcohol use disorder is a chronic, frequently relapsing condition characterized by persistent alcohol consumption despite its negative consequences. Alcohol-associated liver disease (ALD) encompasses a series of stages, from fatty liver (steatosis) to inflammation (steatohepatitis), fibrosis, and, ultimately, liver cirrhosis and its complications. The development of ALD is complex, involving both genetic and environmental factors, yet the exact mechanisms at play remain unclear. Alcohol-associated hepatitis (AH), a severe form of ALD, presents with sudden jaundice and liver failure. Currently, there are no approved targeted therapies able to interfere in the pathogenesis of ALD to stop the progression of the disease, making alcohol abstinence the most effective way to improve prognosis across all stages of ALD. For patients with advanced ALD who do not respond to medical therapy, liver transplantation is the only option that can improve prognosis. Recently, AH has become an early indication for liver transplantation in non-responders to medical treatment, showing promising results in carefully selected patients. This review provides an update on the epidemiology, natural history, pathogenesis, and current treatments for ALD. A deeper insight into novel targeted therapies investigated for AH focusing on new pathophysiologically-based agents is also discussed, including anti-inflammatory and antioxidative stress drugs, gut-liver axis modulators, and hepatocyte regenerative molecules.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- Department of Gastroenterology and Hepatology, Hospital of Santa Creu and Sant Pau, Autonomus University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
| | - Elisa Pose
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gratacós-Ginès
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Clemente-Sánchez
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
| | - Hugo López-Pelayo
- Addictions Unit, Psychiatry and Psychology Service, ICN, Hospital Clinic Barcelona, Barcelona; Health and Addictions Research Group, IDIBAPS, Barcelona, Spain
| | - Ramón Bataller
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
19
|
Shah A, Spannenburg L, Thite P, Morrison M, Fairlie T, Koloski N, Kashyap PC, Pimentel M, Rezaie A, Gores GJ, Jones MP, Holtmann G. Small intestinal bacterial overgrowth in chronic liver disease: an updated systematic review and meta-analysis of case-control studies. EClinicalMedicine 2025; 80:103024. [PMID: 39844931 PMCID: PMC11751576 DOI: 10.1016/j.eclinm.2024.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Background Small Intestinal Bacterial Overgrowth (SIBO) has been implicated in the pathophysiology of chronic liver disease (CLD). We conducted a systematic review and meta-analysis to assess and compare the prevalence of SIBO among CLD patients (with and without with complications of end stage liver disease) and healthy controls. Methods Electronic databases were searched from inception up to July-2024 for case-control studies reporting SIBO in CLD. Prevalence rates, odds ratios (ORs), and 95% confidence intervals (CIs) of SIBO in patients with CLD and controls were calculated utilizing a random-effects model. The protocol was prospectively registered with PROSPERO (CRD42022379578). Findings The final dataset included 34 case-control studies with 2130 CLD patients and 1222 controls. Overall, the odds for SIBO prevalence in CLD patients compared to controls was 6.7 (95% CI 4.6-9.7, p < 0.001). Although the prevalence of SIBO among patients with CLD with cirrhosis was higher at 42.9% (95% CI: 35.9-50.2) compared to 36.9% (95% CI: 27.4-47.6) in those without cirrhosis, this difference failed statistical significance. However, CLD patients with decompensated cirrhosis had a significantly higher prevalence of SIBO compared to those with compensated cirrhosis, with an OR of 2.6 (95% CI: 1.5-4.5, p < 0.001). Additionally, the prevalence of SIBO was significantly higher in CLD patients with portal hypertension (PHT) than in those without PHT, with an OR of 2.1 (95% CI: 1.4-3.1, p < 0.001). The highest prevalence of SIBO was observed in patients with spontaneous bacterial peritonitis (SBP) (57.7%, 95% CI 38.8-74.5), followed by patients with hepatic encephalopathy (41.0%, 95% CI 16.0-72.3) and patients with variceal bleed (39.5%, 95% CI 12.1-75.6). Interpretation Overall, there is a significantly increased prevalence of SIBO in CLD patients compared to controls. The prevalence is even higher in CLD patients with PHT, especially those with SBP. This meta-analysis suggests that SIBO is associated with complications of CLD and potentially linked to the progression of CLD. Funding National Health and Medical Research Council, Centre for Research Excellence (APP170993).
Collapse
Affiliation(s)
- Ayesha Shah
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Liam Spannenburg
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
| | - Parag Thite
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
| | - Thomas Fairlie
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Natasha Koloski
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mark Pimentel
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael P. Jones
- Macquarie University, Department of Psychology, Sydney, NSW, Australia
| | - Gerald Holtmann
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| |
Collapse
|
20
|
Liu Y, Chen Z, Li C, Sun T, Luo X, Jiang B, Liu M, Wang Q, Li T, Cao J, Li Y, Chen Y, Kuai L, Xiao F, Xu H, Cui H. Associations between changes in the gut microbiota and liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:16. [PMID: 39806278 PMCID: PMC11727502 DOI: 10.1186/s12876-025-03589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024. Ratio of autochthonous to non-autochthonous taxa was calculated as the cirrhosis dysbiosis ratio (CDR). Using a random-effects model, the standard mean deviation (SMD) and 95% confidence interval (CI) were calculated. We subsequently performed subgroup, sensitivity, and publication bias analyses. cirrhosis dysbiosis ratio. RESULTS A total of 53 eligible papers including 5076 participants were included. The pooled estimates revealed a moderately significant reduction in gut microbiome richness in patients with liver cirrhosis compared with controls, including the Shannon, Chao1, observed species, ACE, and PD indices, but no significant difference was observed for the Simpson index. Over 80% of the studies reported significant differences in β diversity. Families Enterobacteriaceae and Pasteurellaceae, belonging to the phylum Proteobacteria, along with the family Streptococcaceae and the genera Haemophilus, Streptococcus, and Veillonella, were significantly associated with liver cirrhosis compared to the control group. In contrast, the healthy group exhibited a higher abundance of the class Clostridia, particularly the families Lachnospiraceae and Ruminococcaceae, which are known for their diversity and role as common gut commensals. Furthermore, the class Bacilli, predominantly represented by the genus Streptococcus, was markedly enriched in the cirrhosis group. CONCLUSIONS The microbiota richness of liver cirrhosis patients was lower than that of healthy controls. Alterations in gut microbiota linked to liver cirrhosis were characterized by a decrease in Lachnospiraceae, Ruminococcaceae, and Clostridia and an enrichment of Enterobacteriaceae, Pasteurellaceae, Streptococcaceae, Bacilli, and Streptococcus.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziwei Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianhan Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuanmei Luo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Boyue Jiang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meilan Liu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfu Cao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yayu Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China.
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
- Clinical Biobank, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Laboratory Medicine, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongyuan Cui
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of General Surgery, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
21
|
Wang X, Zhou XJ, Qiao X, Falchi M, Liu J, Zhang H. The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk. Theranostics 2025; 15:656-681. [PMID: 39744688 PMCID: PMC11671385 DOI: 10.7150/thno.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.
Collapse
Affiliation(s)
- Xin Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
22
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
23
|
Bloom PP, Chung RT. The future of clinical trials of gut microbiome therapeutics in cirrhosis. JHEP Rep 2025; 7:101234. [PMID: 39717506 PMCID: PMC11663965 DOI: 10.1016/j.jhepr.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 12/25/2024] Open
Abstract
The last two decades have witnessed an explosion of microbiome research, including in hepatology, with studies demonstrating altered microbial composition in liver disease. More recently, efforts have been made to understand the association of microbiome features with clinical outcomes and to develop therapeutics targeting the microbiome. While microbiome therapeutics hold much promise, their unique features pose certain challenges for the design and conduct of clinical trials. Herein, we will briefly review indications for microbiome therapeutics in cirrhosis, currently available microbiome therapeutics, and the biological pathways targeted by these therapies. We will then focus on the best practices and important considerations for clinical trials of gut microbiome therapeutics in cirrhosis.
Collapse
Affiliation(s)
- Patricia P. Bloom
- University of Michigan, Division of Gastroenterology, Ann Arbor, MI, USA
| | - Raymond T. Chung
- Massachusetts General Hospital, Division of Gastroenterology, Boston, MA, USA
| |
Collapse
|
24
|
Song DS, Yang JM, Jung YK, Yim HJ, Kim HY, Kim CW, Kim SS, Cheong JY, Lee HL, Lee SW, Yoo JJ, Kim SG, Kim YS. Rifaximin treatment in patients with severe alcoholic hepatitis: A multicenter, randomized controlled, open-label, pilot trial. Ann Hepatol 2024; 30:101749. [PMID: 39662593 DOI: 10.1016/j.aohep.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION AND OBJECTIVES The short-term mortality of severe alcoholic-associated hepatitis (SAH) is high, but there are no effective treatments to improve short-term mortality other than corticosteroids. This study investigated the effects of adding rifaximin to standard treatment in patients with SAH. MATERIAL AND METHODS In this randomized controlled open-label trial, patients with SAH (Maddrey's discriminant function≥32) were randomized to the rifaximin or control group. Patients were simultaneously treated with corticosteroid or pentoxifylline as standard treatment for 4 weeks. Randomization was stratified by SAH treatment. RESULTS A total of 50 patients were enrolled in this study (29 in the control group and 21 in the rifaximin group). The mean Model for End-stage Liver Disease (MELD) scores were 24.4 and 27.5 in the control and rifaximin groups, respectively (P = 0.106). There were no significant differences in 6-month Liver Transplantation (LT)-free survival rate between the two groups (P = 0.502). When stratified by SAH treatment, there was no significant difference in 6-month LT-free survival rate between the control and rifaximin treatment groups (P = 0.186 in the corticosteroid group and P = 0.548 in the pentoxifylline group). There were no significant differences in the occurrence of liver-related complications between the two groups (all Ps>0.05). The MELD score was the only independent factor for 6-month LT-free survival (hazard ratio 1.188, 95 % confidence interval 1.094-1.289, P<0.001), and rifaximin was not. CONCLUSIONS In patients with SAH, adding rifaximin to corticosteroid or pentoxifylline had no survival benefit and no preventive effect on the development of liver-related complications. The MELD score was the only significant factor for short-term mortality. CLINICAL TRIAL REGISTRATION The study was registered on ClinicalTrials.gov (number: NCT02485106).
Collapse
Affiliation(s)
- Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jin Mo Yang
- Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea.
| | - Hyung Joon Yim
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Hee Yeon Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang Wook Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Soon Sun Kim
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, South Korea
| | - Jae Youn Cheong
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, South Korea
| | - Hae Lim Lee
- Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung Won Lee
- Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Bucheon Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Bucheon Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Young Seok Kim
- Department of Internal Medicine, Bucheon Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| |
Collapse
|
25
|
Singh AS, Pathak D, Devi MS, Anifowoshe AT, Nongthomba U. Antibiotic alters host's gut microbiota, fertility, and antimicrobial peptide gene expression vis-à-vis ampicillin treatment on model organism Drosophila melanogaster. Int Microbiol 2024; 27:1665-1676. [PMID: 38502456 DOI: 10.1007/s10123-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.
Collapse
Affiliation(s)
- Asem Sanjit Singh
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Manoharmayum Shaya Devi
- ICAR-Central Inland Fisheries Research Institute, P.O. Monirampore, Barrackpore, Kolkata, India, 700 120
| | - Abass Toba Anifowoshe
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
26
|
Ali AQ, Sabir DK, Dawood AF, Abu-Rashed M, Hasari A, Gharqan F, Alnefaie S, Mohiddin LE, Tatry MM, Albadan DA, Alyami MM, Almutairi MF, Shawky LM. The potential liver injury induced by metronidazole-provoked disturbance of gut microbiota: modulatory effect of turmeric supplementation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9845-9858. [PMID: 38922353 DOI: 10.1007/s00210-024-03242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
It has been reported that the gut-liver axis and intestinal microbiome contribute crucially to different liver diseases. So, targeting this hepato-intestinal connection may provide a novel treatment modality for hepatic disorders such as drug-induced liver injury (DILI). The present study thought to investigate the protective effect of turmeric (TUR) on metronidazole (MNZ)-induced liver damage and the possible association of the gut-liver axis and gut microbiota as a suggested underlying mechanism. In the first experiment, a MNZ-induced liver injury rat model was reproduced after 130 mg/kg oral MNZ administration for 30 days. Meanwhile, the treatment group was orally treated with 100 mg/kg turmeric daily. In the second experiment, fecal microbiome transplantation (FMT) was conducted, in which the fecal microbiome of each group in the first experiment was transplanted to a healthy corresponding group in the second experiment. The liver enzymes (aminotransferase (ALT) and aspartate aminotransferase (AST)) and histopathological examination were estimated to assess liver function. Inflammatory cytokines and oxidative markers were evaluated in the liver tissues. Histological analysis, intestinal barrier markers, and expression of tight junction proteins were measured for assessment of the intestinal injury. Changes in the gut microbial community and possible hepatic bacterial transmission were analyzed using 16S rRNA sequencing. MNZ induced intestinal and liver injuries which were significantly improved by turmeric. Increased firmicutes/bacteroidetes ratio and bacterial transmission due to gut barrier disruption were suggested. Moreover, TUR has maintained the gut microbial community by rebalancing and restoring bacterial proportions and abundance, thereby repairing the gut mucosal barrier and suppressing bacterial translocation. TUR protected against MNZ-induced gut barrier disruption. Reshaping of the intestinal bacterial composition and prohibition of the hepatic microbial translocation were suggested turmeric effects, potentially mitigating MNZ-related liver toxicity.
Collapse
Affiliation(s)
- Abdulaziz Qaid Ali
- Vision Colleges, Riyadh, Saudi Arabia.
- Faculty of Medicine, University of Sciences and Technology, Sana'a, Yemen.
| | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
27
|
Tafader A, Bajaj JS. Present and future of fecal microbiome transplantation in cirrhosis. Liver Transpl 2024:01445473-990000000-00519. [PMID: 39591377 DOI: 10.1097/lvt.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Over the last few decades, there have been tremendous advances in our understanding of the role of the gut microbiome in cirrhosis and the clinical sequelae that follow. Progressive dysbiosis and immune dysregulation occur in patients with cirrhosis. In fact, alterations in the gut microbiome occur long before a diagnosis of cirrhosis is made. Understandably, our attention has recently been diverted toward potential modulators of the gut microbiome and the gut-liver axis as targets for treatment. The goal of this review is to highlight the utility of manipulating the gut microbiome with a focus on fecal microbiome transplantation (FMT) in patients with cirrhosis. In addition, we will provide an overview of disease-specific microbial alterations and the resultant impact this has on cirrhosis-related complications.
Collapse
Affiliation(s)
- Asiya Tafader
- Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
28
|
Lapenna L, Di Cola S, Merli M. The crucial role of risk factors when dealing with hepatic Encephalopathy. Metab Brain Dis 2024; 40:29. [PMID: 39570425 DOI: 10.1007/s11011-024-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Hepatic encephalopathy (HE) is a common condition in patients with cirrhosis, representing the second most frequent cause of decompensation. Approximately 30-40% of patients with cirrhosis will experience overt HE during the clinical course of their illness. In most cases, it is possible to identify a precipitating or risk factor for HE. These are distinct concepts that play different roles in the development of this condition. While precipitating factors act acutely, risk factors are generally present over an extended period and contribute to the overall likelihood of developing HE. The two types of factors require different approaches, with risk factors being more susceptible to prevention. The aim of this review is to describe the most important risk factors (such as severity of liver disease, previous episode of HE, minimal/covert HE, spontaneous and iatrogenic shunt, malnutrition, chronic therapies, metabolic diseases) for the development of HE and how to prevent it.
Collapse
Affiliation(s)
- Lucia Lapenna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Di Cola
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Manuela Merli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
29
|
Harinstein ME, Gandolfo C, Gruttadauria S, Accardo C, Crespo G, VanWagner LB, Humar A. Cardiovascular disease assessment and management in liver transplantation. Eur Heart J 2024; 45:4399-4413. [PMID: 39152050 DOI: 10.1093/eurheartj/ehae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/21/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
The prevalence and mortality related to end-stage liver disease (ESLD) continue to rise globally. Liver transplant (LT) recipients continue to be older and have inherently more comorbidities. Among these, cardiac disease is one of the three main causes of morbidity and mortality after LT. Several reasons exist including the high prevalence of associated risk factors, which can also be attributed to the rise in the proportion of patients undergoing LT for metabolic dysfunction-associated steatohepatitis (MASH). Additionally, as people age, the prevalence of now treatable cardiac conditions, including coronary artery disease (CAD), cardiomyopathies, significant valvular heart disease, pulmonary hypertension, and arrhythmias rises, making the need to treat these conditions critical to optimize outcomes. There is an emerging body of literature regarding CAD screening in patients with ESLD, however, there is a paucity of strong evidence to support the guidance regarding the management of cardiac conditions in the pre-LT and perioperative settings. This has resulted in significant variations in assessment strategies and clinical management of cardiac disease in LT candidates between transplant centres, which impacts LT candidacy based on a transplant centre's risk tolerance and comfort level for caring for patients with concomitant cardiac disease. Performing a comprehensive assessment and understanding the potential approaches to the management of ESLD patients with cardiac conditions may increase the acceptance of patients, who appear too complex, but rather require extra evaluation and may be reasonable candidates for LT. The unique physiology of ESLD can profoundly influence preoperative assessment, perioperative management, and outcomes associated with underlying cardiac pathology, and requires a thoughtful multidisciplinary approach. The strategies proposed in this manuscript attempt to review the latest expert experience and opinions and provide guidance to practicing clinicians who assess and treat patients being considered for LT. These topics also highlight the gaps that exist in the comprehensive care of LT patients and the need for future investigations in this field.
Collapse
Affiliation(s)
- Matthew E Harinstein
- Division of Cardiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caterina Gandolfo
- Unit of Interventional Cardiology, Department of Cardiothoracic Surgery, UPMC IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| | - Salvatore Gruttadauria
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, UPMC IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Caterina Accardo
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, UPMC IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| | - Gonzalo Crespo
- Liver Transplant Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Lisa B VanWagner
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abhinav Humar
- Division of Transplantation, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Laghi L, Ortiz MÀ, Rossi G, Román E, Mengucci C, Cantó E, Biagini L, Sánchez E, Mulet M, García-Osuna Á, Urgell E, Kaur N, Poca M, Padrós J, Nadal MJ, Cuyàs B, Alvarado E, Vidal S, Juanes E, Ferrero-Gregori A, Escorsell À, Soriano G. Biomarkers of Frailty in Patients with Advanced Chronic Liver Disease Undergoing a Multifactorial Intervention Consisting of Home Exercise, Branched-Chain Amino Acids, and Probiotics. Biomolecules 2024; 14:1410. [PMID: 39595586 PMCID: PMC11592179 DOI: 10.3390/biom14111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Frailty in cirrhosis or advanced chronic liver disease (ACLD) is a relevant prognostic factor. In the present study, we aimed to analyze potential biomarkers associated with frailty and its improvement in patients with ACLD. We analyzed the serum of outpatients with ACLD who participated in a previous study (Román, Hepatol Commun 2024) in which frailty was assessed using the liver frailty index (LFI), and patients who were frail or prefrail were randomized to a multifactorial intervention (home exercise, branched-chain amino acids, and probiotics) or control for 12 months. We determined a biomarker battery of inflammation, bacterial translocation, and liver damage in blood and urine and blood metabolomics by 1H-NMR. Thirty-seven patients were included. According to the LFI, 32 patients were frail or prefrail, and 5 were robust. At baseline, LFI correlated with LBP, sCD163, mtDNA, FGF-21, urinary NGAL, urinary claudin-3, and the metabolites mannose, ethanol, and isoleucine. During the study, patients in the intervention group showed an improvement in LFI and a decrease in CRP, LBP, sCD163, and ccK18 compared to the control group. Metabolomics showed a decrease in dimethyl sulfone and creatinine and an increase in malonate, ornithine, isoleucine, and valine in the intervention group. We conclude that frailty in patients with ACLD is associated with biomarkers of systemic inflammation, bacterial translocation, and liver damage, and alterations of amino acid and short-chain fatty acid metabolism.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Maria Àngels Ortiz
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Giacomo Rossi
- School of Veterinary Medical Sciences, University of Camerino, 62032 Camerino, Italy; (G.R.); (L.B.)
| | - Eva Román
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- University Nursing School EUI-Sant Pau, 08025 Barcelona, Spain
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Carlo Mengucci
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Elisabet Cantó
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Lucia Biagini
- School of Veterinary Medical Sciences, University of Camerino, 62032 Camerino, Italy; (G.R.); (L.B.)
| | - Elisabet Sánchez
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
| | - Maria Mulet
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Álvaro García-Osuna
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (Á.G.-O.); (E.U.)
| | - Eulàlia Urgell
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (Á.G.-O.); (E.U.)
| | - Naujot Kaur
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Maria Poca
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Josep Padrós
- Department of Physical Medicine and Rehabilitation, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (J.P.); (M.J.N.)
| | - Maria Josep Nadal
- Department of Physical Medicine and Rehabilitation, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (J.P.); (M.J.N.)
| | - Berta Cuyàs
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Edilmar Alvarado
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Silvia Vidal
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Juanes
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Andreu Ferrero-Gregori
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Àngels Escorsell
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
- Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - German Soriano
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
- Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
32
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
33
|
Wang Q, Tang X, Qiao W, Sun L, Shi H, Chen D, Xu B, Liu Y, Zhao J, Huang C, Jin R. Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis. Microbes Infect 2024; 26:105368. [PMID: 38797428 DOI: 10.1016/j.micinf.2024.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis. METHOD This study focuses on utilizing the 16S rRNA gene sequencing method to screen for differences in gut microbiota in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis. RESULT PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of Faecalibacterium and Gemmiger bacteria significantly decreases, while the abundance of Veillonella and Streptococcus significantly increases. Furthermore, machine learning methods identify Streptococcus and Gemmiger as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902). CONCLUSION Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. Streptococcus and Gemmiger may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaomeng Tang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Wenying Qiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China
| | - Lina Sun
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Han Shi
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Juan Zhao
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China.
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China.
| |
Collapse
|
34
|
Efremova I, Alieva A, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Zharikov Y, Nerestyuk Y, Karchevskaya A, Ivashkin V. Akkermansia muciniphila is associated with normal muscle mass and Eggerthella is related with sarcopenia in cirrhosis. Front Nutr 2024; 11:1438897. [PMID: 39539377 PMCID: PMC11557486 DOI: 10.3389/fnut.2024.1438897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sarcopenia and gut dysbiosis are common in cirrhosis. The aim is to study the correlations between the gut microbiota taxa and muscle mass level in cirrhosis. METHODS The study included 40 cirrhosis patients including 18 patients with sarcopenia. The gut microbiota composition was assessed using amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. The skeletal muscle mass, subcutaneous and visceral fat levels were assessed with abdominal computed tomography as skeletal muscle, subcutaneous and visceral fat indices (SMI, SFI and VFI). RESULTS Patients with sarcopenia had more relative abundance (RA) of Agathobacter, Anaerostipes, Butyricicoccus, Dorea, Eggerthella, Microbacteriaceae, Veillonella and less RA of Akkermansiaceae, Akkermansia muciniphila, Verrucomicrobiae and Bilophila compared to patients with normal muscle mass. SMI directly correlated with RA of Akkermansia, Alistipes indistinctus, Anaerotruncus, Atopobiaceae, Bacteroides clarus, Bacteroides salyersiae, Barnesiellaceae, Bilophila wadsworthia, Pseudomonadota, Olsenella, and Parabacteroides distasonis, and negatively correlated with RA of Anaerostipes and Eggerthella. Sarcopenia was detected in 20.0% patients whose gut microbiota had Akkermansia but not Eggerthella, and in all the patients, whose gut microbiota had Eggerthella but not Akkermansia. The Akkermansia and Eggerthella abundances were independent determinants of SMI. RA of Akkermansia, Akkermansia muciniphila, Akkermansiaceae, Bacteroides salyersiae, Barnesiella, Bilophila, Desulfobacterota, Verrucomicrobiota and other taxa correlated positively and RA of Anaerovoracaceae, Elusimicrobiaceae, Elusimicrobium, Kiritimatiellae, Spirochaetota, and other taxa correlated negatively with the SFI. RA of Alistripes, Romboutsia, Succinivibrio, and Succinivibrionaceae correlated positively and RA of Bacteroides thetaiotaomicron correlated negatively with VFI. CONCLUSION The muscle mass level in cirrhosis correlates with the abundance of several gut microbiota taxa, of which Akkermansia and Eggerthella seems to be the most important.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Yury Zharikov
- Department of Anatomy, Sechenov University, Moscow, Russia
| | | | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| |
Collapse
|
35
|
Yi H, Xu H. Novel biomarkers for hepatocellular carcinoma detection and treatment. Hepatobiliary Surg Nutr 2024; 13:901-904. [PMID: 39507726 PMCID: PMC11534769 DOI: 10.21037/hbsn-24-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Hongyuan Yi
- Department of Hepatic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haifeng Xu
- Department of Hepatic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
37
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Mantovani A, Longo L, Thoen RU, Rampelotto PH, Salinas R, Guerreiro GTS, Álvares-da-Silva MR. Firmicutes/Bacteroidetes and Firmicutes/Proteobacteria ratios are associated with worse prognosis in a cohort of Latin American patients with cirrhosis. Clinics (Sao Paulo) 2024; 79:100471. [PMID: 39098143 PMCID: PMC11345307 DOI: 10.1016/j.clinsp.2024.100471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Some evidence suggests an association between gut dysbiosis and cirrhosis progression. The authors investigated Gut Microbiome (GM) influence on 90-day mortality and hospitalization/rehospitalization rates in cirrhotic patients. METHODS Compensated/decompensated outpatients and decompensated inpatients were prospectively included and compared to healthy controls. Clinical, laboratory, GM, and two ratios between phyla were evaluated. Patients were followed up for 90 days for hospitalization/rehospitalization and mortality. RESULTS 165 individuals were included (50 compensated, 49 decompensated outpatients; 36 decompensated inpatients; 30 healthy), 48.5 % female, mean age was 61, main cirrhosis etiology was hepatitis C (27.3 %), and mostly Child-Pugh (CP) B patients, median MELD of 13. As liver disease progressed, microbiota diversity decreased between the groups (p = 0.05; p < 0.004). There were 9 deaths and 22 hospitalizations or rehospitalizations. GM composition had correlation with norfloxacin (p = 0.36, p = 0.04), encephalopathy (p = 0.31, p = 0.01), lactulose (p = 0.26, p = 0.01), 90-day mortality (p = 0.22, p = 0.04), CP (p = 0.17, p = 0.01), previous 6-month antibiotic use (p = 0.16, p = 0.01), MELD (p = 0.145, p = 0.01), ALBI (p = 0.1, p = 0.04) and 90-day hospitalization/rehospitalization (p = 0.08, p = 0.03). Firmicutes/Bacteroidetes (F/B) and Firmicutes/Proteobacteria (F/P) ratios were progressively lower and more significant and had an association with 90-day mortality (p < 0.001). Three MELD set-points (≥ 15, 18 and 20) were significantly associated with both ratios, with similar accuracies. CONCLUSIONS GM dysbiosis was associated with higher CP, MELD, 90-day mortality and hospitalization/rehospitalization. F/B and F/P ratios were associated with 90-day mortality.
Collapse
Affiliation(s)
- Augusto Mantovani
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Rutiane Ullmann Thoen
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raul Salinas
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq Researcher, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Komorniak N, Pawlus J, Gaweł K, Hawryłkowicz V, Stachowska E. Cholelithiasis, Gut Microbiota and Bile Acids after Bariatric Surgery-Can Cholelithiasis Be Prevented by Modulating the Microbiota? A Literature Review. Nutrients 2024; 16:2551. [PMID: 39125429 PMCID: PMC11314327 DOI: 10.3390/nu16152551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cholelithiasis is one of the more common complications following bariatric surgery. This may be related to the rapid weight loss during this period, although the exact mechanism of gallstone formation after bariatric surgery has not been fully elucidated. METHODS The present literature review focuses on risk factors, prevention options and the impact of the gut microbiota on the development of gallbladder stones after bariatric surgery. RESULTS A potential risk factor for the development of cholelithiasis after bariatric surgery may be changes in the composition of the intestinal microbiota and bile acids. One of the bile acids-ursodeoxycholic acid-is considered to reduce the concentration of mucin proteins and thus contribute to reducing the formation of cholesterol crystals in patients with cholelithiasis. Additionally, it reduces the risk of both asymptomatic and symptomatic gallstones after bariatric surgery. Patients who developed gallstones after bariatric surgery had a higher abundance of Ruminococcus gnavus and those who did not develop cholelithiasis had a higher abundance of Lactobacillaceae and Enterobacteriaceae. CONCLUSION The exact mechanism of gallstone formation after bariatric surgery has not yet been clarified. Research suggests that the intestinal microbiota and bile acids may have an important role in this.
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Jan Pawlus
- Department of General Mini-Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Katarzyna Gaweł
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| |
Collapse
|
40
|
Thomsen KL, Sørensen M, Kjærgaard K, Eriksen PL, Lauridsen MM, Vilstrup H. Cerebral Aspects of Portal Hypertension: Hepatic Encephalopathy. Clin Liver Dis 2024; 28:541-554. [PMID: 38945642 DOI: 10.1016/j.cld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Portal hypertension has cerebral consequences via its causes and complications, namely hepatic encephalopathy (HE), a common and devastating brain disturbance caused by liver insufficiency and portosystemic shunting. The pathogenesis involves hyperammonemia and systemic inflammation. Symptoms are disturbed personality and reduced attention. HE is minimal or grades I to IV (coma). Bouts of HE are episodic and often recurrent. Initial treatment is of events that precipitated the episode and exclusion of nonhepatic causes. Specific anti-HE treatment is lactulose. By recurrence, rifaximin is add-on. Anti-HE treatment is efficacious also for prophylaxis, but emergence of HE marks advanced liver disease and a dismal prognosis.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark.
| | - Michael Sørensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark; Department of Internal Medicine, Viborg Regional Hospital, Heibergs Allé 5A, 8800 Viborg, Denmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Mette Munk Lauridsen
- Department of Gastroenterology and Hepatology, University Hospital of South Denmark, Finsensgade 35, 6700 Esbjerg, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| |
Collapse
|
41
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
42
|
Huang XQ, Ai YJ, Li F, Ye ST, Wang JH, Zhang R, Zhang W, Zhu YL, Chen SY. Impact of rifaximin on cirrhosis complications and gastric microbiota in patients with gastroesophageal variceal bleeding: A pilot randomized controlled trial. J Dig Dis 2024; 25:504-516. [PMID: 39443081 DOI: 10.1111/1751-2980.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES The application of rifaximin, a non-absorbable antibiotic, in hepatic encephalopathy (HE) has been well established; however, its effect on other complications in cirrhotic patients with previous gastroesophageal variceal bleeding (GEVB) remains unclear. Therefore, we performed a pilot randomized controlled trial aiming to evaluate the impact of rifaximin on cirrhosis-related complications and changes in gastric microbiota. METHODS Eighty cirrhotic patients who received prophylactic endoscopic treatment for variceal rebleeding were randomly assigned to the control or rifaximin treatment group (rifaximin 400 mg twice daily for 8 weeks). Primary outcome was the total liver-related score, consisting of changes in cirrhosis-related complications including rebleeding, ascites, HE and portal vein thrombosis (PVT). The 16S rDNA sequencing analysis was conducted with gastric lavage fluid samples for the analysis of gastric microbiota. RESULTS During the 8-week follow-up, the total liver-related score decreased significantly upon rifaximin therapy (-0.35 ± 0.14 vs 0.05 ± 0.14, p = 0.0465) as well as serum C-reactive protein (CRP) (p = 0.019) and interleukin-8 (p = 0.025) compared with the control group. The rate of PVT recanalization was significantly higher in the rifaximin group (p = 0.012). Prominent difference in gastric microbiota between the two groups was observed, and the rifaximin group had a higher abundance of several taxa which were dysregulated in the progression of cirrhosis. CRP was correlated with several taxa including Alphaproteobacteria, Rhizobiales and Collinsella. CONCLUSIONS Rifaximin may improve cirrhosis-related complications, including PVT, in patients with previous GEVB through anti-inflammatory and microbiota-modulating functions. TRIAL REGISTRATION NUMBER NCT02991612.
Collapse
Affiliation(s)
- Xiao Quan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Ying Jie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Si Tao Ye
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Hao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Yu Li Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Yao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Incicco S, Angeli P, Piano S. Infectious Complications of Portal Hypertension. Clin Liver Dis 2024; 28:525-539. [PMID: 38945641 DOI: 10.1016/j.cld.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Patients with cirrhosis and clinically significant portal hypertension are at high risk of developing bacterial infections (BIs) that are the most common trigger of acute decompensation and acute-on-chronic liver failure. Furthermore, after decompensation, the risk of developing BIs further increases in an ominous vicious circle. BIs may be subtle, and they should be ruled out in all patients at admission and in case of deterioration. Timely administration of adequate empirical antibiotics is the cornerstone of treatment. Herein, we reviewed current evidences about pathogenesis, clinical implications and management of BIs in patients with cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Simone Incicco
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University and Hospital of Padova, via Giustiniani 2, Padova 35100, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University and Hospital of Padova, via Giustiniani 2, Padova 35100, Italy
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University and Hospital of Padova, via Giustiniani 2, Padova 35100, Italy.
| |
Collapse
|
44
|
Barrera F, Uribe J, Olvares N, Huerta P, Cabrera D, Romero-Gómez M. The Janus of a disease: Diabetes and metabolic dysfunction-associated fatty liver disease. Ann Hepatol 2024; 29:101501. [PMID: 38631419 DOI: 10.1016/j.aohep.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease and Diabetes Mellitus are two prevalent metabolic disorders that often coexist and synergistically contribute to the progression of each other. Several pathophysiological pathways are involved in the association, including insulin resistance, inflammation, and lipotoxicity, providing a foundation for understanding the complex interrelationships between these conditions. The presence of MASLD has a significant impact on diabetes risk and the development of microvascular and macrovascular complications, and diabetes significantly contributes to an increased risk of liver fibrosis progression in MASLD and the development of hepatocellular carcinoma. Moreover, both pathologies have a synergistic effect on cardiovascular events and mortality. Therapeutic interventions targeting MASLD and diabetes are discussed, considering lifestyle modifications, pharmacological agents, and emerging treatment modalities. The review also addresses the challenges in managing these comorbidities, such as the need for personalized approaches and the potential impact on cardiovascular health. The insights gleaned from this analysis can inform clinicians, researchers, and policymakers in developing integrated strategies for preventing, diagnosing, and managing these metabolic disorders.
Collapse
Affiliation(s)
- Francisco Barrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Javier Uribe
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nixa Olvares
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Programa de Immunogenética e Inmunología traslacional, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paula Huerta
- Programa de Medicina Interna, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile
| | - Daniel Cabrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Bernardo O Higgins, Santiago, Chile
| | - Manuel Romero-Gómez
- Enfermedades Digestivas y Ciberehd, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (CSIC/HUVR/US), Universidad de Sevilla, Sevilla, España.
| |
Collapse
|
45
|
Ye Y, Xia C, Hu H, Tang S, Huan H. Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population. Front Med (Lausanne) 2024; 11:1404442. [PMID: 39015788 PMCID: PMC11250582 DOI: 10.3389/fmed.2024.1404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Portal hypertension (PHT) presents a challenging issue of liver cirrhosis. This study aims to identify novel biomarkers for severe PHT (SPHT) and explore the pathophysiological mechanisms underlying PHT progression. Methods Twenty-three Tibetan cirrhotic patients who underwent hepatic venous pressure gradient (HVPG) measurement were included. Eleven patients had an HVPG between 5 mmHg and 15 mmHg (MPHT), while 12 had an HVPG ≥16 mmHg (SPHT). Peripheral sera were analyzed using liquid chromatograph-mass spectrometer for metabolomic assessment. An additional 14 patients were recruited for validation of metabolites. Results Seven hundred forty-five metabolites were detected and significant differences in metabolomics between MPHT and SPHT patients were observed. Employing a threshold of p < 0.05 and a variable importance in projection score >1, 153 differential metabolites were identified. A significant number of these metabolites were lipids and lipid-like molecules. Pisumionoside and N-decanoylglycine (N-DG) exhibited the highest area under the curve (AUC) values (0.947 and 0.9091, respectively). Additional differential metabolites with AUC >0.8 included 6-(4-ethyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid, sphinganine 1-phosphate, 4-hydroxytriazolam, 4,5-dihydroorotic acid, 6-hydroxy-1H-indole-3-acetamide, 7alpha-(thiomethyl)spironolactone, 6-deoxohomodolichosterone, glutaminylisoleucine, taurocholic acid 3-sulfate, and Phe Ser. Enzyme-linked immunosorbent assay further confirmed elevated levels of sphinganine 1-phosphate, N-DG, and serotonin in SPHT patients. Significant disruptions in linoleic acid, amino acid, sphingolipid metabolisms, and the citrate cycle were observed in SPHT patients. Conclusion Pisumionoside and N-DG are identified as promising biomarkers for SPHT. The progression of PHT may be associated with disturbances in lipid, linoleic acid, and amino acid metabolisms, as well as alterations in the citrate cycle.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Hu
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Huan
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
46
|
Kotlyarov S. Importance of the gut microbiota in the gut-liver axis in normal and liver disease. World J Hepatol 2024; 16:878-882. [PMID: 38948437 PMCID: PMC11212653 DOI: 10.4254/wjh.v16.i6.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The gut microbiota is of growing interest to clinicians and researchers. This is because there is a growing understanding that the gut microbiota performs many different functions, including involvement in metabolic and immune processes that are systemic in nature. The liver, with its important role in detoxifying and metabolizing products from the gut, is at the forefront of interactions with the gut microbiota. Many details of these interactions are not yet known to clinicians and researchers, but there is growing evidence that normal gut microbiota function is important for liver health. At the same time, factors affecting the gut microbiota, including nutrition or medications, may also have an effect through the gut-liver axis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia.
| |
Collapse
|
47
|
Malaeva EG, Stoma IO. Microbiota and Long-Term Prognosis in Liver Cirrhosis. THE RUSSIAN ARCHIVES OF INTERNAL MEDICINE 2024; 14:213-220. [DOI: 10.20514/2226-6704-2024-14-3-213-220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Purpose. To compare the gut microbiota in patients with an anamnesis of liver cirrhosis of less than and more than 10 years. Materials and methods. A one-stage study and metagenomic fecal sequencing of 40 hospitalized patients with liver cirrhosis were conducted, of which 35 were with a history of cirrhosis of less than 10 years and 5 — more than 10 years. High-throughput sequencing was performed using a MiSeq genetic analyzer (Illumina, USA) and a protocol based on analysis of 16s rRNA gene variable regions. The study was registered in Clinicaltrials.gov (NCT05335213). Data analysis was performed using Kraken2 algorithm. The analysis of the difference in the proportional composition of the microbiome between the groups was carried out using polynomial Dirichlet modeling (Likelihood-Ratio-Test Statistics: Several Sample Dirichlet-Multinomial Test Comparison), the Mann-Whitney test with preliminary data transformation by CLR transformation (Centered log ratio transform), differential analysis of gene expression based on negative binomial distribution (DESeq2). The significance level α assumed to be 0.05. Results. In patients with liver cirrhosis, the dominant phylotypes of fecal microbiota are Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, minor components include taxa Aquificae, Coprothermobacterota, Tenericutes, Verrucomicrobia, Chloroflexi, Deinococcus-Thermus, Thermotogae, Chlorobi. Significant differences have been established in the density of dominant and minor philotypes of gut bacteria, such as Actinobacteria, Proteobacteria, Tenericutes, Coprothermobacterota, as well as some classes, genera, bacterial species in patients with different disease duration (p < 0.05). Conclusion. There is no doubt about the effect of gut microbiota on compensation for liver function. The established differences in the composition of the microbiota in patients with liver cirrhosis depending on survival over 10 years are of scientific and practical importance for the formation of an evidence-based approach to the use of microbiome-associated interventions
Collapse
|
48
|
Thanapirom K, Suksawatamnuay S, Wejnaruemarn S, Thaimai P, Siripon N, Ananchuensook P, Sriphoosanaphan S, Vanichanan J, Treeprasertsuk S, Poovorawan Y, Komolmit P. Bacterial DNA Translocation Is Associated With Overt Hepatic Encephalopathy and Mortality in Patients With Cirrhosis. Clin Transl Gastroenterol 2024; 15:e00697. [PMID: 38488171 PMCID: PMC11124729 DOI: 10.14309/ctg.0000000000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Data on the relationship between bacterial translocation, hepatic encephalopathy (HE), and mortality are scarce. This study aimed to assess the association between bacterial DNA (bactDNA) translocation, inflammatory response, ammonia levels, and severity of HE in patients with cirrhosis, as well as the role of bactDNA translocation in predicting mortality. METHODS Cirrhotic patients without bacterial infection were prospectively enrolled between June 2022 and January 2023. Grading of HE was classified by the West Haven Criteria and Psychometric Hepatic Encephalopathy Score ≤ -5. RESULTS Overall, 294 cirrhotic patients were enrolled, with 92 (31.3%) and 58 (19.7%) having covert and overt HE, respectively. BactDNA translocation was detected in 36.1% of patients (n = 106). Patients with overt HE had more bactDNA translocation and higher serum lipopolysaccharide-binding protein (LBP), tumor necrosis factor-α, interleukin-6 (IL-6), and ammonia levels than those without HE. Patients with detectable bactDNA had higher white cell counts and serum LBP and IL-6 levels than those without. By contrast, bactDNA, serum LBP, and soluble CD14 levels were comparable between patients with covert HE and those without HE. The multivariate Cox regression analysis revealed that bactDNA translocation (hazard ratio [HR] = 2.49, 95% confidence interval [CI]: 1.22-5.11), Model for End-Stage Liver Disease score (HR = 1.12, 95% CI: 1.09-1.16), age (HR = 1.05, 95% CI: 1.000-1.002), and baseline IL-6 (HR = 1.001, 95% CI: 1.000-1.002) were independent factors associated with 6-month mortality. DISCUSSION Apart from hyperammonemia, bactDNA translocation is a possible factor associated with overt HE in cirrhotic patients. BactDNA translocation and IL-6 are independent factors associated with 6-month mortality.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sirinporn Suksawatamnuay
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Salisa Wejnaruemarn
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panarat Thaimai
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nipaporn Siripon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Prooksa Ananchuensook
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supachaya Sriphoosanaphan
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yong Poovorawan
- Centers of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Piyawat Komolmit
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand
- Excellence Center in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
49
|
Colombo C, Lanfranchi C, Tosetti G, Corti F, Primignani M. Management of liver disease and portal hypertension in cystic fibrosis: a review. Expert Rev Respir Med 2024; 18:269-281. [PMID: 38962827 DOI: 10.1080/17476348.2024.2365842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Cystic fibrosis (CF)-associated liver disease can significantly affect the quality of life and survival of people with CF. The hepatobiliary manifestations in CF are various, with focal/multilobular biliary cirrhosis more common in children and porto-sinusoidal vascular disease (PSVD) in young adults. Portal hypertensive complications, particularly bleeding from esophagogastric varices and hypersplenism are common, while liver failure is rarer and mainly linked to biliary disease. AREAS COVERED This review explores current therapeutic options for CF-associated liver disease, presenting ongoing studies and new insights into parthenogenesis for potential future therapies. EXPERT OPINION Monitoring for signs of portal hypertension is essential. Limited evidence supports ursodeoxycholic acid (UDCA) efficacy in halting CF liver disease progression. The effect of cystic fibrosis transmembrane conductance regulator (CFTR) modulators on liver outcomes lacks definitive data, since patients with CF-related liver disease were excluded from trials due to potential hepatotoxicity. A proposed approach involves using UDCA and modulators in early stages, along with anti-inflammatory agents, with further therapeutic strategies awaiting randomized trials. Prevention of portal hypertensive bleeding includes endoscopic sclerotherapy or ligation of esophageal varices. Nonselective beta-blockers may also prevent bleeding and could be cautiously implemented. Other non-etiological treatments require investigation.
Collapse
Affiliation(s)
- Carla Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Chiara Lanfranchi
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giulia Tosetti
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiola Corti
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Massimo Primignani
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
50
|
Ohikere K, Wong RJ. Hepatic Encephalopathy: Clinical Manifestations. Clin Liver Dis 2024; 28:253-263. [PMID: 38548437 DOI: 10.1016/j.cld.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hepatic encephalopathy (HE) can occur as a complication of chronic liver disease as well as acute liver failure. HE is associated with significantly increased morbidity and worse patient outcomes. The clinical manifestation of HE ranges from early less-severe presentations that may only be accurately detected on dedicated psychomotor diagnostic testing to overt alterations in cognition and mental status to the most severe form of coma. Greater awareness of the clinical manifestations of HE across the spectrum of symptom severity is critical for early identification and timely initiation of appropriate therapy to improve patient outcomes.
Collapse
Affiliation(s)
- Kabiru Ohikere
- Value Based Care Department, San Francisco Health Network / Zuckerberg San Francisco General Hospital and Trauma Center
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine; Gastroenterology Section, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|