1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Wang H, Wu S, Bai X, Pan D, Ning Y, Wang C, Guo L, Guo J, Gu Y. Mesenchymal Stem Cell-Derived Exosomes Hold Promise in the Treatment of Diabetic Foot Ulcers. Int J Nanomedicine 2025; 20:5837-5857. [PMID: 40351704 PMCID: PMC12065540 DOI: 10.2147/ijn.s516533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic foot ulcers (DFU) represent one of the most common side effects of diabetes, significantly impacting patients' quality of life and imposing considerable financial burdens on families and society at large. Despite advancements in therapies targeting lower limb revascularization and various medications and dressings, outcomes for patients with severe lesions remain limited. A recent breakthrough in DFU treatment stems from the development of mesenchymal stem cells (MSCs). MSCs have shown promising results in treating various diseases and skin wounds due to their ability for multidirectional differentiation and immunomodulation. Recent studies highlight that MSCs primarily repair tissue through their paracrine activities, with exosomes playing a crucial role as the main biologically active components. These exosomes transport proteins, mRNA, DNA, and other substances, facilitating DFU treatment through immunomodulation, antioxidant effects, angiogenesis promotion, endothelial cell migration and proliferation, and collagen remodeling. Mesenchymal stem cell-derived exosomes (MSC-Exo) not only deliver comparable therapeutic effects to MSCs but also mitigate adverse reactions like immune rejection associated with MSCs transplantation. This article provides an overview of DFU pathophysiology and explores the mechanisms and research progress of MSC-Exo in DFU therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Xinyu Bai
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
4
|
Huang Q, Wang J, Ning H, Liu W, Han X. Exosome isolation based on polyethylene glycol (PEG): a review. Mol Cell Biochem 2025; 480:2847-2861. [PMID: 39702782 DOI: 10.1007/s11010-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Exosome acts as an outstanding biomarker for ongoing studies, diagnosis and prognosis of multiples diseases. Therefore, the call for economically and efficiently isolating a large number of exosomes is an active area of investigation. However, to date, the challenges including complex isolated procedure, uneconomical equipment, low protein content and distinct loss in the particle number of exosomes etc. still encounter in exosome isolation. Polyethylene glycol (PEG)-induced exosome isolation increasingly attracts wide attention of scientists. PEG precipitation reveals higher performance in the yield of exosomes among multiple common isolation techniques. PEG-based precipitation is a temporarily low-purity, but inexpensive, time-save, labor-less, convenient and high-yield technique to gain exosomes with high biological activities. Hence, the PEG-based exosome isolation approach wins the endorsement of experimental workers. Herein, we summary the existing knowledge on procedures of PEG-based exosomes separation from different biospecimens, the binding process of PEG to exosomes, some notices, demerits, merits of PEG-based exosome isolation, and at last the advantages by combining PEG-precipitation to other techniques for exosome isolation, with a view to eliciting profound insights for investigators who recruit PEG for exosome separation, and advancing references for the standardization of PEG-based exosome isolation in future.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Maynard DM, Gochuico BR, Pri Chen H, Bleck CKE, Zerfas PM, Introne WJ, Gahl WA, Malicdan MCV. Insights into the renal pathophysiology in Hermansky-Pudlak syndrome-1 from urinary extracellular vesicle proteomics and a new mouse model. FEBS Lett 2025; 599:1055-1074. [PMID: 39739361 PMCID: PMC11995682 DOI: 10.1002/1873-3468.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025]
Abstract
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals. We identified 1029 proteins, 149 of which were altered in HPS-1 uEVs. Ingenuity Pathway Analysis revealed disruptions in mitochondrial function and the LXR/RXR pathway that regulates lipid metabolism, which is supported by our novel Hps1 knockout mouse. Serum concentration of the LXR/RXR pathway protein ApoA1 in our patient cohort was positively correlated with kidney function (with the estimated glomerular filtration rate or eGFR). uEVs can be used to study epithelial cell protein trafficking in HPS-1 and may provide outcome measures for HPS-1 therapeutic interventions.
Collapse
Affiliation(s)
- Dawn M. Maynard
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - Bernadette R. Gochuico
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - Hadass Pri Chen
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | | | - Patricia M. Zerfas
- Office of Research Services, Office of the DirectorNational Institutes of HealthBethesdaMDUSA
| | - Wendy J. Introne
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - May C. V. Malicdan
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Zhang L, Wong CY, Shao H. Integrated technologies for molecular profiling of genetic and modified biomarkers in extracellular vesicles. LAB ON A CHIP 2025. [PMID: 40135945 DOI: 10.1039/d5lc00053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles actively released by cells into a variety of biofluids. EVs carry myriad molecular cargoes; these include classical genetic biomarkers inherited from the parent cells as well as EV modifications by other entities (e.g., small molecule drugs). Aided by these diverse cargoes, EVs enable long-distance intercellular communication and have been directly implicated in various disease pathologies. As such, EVs are being increasingly recognized as a source of valuable biomarkers for minimally-invasive disease diagnostics and prognostics. Despite the clinical potential, EV molecular profiling remains challenging, especially in clinical settings. Due to the nanoscale dimension of EVs as well as the abundance of contaminants in biofluids, conventional EV detection methods have limited resolution, require extensive sample processing and can lose rare biomarkers. To address these challenges, new micro- and nanotechnologies have been developed to discover EV biomarkers and empower clinical applications. In this review, we introduce EV biogenesis for different cargo incorporation, and discuss the use of various EV biomarkers for clinical applications. We also assess different chip-based integrated technologies developed to measure genetic and modified biomarkers in EVs. Finally, we highlight future opportunities in technology development to facilitate the clinical translation of various EV biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| |
Collapse
|
7
|
Jangam TC, Desai SA, Patel VP, Pagare NB, Raut ND. Exosomes as Therapeutic and Diagnostic Tools: Advances, Challenges, and Future Directions. Cell Biochem Biophys 2025:10.1007/s12013-025-01730-5. [PMID: 40122928 DOI: 10.1007/s12013-025-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are tiny extracellular vesicles that are essential for intercellular communication and have shown great promise in the detection and treatment of disease. They are especially useful in the treatment of cancer, cardiovascular conditions, and neurological diseases because of their capacity to transport bioactive substances including proteins, lipids, and nucleic acids. Because of their low immunogenicity, ability to traverse biological barriers, and biocompatibility, exosome-based medicines have benefits over conventional treatments. Large-scale production, standardization of separation methods, possible immunological reactions, and worries about unforeseen biological effects are some of the obstacles that still need to be overcome. Furthermore, there are major barriers to the clinical use of exosomes due to their complex cargo sorting mechanisms and heterogeneity. Future studies should concentrate on enhancing separation and purification procedures, optimizing exosome engineering techniques, and creating plans to reduce immune system modifications. This review examines the most recent developments in exosome-based diagnostics and treatments, identifies current issues, and suggests ways to improve their clinical translation in the future.
Collapse
Affiliation(s)
- Tejas C Jangam
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India.
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nishant B Pagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nikita D Raut
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| |
Collapse
|
8
|
Zhang Q, Liu Q, Long K, Zhou K, Yang Z, Ge A, Hu J, Peng C, Wang W, Wang H, Li B. Visual and fluorescence dual mode platform for sensitive and accurate screening of breast carcinoma. Biosens Bioelectron 2025; 271:117047. [PMID: 39705784 DOI: 10.1016/j.bios.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Compared to single-mode detection, dual-mode sensing strategies have garnered increasing attention from researchers due to their superior detection accuracy and reliability. Exosomes, as non-invasive biomarkers, hold significant potential for disease diagnosis. However, sensitive and precise detection of exosomes still presents considerable technical challenges. Inspired by the advantages of dual-mode detection, we developed a visual and fluorescence dual-mode platform (VFDMP) based on an aptamer strategy for exosome detection using enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs). The Aptamer-ssDNA complexes capture tumor-derived exosomes, releasing abundant single-stranded DNA (ssDNAs), which then triggers the catalytic hairpin assembly (CHA) cycle, leading to the release of Ag+. The introduced CdTe quantum dots (QDs) act as signal reporters, interacting with Ag+ through CERs, and switching both fluorescence and visual signals from "on" to "off" to achieve exosome detection. Based on this innovative sensing principle, the developed FL/visual dual-mode aptasensor demonstrated excellent sensitivity and accuracy, achieving a low detection limit of 1.1 particles/μL by fluorometer, while exosome concentrations as low as 300 particles/mL could be visually distinguished by naked eye. Furthermore, this dual-mode platform can directly detect exosomes in clinical human serum samples, with only a small volume (10 μL) required. It can accurately differentiate between healthy individuals and breast cancer patients, as well as identify cancer stages (Stage II and Stage III) and subtypes (triple-negative, luminal B, and HER2+). These results suggest that the developed dual-mode detection strategy holds great promise as a sensitive, accurate method for biomarker analysis in clinical samples.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Kang Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Kang Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Zheng Yang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jinhui Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| |
Collapse
|
9
|
Cruz CG, Sodawalla HM, Mohanakumar T, Bansal S. Extracellular Vesicles as Biomarkers in Infectious Diseases. BIOLOGY 2025; 14:182. [PMID: 40001950 PMCID: PMC11851951 DOI: 10.3390/biology14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that are secreted by all cells into the extracellular space. EVs are involved in cell-to-cell communication and can be found in different bodily fluids (bronchoalveolar lavage fluid, sputum, and urine), tissues, and in circulation; the composition of EVs reflects the physiological condition of the releasing cell. The ability to use EVs from bodily fluids for minimally invasive detection to monitor diseases makes them an attractive target. EVs carry a snapshot of the releasing cell's internal state, and they can serve as powerful biomarkers for diagnosing diseases. EVs also play a role in the body's immune and pathogen detection responses. Pathogens, such as bacteria and viruses, can exploit EVs to enhance their survival and spread and to evade detection by the immune system. Changes in the number or contents of EVs can signal the presence of an infection, offering a potential avenue for developing new diagnostic methods for infectious diseases. Ongoing research in this area aims to address current challenges and the potential of EVs as biomarkers in diagnosing a range of diseases, including infections and infectious diseases. There is limited literature on the development of EVs as diagnostic biomarkers for infectious diseases using existing molecular biology approaches. We aim to address this gap by reviewing recent EV-related investigations in infectious disease studies.
Collapse
Affiliation(s)
- Cinthia Gonzalez Cruz
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Husain M. Sodawalla
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| |
Collapse
|
10
|
Wang C, Lu Z, She G, Chen K, Zhou H, Zhan X, Yu H, Pi L, Zuo L, Che D. The Identification of FN1 as an Early Diagnostic Marker for Recurrent Abortion by Single-Exosome Profiling. Int J Gen Med 2025; 18:691-702. [PMID: 39963517 PMCID: PMC11830759 DOI: 10.2147/ijgm.s487632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose Recurrent abortion(RA) is a prevalent adverse pregnancy event. Exosomes, secreted by various body fluids, are known to play a role in disease diagnosis and serve as biomarkers through intercellular communication. This study aims to analyze single exosomes in patients with recurrent abortion to identify new biomarkers that may significantly contribute to recurrent abortion, providing new directions for its treatment. Patients and Methods A total of 244 serum exosomes were collected, including 216 patients with recurrent abortion of varying outcomes and 28 normal pregnancies. We performed the proximity barcoding assay (PBA) to analyze single exosome surface proteins, which allowed us to identify individual exosomes related to the development of RA as well as the major subpopulations of exosomes. After PBA treatment, samples were analyzed for single exosomes, and exosomes from each group were compared using volcano plots, dot plots, and ROC curves. Results By intersecting all significantly differentially expressed genes obtained from comparisons between the normal pregnancy control group and the recurrent abortion group, including the RA before abortion, RA after abortion, and RA non-pregnancy groups, we identified seven shared differential genes: FN1, APIPOQ, CDH13, DSG1, CLDN4, CD36, and ULBP3. Among these, FN1 was the most significantly differentially expressed gene in exosomes, with FN1 | log2 (fold change) |>1.5 and an AUC of 0.7414. In addition, exosome subpopulation analyses showed that cluster 11 accounted for the largest proportion of the total 16 subpopulations, and FN1 was the marker with the highest concentration of cluster 11. Conclusion Single-exosome profiling and exosome subpopulations of RA by PBA yielded significant differential gene FN1, which provides new possibilities for diagnostic screening of RA.
Collapse
Affiliation(s)
- Chenlu Wang
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Zhaojin Lu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Guangpeng She
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510620, People’s Republic of China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| |
Collapse
|
11
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Guo T, Steen JA, Mann M. Mass-spectrometry-based proteomics: from single cells to clinical applications. Nature 2025; 638:901-911. [PMID: 40011722 DOI: 10.1038/s41586-025-08584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025]
Abstract
Mass-spectrometry (MS)-based proteomics has evolved into a powerful tool for comprehensively analysing biological systems. Recent technological advances have markedly increased sensitivity, enabling single-cell proteomics and spatial profiling of tissues. Simultaneously, improvements in throughput and robustness are facilitating clinical applications. In this Review, we present the latest developments in proteomics technology, including novel sample-preparation methods, advanced instrumentation and innovative data-acquisition strategies. We explore how these advances drive progress in key areas such as protein-protein interactions, post-translational modifications and structural proteomics. Integrating artificial intelligence into the proteomics workflow accelerates data analysis and biological interpretation. We discuss the application of proteomics to single-cell analysis and spatial profiling, which can provide unprecedented insights into cellular heterogeneity and tissue architecture. Finally, we examine the transition of proteomics from basic research to clinical practice, including biomarker discovery in body fluids and the promise and challenges of implementing proteomics-based diagnostics. This Review provides a broad and high-level overview of the current state of proteomics and its potential to revolutionize our understanding of biology and transform medical practice.
Collapse
Affiliation(s)
- Tiannan Guo
- State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Judith A Steen
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Kazanopoulos N, Sideris CD, Xu Y, Konstantonis D, Vastardis H, Balmayor ER, Wolf M, Apel C. Identification of Salivary Exosome-Derived miRNAs as Potential Biomarkers of Bone Remodeling During Orthodontic Tooth Movement. Int J Mol Sci 2025; 26:1228. [PMID: 39940996 PMCID: PMC11818790 DOI: 10.3390/ijms26031228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Orthodontic tooth movement (OTM) is a complex process involving bone remodeling, and is regulated by various molecular factors, including microRNAs (miRNAs). These small, non-coding RNAs are critical in post-transcriptional gene regulation and have been implicated in the modulation of osteoclast and osteoblast activity during OTM. This study aimed to explore the expression profiles of salivary exosome-derived miRNAs during OTM to identify potential biomarkers that could provide insights into the biological processes involved in orthodontic tooth movement. Saliva samples were collected from 15 patients at three time points: before treatment (Day 0), 7 days after the treatment's onset (Day 7), and 40 days after the treatment's onset (Day 40). The exosomes were isolated, and the miRNAs were extracted and sequenced. A differential expression analysis and gene ontology (GO) enrichment were performed to identify the miRNAs involved in osteoblast and osteoclast differentiation. Out of the 1405 detected miRNAs, 185 were analyzed. Several miRNAs were associated with bone-remodeling processes. The statistically significant finding was the downregulation of hsa-miR-4634 after 40 days of treatment. These findings contribute to the understanding of miRNA regulation in orthodontics and may have broader implications for skeletal disorders, such as osteoporosis.
Collapse
Affiliation(s)
- Nikolaos Kazanopoulos
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.K.); (Y.X.)
| | - Constantinos D. Sideris
- Department of Biology, National and Kapodistrian University of Athens, 10561 Athens, Greece;
| | - Yong Xu
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.K.); (Y.X.)
| | - Dimitrios Konstantonis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 10561 Athens, Greece; (D.K.); (H.V.)
| | - Heleni Vastardis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 10561 Athens, Greece; (D.K.); (H.V.)
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.K.); (Y.X.)
| |
Collapse
|
14
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Yuan S, Zhang P, Zhang F, Yan S, Dong R, Wu C, Deng J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2025; 28:111663. [PMID: 39868039 PMCID: PMC11763584 DOI: 10.1016/j.isci.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution. These advanced methodologies converge with multi-signal mediator detection systems, furnishing potent, high-throughput platforms for dissecting cell-cell interactions at the single-cell level. This approach empowers researchers to delve into intricate cellular dynamics with unprecedented accuracy and efficiency. Here, we present a critical evaluation of the latest advancements in microfluidics-driven techniques for detecting signal mediators involved in cell-cell interactions and communication at the single-cell level. We underscore notable biological applications that have benefited from these technologies and identify pressing challenges that must be addressed in future endeavors leveraging microfluidic tools for single-cell interaction studies.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Peng Zhang
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Shiqiang Yan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruihua Dong
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Chengjun Wu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jiu Deng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
16
|
Recio-Aldavero J, Parra-Gutiérrez L, Muñoz-Moreno L, Román ID, Arenas MI, Bajo AM. Characterisation of Castration-Resistant Cell-Derived Exosomes and Their Effect on the Metastatic Phenotype. Cancers (Basel) 2025; 17:141. [PMID: 39796768 PMCID: PMC11719961 DOI: 10.3390/cancers17010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells. METHODS Exosomes were isolated by ultracentrifugation from human prostate epithelial cells (RWPE-1) and androgen-dependent PCa cells (LNCaP) and castration-resistant PCa cells (CRPC) with moderate (DU145) or high (PC3) metastatic capacity. The biophysical and biochemical properties of the exosomes were characterised as well as their effects on PC3 cell viability and migration. RESULTS The study of the exosomes of prostate cell lines shows heterogeneity in their size, presenting in some of them two types of populations; in both populations, a larger size in those derived from PC3 cells and a smaller size in those derived from non-tumourigenic prostate cells were detected. Differences were found in the physical properties of those derived from healthy and PCa cells, as well as between cells representative of the most aggressive stages of the disease. The highest gamma-glutamyl transferase (GGT) activity was observed in androgen-dependent cells and differences in the pro-metalloproteinases (MMP) activity were detected in healthy cells and in castration-resistant cells with moderate metastatic capacity with respect to PC3 cells. The treatment of PC3 cells with their own exosomes increased PC3 cell viability and migration. CONCLUSION Exosomes represent a promising field of research in the diagnosis, prognosis, and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jorge Recio-Aldavero
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Lorena Parra-Gutiérrez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Laura Muñoz-Moreno
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Irene D. Román
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - María Isabel Arenas
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Ana M. Bajo
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
17
|
Rana R, Devi SN, Bhardwaj AK, Yashavarddhan MH, Bohra D, Ganguly NK. Exosomes as nature's nano carriers: Promising drug delivery tools and targeted therapy for glioma. Biomed Pharmacother 2025; 182:117754. [PMID: 39731936 DOI: 10.1016/j.biopha.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance. Moreover, exosomes serve as valuable biomarkers for diagnosing diseases and assessing prognosis. This review aims to elucidate the therapeutic and diagnostic promise of exosomes in glioma treatment, highlighting the innovative advances in exosome engineering that enable precise drug loading and targeting. By circumventing challenges associated with current glioma treatments, exosome-mediated drug delivery strategies can enhance the efficacy of chemotherapy drugs like temozolomide and overcome drug resistance mechanisms. This review underscores the multifaceted roles of exosomes in glioma pathogenesis and therapy, underscoring their potential as natural nanocarriers for targeted therapy and heralding a new era of hope for glioma treatment.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Amit Kumar Bhardwaj
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - M H Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
18
|
José Sánchez M, Leivar P, Borrós S, Fornaguera C, Lecina M. Enhanced quantification and cell tracking of dual fluorescent labeled extracellular vesicles. Int J Pharm 2024; 667:124921. [PMID: 39521157 DOI: 10.1016/j.ijpharm.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular Vesicles (EVs) are nanosized particles with significant role in disease pathogenesis and as therapeutic potential. However, the lack of reliable and efficient methods for the characterization, quantification and tracking of EVs, combined with the limitations of detection techniques in differentiating specific EVs subtypes with beneficial properties, makes these process complex and time-consuming. To address this challenge, EVs were engineered using a tricistronic plasmid that encodes fluorescent proteins fused to tetraspanins (eGFP-CD63 and mCherry-CD9), with both fluorophores localized within the luminal space. Double fluorescently labelled small EVs (sEVs) were then produced in a stably transfected HEK293SF-3F6 cell line. The fluorescently labelled sEVs were characterized using a variety of techniques. Protein expression analysis showed that the fused proteins were efficiently produced and incorporated in sEVs, as evidenced by clear fluorescence signal detected. Comparisons of the size distribution and concentration of modified sEVs with controls indicated that sEVs engineering did not affect their biogenesis and morphology. Fluorescently labelled sEVs were then quantified by flow cytometry, allowing to distinguish sEVs from other EVs subtypes or sample particles. The values were then compared to fluorometry measurements, obtaining a linear correlation what enabled a novel sEVs quantification method. The functionality of engineered sEVs was assessed by monitoring their uptake and trafficking in recipient cells, obtaining an efficient internalisation by target cells. Overall, these results demonstrate that the implementation of dual fluorescent methodology is feasible for sEVs characterization, quantification, for in vitro study of EVs interaction with cells, and intercellular communication, as well as a valuable tool in the in vitro development of targeted therapeutic EVs delivery systems.
Collapse
Affiliation(s)
- Maria José Sánchez
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Martí Lecina
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain.
| |
Collapse
|
19
|
Zou X, Brigstock D. Extracellular Vesicles from Mesenchymal Stem Cells: Potential as Therapeutics in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Biomedicines 2024; 12:2848. [PMID: 39767754 PMCID: PMC11673942 DOI: 10.3390/biomedicines12122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of triglycerides within hepatocytes, which can progress to more severe conditions, such as metabolic dysfunction-associated steatohepatitis (MASH), which may include progressive fibrosis, leading to cirrhosis, cancer, and death. This goal of this review is to highlight recent research showing the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in reducing the key pathogenic pathways of MASLD or MASH. Methods: Relevant published studies were identified using PubMed with one or more of the following search terms: MASLD, MASH, NAFLD, NASH, exosome, extracellular vesicle (EV), therapy, and/or mesenchymal stem cells (MSC). The primary literature were subsequently downloaded and summarized. Results: Using in vitro or in vivo models, MSC-EVs have been found to counteract oxidative stress, a significant contributor to liver injury in MASH, and to suppress disease progression, including steatosis, inflammation, and, in a few instances, fibrosis. Some of these outcomes have been attributed to specific EV cargo components including microRNAs and proteins. Thus, MSC-EVs enriched with these types of molecules may have improved the therapeutic efficacy for MASLD/MASH and represent a novel approach to potentially halt or reverse the disease process. Conclusions: MSC-EVs are attractive therapeutic agents for treating MASLD/MASH. Further studies are necessary to validate the clinical applicability and efficacy of MSC-EVs in human MASH patients, focusing on optimizing delivery strategies and identifying the pathogenic pathways that are targeted by specific EV components.
Collapse
Affiliation(s)
- Xue Zou
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - David Brigstock
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
20
|
Kepsha MA, Timofeeva AV, Chernyshev VS, Silachev DN, Mezhevitinova EA, Sukhikh GT. MicroRNA-Based Liquid Biopsy for Cervical Cancer Diagnostics and Treatment Monitoring. Int J Mol Sci 2024; 25:13271. [PMID: 39769036 PMCID: PMC11678179 DOI: 10.3390/ijms252413271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite prevention strategies, cervical cancer remains a significant public health issue. Human papillomavirus plays a critical role in its development, and early detection is vital to improve patient outcomes. The incidence of cervical cancer is projected to rise, necessitating better diagnostic tools. Traditional screening methods like the cytological examination and human papillomavirus testing have limitations in sensitivity and reproducibility. Liquid-based cytology offers some improvements, but the need for more reliable and sensitive techniques persists, particularly for detecting precancerous lesions. Liquid biopsy is a non-invasive method that analyzes cancer-derived products in biofluids like blood, offering potential for real-time monitoring of tumor progression, metastasis, and treatment response. It can be based on detection of circulating tumor cells (CTCs), circulating free DNA (cfDNA), and microRNAs (miRNAs). This review particularly underlines the potential of microRNAs, which are transported by extracellular vesicles. Overall, this article underscores the importance of continued research into non-invasive diagnostic methods like liquid biopsy to enhance cervical cancer screening and treatment monitoring.
Collapse
Affiliation(s)
| | | | - Vasiliy S. Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia (D.N.S.)
| | | | | | | |
Collapse
|
21
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
22
|
Miceli RT, Chen T, Nose Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, Cordon‐Cardo C, Sahoo S, Taioli E, Roussos P, Stolovitzky G, Gonzalez‐Kozlova E, Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles 2024; 13:e70005. [PMID: 39625409 PMCID: PMC11613500 DOI: 10.1002/jev2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV-RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to - exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial-derived vesicles, RNA binding proteins, and cell-free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV-RNA databases and resources specific to EV-RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV-RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP-associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP-RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non-vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Rebecca T. Miceli
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tzu‐Yi Chen
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yohei Nose
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapnil Tichkule
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Briana Brown
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Fullard
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marilyn D. Saulsbury
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Simon O. Heyliger
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Sacha Gnjatic
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carlos Cordon‐Cardo
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susmita Sahoo
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emanuela Taioli
- Department of Population Health and ScienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Thoracic SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Panos Roussos
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Precision Medicine and Translational TherapeuticsJames J. Peters VA Medicinal CenterBronxNew YorkUSA
- Mental Illness Research Education and Clinical Center (MIRECC)James J. Peters VA Medicinal CenterBronxNew YorkUSA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Biomedical Data Sciences Hub (Bio‐DaSH), Department of Pathology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Edgar Gonzalez‐Kozlova
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Navneet Dogra
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Genomics Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- AI and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
23
|
Garg S, Garg G, Patel P, Kumar M, Thakur S, Sharma N, Das Kurmi B. A complete sojourn on exosomes: Potential diagnostic and therapeutic agents. Pathol Res Pract 2024; 264:155674. [PMID: 39481226 DOI: 10.1016/j.prp.2024.155674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Exosomes are vesicles produced by the human body for carrying certain information from one cell to another. The carriers are nanosized vesicles carrying a wide variety of cargo like RNA, DNA, and proteins. Exosomes are also being used in the early diagnosis of various diseases and disorders. Current research focuses on exosomes tailoring for achieving therapeutic potential in various diseases and disorders. Besides this, their biocompatibility, stability, adjustable efficacy, and targeting properties make them attractive vehicles for formulation developers. Various preclinical studies suggested that the exosome culture cells are also modified with certain genes to achieve the desirable properties of resultant exosomes. The human body also produces some other vesicles like Ectosomes and Exomeres produced along with exosomes. Additionally, vesicles like Migrasomes are produced by migrating cells and apoptotic bodies, and Oncosomes are produced by cancer cells which can also be useful for the diagnosis of various diseases and disorders. For the separation of desired exosomes from other vesicles some latest techniques that can be useful viz differential centrifugation, density gradient centrifugation, and immunoaffinity purification have been discussed. Briefly, this review summarized various techniques of isolation of purified exosomes along with an overview of the application of exosomes in various neurodegenerative disorders and cancer along with various latest aspects of exosomes in disease progression and management which might be beneficial for the researchers.
Collapse
Affiliation(s)
- Sonakshi Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Gurisha Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| |
Collapse
|
24
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
25
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
26
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
27
|
Zhang S, Chen J, Cao Y, Cui Y, Zhang M, Yue C, Yang B. Divergent Proteomic Profiles and Uptake Mechanisms of Exosomes Derived from Human Dental Pulp Stem Cells, Endothelial Cells, and Fibroblasts. Mol Pharm 2024. [PMID: 39535266 DOI: 10.1021/acs.molpharmaceut.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Effective intercellular communication is crucial for tissue repair and regeneration, with exosomes playing a key role in mediating these processes by transferring proteins, lipids, and nucleic acids between cells. This study explored the mechanisms underlying the uptake of exosomes derived from human dental pulp stem cells (hDPSCs), human umbilical vein endothelial cells (HUVECs), and human fibroblasts (HFBs). Our findings revealed that hDPSCs exhibited the greatest capacity for exosome uptake across all three cell types. Moreover, exosomes originating from hDPSCs were also taken up in the highest amounts by all three cell types. Proteomic analysis uncovered significant differences in protein expression among exosomes from these different cell types, particularly in proteins related to endocytosis. Clathrin-dependent endocytosis emerged as the primary pathway for exosome uptake in hDPSCs and HUVECs, while HFBs appeared to use a different mechanism. Additionally, proteins such as fibronectin and tetraspanins were found to be highly expressed in hDPSC-derived exosomes, suggesting their potential involvement in exosome-cell interactions. This study offers new insights into exosome uptake mechanisms and highlights the potential of exosomes in advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jun Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yipu Cao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Cui
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Mei Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongxia Yue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial and Institute of Regulatory Science for Medical Devices and NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
28
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. Biomater Sci 2024; 12:5728-5741. [PMID: 39403853 PMCID: PMC11474809 DOI: 10.1039/d4bm00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
Affiliation(s)
- James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Courtney Khong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
29
|
Li M, Li Y, Liu Q, Jiang M, He Y, Liao X, Tao L, Meng J. Exosomal miR-552-3p isolated from BALF of patients with silicosis induces fibroblast activation. Toxicol Lett 2024; 401:55-70. [PMID: 39245427 DOI: 10.1016/j.toxlet.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Silica particles can cause silicosis, a disease characterized by diffuse fibrosis of the lungs. Various signaling pathways composed of different types of cells and cytokines are involved in the development of silicosis. Exosomes have become a research hotspot recently. However, the role of exosomal microRNA (miRNA) in silicosis remains unclear. METHODS In this study, we generated exosomal miRNA sequences from exosomes isolated from bronchoalveolar lavage fluid (BALF) of silicosis patients and the control group by high-throughput sequencing. Functional annotation and analysis of miRNA identified key target miRNAs. Levels of target miRNAs were analyzed in patient and animal samples and cells. Effects of increased miRNA were assessed through protein levels in target signaling pathways in cells treated with silica, miRNA mimics, and inhibitors. RESULTS Our study identified 40 up-regulated and 70 down-regulated miRNAs, with miR-552-3p and its putative target gene Caveolin 1 (CAV1) as targets for further research. We found that the levels of exosomal miR-552-3p increased in silicosis patients' BALF samples, silicosis model mice, and A549 cells exposed to silica. Inhibition of miR-552-3p suppressed the expression of fibrosis markers. The increased miR-552-3p leads to the up-regulation of fibronectin and α-smooth muscle actin (α-SMA) and the suppression of caveolin 1 in fibroblast cells. Mitogen-activated protein kinase (MAPK) signaling pathways are activated in cells treated with silica and miR-552-3p mimics. CONCLUSIONS These results help to understand exosomal miRNA-mediated intercellular communication and its key role in fibroblast activation and silicosis.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Ying Li
- The Second Department of Occupational Diseases, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, Hunan, China
| | - Qingxiang Liu
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China.
| |
Collapse
|
30
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
31
|
Wu L, Zhang L, Huang M, Wu Y, Jin S, Zhang Y, Gan X, Yu T, Yu G, Zhang J, Wang X. Mesenchymal Stem Cell-Derived Exosomes: Emerging as a Promising Cell-Free Therapeutic Strategy for Autoimmune Hepatitis. Biomolecules 2024; 14:1353. [PMID: 39595530 PMCID: PMC11592114 DOI: 10.3390/biom14111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated liver disease that currently faces limited treatment options. In its advanced stages, AIH can progress to liver fibrosis and cirrhosis. Recent research has increasingly focused on cell-free therapies, particularly the use of mesenchymal stem cell (MSC)-derived exosomes (Exos), which have shown promise in treating autoimmune diseases, including AIH. MSC-Exos, as microvesicles with low immunogenicity, high safety, and permeability, can deliver RNA, DNA, proteins, lipids, and various drugs for disease treatment, showing promising clinical application prospects. This review provides a comprehensive summary of the current research on MSC-Exos in the treatment of autoimmune hepatitis (AIH) and explores the underlying molecular mechanisms involved. It highlights the significant regulatory effects of MSC-Exos on immune cells and their ability to modify the microenvironment, demonstrating anti-inflammatory and anti-fibrotic properties while promoting liver regeneration. Additionally, this review also discusses potential challenges and future strategies for advancing Exo-based therapies in the treatment of AIH.
Collapse
Affiliation(s)
- Liwen Wu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Longze Zhang
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sikan Jin
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yaqi Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinyun Gan
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Ting Yu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Guang Yu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
32
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
33
|
Lee Y, Lim KM, Bong H, Lee SB, Jeon TI, Lee SY, Park HS, Kim JY, Song K, Kang GH, Kim SJ, Song M, Cho SG. The Immobilization of an FGF2-Derived Peptide on Culture Plates Improves the Production and Therapeutic Potential of Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10709. [PMID: 39409038 PMCID: PMC11477336 DOI: 10.3390/ijms251910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The skin is an essential organ that protects the body from external aggressions; therefore, damage from various wounds can significantly impair its function, and effective methods for regenerating and restoring its barrier function are crucial. This study aimed to mass-produce wound-healing exosomes using a fragment of the fibroblast growth factor 2 (FGF2)-derived peptide (FP2) to enhance cell proliferation and exosome production. Our experiments demonstrated increased cell proliferation when Wharton's jelly mesenchymal stem cells (WJ MSCs) were coated with FP2. Exosomes from FP2-coated WJ MSCs were analyzed using nanoparticle-tracking analysis, transmission electron microscopy, and Western blotting. Subsequently, fibroblasts were treated with these exosomes, and their viability and migration effects were compared. Anti-inflammatory effects were also evaluated by inducing pro-inflammatory factors in RAW264.7 cells. The treatment of fibroblasts with FP2-coated WJ MSC-derived exosomes (FP2-exo) increased the expression of FGF2, confirming their wound-healing effect in vivo. Overall, the results of this study highlight the significant impact of FP2 on the proliferation of WJ MSCs and the anti-inflammatory and wound-healing effects of exosomes, suggesting potential applications beyond wound healing.
Collapse
Affiliation(s)
- Youngseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Kyung-Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanbit Bong
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Soo-Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Tak-Il Jeon
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Su-Yeon Lee
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Hee-Sung Park
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Ji-Young Kim
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Se-Jong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Myeongjin Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Liu B, Rui Y, Li M, Huang L. Cancer cell-derived exosomes promote NSCLC progression via the miR-199b-5p/HIF1AN axis. Mol Immunol 2024; 174:32-40. [PMID: 39154583 DOI: 10.1016/j.molimm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Exosomes are mediators of intercellular communication. Cancer cell-secreted exosomes allow exosome donor cells to promote cancer growth, as well as metastasis. METHODS Here, exosomes were isolated from the serum of non-small cell lung cancer (NSCLC) patients and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. NSCLC cell proliferation and migration were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. H1299 tumor formation and pulmonary metastasis were examined in a xenograft model in nude mice. RESULTS We found that exosomes derived from NSCLC (NSCLC-Exos) promoted NSCLC cell migration and proliferation, and that NSCLC-Exo-mediated malignant progression of NSCLC was mediated by miR-199b-5p. Inhibition of miR-199b-5p decreased the effects of NSCLC-Exos on NSCLC malignant progression. HIF1AN was identified as a downstream target of miR-199b-5p. Furthermore, overexpression of HIF1AN reversed the effects of miR-199b-5p on NSCLC malignant progression. CONCLUSION In summary, our findings demonstrated that exosomal-specific miR-199b-5p promoted proliferation in distant or neighboring cells via the miR-199b-5p/HIF1AN axis, resulting in enhanced tumor growth.
Collapse
Affiliation(s)
- Bangzhu Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiratory Medicine, Wuhu Hospital, East China Normal University (The People's Second Hospital of Wuhu), Wuhu, Anhui, 241000, China
| | - Yan Rui
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Linan Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
35
|
Zhu Q, Liao Y, Liao Z, Ye G, Shan C, Huang H. Compact bone mesenchymal stem cells-derived paracrine mediators for cell-free therapy in sepsis. Biochem Biophys Res Commun 2024; 727:150313. [PMID: 38954981 DOI: 10.1016/j.bbrc.2024.150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
36
|
Yoon HJ, Won JP, Lee HG, Seo HG. Green Onion-Derived Exosome-like Nanoparticles Prevent Ferroptotic Cell Death Triggered by Glutamate: Implication for GPX4 Expression. Nutrients 2024; 16:3257. [PMID: 39408223 PMCID: PMC11478619 DOI: 10.3390/nu16193257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, alongside research on mammalian-derived exosomes, there has been increasing interest in the physiological activities of plant-derived exosome-like nanoparticles (PDEN). The biocompatibility, minimal side effects, and diverse bioactive ingredients contained in PDEN make them valuable as potential therapeutic agents for an extensive range of diseases. In this study, we cost-effectively isolated exosome-like nanoparticles from green onion (Allium fistulosum) using polyethylene glycol and examined their biological activity in HT-22 cells exposed to glutamate. The isolated green onion-derived exosome-like nanoparticle (GDEN) had an average diameter of 167.4 nm and a zeta potential of -16.06 mV. GDEN effectively inhibited glutamate-induced Ca2+ influx and lipid peroxidation, thereby preventing ferroptotic cell death in HT-22 mouse hippocampal cells. Additionally, GDEN reduced the intracellular iron accumulation by modulating the expression of proteins associated with iron metabolism, including transferrin receptor 1, ferroportin 1, divalent metal transporter 1, and ferritin. Notably, GDEN upregulated the expression of glutathione peroxidase 4, a potent antioxidant protein involved in ferroptosis, along with an increase in glutathione synthesis. These findings indicate that GDENs have the potential to serve as bioactives from natural sources against glutamate-induced neuronal cell death, like ferroptosis. This study advances the investigation into the potential medical applications of GDEN and may provide a new approach for the utilization of these bioactive components against neuronal disorders.
Collapse
Affiliation(s)
| | | | | | - Han Geuk Seo
- Department of Animal Food Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.J.Y.); (J.P.W.); (H.G.L.)
| |
Collapse
|
37
|
Zhuang X, Shi X, Zhao H, Shang S, Xu X, Wang X, Zheng X, He J. The expression and clinical significance of syncytin-1 in serum exosomes of hepatocellular carcinoma patients. Open Life Sci 2024; 19:20220930. [PMID: 39310811 PMCID: PMC11416070 DOI: 10.1515/biol-2022-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to investigate the expression and clinical significance of syncytin-1 in the serum exosomes of hepatocellular carcinoma (HCC) patients. Serum samples were collected from 61 patients with newly diagnosed HCC and 61 healthy individuals. Exosomes were extracted from serum samples and identified using transmission electron microscopy and Western blot. The relative expression levels of syncytin-1 in exosomes were determined by real-time quantitative PCR. The protein expression levels of alpha-fetoprotein and syncytin-1 in HCC patients were detected using enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed to evaluate the sensitivity and specificity of serum exosomal syncytin-1 in diagnosing HCC. The relationships between syncytin-1 expression and clinical pathological features were analyzed using receiver operating characteristic curve analysis. The results showed that the expression level of syncytin-1 in the serum of patients with newly diagnosed HCC was significantly higher than that in the normal control group (P < 0.0001). Using pathological diagnosis as the gold standard, the sensitivity and specificity of syncytin-1 for the auxiliary diagnosis of HCC were 91.3% and 75.5%, respectively, which were significantly higher than those of alpha-fetoprotein (P < 0.0001). The relative expression level of serum exosomal syncytin-1 was significantly associated with lymph node metastasis, degree of differentiation, and CNLC staging of HCC patients (P < 0.05). In conclusion, syncytin-1 in serum exosomes has high sensitivity and specificity for diagnosing HCC and can serve as a novel tumor marker for early screening, detection, and staging of HCC.
Collapse
Affiliation(s)
- Xuewei Zhuang
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| | - Xiao Shi
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Hui Zhao
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Shuai Shang
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Xinyu Xu
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Xiaomin Wang
- Dezhou Hospital of Traditional Chinese, 250000, Dezhou, Shandong, China
| | - Xin Zheng
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| | - Jing He
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| |
Collapse
|
38
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
39
|
Zhao Q, Li B, Zhang X, Zhao H, Xue W, Yuan Z, Xu S, Duan G. M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression via miR-520g-3p/SMIM22/GALE axis. NPJ Precis Oncol 2024; 8:185. [PMID: 39215037 PMCID: PMC11364787 DOI: 10.1038/s41698-024-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of lung cancer cases, accounting for over 80%. RNAs in EVs play a pivotal role in various biological and pathological processes mediated by extracellular vesicle (EV). Long non-coding RNAs (lncRNAs) are widely associated with cancer-related functions, including cell proliferation, migration, invasion, and drug resistance. Tumor-associated macrophages are recognized as pivotal contributors to tumorigenesis. Given these insights, this study aims to uncover the impact of lncRNA NORAD in EVs derived from M2 macrophages in NSCLC cell lines and xenograft mouse models of NSCLC. EVs were meticulously isolated and verified based on their morphology and specific biomarkers. The interaction between lncRNA NORAD and SMIM22 was investigated using immunoprecipitation. The influence of SMIM22/GALE or lncRNA NORAD in EVs on glycolysis was assessed in NSCLC cell lines. Additionally, we evaluated the effects of M2 macrophage-derived lncRNA NORAD in EVs on cell proliferation and apoptosis through colony formation and flow cytometry assays. Furthermore, the impact of M2 macrophage-derived lncRNA NORAD in EVs on tumor growth was confirmed using xenograft tumor animal models. The results underscored the potential role of M2 macrophage-derived lncRNA NORAD in EVs in NSCLC. SMIM22/GALE promoted glycolysis and the proliferation of NSCLC cells. Furthermore, lncRNA NORAD in EVs targeted SMIM22 and miR-520g-3p in NSCLC cells. Notably, lncRNA NORAD in EVs promoted the proliferation of NSCLC cells and facilitated NSCLC tumor growth through the miR-520g-3p axis. In conclusion, M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression through the miR-520g-3p/SMIM22/GALE axis.
Collapse
Affiliation(s)
- Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Bin Li
- Hebei Bio-High Technology Development Co.Ltd, Shijiazhuang, Hebei Province, China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Zheng Yuan
- Department of Nursing, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
40
|
Ciancaglini R, Botash AS, Armijo-Garcia V, Hymel KP, Thomas NJ, Hicks SD. A Pilot Study of Saliva MicroRNA Signatures in Children with Moderate-to-Severe Traumatic Brain Injury. J Clin Med 2024; 13:5065. [PMID: 39274278 PMCID: PMC11396305 DOI: 10.3390/jcm13175065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a leading cause of death and disability in children. Currently, no biological test can predict outcomes in pediatric TBI, complicating medical management. This study sought to identify brain-related micro-ribosomal nucleic acids (miRNAs) in saliva associated with moderate-to-severe TBI in children, offering a potential non-invasive, prognostic tool. Methods: A case-control design was used, enrolling participants ≤ 18 years old from three pediatric trauma centers. Participants were divided into moderate-to-severe TBI and non-TBI trauma control groups. Saliva samples were collected within 24 h of injury, with additional samples at 24-48 h and >48 h post-injury from the TBI group. miRNA profiles were visualized with partial least squares discriminant analysis (PLSDA) and hierarchical clustering. Mann-Whitney testing was used to compare miRNAs between groups, and mixed models were used to assess longitudinal expression patterns. DIANA miRPath v3.0 was used to interrogate the physiological functions of miRNAs. Results: Twenty-three participants were enrolled (14 TBI, nine controls). TBI and control groups displayed complete separation of miRNA profiles on PLSDA. Three miRNAs were elevated (adj. p < 0.05) in TBI (miR-1255b-5p, miR-3142, and miR-4320), and two were lower (miR-326 and miR-4646-5p). Three miRNAs (miR-3907, miR-4254, and miR-1273g-5p) showed temporal changes post-injury. Brain-related targets of these miRNAs included the glutamatergic synapse and GRIN2B. Conclusions: This study shows that saliva miRNA profiles in children with moderate-to-severe TBI may differ from those with non-TBI trauma and exhibit temporal changes post-injury. These miRNAs could serve as non-invasive biomarkers for prognosticating pediatric TBI outcomes. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Robert Ciancaglini
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Ann S Botash
- Department of Pediatrics, SUNY Upstate Golisano Children's Hospital, Syracuse, NY 13210, USA
| | | | - Kent P Hymel
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Neal J Thomas
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| |
Collapse
|
41
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589114. [PMID: 38659930 PMCID: PMC11042190 DOI: 10.1101/2024.04.12.589114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
|
42
|
Nathani A, Aare M, Sun L, Bagde A, Li Y, Rishi A, Singh M. Unlocking the Potential of Camel Milk-Derived Exosomes as Novel Delivery Systems: Enhanced Bioavailability of ARV-825 PROTAC for Cancer Therapy. Pharmaceutics 2024; 16:1070. [PMID: 39204415 PMCID: PMC11359469 DOI: 10.3390/pharmaceutics16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the use of camel milk-derived exosomes (CMEs) as carriers for ARV-825, an anticancer agent targeting bromodomain-containing protein 4 (BRD4), in oral chemotherapy. CMEs were isolated and characterized, and ARV-825-loaded CME formulations were prepared and evaluated through various in vitro and in vivo tests. The ARV-825-CME formulation exhibited an entrapment efficiency of 42.75 ± 5.05%, a particle size of 136.8 ± 1.94 nm, and a zeta potential of -32.75 ± 0.70 mV, ensuring stability and sustained drug release. In vitro studies showed a 5.4-fold enhancement in drug release kinetics compared to the free ARV-825 solution. Permeability studies indicated a 3.2-fold increase in apparent permeability, suggesting improved cellular uptake. Cytotoxicity assays demonstrated potent anticancer activity, with IC50 values decreasing by 1.5 to 2-fold in cancer cell lines SF8628 DIPG and H1975R (resistant to Osimertinib). In vivo pharmacokinetic studies in Sprague-Dawley rats revealed superior systemic absorption and bioavailability of ARV-825 from CMEs, with a 2.55-fold increase in plasma concentration and a 5.56-fold increase in AUC. Distribution studies confirmed absorption through the ileum. This research highlights the potential of CMEs as a promising delivery platform for ARV-825, enhancing its therapeutic efficacy and offering a novel approach to cancer treatment.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
| | - Arun Rishi
- Department of Oncology, John D. Dingell VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| |
Collapse
|
43
|
Cho J, Tae N, Song Y, Kim CW, Lee SJ, Ahn JH, Lee KH, Lee BH, Kim BS, Chang SY, Kim DH, Ko HJ. The expression of PD-L1 on tumor-derived exosomes enhances infiltration and anti-tumor activity of αCD3 × αPD-L1 bispecific antibody-armed T cells. Cancer Immunol Immunother 2024; 73:196. [PMID: 39105814 PMCID: PMC11303351 DOI: 10.1007/s00262-024-03785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Anti-cluster of differentiation (CD) 3 × α programmed death-ligand 1 (PD-L1) bispecific T-cell engager (BsTE)-bound T-cells (BsTE:T) are a promising new cancer treatment agent. However, the mechanisms of action of bispecific antibody-armed activated T-cells are poorly understood. Therefore, this study aimed to investigate the anti-tumor mechanism and efficacy of BsTE:T. The BsTE:T migration was assessed in vivo and in vitro using syngeneic and xenogeneic tumor models, flow cytometry, immunofluorescence staining, transwell migration assays, microfluidic chips, Exo View R100, western blotting, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology. In murine B16 melanoma, MC38 colon cancer, and human multiple myeloma cells, BsTE:T exhibited superior tumor elimination relative to that of T-cells or BsTE alone. Moreover, BsTE:T migration into tumors was significantly enhanced owing to the presence of PD-L1 in tumor cells and secretion of PD-L1-containing exosomes. Furthermore, increased infiltration of CD44highCD62Llow effector memory CD8+ T-cells into tumors was closely associated with the anti-tumor effect of BsTE:T. Therefore, BsTE:T is an innovative potential anti-tumor therapy, and exosomal PD-L1 plays a crucial role both in vitro and in vivo in the anti-tumor activity of BsTE:T.
Collapse
Affiliation(s)
- Jaewon Cho
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nara Tae
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yujeong Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chae-Won Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Joo Lee
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang-Ho Lee
- Department of Advanced Material Science and Engineering, College of Engineering, Kangwon National University, Chuncheon, 25561, Korea
| | - Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Korea
| | - Dae Hee Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
44
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Xia M, Ding J, Wu S, Yan Z, Wang L, Dong M, Niu W. Milk-derived small extracellular vesicles inhibit the MAPK signaling pathway through CD36 in chronic apical periodontitis. Int J Biol Macromol 2024; 274:133422. [PMID: 38925187 DOI: 10.1016/j.ijbiomac.2024.133422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Small extracellular vesicles derived from milk (Milk-sEVs) have the advantages of easy availability, low cost, low toxicity, and inhibition of inflammation. CD36 mediates inflammation stress in a variety of disease states. The purpose of this study was to investigate the role of Milk-sEVs in inhibiting fibroblast inflammation through CD36 and provide reference data for the treatment of chronic apical periodontitis. RESULTS The addition of Milk-sEVs resulted in decreased expression of inflammation-related factors in L929 cells, and transcriptome sequencing screened for the DEG CD36 in the Milk-sEV treatment group under inflammation. The mouse model of apical periodontitis was successfully established, and CD36 expression increased with the development of inflammation. Transfection of si-CD36 into L929 cells reduced inflammation by inhibiting activation of the MAPK signaling pathway. CONCLUSIONS CD36 expression increased with the development of apical periodontitis. In the setting of LPS-mediated inflammation, Milk-sEVs inhibited activation of the MAPK signaling pathway by decreasing the expression of CD36 in L929 cells and thereby reducing inflammation.
Collapse
Affiliation(s)
- Meng Xia
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Jiayin Ding
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Zhengru Yan
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| |
Collapse
|
46
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
47
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
48
|
Yan W, Yang H, Duan D, Wu Y, Liu Y, Mao J, Zhao Y, Ye J. Bone marrow mesenchymal stem cells-derived exosomal miR-145-5p reduced non-small cell lung cancer cell progression by targeting SOX9. BMC Cancer 2024; 24:883. [PMID: 39039505 PMCID: PMC11265358 DOI: 10.1186/s12885-024-12523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.
Collapse
Affiliation(s)
- Wu Yan
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Haiyu Yang
- Drugs and Medical Devices Clinical Trial Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Dekun Duan
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Yufeng Wu
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Youhu Liu
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Jianping Mao
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Yong Zhao
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
49
|
Cui X, Meng H, Li M, Chen X, Yuan D, Wu C. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms 2024; 12:1417. [PMID: 39065185 PMCID: PMC11278582 DOI: 10.3390/microorganisms12071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite huge efforts, tuberculosis (TB) is still a major public health threat worldwide, with approximately 23% of the human population harboring a latent TB infection (LTBI). LTBI can reactivate and progress to active and transmissible TB disease, contributing to its spread within the population. The challenges in diagnosing and treating LTBI patients have been major factors contributing to this phenomenon. Exosomes offer a novel avenue for investigating the process of TB infection. In this study, we conducted small RNA sequencing to investigate the small RNA profiles of plasma exosomes derived from individuals with LTBI and healthy controls. Our findings revealed distinct miRNA profiles in the exosomes between the two groups. We identified 12 differentially expressed miRNAs through this analysis, which were further validated via qRT-PCR using the same exosomes. Notably, six miRNAs (hsa-miR-7850-5p, hsa-miR-1306-5p, hsa-miR-363-5p, hsa-miR-374a-5p, hsa-miR-4654, has-miR-6529-5p, and hsa-miR-140-5p) exhibited specifically elevated expression in individuals with LTBI. Gene ontology and KEGG pathway analyses revealed that the targets of these miRNAs were enriched in functions associated with ferroptosis and fatty acid metabolism, underscoring the critical role of these miRNAs in regulating the intracellular survival of Mycobacterium tuberculosis (Mtb). Furthermore, our results indicated that the overexpression of miR-7850-5p downregulated the expression of the SLC11A1 protein in both Mtb-infected and Mtb-uninfected THP1 cells. Additionally, we observed that miR-7850-5p promoted the intracellular survival of Mtb by suppressing the expression of the SLC11A1 protein. Overall, our findings provide valuable insights into the role of miRNAs and repetitive region-derived small RNAs in exosomes during the infectious process of Mtb and contribute to the identification of potential molecular targets for the detection and diagnosis of latent tuberculosis.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (H.M.); (M.L.); (X.C.); (D.Y.)
| | | | | | | | | | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (H.M.); (M.L.); (X.C.); (D.Y.)
| |
Collapse
|
50
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|