1
|
Pecani M, Andreozzi P, Cangemi R, Corica B, Miglionico M, Romiti GF, Stefanini L, Raparelli V, Basili S. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD. J Clin Med 2025; 14:2750. [PMID: 40283580 PMCID: PMC12028215 DOI: 10.3390/jcm14082750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), encompasses a spectrum of liver diseases characterized by hepatic steatosis, the presence of at least one cardiometabolic risk factor, and no other apparent cause. Metabolic syndrome (MetS) is a cluster of clinical conditions associated with increased risk of cardiovascular disease, type 2 diabetes, and overall morbidity and mortality. This narrative review summarizes the changes in the management of people with MetS and NAFLD/MASLD from screening to therapeutic strategies that have occurred in the last decades. Specifically, we underline the clinical importance of considering the different impacts of simple steatosis and advanced fibrosis and provide an up-to-date overview on non-invasive diagnostic tests (i.e., imaging and serum biomarkers), which now offer acceptable accuracy and are globally more accessible. Early detection of MetS and MASLD is a top priority as it allows for timely interventions, primarily through lifestyle modification. The liver and cardiovascular benefits of a global and multidimensional approach are not negligible. Therefore, a holistic approach to both conditions, MetS and related chronic liver disease, should be applied to improve overall health and longevity.
Collapse
Affiliation(s)
- Marin Pecani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Andreozzi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Bernadette Corica
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, 41121 Modena, Italy
| | - Marzia Miglionico
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Huang CY, Luo ZZ, Huang WP, Lin LP, Yao YT, Zhuang HX, Xu QY, Lai YD. Research hotspots and trends in gut microbiota and nonalcoholic fatty liver disease: A bibliometric study. World J Hepatol 2025; 17:102034. [PMID: 39871912 PMCID: PMC11736468 DOI: 10.4254/wjh.v17.i1.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Recent research indicates that the intestinal microbial community, known as the gut microbiota, may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). To understand this relationship, this study used a comprehensive bibliometric analysis to explore and analyze the currently little-known connection between gut microbiota and NAFLD, as well as new findings and possible future pathways in this field. AIM To provide an in-depth analysis of the current focus issues and research developments on the interaction between gut microbiota and NAFLD. METHODS In this study, all data were collected from the Web of Science Core Collection, and the related searches were completed on one day (February 21, 2024). The data were stored in plain text format to facilitate subsequent analysis. VOSviewer 1.6.20 and CiteSpace 6.1R6 Basic were used for knowledge graph construction and bibliometric analysis. RESULTS The study included a total of 1256 articles published from 2013 to 2023, and the number of published papers demonstrated an upward trend, reaching a peak in the last two years. The University of California, San Diego held the highest citation count, while Shanghai University of Traditional Chinese Medicine in China led in the number of published works. The journal "Nutrients" had the highest publication count, while "Hepatology" was the most frequently cited. South Korean author Suk Ki Tae was the most prolific researcher. The co-cited keyword cluster labels revealed ten major clusters, namely cortisol, endothelial dysfunction, carbohydrate metabolism, myocardial infarction, non-alcoholic steatohepatitis, lipotoxicity, glucagon-like peptide-1, non-islet dependent, ethnicity, and microRNA. Keyword outbreak analysis highlighted metabolic syndrome, hepatic steatosis, insulin resistance, hepatocellular carcinoma, cardiovascular disease, intestinal permeability, and intestinal bacterial overgrowth as prominent areas of intense research. CONCLUSION Through the quantitative analysis of relevant literature, the current research focus and direction of gut microbiota and NAFLD can be more clearly understood, which helps us better understand the pathogenesis of NAFLD, and also opens up innovative solutions and strategies for the treatment of NAFLD.
Collapse
Affiliation(s)
- Cai-Yun Huang
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Zhong-Zhi Luo
- Department of Electrocardiogram, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Wei-Ping Huang
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Li-Ping Lin
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - You-Ting Yao
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Han-Xu Zhuang
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Qiu-Yong Xu
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Ya-Dong Lai
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China.
| |
Collapse
|
3
|
Yeoh A, Yang Z, Cheung R, Do A, Ahmed A, Wong RJ. Incidence of Cirrhosis and Hepatocellular Carcinoma Among Veterans With Noncirrhotic Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Gastroenterol 2024; 58:718-725. [PMID: 37678412 DOI: 10.1097/mcg.0000000000001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND AND AIMS Despite the high prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD), the long-term incidence of cirrhosis or hepatocellular carcinoma (HCC) among adults with MAFLD is not well described. Using a national cohort of United States Veterans, we evaluated the overall incidence and predictors of cirrhosis and HCC among adults with noncirrhotic MAFLD. METHODS Data from the 2010 to 2022 Veterans Affairs database were used to identify adults with noncirrhotic MAFLD using established definitions. Five and 10-year incidence of cirrhosis and HCC were assessed and stratified by demographics and relevant clinical variables. Multivariate Cox proportional hazard models were utilized to determine predictors of cirrhosis and HCC. RESULTS Among 969,253 patients with noncirrhotic MAFLD (94.5% males, 70.2% non-Hispanic white, mean age of 62.7 ± 12.2 y), the 10-year incidence of cirrhosis and HCC was 3.70% (95% CI: 3.66-3.74) and 0.69% (95% CI: 0.67-0.70), respectively. When stratified by race/ethnicity, the 10-year incidence of cirrhosis was lowest among Asians (2.63%, 95% CI: 2.37-2.88) and highest among Hispanics (4.60%, 95% CI: 4.45-4.75), a pattern also observed with HCC. Significant disparities in risk of cirrhosis or HCC were observed when stratified by sex, substance use, and comorbidities. Risks of cirrhosis and HCC were highest in patients with baseline fibrosis-4 >2.67. CONCLUSION This large study provides important epidemiological data describing the natural history of adults with MAFLD. Disparities in risk of cirrhosis and HCC were observed by demographic and clinical characteristics, emphasizing the importance of early identification of MAFLD with modifiable high-risk features to implement earlier interventions to improve long-term outcomes.
Collapse
Affiliation(s)
- Aaron Yeoh
- Department of Medicine, Division of Gastroenterology, Stanford
| | - Zeyuan Yang
- Gastroenterology Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Ramsey Cheung
- Department of Medicine, Division of Gastroenterology, Stanford
- Gastroenterology Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Albert Do
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, CT
| | - Aijaz Ahmed
- Department of Medicine, Division of Gastroenterology, Stanford
| | - Robert J Wong
- Department of Medicine, Division of Gastroenterology, Stanford
- Gastroenterology Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
4
|
Risikesan J, Heebøll S, Kumarathas I, Søndergaard E, Johansen RF, Ringgaard S, Aagaard NK, Sandahl TD, Villadsen GE, Gormsen LC, Frystyk J, Jensen MD, Grønbæk H, Nielsen S. Similar insulin regulation of splanchnic FFA and VLDL-TG in men with nonalcoholic hepatic steatosis and steatohepatitis. J Lipid Res 2024; 65:100580. [PMID: 38901559 PMCID: PMC11301221 DOI: 10.1016/j.jlr.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to determine whether obese men with nonalcoholic fatty liver disease (NAFLD) display differences between those with simple steatosis versus steatohepatitis (NASH) in splanchnic and hepatic FFA and VLDL-triglycerides (VLDL-TG) balances. The study involved 17 obese men with biopsy-proven NAFLD (9 with NASH and 8 with simple steatosis). We used hepatic vein catheterization in combination with [3H]palmitate and [14C]VLDL-TG tracers to measure splanchnic palmitate and VLDL-TG uptake and release rates during basal and hyperinsulinemic conditions. Indocyanine green was used to measure splanchnic plasma flow. Splanchnic palmitate uptake was similar in the two groups and significantly reduced during hyperinsulinemia (NASH: 62 (48-77) versus 38 (18-58) μmol/min; simple steatosis: 62 (46-78) versus 45 (25-65) μmol/min, mean (95% CI), basal versus clamp periods, respectively, P = 0.02 time-effect). Splanchnic palmitate release was also comparable between groups and nonsignificantly diminished during hyperinsulinemia. The percent palmitate delivered to the liver originating from visceral adipose tissue lipolysis was similar and unchanged by hyperinsulinemia. Splanchnic uptake and release of VLDL-TG were similar between groups. Hyperinsulinemia suppressed VLDL-TG release (P <0.05 time-effect) in both groups. Insulin-mediated glucose disposal was similar in the two groups (P = 0.54). Obese men with NASH and simple steatosis have similar splanchnic uptake and release of FFA and VLDL-TG and a similar proportion of FFA from visceral adipose tissue lipolysis delivered to the liver. These results demonstrate that the splanchnic balances of FFA and VLDL-TG do not differ between obese men with NASH and those with simple steatosis.
Collapse
Affiliation(s)
| | - Sara Heebøll
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark; Department of Endocrinology and Internal Medicine, AUH, Aarhus, Denmark
| | | | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Rakel F Johansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark
| | | | - Niels K Aagaard
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gerda E Villadsen
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET Centre, AUH, Aarhus, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Golabi P, Owrangi S, Younossi ZM. Global perspective on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis - prevalence, clinical impact, economic implications and management strategies. Aliment Pharmacol Ther 2024; 59 Suppl 1:S1-S9. [PMID: 38813821 DOI: 10.1111/apt.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The metabolically-based liver disease, nonalcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease currently affecting 38% of the world's adult population. NAFLD can be progressive leading to nonalcoholic steatohepatitis (NASH), liver transplantation, liver cancer, liver-related mortality and is associated with decreased quality of life from impaired physical functioning and increased healthcare resource utilisation. However, screening for NAFLD is cost-prohibitive but screening for high risk NAFLD (NAFLD with F2 fibrosis or greater) is imperative. AIM To review the global perspective on NAFLD and NASH METHODS: We retrieved articles from PubMed using search terms NAFLD, prevalence, clinical burden, economic burden and management strategies. RESULTS NAFLD/NASH shows geographical variation across the globe. Highest prevalence rates are in South America and the Middle East and North Africa; lowest prevalence is in Africa. NAFLD's economic impact is from direct and indirect medical costs and loss in worker productivity. It is projected that, over the next two decades, the total cost of NAFLD and diabetes will exceed $1.5 trillion (USD). Risk stratification algorithms identifying "high risk NAFLD" were made following non-invasive tests for NAFLD identification and fibrosis development. These algorithms should be used in primary care and endocrinology settings so timely and appropriate interventions (lifestyle and cardiometabolic risk factor management) can be initiated. CONCLUSIONS To reduce the burgeoning burden of NAFLD/NASH, management should include risk stratification algorithms for accurate identification of patients, linkage to appropriate settings, and initiation of effective treatment regimens.
Collapse
Affiliation(s)
- Pegah Golabi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| | - Soroor Owrangi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
6
|
Sajiir H, Keshvari S, Wong KY, Borg DJ, Steyn FJ, Fercher C, Taylor K, Taylor B, Barnard RT, Müller A, Moniruzzaman M, Miller G, Wang R, Fotheringham A, Schreiber V, Sheng YH, Hancock JL, Loo D, Burr L, Huynh T, Lockett J, Ramm GA, Macdonald GA, Prins JB, McGuckin MA, Hasnain SZ. Liver and pancreatic-targeted interleukin-22 as a therapeutic for metabolic dysfunction-associated steatohepatitis. Nat Commun 2024; 15:4528. [PMID: 38811532 PMCID: PMC11137118 DOI: 10.1038/s41467-024-48317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress β-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle J Borg
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Christian Fercher
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Taylor
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, Australia
| | - Breten Taylor
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ross T Barnard
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, Australia
| | - Alexandra Müller
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Md Moniruzzaman
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory Miller
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Envoi Specialist Pathologists, Kelvin Grove, Brisbane, Australia
| | - Ran Wang
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amelia Fotheringham
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Veronika Schreiber
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yong Hua Sheng
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Dorothy Loo
- Proteomics Core Facility, Translational Research Institute, Brisbane, Australia
| | - Lucy Burr
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, Australia
| | - Tony Huynh
- Department of Endocrinology & Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, QLD, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jack Lockett
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Johannes B Prins
- Health Translation Queensland, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Michael A McGuckin
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, Australia.
| |
Collapse
|
7
|
Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: Need of subtyping. World J Gastrointest Pathophysiol 2024; 15:92791. [PMID: 38845820 PMCID: PMC11151879 DOI: 10.4291/wjgp.v15.i2.92791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread global disease with significant health burden. Unhealthy lifestyle, obesity, diabetes mellitus (DM), insulin resistance, and genetics have been implicated in the pathogenesis of MASLD. A significant degree of heterogeneity exists among each of above-mentioned risk factors. Heterogeneity of these risk factors translates into the heterogeneity of MASLD. On the other hand, MASLD can itself lead to insulin resistance and DM. Such heterogeneity makes it difficult to assess the natural course of an individual with MASLD in clinical practice. At present MASLD is considered as one disease despite the variability of etiopathogenic processes, and we lack the consensus definitions of unique subtypes of MASLD. In this review, pathogenic processes of MASLD are discussed and a need of subtyping is recommended.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85716, United States
| |
Collapse
|
8
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
9
|
Dellinger RW, Holmes HE, Hu-Seliger T, Butt RW, Harrison SA, Mozaffarian D, Chen O, Guarente L. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: A double-blind, placebo-controlled clinical trial. Hepatology 2023; 78:863-877. [PMID: 36082508 DOI: 10.1002/hep.32778] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The prevalence of NAFLD is increasing globally and on a path to becoming the most frequent cause of chronic liver disease. Strategies for the prevention and treatment of NAFLD are urgently needed. APPROACH AND RESULTS A 6-month prospective, randomized, double-blind, placebo-controlled clinical trial was conducted to assess the efficacy of daily NRPT (commercially known as Basis, a combination of nicotinamide riboside and pterostilbene) supplementation in 111 adults with NAFLD. The study consisted of three arms: placebo, recommended daily dose of NRPT (NRPT 1×), and a double dose of NRPT (NRPT 2×). NRPT appeared safe and well tolerated. At the end of the study, no significant change was seen in the primary endpoint of hepatic fat fraction with respect to placebo. However, among prespecified secondary outcomes, a time-dependent decrease in the circulating levels of the liver enzymes alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) was observed in the NRPT 1× group, and this decrease was significant with respect to placebo. Furthermore, a significant decrease in the circulating levels of the toxic lipid ceramide 14:0 was also observed in the NRPT 1× group versus placebo, and this decrease was associated with a decrease in ALT in individuals of this group. A dose-dependent effect was not observed with respect to ALT, GGT, or ceramide 14:0 in the NRPT 2× group. CONCLUSIONS This study demonstrates that NRPT at the recommended dose is safe and may hold promise in lowering markers of hepatic inflammation in patients with NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
| | - Oliver Chen
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
- Biofortis Research , Addison , Illinois , USA
| | - Leonard Guarente
- Elysium Health New York , New York , New York , USA
- Department of Biology , MIT , Cambridge , Massachusetts , USA
| |
Collapse
|
10
|
Cogorno L, Formisano E, Vignati A, Prigione A, Tramacere A, Borgarelli C, Sukkar SG, Pisciotta L. Non-alcoholic fatty liver disease: Dietary and nutraceutical approaches. LIVER RESEARCH 2023; 7:216-227. [PMID: 39958388 PMCID: PMC11791914 DOI: 10.1016/j.livres.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined as the presence of fat accumulation in imaging or histology in more than 5% of hepatocytes and exclusion of other causes for secondary hepatic fat accumulation, is one of the major causes of chronic liver disease worldwide. Metabolic syndrome is associated with an increased risk of progression from NAFLD to non-alcoholic steatohepatitis (NASH), fibrosis, and forthcoming liver failure. Also, genetic predisposition contributes to the risk of NAFLD development. This review explores the role of diets and nutraceuticals in delaying the development and the evolution of NAFLD to chronic liver disease. The Mediterranean diet, high-protein diet, low-carbohydrate/high-fat diet, high-carbohydrate/low-fat diet, and intermittent fasting are the dietary approaches investigated given the presence of relevant literature data. Moreover, this review focused on nutraceuticals with proven efficacy in ameliorating NAFLD and grouped them into four different categories: plant-based nutraceuticals (Ascophyllum nodosum and Fucus vesiculosus, Silymarin, Berberine, Curcumin, Resveratrol, Nigella sativa, Quercetin), vitamin-like substances (vitamin E, vitamin D, vitamin C, coenzyme Q10, inositol), fatty acids (omega-3), and microbiota-management tools (probiotics).
Collapse
Affiliation(s)
- Ludovica Cogorno
- Department of Experimental Medicine-Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Elena Formisano
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Andrea Vignati
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amalia Prigione
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| |
Collapse
|
11
|
Cinque F, Cespiati A, Lombardi R, Guaraldi G, Sebastiani G. Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients 2023; 15:nu15081990. [PMID: 37111209 PMCID: PMC10140991 DOI: 10.3390/nu15081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
HIV infection and nonalcoholic fatty liver disease (NAFLD) are two major epidemics affecting millions of people worldwide. As people with HIV (PWH) age, there is an increased prevalence of metabolic comorbidities, along with unique HIV factors, such as HIV chronic inflammation and life-long exposure to antiretroviral therapy, which leads to a high prevalence of NAFLD. An unhealthy lifestyle, with a high dietary intake of refined carbohydrates, saturated fatty acids, fructose added beverages, and processed red meat, as well as physical inactivity, are known to trigger and promote the progression of NAFLD to nonalcoholic steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Furthermore, with no currently approved pharmacotherapy and a lack of clinical trials that are inclusive of HIV, nutritional and lifestyle approaches still represent the most recommended treatments for PWH with NAFLD. While sharing common features with the general population, NAFLD in PWH displays its own peculiarities that may also reflect different impacts of nutrition and exercise on its onset and treatment. Therefore, in this narrative review, we aimed to explore the role of nutrients in the development of NAFLD in PWH. In addition, we discussed the nutritional and lifestyle approaches to managing NAFLD in the setting of HIV, with insights into the role of gut microbiota and lean NAFLD.
Collapse
Affiliation(s)
- Felice Cinque
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Annalisa Cespiati
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Rosa Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Giovanni Guaraldi
- Modena HIV Metabolic Clinic, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Zhou W, Shi W, Du X, Han Y, Tang Y, Ri S, Ju K, Kim T, Huang L, Zhang W, Yu Y, Tian D, Yu Y, Chen L, Wu Z, Liu G. Assessment of Nonalcoholic Fatty Liver Disease Symptoms and Gut-Liver Axis Status in Zebrafish after Exposure to Polystyrene Microplastics and Oxytetracycline, Alone and in Combination. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47006. [PMID: 37027337 PMCID: PMC10081693 DOI: 10.1289/ehp11600] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Environmental pollution may give rise to the incidence and progression of nonalcoholic fatty liver disease (NAFLD), the most common cause for chronic severe liver lesions. Although knowledge of NAFLD pathogenesis is particularly important for the development of effective prevention, the relationship between NAFLD occurrence and exposure to emerging pollutants, such as microplastics (MPs) and antibiotic residues, awaits assessment. OBJECTIVES This study aimed to evaluate the toxicity of MPs and antibiotic residues related to NAFLD occurrence using the zebrafish model species. METHODS Taking common polystyrene MPs and oxytetracycline (OTC) as representatives, typical NAFLD symptoms, including lipid accumulation, liver inflammation, and hepatic oxidative stress, were screened after 28-d exposure to environmentally realistic concentrations of MPs (0.69mg/L) and antibiotic residue (3.00μg/L). The impacts of MPs and OTC on gut health, the gut-liver axis, and hepatic lipid metabolism were also investigated to reveal potential affecting mechanisms underpinning the NAFLD symptoms observed. RESULTS Compared with the control fish, zebrafish exposed to MPs and OTC exhibited significantly higher levels of lipid accumulation, triglycerides, and cholesterol contents, as well as inflammation, in conjunction with oxidative stress in their livers. In addition, a markedly smaller proportion of Proteobacteria and higher ratios of Firmicutes/Bacteroidetes were detected by microbiome analysis of gut contents in treated samples. After the exposures, the zebrafish also experienced intestinal oxidative injury and yielded significantly fewer numbers of goblet cells. Markedly higher levels of the intestinal bacteria-sourced endotoxin lipopolysaccharide (LPS) were also detected in serum. Animals treated with MPs and OTC exhibited higher expression levels of LPS binding receptor (LBP) and downstream inflammation-related genes while also exhibiting lower activity and gene expression of lipase. Furthermore, MP-OTC coexposure generally exerted more severe effects compared with single MP or OTC exposure. DISCUSSION Our results suggested that exposure to MPs and OTC may disrupt the gut-liver axis and be associated with NAFLD occurrence. https://doi.org/10.1289/EHP11600.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Aquaculture, Wonsan Fisheries University, Wonsan, DPR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
13
|
Lavin B, Eykyn TR, Phinikaridou A, Xavier A, Kumar S, Buqué X, Aspichueta P, Sing-Long C, Arrese M, Botnar RM, Andia ME. Characterization of hepatic fatty acids using magnetic resonance spectroscopy for the assessment of treatment response to metformin in an eNOS -/- mouse model of metabolic nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. NMR IN BIOMEDICINE 2023:e4932. [PMID: 36940044 DOI: 10.1002/nbm.4932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Liver biopsy remains the gold standard for diagnosis and staging of disease. There is a clinical need for noninvasive diagnostic tools for risk stratification, follow-up, and monitoring treatment response that are currently lacking, as well as preclinical models that recapitulate the etiology of the human condition. We have characterized the progression of NAFLD in eNOS-/- mice fed a high fat diet (HFD) using noninvasive Dixon-based magnetic resonance imaging and single voxel STEAM spectroscopy-based protocols to measure liver fat fraction at 3 T. After 8 weeks of diet intervention, eNOS-/- mice exhibited significant accumulation of intra-abdominal and liver fat compared with control mice. Liver fat fraction measured by 1 H-MRS in vivo showed a good correlation with the NAFLD activity score measured by histology. Treatment of HFD-fed NOS3-/- mice with metformin showed significantly reduced liver fat fraction and altered hepatic lipidomic profile compared with untreated mice. Our results show the potential of in vivo liver MRI and 1 H-MRS to noninvasively diagnose and stage the progression of NAFLD and to monitor treatment response in an eNOS-/- murine model that represents the classic NAFLD phenotype associated with metabolic syndrome.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Thomas R Eykyn
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Alkystis Phinikaridou
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Aline Xavier
- Biomedical Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
| | - Shravan Kumar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Xabier Buqué
- Physiology Department, School of Medicine and Nursing, Universidad del País Vasco UPV/EHU, Vizcaya, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Patricia Aspichueta
- Physiology Department, School of Medicine and Nursing, Universidad del País Vasco UPV/EHU, Vizcaya, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBER de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Sing-Long
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- Gastroenterology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo E Andia
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Medicine and Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Tryndyak VP, Willett RA, Nagumalli SK, Li D, Avigan MI, Beland FA, Rusyn I, Pogribny IP. Effect of an obesogenic high-fat and high-sucrose diet on hepatic gene expression signatures in male Collaborative Cross mice. Am J Physiol Gastrointest Liver Physiol 2023; 324:G232-G243. [PMID: 36625475 PMCID: PMC10191133 DOI: 10.1152/ajpgi.00225.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is characterized by substantial variations in case-level severity. In this study, we used a genetically diverse Collaborative Cross (CC) mouse population model to analyze the global transcriptome and clarify the molecular mechanisms involved in hepatic fat accumulation that determine the level and severity of NAFLD. Twenty-four strains of male CC mice were maintained on a high-fat/high-sucrose (HF/HS) diet for 12 wk, and their hepatic gene expression profiles were determined by next-generation RNA sequencing. We found that the development of the nonalcoholic fatty liver (NAFL) phenotype in CC mice coincided with significant changes in the expression of hepatic genes at the population level, evidenced by the presence of 724 differentially expressed genes involved in lipid and carbohydrate metabolism, cell morphology, vitamin and mineral metabolism, energy production, and DNA replication, recombination, and repair. Importantly, expression of 68 of these genes strongly correlated with the extent of hepatic lipid accumulation in the overall population of HF/HS diet-fed male CC mice. Results of partial least squares (PLS) modeling showed that these derived hepatic gene expression signatures help to identify the individual mouse strains that are highly susceptible to the development of NAFLD induced by an HF/HS diet. These findings imply that gene expression profiling, combined with a PLS modeling approach, may be a useful tool to predict NAFLD severity in genetically diverse patient populations.NEW & NOTEWORTHY Feeding male Collaborative Cross mice an obesogenic diet allows modeling NAFLD at the population level. The development of NAFLD coincided with significant hepatic transcriptomic changes in this model. Genes (724) were differentially expressed and expression of 68 genes strongly correlated with the extent of hepatic lipid accumulation. Partial least squares modeling showed that derived hepatic gene expression signatures may help to identify individual mouse strains that are highly susceptible to the development of NAFLD.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, Food and Drug Administration-National Center for Toxicological Research, Jefferson, Arkansas
| | - Rose A Willett
- Division of Biochemical Toxicology, Food and Drug Administration-National Center for Toxicological Research, Jefferson, Arkansas
| | - Suresh K Nagumalli
- Division of Biochemical Toxicology, Food and Drug Administration-National Center for Toxicological Research, Jefferson, Arkansas
| | - Dan Li
- Division of Bioinformatics and Biostatistics, Food and Drug Agency-National Center for Toxicological Research, Jefferson, Arkansas
| | - Mark I Avigan
- Office of Pharmacovigilance and Epidemiology, Food and Drug Administration-Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Frederick A Beland
- Division of Biochemical Toxicology, Food and Drug Administration-National Center for Toxicological Research, Jefferson, Arkansas
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Igor P Pogribny
- Division of Biochemical Toxicology, Food and Drug Administration-National Center for Toxicological Research, Jefferson, Arkansas
| |
Collapse
|
15
|
An Overview of Hepatocellular Carcinoma Surveillance Focusing on Non-Cirrhotic NAFLD Patients: A Challenge for Physicians. Biomedicines 2023; 11:biomedicines11020586. [PMID: 36831120 PMCID: PMC9953185 DOI: 10.3390/biomedicines11020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide and it ranges from simple steatosis to hepatocellular carcinoma (HCC). HCC represents the first liver tumor and the third source of cancer death. In the next few years, the prevalence of NAFLD and consequently of HCC is estimated to increase, becoming a major public health problem. The NAFLD-HCC shows several differences compared to other causes of chronic liver disease (CLD), including the higher percentage of patients that develop HCC in the absence of liver cirrhosis. In HCC surveillance, the international guidelines suggest a six months abdominal ultrasound (US), with or without alpha-fetoprotein (AFP) evaluation, in patients with cirrhosis and in a subgroup of patients with chronic hepatitis B infection. However, this screening program reveals several limitations, especially in NAFLD patients. Thus, new biomarkers and scores have been proposed to overcome the limits of HCC surveillance. In this narrative review we aimed to explore the differences in the HCC features between NAFLD and non-NAFLD patients, and those between NAFLD-HCC developed in the cirrhotic and non-cirrhotic liver. Finally, we focused on the limits of tumor surveillance in NAFLD patients, and we explored the new biomarkers for the early diagnosis of HCC.
Collapse
|
16
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
17
|
Hellmann PH, Bagger JI, Carlander KR, Forman J, Chabanova E, Svenningsen JS, Holst JJ, Gillum MP, Vilsbøll T, Knop FK. The effect of curcumin on hepatic fat content in individuals with obesity. Diabetes Obes Metab 2022; 24:2192-2202. [PMID: 35775631 PMCID: PMC9804166 DOI: 10.1111/dom.14804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/05/2023]
Abstract
AIM To evaluate the effect of curcumin treatment on hepatic fat content in obese individuals. MATERIALS AND METHODS In a double-blind, parallel-group trial, 37 obese, non-diabetic individuals were randomized to placebo or curcumin treatment for 6 weeks. Curcumin was dosed as lecithin-formulated tablet; 200 mg twice daily. The primary endpoint was hepatic fat content as assessed by magnetic resonance spectroscopy (MRS). Other endpoints included anthropometric measurements, hepatic biomarkers including FibroScan measurements, metabolic variables, inflammation markers, appetite measures and ad libitum food intake. RESULTS Baseline characteristics (mean ± SD) were age 46 ± 14 years, hepatic fat content 12.2% ± 8.8% points, body mass index 38.8 ± 6.1 kg/m2 and waist circumference 125.8 ± 12.3 cm. After 6 weeks of treatment with curcumin, hepatic fat content was changed by -0.86% points (95% CI -3.65; 1.94) compared with 0.71% points (95% CI - 2.08; 3.51) with placebo, thus resulting in a non-significant estimated treatment difference of -1.57% points (95% CI -5.36; 2.22, P = .412). Compared with placebo, curcumin treatment caused small reductions in fasting plasma glucose (estimated treatment difference [ETD] - 0.24 mmol/L [95% CI -0.45; -0.03]), triglycerides (ETD [percentage change] -20.22% [95% CI -33.21; -6.03]) and gamma glutamyltransferase (ETD [percentage change] -15.70% [95% CI -23.32; -7.32]), but except for gamma glutamyltransferase, none of these differences remained statistically significant after adjusting for multiple testing. Treatment was well tolerated. CONCLUSIONS Compared with placebo, curcumin treatment for 6 weeks had no significant effect on MRS-assessed hepatic fat content in obese individuals with primarily mild steatosis. Curcumin was well tolerated.
Collapse
Affiliation(s)
- Pernille H. Hellmann
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
| | - Katrine R. Carlander
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
| | - Julie Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Elizaveta Chabanova
- Department of Radiology, Herlev HospitalUniversity of CopenhagenHerlevDenmark
| | - Jens S. Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthew P. Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Alkhouri N, Aggarwal P, Le P, Payne J, Sakkal C, Polanco P, Harrison S, Noureddin M. Simple diagnostic algorithm identifying at-risk nonalcoholic fatty liver disease patients needing specialty referral within the United States. World J Hepatol 2022; 14:1598-1607. [PMID: 36157876 PMCID: PMC9453464 DOI: 10.4254/wjh.v14.i8.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is an urgent need to risk stratify patients with suspected nonalcoholic fatty liver disease (NAFLD) and identify those with fibrotic nonalcoholic steatohepatitis. This study aims to apply a simple diagnostic algorithm to identify subjects with at-risk NAFLD in the general population.
AIM To apply a simple diagnostic algorithm to identify subjects with at-risk NAFLD in the general population.
METHODS Adult subjects were included from the National Health and Nutrition Examination Survey database (2017-2018) if they had elevated alanine aminotransferase (ALT) and excluded if they had evidence of viral hepatitis or significant alcohol consumption. A fibrosis-4 (FIB4) cutoff of 1.3 differentiated patients with low risk vs high risk disease. If patients had FIB4 > 1.3, a FAST score < 0.35 ruled out advanced fibrosis. Patients with FAST > 0.35 were referred to a specialist. The same algorithm was applied to subjects with type 2 diabetes mellitus (T2DM).
RESULTS Three thousand six hundred and sixty-nine patients were identified who met all inclusion and exclusion criteria. From this cohort, 911 (28.6%) patients had elevated ALT of which 236 (22.9%) patients had elevated FIB4 scores ≥ 1.3. Among patients with elevated FIB4 score, 75 (24.4%) had elevated FAST scores, ruling in advanced fibrosis. This accounts for 2.0% of the overall study population. Applying this algorithm to 737 patients with T2DM, 213 (35.4%) patients had elevated ALT, 85 (37.9%) had elevated FIB4, and 42 (46.1%) had elevated FAST scores. This accounts for 5.7% of the population with T2DM.
CONCLUSION The application of this algorithm to identify at-risk NAFLD patients in need for specialty care is feasible and demonstrates that the vast majority of patients do not need subspecialty referral for NAFLD.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Pankaj Aggarwal
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Phuc Le
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Julia Payne
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Celine Sakkal
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Prido Polanco
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Stephen Harrison
- Department of Research, Pinnacle Research, San Antonio, TX 78229, United States
| | - Mazen Noureddin
- Department of Hepatology, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
19
|
Li G, Tang LJ, Zhu PW, Huang OY, Rios RS, Zheng KI, Chen SD, Ma HL, Targher G, Byrne CD, Pan XY, Zheng MH. PNPLA3 rs738409 C>G Variant Influences the Association Between Visceral Fat and Significant Fibrosis in Biopsy-proven Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2022; 10:439-448. [PMID: 35836754 PMCID: PMC9240254 DOI: 10.14218/jcth.2021.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Intra-abdominal visceral fat accumulation and patatin-like phospholipase domain containing 3 (PNPLA3) rs738409 G/C gene polymorphism confer a greater susceptibility to nonalcoholic fatty liver disease (NAFLD). We examined whether the relationship between visceral fat accumulation and liver disease severity may be influenced by PNPLA3 rs738409 polymorphism. METHODS The variant of PNPLA3 rs738409 was genotyped within 523 Han individuals with biopsy-confirmed NAFLD. Visceral fat area (VFA) was measured by bioelectrical impedance. Significant liver fibrosis (SF), defined as stage F ≥2 on histology, was the outcome measure of interest. RESULTS The distribution of PNPLA3 genotypes was CC: 27.5%, CG: 48.2%, and GG: 24.3%. Higher VFA was associated with greater risk of having SF (adjusted-odds ratio [OR]: 1.03; 95% confidence interval [CI]: 1.02-1.04, p<0.05), independent of potential confounders. Among subjects with the same VFA level, the risk of SF was greater among carriers of the rs738409 G genotype than among those who did not. Stratified analysis showed that PNPLA3 rs738409 significantly influenced the association between VFA and SF. VFA remained significantly associated with SF only among the rs738409 G-allele carriers (adjusted-OR: 1.05; 95% CI: 1.03-1.08 for the GG group; and adjusted-OR:1.03; 95% CI: 1.01-1.04 for the GC group). There was a significant interaction between VFA and PNPLA3 rs738409 genotype (P interaction =0.004). CONCLUSIONS PNPLA3 rs738409 G allele has a moderate effect on the association between VFA and risk of SF in adult individuals with biopsy-proven NAFLD. Existence of the PNPLA3 rs738409 G allele and VFA interact to increase risk of SF.
Collapse
Affiliation(s)
- Gang Li
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiao-Yan Pan
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Saigo Y, Sasase T, Uno K, Shinozaki Y, Maekawa T, Sano R, Toriniwa Y, Miyajima K, Ohta T. Establishment of a new nonalcoholic steatohepatitis model; Ovariectomy exacerbates nonalcoholic steatohepatitis-like pathology in diabetic rats. J Pharmacol Toxicol Methods 2022; 116:107190. [PMID: 35688322 DOI: 10.1016/j.vascn.2022.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
|
21
|
Weinstein G, O’Donnell A, Davis-Plourde K, Zelber-Sagi S, Ghosh S, DeCarli CS, Thibault EG, Sperling RA, Johnson KA, Beiser AS, Seshadri S. Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, and Regional Amyloid-β and Tau Pathology in Middle-Aged Adults: The Framingham Study. J Alzheimers Dis 2022; 86:1371-1383. [PMID: 35213373 PMCID: PMC11323287 DOI: 10.3233/jad-215409] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Liver steatosis and fibrosis are emerging as risk factors for multiple extrahepatic health conditions; however, their relationship with Alzheimer's disease pathology is unclear. OBJECTIVE To examine whether non-alcoholic fatty liver disease (NAFLD) and FIB-4, a non-invasive index of advanced fibrosis, are associated with brain amyloid-β (Aβ) and tau pathology. METHODS The study sample included Framingham Study participants from the Offspring and Third generation cohorts who attended exams 9 (2011-2014) and 2 (2008-2011), respectively. Participants underwent 11C-Pittsburgh Compound-B amyloid and 18F-Flortaucipir tau positron emission tomography (PET) imaging and abdomen computed tomography, or had information on all components of the FIB-4 index. Linear regression models were used to assess the relationship of NAFLD and FIB-4 with regional tau and Aβ, adjusting for potential confounders and multiple comparisons. RESULTS Of the subsample with NAFLD information (N = 169; mean age 52±9 y; 57% males), 57 (34%) had NAFLD. Of the subsample with information on liver fibrosis (N = 177; mean age 50±10 y; 51% males), 34 (19%) had advanced fibrosis (FIB-4 > 1.3). Prevalent NAFLD was not associated with Aβ or tau PET. However, FIB-4 index was significantly associated with increased rhinal tau (β= 1.03±0.33, p = 0.002). Among individuals with prevalent NAFLD, FIB-4 was related to inferior temporal, parahippocampal gyrus, entorhinal and rhinal tau (β= 2.01±0.47, p < 0.001; β= 1.60±0.53, p = 0.007, and β= 1.59±0.47, p = 0.003 and β= 1.60±0.42, p = 0.001, respectively) and to Aβ deposition overall and in the inferior temporal and parahippocampal regions (β= 1.93±0.47, p < 0.001; β= 1.59±0.38, p < 0.001, and β= 1.52±0.54, p = 0.008, respectively). CONCLUSION This study suggests a possible association between liver fibrosis and early Alzheimer's disease pathology, independently of cardio-metabolic risk factors.
Collapse
Affiliation(s)
| | - Adrienne O’Donnell
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Kendra Davis-Plourde
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Saptaparni Ghosh
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Emma G. Thibault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A. Sperling
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A. Johnson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa S. Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
22
|
Shaheen M, Schrode KM, Pan D, Kermah D, Puri V, Zarrinpar A, Elisha D, Najjar SM, Friedman TC. Sex-Specific Differences in the Association Between Race/Ethnicity and NAFLD Among US Population. Front Med (Lausanne) 2021; 8:795421. [PMID: 34926533 PMCID: PMC8674562 DOI: 10.3389/fmed.2021.795421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is spreading worldwide, with a racial/ethnic disparity. We examined the gender role in the racial/ethnic difference in NAFLD in the US population. We analyzed data for 3,292 individuals ≥18 years old from NHANES 2017-2018, a representative sample of the non-institutionalized adult population in the US. Exclusions were subjects with elevated transferrin level, chronic hepatitis B or C, excessive alcohol use, or prescription medications that might cause hepatic steatosis. NAFLD was diagnosed by FibroScan® using controlled attenuation parameter (CAP) values: S0 <238, S1 = 238-259, S2 = 260-290, S3 >290. Data were analyzed using Chi square and multinomial regression. The overall prevalence of NAFLD was 47.9% [S2 = 16.1%, and S3 = 31.8%]. The prevalence of S3 was highest among Mexican Americans (46%), lowest among Blacks (22.7%), 29.9% in other Hispanics and 32.1% in Whites (p < 0.05). It was higher among Mexican American males (54.1%) compared to Mexican American females (37.7%) (p < 0.05). In the adjusted model, Mexican Americans were two times more likely than Whites to have S2 and S3 (p < 0.05). Only male Mexican Americans had higher odds of S2 and S3 relative to male White (p < 0.05). Males had higher odds of S3 relative to non-menopausal females (p < 0.05). There was no difference in the odds of S2 or S3 NAFLD among the menopausal females with or without hormone therapy relative to non-menopausal females (p > 0.05). While Mexican Americans had the highest prevalence of severe NAFLD relative to the other racial/ethnic groups, only male Mexican Americans, but not females, had higher likelihood of both moderate and severe NAFLD relative to Whites. Interventions that specifically target Mexican American males are needed to increase awareness about NAFLD and its prevention.
Collapse
Affiliation(s)
- Magda Shaheen
- College of Medicine, Charles R Drew University, Los Angeles, CA, United States
| | - Katrina M. Schrode
- College of Medicine, Charles R Drew University, Los Angeles, CA, United States
| | - Deyu Pan
- College of Medicine, Charles R Drew University, Los Angeles, CA, United States
| | - Dulcie Kermah
- College of Medicine, Charles R Drew University, Los Angeles, CA, United States
| | - Vishwajeet Puri
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Ali Zarrinpar
- University of Florida College of Medicine, Gainesville, FL, United States
| | - David Elisha
- College of Medicine, Charles R Drew University, Los Angeles, CA, United States
| | - Sonia M. Najjar
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | | |
Collapse
|
23
|
Ichimura-Shimizu M, Kageyama T, Oya T, Ogawa H, Matsumoto M, Sumida S, Kakimoto T, Miyakami Y, Nagatomo R, Inoue K, Cheng C, Tsuneyama K. Verification of the Impact of Blood Glucose Level on Liver Carcinogenesis and the Efficacy of a Dietary Intervention in a Spontaneous Metabolic Syndrome Model. Int J Mol Sci 2021; 22:ijms222312844. [PMID: 34884650 PMCID: PMC8657638 DOI: 10.3390/ijms222312844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) is a risk factor for type 2 diabetes mellitus, vascular inflammation, atherosclerosis, and renal, liver, and heart diseases. Non-alcoholic steatohepatitis (NASH) is a progressive representative liver disease and may lead to the irreversible calamities of cirrhosis and hepatocellular carcinoma. Metabolic disorders such as hyperglycemia have been broadly reported to be related to hepatocarcinogenesis in NASH; however, direct evidence of a link between hyperglycemia and carcinogenesis is still lacking. Tsumura Suzuki Obese Diabetic (TSOD) mice spontaneously develop metabolic syndrome, including obesity, insulin resistance, and NASH-like liver phenotype, and eventually develop hepatocellular carcinomas. TSOD mice provide a spontaneous human MS-like model, even with significant individual variations. In this study, we monitored mice in terms of their changes in blood glucose levels, body weights, and pancreatic and liver lesions over time. As a result, liver carcinogenesis was delayed in non-hyperglycemic TSOD mice compared to hyperglycemic mice. Moreover, at the termination point of 40 weeks, liver tumors appeared in 18 of 24 (75%) hyperglycemic TSOD mice; in contrast, they only appeared in 5 of 24 (20.8%) non-hyperglycemic mice. Next, we investigated three kinds of oligosaccharide that could lower blood glucose levels in hyperglycemic TSOD mice. We monitored the levels of blood and urinary glucose and assessed pancreatic lesions among the experimental groups. As expected, significantly lower levels of blood and urinary glucose and smaller deletions of Langerhans cells were found in TSOD mice fed with milk-derived oligosaccharides (galactooligosaccharides and lactosucrose). At the age of 24 weeks, mild steatohepatitis was found in the liver but there was no evidence of liver carcinogenesis. Steatosis in the liver was alleviated in the milk-derived oligosaccharide-administered group. Taken together, suppressing the increase in blood glucose level from a young age prevented susceptible individuals from diabetes and the onset of NAFLD/NASH, as well as carcinogenesis. Milk-derived oligosaccharides showed a lowering effect on blood glucose levels, which may be expected to prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Kageyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Ryosuke Nagatomo
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre China, Beijing 102206, China;
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
- Correspondence: ; Tel.: +81-88-633-7065; Fax: +81-88-633-7067
| |
Collapse
|
24
|
Ezhilarasan D. Deciphering the toxicological role of Porphyromonas gingivalis derived endotoxins in liver diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103755. [PMID: 34662732 DOI: 10.1016/j.etap.2021.103755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Periodontitis is a most prevalent and infectious multifactorial inflammatory disease and is characterized by the progressive destruction of the tooth-supporting tissues. Porphyromonas gingivalis, a Gram‑negative oral anaerobe, mainly causes periodontitis and it is one of the most important risk factors responsible for aggravation of existing systemic diseases. Several experimental and clinical studies have shown the positive association between periodontitis and different forms of liver disease. Periodontal diseases increase the prevalence of non-alcoholic fatty liver diseases and cirrhosis. Infected periodontium and pathogens in the periodontal microenvironments release pathogen-associated molecular patterns such as peptidoglycan, lipopolysaccharides, gingipain, fimbria, bacterial DNA, etc, and damage-associated molecular patterns such as interleukins-1α, β, - 8, and galectin-3, etc. These virulence factors and cytokines enter the bloodstream, disseminate into the whole body, and induce a variety of systemic pathological effects, including liver diseases (steatosis and fibrosis). Maintaining oral hygiene by scaling and root planning significantly improves liver damage in patients with periodontitis. Dentists and physicians should have more awareness in understanding the bidirectional nature of the relationship between oral and systemic diseases. Importantly, periodontitis condition aggravates simple fatty liver into fibrotic disease and therefore, the aim of this review is to understand the possible link between periodontitis and liver diseases.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
25
|
Lonardo A. Separating the apples from the oranges: from NAFLD heterogeneity to personalized medicine. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2025] Open
Abstract
Recently, Arrese and Colleagues have published a review article entitled, “Insights into Nonalcoholic Fatty-Liver Disease (NAFLD) Heterogeneity” (Semin Liver Dis. 2021;41:421-34. doi: 10.1055/s-0041-1730927). This milestone publication clearly and exhaustively explains the multitude of pathogenic pathways involved in the development and progression of disease eventually conducive to heterogeneous clinical phenotypes and different disease outcomes. The present commentary first briefly discusses the biological grounds of NAFLD heterogeneity and then illustrates the work by Arrese et al. In conclusion, the presently adopted nomenclatures appear inadequate in rendering the complexity of disease in the individual patient. In order to adopt the principles of personalized care, what remains to be done is to propose and validate a simple and accurate classification system. This should give full consideration to the principal disease modifiers and should shape a scheme to be adopted in both clinical practice and in the research arena. Care should be taken to not neglect the systemic nature of disease.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena, 41100 Modena, Italy
| |
Collapse
|
26
|
Safcak D, Drazilova S, Gazda J, Andrasina I, Adamcova-Selcanova S, Barila R, Mego M, Rac M, Skladany L, Zigrai M, Janicko M, Jarcuska P. Nonalcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma: Clinical Patterns, Outcomes, and Prognostic Factors for Overall Survival-A Retrospective Analysis of a Slovak Cohort. J Clin Med 2021; 10:3186. [PMID: 34300352 PMCID: PMC8306860 DOI: 10.3390/jcm10143186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To compare NAFLD-related HCC and other etiology-related HCC and to describe predictive factors for survival in patients with NAFLD-related HCC independent of the BCLC staging system. METHODS We performed a multicenter longitudinal retrospective observational study of patients diagnosed with HCC during the period from 2010 through 2016. RESULTS 12.59% of patients had NAFLD-related HCC, and 21.91% had either NAFLD or cryptogenic etiology. NAFLD-related HCC patients were younger (p = 0.0007), with a higher proportion of women (p < 0.001) compared to other etiology-related HCC patients. The NAFLD group had a significantly lower proportion of patients with liver cirrhosis at the time of HCC diagnosis (p < 0.0001), and they were more frequently diagnosed with both diabetes and metabolic syndrome when compared to other etiology-related HCC (p < 0.0001). We did not find any difference in the overall survival or in the progression-free survival between NAFLD-related and other etiology-related HCC patients staged as BCLC B and BCLC C. NAFLD-related HCC patients with three or more liver lesions had a shorter overall survival when compared to patients with one or two liver lesions (p = 0.0097), while patients with baseline CRP values of ≥5 mg/L or with PLR ≥ 150 had worse overall survival (p = 0.012 and p = 0.0028, respectively). ALBI Grade 3 predicted worse overall survival compared to ALBI Grade 1 or 2 (p = 0.00021). In NAFLD-related HCC patients, PLR and ALBI remained significant predictors of overall survival even after adjusting for BCLC. CONCLUSION NAFLD-related HCC patients have a similar prognosis when compared to other etiology-related HCC. In NAFLD-related HCC patients, ALBI and PLR are significant predictors of the overall survival independent of the BCLC staging system.
Collapse
Affiliation(s)
- Dominik Safcak
- Department of Radiotherapy and Oncology, East Slovakia Institute of Oncology, Rastislavova 43, 041 91 Kosice, Slovakia; (D.S.); (I.A.)
| | - Sylvia Drazilova
- Internal Medicine Department, Hospital Poprad a.s., Banicka 803, 058 01 Poprad, Slovakia
- 2nd Department of Internal Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia; (J.G.); (M.J.); (P.J.)
| | - Jakub Gazda
- 2nd Department of Internal Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia; (J.G.); (M.J.); (P.J.)
| | - Igor Andrasina
- Department of Radiotherapy and Oncology, East Slovakia Institute of Oncology, Rastislavova 43, 041 91 Kosice, Slovakia; (D.S.); (I.A.)
| | - Svetlana Adamcova-Selcanova
- 2nd Department of Internal Medicine, HEGITO, F. D. Roosevelt University Hospital, Namestie L Svobodu 1, 975 17 Banska Bystrica, Slovakia; (S.A.-S.); (L.S.)
| | - Radovan Barila
- Oncological Cluster, Stefan Kukura Hospital in Michalovce, Spitalska Ulica 2, 071 01 Michalovce, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Oncology Institute of Slovakia, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Marek Rac
- Department of Internal Medicine, Teaching Hospital Nitra, Spitalska 6, 949 01 Nitra, Slovakia;
| | - Lubomir Skladany
- 2nd Department of Internal Medicine, HEGITO, F. D. Roosevelt University Hospital, Namestie L Svobodu 1, 975 17 Banska Bystrica, Slovakia; (S.A.-S.); (L.S.)
| | - Miroslav Zigrai
- 1st Department of Internal Medicine, Ladislav Derer University Hospital in Bratislava, Limbova 5, 833 05 Bratislava-Kramare, Slovakia;
| | - Martin Janicko
- 2nd Department of Internal Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia; (J.G.); (M.J.); (P.J.)
| | - Peter Jarcuska
- 2nd Department of Internal Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia; (J.G.); (M.J.); (P.J.)
| |
Collapse
|
27
|
Perez-Diaz-del-Campo N, Riezu-Boj JI, Marin-Alejandre BA, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Milagro FI, Tur JA, Abete I, Zulet MA, Martinez JA. Three Different Genetic Risk Scores Based on Fatty Liver Index, Magnetic Resonance Imaging and Lipidomic for a Nutrigenetic Personalized Management of NAFLD: The Fatty Liver in Obesity Study. Diagnostics (Basel) 2021; 11:1083. [PMID: 34199237 PMCID: PMC8231822 DOI: 10.3390/diagnostics11061083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. The pathogenesis of NAFLD is complex; available data reveal that genetics and ascribed interactions with environmental factors may play an important role in the development of this morbid condition. The purpose of this investigation was to assess genetic and non-genetic determinants putatively involved in the onset and progression of NAFLD after a 6-month weight loss nutritional treatment. A group of 86 overweight/obese subjects with NAFLD from the Fatty Liver in Obesity (FLiO) study were enrolled and metabolically evaluated at baseline and after 6 months. A pre-designed panel of 95 genetic variants related to obesity and weight loss was applied and analyzed. Three genetic risk scores (GRS) concerning the improvement on hepatic health evaluated by minimally invasive methods such as the fatty liver index (FLI) (GRSFLI), lipidomic-OWLiver®-test (GRSOWL) and magnetic resonance imaging (MRI) (GRSMRI), were derived by adding the risk alleles genotypes. Body composition, liver injury-related markers and dietary intake were also monitored. Overall, 23 SNPs were independently associated with the change in FLI, 16 SNPs with OWLiver®-test and 8 SNPs with MRI, which were specific for every diagnosis tool. After adjusting for gender, age and other related predictors (insulin resistance, inflammatory biomarkers and dietary intake at baseline) the calculated GRSFLI, GRSOWL and GRSMRI were major contributors of the improvement in hepatic status. Thus, fitted linear regression models showed a variance of 53% (adj. R2 = 0.53) in hepatic functionality (FLI), 16% (adj. R2 = 0.16) in lipidomic metabolism (OWLiver®-test) and 34% (adj. R2 = 0.34) in liver fat content (MRI). These results demonstrate that three different genetic scores can be useful for the personalized management of NAFLD, whose treatment must rely on specific dietary recommendations guided by the measurement of specific genetic biomarkers.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-del-Campo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Jose I. Riezu-Boj
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - J. Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Liver Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Research Group on Community Nutrition and Oxidative Stress, Balearic Islands Institute for Health Research (IDISBA), University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - M. Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|