1
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
3
|
Kokkorakis N, Douka K, Nalmpanti A, Politis PK, Zagoraiou L, Matsas R, Gaitanou M. Mirk/Dyrk1B controls ventral spinal cord development via Shh pathway. Cell Mol Life Sci 2024; 81:70. [PMID: 38294527 PMCID: PMC10830675 DOI: 10.1007/s00018-023-05097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Cross-talk between Mirk/Dyrk1B kinase and Sonic hedgehog (Shh)/Gli pathway affects physiology and pathology. Here, we reveal a novel role for Dyrk1B in regulating ventral progenitor and neuron subtypes in the embryonic chick spinal cord (SC) via the Shh pathway. Using in ovo gain-and-loss-of-function approaches at E2, we report that Dyrk1B affects the proliferation and differentiation of neuronal progenitors at E4 and impacts on apoptosis specifically in the motor neuron (MN) domain. Especially, Dyrk1B overexpression decreases the numbers of ventral progenitors, MNs, and V2a interneurons, while the pharmacological inhibition of endogenous Dyrk1B kinase activity by AZ191 administration increases the numbers of ventral progenitors and MNs. Mechanistically, Dyrk1B overexpression suppresses Shh, Gli2 and Gli3 mRNA levels, while conversely, Shh, Gli2 and Gli3 transcription is increased in the presence of Dyrk1B inhibitor AZ191 or Smoothened agonist SAG. Most importantly, in phenotype rescue experiments, SAG restores the Dyrk1B-mediated dysregulation of ventral progenitors. Further at E6, Dyrk1B affects selectively the medial lateral motor neuron column (LMCm), consistent with the expression of Shh in this region. Collectively, these observations reveal a novel regulatory function of Dyrk1B kinase in suppressing the Shh/Gli pathway and thus affecting ventral subtypes in the developing spinal cord. These data render Dyrk1B a possible therapeutic target for motor neuron diseases.
Collapse
Affiliation(s)
- N Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - K Douka
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - A Nalmpanti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - L Zagoraiou
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - R Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - M Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
4
|
Sasai N, Tada S, Ohshiro J, Kogiso C, Shinozuka T. Regulation of progenitor cell survival by a novel chromatin remodeling factor during neural tube development. Dev Growth Differ 2024; 66:89-100. [PMID: 38014908 DOI: 10.1111/dgd.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
During development, progenitor cell survival is essential for proper tissue functions, but the underlying mechanisms are not fully understood. Here we show that ERCC6L2, a member of the Snf2 family of helicase-like proteins, plays an essential role in the survival of developing chick neural cells. ERCC6L2 expression is induced by the Sonic Hedgehog (Shh) signaling molecule by a mechanism similar to that of the known Shh target genes Ptch1 and Gli1. ERCC6L2 blocks programmed cell death induced by Shh inhibition and this inhibition is independent of neural tube patterning. ERCC6L2 knockdown by siRNA resulted in the aberrant appearance of apoptotic cells. Furthermore, ERCC6L2 cooperates with the Shh signal and plays an essential role in the induction of the anti-apoptotic factor Bcl-2. Taken together, ERCC6L2 acts as a key factor in ensuring the survival of neural progenitor cells.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shogo Tada
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Jumi Ohshiro
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Chikara Kogiso
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takuma Shinozuka
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
5
|
Rodríguez-Sastre N, Shapiro N, Hawkins DY, Lion AT, Peyreau M, Correa AE, Dionne K, Bradham CA. Ethanol exposure perturbs sea urchin development and disrupts developmental timing. Dev Biol 2023; 493:89-102. [PMID: 36368523 DOI: 10.1016/j.ydbio.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.
Collapse
Affiliation(s)
| | | | | | - Alexandra T Lion
- Biology Department, Boston University, Boston, MA, USA; MCBB Program, Boston University, Boston, MA, USA
| | | | - Andrea E Correa
- Universidad de Puerto Rico-Recinto Aguadilla, Puerto Rico, USA
| | | | - Cynthia A Bradham
- Biology Department, Boston University, Boston, MA, USA; MCBB Program, Boston University, Boston, MA, USA; Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Zhang SF, Dai SK, Du HZ, Wang H, Li XG, Tang Y, Liu CM. The epigenetic state of EED-Gli3-Gli1 regulatory axis controls embryonic cortical neurogenesis. Stem Cell Reports 2022; 17:2064-2080. [PMID: 35931079 PMCID: PMC9481917 DOI: 10.1016/j.stemcr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the embryonic ectoderm development (EED) cause Weaver syndrome, but whether and how EED affects embryonic brain development remains elusive. Here, we generated a mouse model in which Eed was deleted in the forebrain to investigate the role of EED. We found that deletion of Eed decreased the number of upper-layer neurons but not deeper-layer neurons starting at E16.5. Transcriptomic and genomic occupancy analyses revealed that the epigenetic states of a group of cortical neurogenesis-related genes were altered in Eed knockout forebrains, followed by a decrease of H3K27me3 and an increase of H3K27ac marks within the promoter regions. The switching of H3K27me3 to H3K27ac modification promoted the recruitment of RNA-Pol2, thereby enhancing its expression level. The small molecule activator SAG or Ptch1 knockout for activating Hedgehog signaling can partially rescue aberrant cortical neurogenesis. Taken together, we proposed a novel EED-Gli3-Gli1 regulatory axis that is critical for embryonic brain development.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
7
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
8
|
Li J, Yang Z, Qi Y, Liu X, Liu Y, Gao X, Li S, Zhu J, Zhang C, Du E, Zhang Z. STIL Acts as an Oncogenetic Driver in a Primary Cilia-Dependent Manner in Human Cancer. Front Cell Dev Biol 2022; 10:804419. [PMID: 35155425 PMCID: PMC8826476 DOI: 10.3389/fcell.2022.804419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
SCL/TAL1 Interrupting locus (STIL) is a ciliary-related gene involved in regulating the cell cycle and duplication of centrioles in dividing cells. STIL has been found disordered in multiple cancers and driven carcinogenesis. However, the molecular mechanisms and biological functions of STIL in cancers remain ambiguous. Here, we systematically analyzed the genetic alterations, molecular mechanisms, and clinical relevance of STIL across >10,000 samples representing 33 cancer types in The Cancer Genome Atlas (TCGA) dataset. We found that STIL expression is up-regulated in most cancer types compared with their adjacent normal tissues. The expression dysregulation of STIL was affected by copy number variation, mutation, and DNA methylation. High STIL expression was associated with worse outcomes and promoted the progression of cancers. Gene Ontology (GO) enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that STIL is involved in cell cycle progression, Mitotic spindle, G2M checkpoint, and E2F targets pathways across cancer types. STIL expression was negatively correlated with multiple genes taking part in ciliogenesis and was positively correlated with several genes which participated with centrosomal duplication or cilia degradation. Moreover, STIL silencing could promote primary cilia formation and inhibit cell cycle protein expression in prostate and kidney cancer cell lines. The phenotype and protein expression alteration due to STIL silencing could be reversed by IFT88 silencing in cancer cells. These results revealed that STIL could regulate the cell cycle through primary cilia in tumor cells. In summary, our results revealed the importance of STIL in cancers. Targeting STIL might be a novel therapeutic approach for cancers.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zikun Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyu Gao
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Shuai Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| |
Collapse
|
9
|
Li H, Fernández-Guasti A, Xu Y, Swaab D. Retracted: Sexual orientation, neuropsychiatric disorders and the neurotransmitters involved. Neurosci Biobehav Rev 2021; 131:479-488. [PMID: 34597715 DOI: 10.1016/j.neubiorev.2021.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor in Chief of Neuroscience and Biobehavioral Reviews after concerns were raised with respect to the phrasing of comparisons drawn between humans and animal models. These comparisons were deemed unsupportable, and thus in the best interests of publication standards the Editor has concluded it is necessary to retract the paper. The authors disagree with the reason for the retraction.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, the Netherlands
| | | | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, PR China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, PR China; Brain Research Institute of Zhejiang University, Hangzhou, 31003, PR China.
| | - Dick Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, the Netherlands.
| |
Collapse
|
10
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
11
|
Gao FJ, Klinedinst D, Fernandez FX, Cheng B, Savonenko A, Devenney B, Li Y, Wu D, Pomper MG, Reeves RH. Forebrain Shh overexpression improves cognitive function and locomotor hyperactivity in an aneuploid mouse model of Down syndrome and its euploid littermates. Acta Neuropathol Commun 2021; 9:137. [PMID: 34399854 PMCID: PMC8365939 DOI: 10.1186/s40478-021-01237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022] Open
Abstract
Down syndrome (DS) is the leading genetic cause of intellectual disability and causes early-onset dementia and cerebellar hypoplasia. The prevalence of attention deficit hyperactivity disorder is elevated in children with DS. The aneuploid DS mouse model "Ts65Dn" shows prominent brain phenotypes, including learning and memory deficits, cerebellar hypoplasia, and locomotor hyperactivity. Previous studies indicate that impaired Sonic hedgehog (Shh) signaling contributes to neurological phenotypes associated with DS and neurodegenerative diseases. However, because of a lack of working inducible Shh knock-in mice, brain region-specific Shh overexpression and its effects on cognitive function have not been studied in vivo. Here, with Gli1-LacZ reporter mice, we demonstrated that Ts65Dn had reduced levels of Gli1, a sensitive readout of Shh signaling, in both hippocampus and cerebellum at postnatal day 6. Through site-specific transgenesis, we generated an inducible human Shh knock-in mouse, TRE-bi-hShh-Zsgreen1 (TRE-hShh), simultaneously expressing dually-lipidated Shh-Np and Zsgreen1 marker in the presence of transactivator (tTA). Double transgenic mice "Camk2a-tTA;TRE-hShh" and "Pcp2-tTA;TRE-hShh" induced Shh overexpression and activated Shh signaling in a forebrain and cerebellum, respectively, specific manner from the perinatal period. Camk2a-tTA;TRE-hShh normalized locomotor hyperactivity and improved learning and memory in 3-month-old Ts65Dn, mitigated early-onset severe cognitive impairment in 7-month-old Ts65Dn, and enhanced spatial cognition in euploid mice. Camk2a-tTA;TRE-hShh cohort maintained until 600days old showed that chronic overexpression of Shh in forebrain from the perinatal period had no effect on longevity of euploid or Ts65Dn. Pcp2-tTA;TRE-hShh did not affect cognition but mitigated the phenotype of cerebellar hypoplasia in Ts65Dn. Our study provides the first in vivo evidence that Shh overexpression from the perinatal period protects DS brain integrity and enhances learning and memory in normal mice, indicating the broad therapeutic potential of Shh ligand for other neurological conditions. Moreover, the first inducible hShh site-specific knock-in mouse could be widely used for spatiotemporal Shh signaling regulation.
Collapse
Affiliation(s)
- Feng J Gao
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| | - Donna Klinedinst
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA
| | - Bei Cheng
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alena Savonenko
- Department of Pathology and Neurology, John Hopkins University, Baltimore, MD, 21205, USA
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yicong Li
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Katsuyama T, Kadoya M, Shirai M, Sasai N. Sox14 is essential for initiation of neuronal differentiation in the chick spinal cord. Dev Dyn 2021; 251:350-361. [PMID: 34181293 DOI: 10.1002/dvdy.392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. RESULTS Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. CONCLUSIONS Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube.
Collapse
Affiliation(s)
- Taiki Katsuyama
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
13
|
Rahi S, Gupta R, Sharma A, Mehan S. Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum Exp Toxicol 2021; 40:1880-1898. [PMID: 33906504 DOI: 10.1177/09603271211013456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disease characterized by cognitive and sensorimotor impairment. Numerous research findings have consistently shown that alteration of Smo-Shh (smoothened-sonic hedgehog) signaling during the developmental process plays a significant role in ASD and triggers neuronal changes by promoting neuroinflammation and apoptotic markers. Purmorphamine (PUR), a small purine-derived agonist of the Smo-Shh pathway, shows resistance to hippocampal neuronal cell oxidation and decreases neuronal cell death. The goal of this study was to investigate the neuroprotective potential of PUR in brain intoxication induced by intracerebroventricular-propionic acid (ICV-PPA) in rats, with a focus on its effect on Smo-Shh regulation in the brain of rats. In addition, we analyze the impact of PUR on myelin basic protein (MBP) and apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic) in rat brain homogenates. Chronic ICV-PPA infusion was administered consecutively for 11 days to induce autism in rats. In order to investigate behavioral alterations, rats were tested for spatial learning in the Morris Water Maze (MWM), locomotive alterations using actophotometer, and beam crossing task, while Forced Swimming Test (FST) for depressive behavior. PUR treatment with 5 mg/kg and 10 mg/kg (i.p.) was administered from day 12 to 44. Besides cellular, molecular and neuroinflammatory analyses, neurotransmitter levels and oxidative markers have also been studied in brain homogenates. The results of this study have shown that PUR increases the level of Smo-Shh and restores the neurochemical levels, and potentially prevents morphological changes, including demyelination.
Collapse
Affiliation(s)
- S Rahi
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - R Gupta
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - A Sharma
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - S Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
14
|
Du J, Jing J, Yuan Y, Feng J, Han X, Chen S, Li X, Peng W, Xu J, Ho TV, Jiang X, Chai Y. Arid1a-Plagl1-Hh signaling is indispensable for differentiation-associated cell cycle arrest of tooth root progenitors. Cell Rep 2021; 35:108964. [PMID: 33826897 PMCID: PMC8132592 DOI: 10.1016/j.celrep.2021.108964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiang Li
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Anusha, Dalal H, Subramanian S, V P S, Gowda DA, H K, Damodar S, Vyas N. Exovesicular-Shh confers Imatinib resistance by upregulating Bcl2 expression in chronic myeloid leukemia with variant chromosomes. Cell Death Dis 2021; 12:259. [PMID: 33707419 PMCID: PMC7952724 DOI: 10.1038/s41419-021-03542-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.
Collapse
Affiliation(s)
- Anusha
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Hamza Dalal
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India
| | - Sitalakshmi Subramanian
- St. John's Medical College and Hosptial, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Snijesh V P
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Divya A Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Krishnamurthy H
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sharat Damodar
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India.
| | - Neha Vyas
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
16
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Groves I, Placzek M, Fletcher AG. Of mitogens and morphogens: modelling Sonic Hedgehog mechanisms in vertebrate development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190660. [PMID: 32829689 PMCID: PMC7482217 DOI: 10.1098/rstb.2019.0660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Sonic Hedgehog (Shh) Is a critical protein in vertebrate development, orchestrating patterning and growth in many developing systems. First described as a classic morphogen that patterns tissues through a spatial concentration gradient, subsequent studies have revealed a more complex mechanism, in which Shh can also regulate proliferation and differentiation. While the mechanism of action of Shh as a morphogen is well understood, it remains less clear how Shh might integrate patterning, proliferation and differentiation in a given tissue, to ultimately direct its morphogenesis. In tandem with experimental studies, mathematical modelling can help gain mechanistic insights into these processes and bridge the gap between Shh-regulated patterning and growth, by integrating these processes into a common theoretical framework. Here, we briefly review the roles of Shh in vertebrate development, focusing on its functions as a morphogen, mitogen and regulator of differentiation. We then discuss the contributions that modelling has made to our understanding of the action of Shh and highlight current challenges in using mathematical models in a quantitative and predictive way. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ian Groves
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
18
|
|
19
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
20
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e383. [PMID: 32391980 PMCID: PMC8244110 DOI: 10.1002/wdev.383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. This article is categorized under:
Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Signaling Pathways > Global Signaling Mechanisms Nervous System Development > Vertebrates: General Principles
Collapse
|
22
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
24
|
Yang C, Li S, Li X, Li H, Li Y, Zhang C, Lin J. Effect of sonic hedgehog on motor neuron positioning in the spinal cord during chicken embryonic development. J Cell Mol Med 2019; 23:3549-3562. [PMID: 30834718 PMCID: PMC6484327 DOI: 10.1111/jcmm.14254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
Collapse
Affiliation(s)
- Ciqing Yang
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Shuanqing Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Xiaoying Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang, Malaysia
| | - Yunxiao Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Chen Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Juntang Lin
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Rapacioli M, Fiszer de Plazas S, Flores V. The developing optic tectum: An asymmetrically organized system and the need for a redefinition of the notion of sensitive period. Int J Dev Neurosci 2018; 73:1-9. [PMID: 30572015 DOI: 10.1016/j.ijdevneu.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
The present article summarizes the main events involved in the isthmic organizer and optic tectum determination and analyses how optic tectum patterning is translated, by the organized operation of several specific cell behaviors, into the terminally differentiated optic tectum. The paper proposes that this assembling of temporally/spatially organized cell behaviors could be incorporated into a wider notion of patterning and that, given the asymmetric organization of the developing optic tectum, the notion of "sensitive period" does not capture the whole complexity of midbrain development and the pathogenesis of congenital disorders. The cell behaviors involved in the optic tectum development are organized in time and space by the isthmic organizer. A comprehensive description of the normal optic tectum development, and also its alterations, should consider both domains. Significantly, the identity of each neuronal cohort depends critically on its "time and place of birth". Both parameters must be considered at once to explain how the structural and functional organization of the optic tectum is elaborated. The notion of "patterning" applies only to the early events of the optic tectum development. Besides, the notion of "sensitive period" considers only a temporal domain and disregards the asymmetric organization of the developing optic tectum. The present paper proposes that these notions might be re-defined: (a) a wider meaning of the term patterning and (b) a replacement of the term "sensitive period" by a more precise concept of "sensitive temporal/spatial window".
Collapse
Affiliation(s)
- Melina Rapacioli
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina.
| | - Sara Fiszer de Plazas
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vladimir Flores
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
26
|
Saade M, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Martí E. A centrosomal view of CNS growth. Development 2018; 145:145/21/dev170613. [DOI: 10.1242/dev.170613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Jose Blanco-Ameijeiras
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
27
|
The Neuroprotective Roles of Sonic Hedgehog Signaling Pathway in Ischemic Stroke. Neurochem Res 2018; 43:2199-2211. [DOI: 10.1007/s11064-018-2645-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/29/2018] [Accepted: 09/19/2018] [Indexed: 01/20/2023]
|
28
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
29
|
Mok GF, Lozano-Velasco E, Maniou E, Viaut C, Moxon S, Wheeler G, Münsterberg A. miR-133-mediated regulation of the Hedgehog pathway orchestrates embryo myogenesis. Development 2018; 145:dev.159657. [PMID: 29802149 PMCID: PMC6031409 DOI: 10.1242/dev.159657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/10/2018] [Indexed: 12/23/2022]
Abstract
Skeletal myogenesis serves as a paradigm to investigate the molecular mechanisms underlying exquisitely regulated cell fate decisions in developing embryos. The evolutionarily conserved miR-133 family of microRNAs is expressed in the myogenic lineage, but how it acts remains incompletely understood. Here, we performed genome-wide differential transcriptomics of miR-133 knockdown (KD) embryonic somites, the source of vertebrate skeletal muscle. These analyses, performed in chick embryos, revealed extensive downregulation of Sonic hedgehog (Shh) pathway components: patched receptors, Hedgehog interacting protein and the transcriptional activator Gli1. By contrast, Gli3, a transcriptional repressor, was de-repressed and confirmed as a direct miR-133 target. Phenotypically, miR-133 KD impaired myotome formation and growth by disrupting proliferation, extracellular matrix deposition and epithelialization. Together, these observations suggest that miR-133-mediated Gli3 silencing is crucial for embryonic myogenesis. Consistent with this idea, we found that activation of Shh signalling by either purmorphamine, or KD of Gli3 by antisense morpholino, rescued the miR-133 KD phenotype. Thus, we identify a novel Shh/myogenic regulatory factor/miR-133/Gli3 axis that connects epithelial morphogenesis with myogenic fate specification. Summary: Here, using chick embryos, we showed that post-transcriptional silencing of the Gli3 repressor by miR-133 is required to stably establish the myogenic programme in early somites.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Eirini Maniou
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Camille Viaut
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- The Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Grant Wheeler
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
30
|
Patwardhan D, Mani S, Passemard S, Gressens P, El Ghouzzi V. STIL balancing primary microcephaly and cancer. Cell Death Dis 2018; 9:65. [PMID: 29352115 PMCID: PMC5833631 DOI: 10.1038/s41419-017-0101-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.
Collapse
Affiliation(s)
- Dhruti Patwardhan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for Neuroscience, IISC Bangalore, India
| | - Shyamala Mani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Curadev Pharma, B 87, Sector 83, Noida, UP, 201305,, India
| | - Sandrine Passemard
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
31
|
Stagni F, Giacomini A, Emili M, Guidi S, Bartesaghi R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic Biol Med 2018; 114:15-32. [PMID: 28756311 DOI: 10.1016/j.freeradbiomed.2017.07.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is characterized by brain hypotrophy and intellectual disability starting from early life stages. Accumulating evidence shows that the phenotypic features of the DS brain can be traced back to the fetal period since the DS brain exhibits proliferation potency reduction starting from the critical time window of fetal neurogenesis. This defect is worsened by the fact that neural progenitor cells exhibit reduced acquisition of a neuronal phenotype and an increase in the acquisition of an astrocytic phenotype. Consequently, the DS brain has fewer neurons in comparison with the typical brain. Although apoptotic cell death may be increased in DS, this does not seem to be the major cause of brain hypocellularity. Evidence obtained in brains of individuals with DS, DS-derived induced pluripotent stem cells (iPSCs), and DS mouse models has provided some insight into the mechanisms underlying the developmental defects due to the trisomic condition. Although many triplicated genes may be involved, in the light of the studies reviewed here, DYRK1A, APP, RCAN1 and OLIG1/2 appear to be particularly important determinants of many neurodevelopmental alterations that characterize DS because their triplication affects both the proliferation and fate of neural precursor cells as well as apoptotic cell death. Based on the evidence reviewed here, pathways downstream to these genes may represent strategic targets, for the design of possible interventions.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Cardozo MJ, Mysiak KS, Becker T, Becker CG. Reduce, reuse, recycle – Developmental signals in spinal cord regeneration. Dev Biol 2017; 432:53-62. [DOI: 10.1016/j.ydbio.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
|
33
|
Xie J, Zhao T, Liu Y. Sonic hedgehog regulates the pathfinding of descending serotonergic axons in hindbrain in collaboration with Wnt5a and secreted frizzled-related protein 1. Int J Dev Neurosci 2017; 66:24-32. [PMID: 29196093 DOI: 10.1016/j.ijdevneu.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Previous studies have demonstrated that both Wnt5a and Sonic hedgehog (Shh) are involved in regulating the pathfinding of descending serotonergic (5-HT, 5-hydroxytryptamine) axons in an opposite manner in the brainstem. Shh and Wnt signaling pathways interact to guide post-crossing commissural axons, where Shh acts as a repellent directly and shaping the Wnt gradient indirectly by regulating the gradient expression of the frizzled-related protein 1 (Sfrp1). Whether such a mechanism functions in descending 5-HT axon guidance remains unknown. Here, we found that the core components of the Shh and Wnt planar cell polarity signaling pathways are expressed in caudal 5-HT neurons, and the expression gradients of Shh, Sfrp1, and Wnt5a exist simultaneously in hindbrain. Dunn chamber assays revealed that Sfrp1 suppressed the attractive Wnt gradient. Moreover, we found that Shh overexpression led to pathfinding defects in 5-HT axon descending, and the axonal pathfinding defects could be partially rescued by administration of an Sfrp1 antagonist in vivo. Biochemical evidence showed Shh overexpression upregulated the expression of the Sfrp1 gene and interrupted Wnt5a binding to Frizzled-3. Taken together, our results indicate that Shh, Sfrp1, and Wnt5a collaborate to direct the pathfinding of descending 5-HT axons in the brainstem.
Collapse
Affiliation(s)
- Jie Xie
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
34
|
Bohnenpoll T, Wittern AB, Mamo TM, Weiss AC, Rudat C, Kleppa MJ, Schuster-Gossler K, Wojahn I, Lüdtke THW, Trowe MO, Kispert A. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet 2017; 13:e1006951. [PMID: 28797033 PMCID: PMC5567910 DOI: 10.1371/journal.pgen.1006951] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/22/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT). The mammalian ureter is a simple tube with a specialized multi-layered epithelium, the urothelium, and a surrounding coat of fibroblasts and peristaltically active smooth muscle cells. Besides its important function in urinary drainage, the ureter represents a simple model system to study epithelial and mesenchymal tissue interactions in organ development. The differentiated cell types of the ureter coordinately arise from precursor cells of the distal ureteric bud and its surrounding mesenchyme. How their survival, growth and differentiation is regulated and coordinated within and between the epithelial and mesenchymal tissue compartments is largely unknown. Previous work identified Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme, but the entirety of the cellular functions and the molecular mediators of its mesenchymal signaling pathway have remained obscure. Here we showed that epithelial SHH acts in a paracrine fashion onto the ureteric mesenchyme to activate a FOXF1-BMP4 regulatory module that directs growth and differentiation of both ureteric tissue compartments. HH signaling additionally acts in outer mesenchymal cells as a survival factor. Thus, SHH is an epithelial signal that coordinates various cellular programs in early ureter development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna B. Wittern
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tamrat M. Mamo
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H.-W. Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
35
|
Wang G, Chen EN, Liang C, Liang J, Gao LR, Chuai M, Münsterberg A, Bao Y, Cao L, Yang X. Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo. Mol Neurobiol 2017; 55:3523-3536. [PMID: 28509082 DOI: 10.1007/s12035-017-0583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/27/2017] [Indexed: 10/25/2022]
Abstract
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
Collapse
Affiliation(s)
- Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - En-Ni Chen
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chang Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jianxin Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Lin-Rui Gao
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7UQ, UK
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110001, China.
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
36
|
Saade M, Gonzalez-Gobartt E, Escalona R, Usieto S, Martí E. Shh-mediated centrosomal recruitment of PKA promotes symmetric proliferative neuroepithelial cell division. Nat Cell Biol 2017; 19:493-503. [PMID: 28446817 DOI: 10.1038/ncb3512] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
Tight control of the balance between self-expanding symmetric and self-renewing asymmetric neural progenitor divisions is crucial to regulate the number of cells in the developing central nervous system. We recently demonstrated that Sonic hedgehog (Shh) signalling is required for the expansion of motor neuron progenitors by maintaining symmetric divisions. Here we show that activation of Shh/Gli signalling in dividing neuroepithelial cells controls the symmetric recruitment of PKA to the centrosomes that nucleate the mitotic spindle, maintaining symmetric proliferative divisions. Notably, Shh signalling upregulates the expression of pericentrin, which is required to dock PKA to the centrosomes, which in turn exerts a positive feedback onto Shh signalling. Thus, by controlling centrosomal protein assembly, we propose that Shh signalling overcomes the intrinsic asymmetry at the centrosome during neuroepithelial cell division, thereby promoting self-expanding symmetric divisions and the expansion of the progenitor pool.
Collapse
Affiliation(s)
- Murielle Saade
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Rene Escalona
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Susana Usieto
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
37
|
Danesin C, Soula C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 2017; 5:jdb5020004. [PMID: 29615562 PMCID: PMC5831764 DOI: 10.3390/jdb5020004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| |
Collapse
|
38
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
39
|
The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease. J Dev Biol 2016; 4:jdb4040035. [PMID: 29615598 PMCID: PMC5831807 DOI: 10.3390/jdb4040035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action.
Collapse
|
40
|
Kiecker C, Graham A, Logan M. Differential Cellular Responses to Hedgehog Signalling in Vertebrates-What is the Role of Competence? J Dev Biol 2016; 4:E36. [PMID: 29615599 PMCID: PMC5831800 DOI: 10.3390/jdb4040036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal-a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases-including several types of cancer-are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Anthony Graham
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Malcolm Logan
- Randall Division of Cell & Molecular Biophysics, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
41
|
Yao PJ, Petralia RS, Mattson MP. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci 2016; 39:840-850. [PMID: 27865563 PMCID: PMC5148655 DOI: 10.1016/j.tins.2016.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Mirra S, Ulloa F, Gutierrez-Vallejo I, Martì E, Soriano E. Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord. Front Cell Neurosci 2016; 10:47. [PMID: 26973462 PMCID: PMC4776218 DOI: 10.3389/fncel.2016.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/09/2016] [Indexed: 12/03/2022] Open
Abstract
The eutherian X-chromosome specific family of Armcx genes has been described as originating by retrotransposition from Armc10/SVH, a single Arm-containing somatic gene. Armcx3 and Armc10/SVH are characterized by high expression in the central nervous system and they play an important role in the regulation of mitochondrial distribution and transport in neurons. In addition, Armcx/Arm10 genes have several Armadillo repeats in their sequence. In this study we address the potential role of this gene family in neural development by using the chick neural tube as a model. We show that Armc10/SVH is expressed in the chicken spinal cord, and knocking-down Armc10/SVH by sh-RNAi electroporation in spinal cord reduces proliferation of neural precursor cells (NPCs). Moreover, we analyzed the effects of murine Armcx3 and Armc10 overexpression, showing that both proteins regulate progenitor proliferation, while Armcx3 overexpression also specifically controls neural maturation. We show that the phenotypes found following Armcx3 overexpression require its mitochondrial localization, suggesting a novel link between mitochondrial dynamics and regulation of neural development. Furthermore, we found that both Armcx3 and Armc10 may act as inhibitors of Wnt-β-catenin signaling. Our results highlight both common and differential functions of Armcx/Armc10 genes in neural development in the spinal cord.
Collapse
Affiliation(s)
- Serena Mirra
- Department of Cell Biology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Irene Gutierrez-Vallejo
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, ParcCientífic de Barcelona Barcelona, Spain
| | - Elisa Martì
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, ParcCientífic de Barcelona Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Valld'Hebron Institute of ResearchBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain
| |
Collapse
|
43
|
Joshi SK, Lucic N, Zuniga R. Molecular pathogenesis of glioblastoma multiforme: Nuances, obstacles, and implications for treatment. World J Neurol 2015; 5:88-101. [DOI: 10.5316/wjn.v5.i3.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/21/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM), the literal apogee on the hierarchy of malignant brain tumors, remains one of the greatest therapeutic challenges in oncology and medicine. Historically this may be contextualized in the fact that the medical and scientific communities have had a very elementary understanding of its intricate and complex pathophysiology. The last 10-15 years have yielded a number of studies that have elucidated much of the molecular and genetic complexities of GBM that underlie its pathogenesis. Excitingly, some of these discovered genetic mutations and molecular profiles in GBM have demonstrated value in prognostication and utility in predicting response to treatment. Despite this, however, treatment options for patients have remained somewhat limited. These treatment options are expected to expand with the availability of new data and with the transition of novel treatment modalities from animal to human studies. This paper will have a threefold objective: provide an overview of the traditional paradigm in understanding and treating GBM, describe recent discoveries in the molecular pathogenesis of GBM against this historical backdrop, and acquaint the reader with new treatment modalities that hold significant therapeutic potential for patients.
Collapse
|
44
|
Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 2015; 172:4228-37. [PMID: 26040571 DOI: 10.1111/bph.13211] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/03/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the second most common cause of cancer deaths. Triple-negative breast cancer (TNBC) does not show immunohistochemical expression of oestrogen receptors, progesterone receptors or HER2. At present, no suitable treatment option is available for patients with TNBC. This dearth of effective conventional therapies for the treatment of advanced stage breast cancer has provoked the development of novel strategies for the management of patients with TNBC. This review presents recent information associated with different therapeutic options for the treatment of TNBC focusing on promising targets such as the Notch signalling, Wnt/β-catenin and Hedgehog pathways, in addition to EGFR, PARP1, mTOR, TGF-β and angiogenesis inhibitors.
Collapse
Affiliation(s)
- Vinayak S Jamdade
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, India
| | - Nikunj Sethi
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nitin A Mundhe
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, India
| | - Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, India
| | - Mangala Lahkar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, India.,Laboratory of Pharmacology, Department of Pharmacology, Gauhati Medical College, Guwahati, India
| | - Neeraj Sinha
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
45
|
Vuolo L, Herrera A, Torroba B, Menendez A, Pons S. Ciliary adenylyl cyclases control the Hedgehog pathway. J Cell Sci 2015; 128:2928-37. [PMID: 26092933 DOI: 10.1242/jcs.172635] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
Protein kinase A (PKA) accumulates at the base of the cilium where it negatively regulates the Hedgehog (Hh) pathway. Although PKA activity is essentially controlled by the cAMP produced by adenylyl cyclases, the influence of these enzymes on the Hh pathway remains unclear. Here, we show that adenylyl cyclase 5 and adenylyl cyclase 6 (AC5 and AC6, also known as ADCY5 and ADCY6, respectively) are the two isoforms most strongly expressed in cerebellar granular neuron precursors (CGNPs). We found that overexpression of AC5 and AC6 represses, whereas their knockdown activates, the Hh pathway in CGNPs and in the embryonic neural tube. Indeed, AC5 and AC6 concentrate in the primary cilium, and mutation of a previously undescribed cilium-targeting motif in AC5 suppresses its ciliary location, as well as its capacity to inhibit Hh signalling. Stimulatory and inhibitory Gα proteins, which are engaged by the G-protein-coupled receptors (GPCRs), control AC5 and AC6 activity and regulate the Hh pathway in CGNPs and in the neural tube. Therefore, we propose that the activity of different ciliary GPCRs converges on AC5 and AC6 to control PKA activity and, hence, the Hh pathway.
Collapse
Affiliation(s)
- Laura Vuolo
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Antonio Herrera
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Blanca Torroba
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Anghara Menendez
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Sebastian Pons
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| |
Collapse
|
46
|
Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J Cell Biol 2015; 209:739-57. [PMID: 26056142 PMCID: PMC4460154 DOI: 10.1083/jcb.201411024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non-cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non-cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type-specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Samantha J Davis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
47
|
Miyamoto Y, Sakane F, Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adh Migr 2015; 9:183-92. [PMID: 25869655 DOI: 10.1080/19336918.2015.1005466] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin.
Collapse
Key Words
- AJ, adherens junction
- EC, extracellular
- Fox, forkhead box
- Frz, frizzled
- GFAP, glial fibrillary acidic protein
- GSK3β, glycogen synthase kinase 3β
- Hes, hairly/enhancer of split
- Hh, hedgehog
- IP, intermediate progenitor
- KO, knockout
- LEF, lymphocyte enhancer factor
- N-cadherin
- NPC, neural progenitor cell
- Par, partition defective complex protein
- Ptc, Pached
- Smo, smoothened
- Sox2, sry (sex determining region Y)-box containing gene 2
- TA cell, transient amplifying cell; ZO-1, Zonula Occludens-1.
- TCF, T-cell factor
- aPKC, atypical protein kinase C
- adherens junction
- apico-basal polarity
- iPSC, induced pluripotent stem cell
- neural progenitor cells
- ngn2, neurogenin 2
- shRNA, short hairpin RNA
- β-catenin
Collapse
Affiliation(s)
- Yasunori Miyamoto
- a The Graduate School of Humanities and Sciences; Ochanomizu University ; Tokyo , Japan
| | | | | |
Collapse
|
48
|
Juraver-Geslin HA, Durand BC. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis 2015; 53:203-24. [PMID: 25619400 DOI: 10.1002/dvg.22844] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Despite its tremendous complexity, the vertebrate nervous system emerges from a homogenous layer of neuroepithelial cells, the neural plate. Its formation relies on the time- and space-controlled progression of developmental programs. Apoptosis is a biological process that removes superfluous and potentially dangerous cells and is implemented through the activation of a molecular pathway conserved during evolution. Apoptosis and an unconventional function of one of its main effectors, caspase-3, contribute to the patterning and growth of the neuroepithelium. Little is known about the intrinsic and extrinsic cues controlling activities of the apoptotic machinery during development. The BarH-like (Barhl) proteins are homeodomain-containing transcription factors. The observations in Caenorhabditis elegans, Xenopus, and mice document that Barhl proteins act in cell survival and as cell type-specific regulators of a caspase-3 function that limits neural progenitor proliferation. In this review, we discuss the roles and regulatory modes of the apoptotic machinery in the development of the neural plate. We focus on the Barhl2, the Sonic Hedgehog, and the Wnt pathways and their activities in neural progenitor survival and proliferation.
Collapse
Affiliation(s)
- Hugo A Juraver-Geslin
- Department of Basic Science, Craniofacial Biology, College of Dentistry, New York University, New York, New York
| | | |
Collapse
|
49
|
Wang G, Li Y, Wang XY, Chuai M, Yeuk-Hon Chan J, Lei J, Münsterberg A, Lee KKH, Yang X. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis. Mol Biol Cell 2015; 26:978-92. [PMID: 25568339 PMCID: PMC4342032 DOI: 10.1091/mbc.e14-06-1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This is the first study of the role of BRE in embryonic development using early chick embryos. BRE is expressed in the developing neural tube, neural crest cells, and somites. BRE thus plays an important role in regulating neurogenesis and indirectly somitogenesis during early chick embryo development. The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.
Collapse
Affiliation(s)
- Guang Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - John Yeuk-Hon Chan
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jian Lei
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuesong Yang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Cheng X, Luo R, Wang G, Xu CJ, Feng X, Yang RH, Ding E, He YQ, Chuai M, Lee KKH, Yang X. Effects of 2,5-hexanedione on angiogenesis and vasculogenesis in chick embryos. Reprod Toxicol 2014; 51:79-89. [PMID: 25549948 DOI: 10.1016/j.reprotox.2014.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
n-Hexane is widely used in industry and its metabolite, 2,5-hexanedione (2,5-HD), has been implicated as a neural toxin in the developing fetus. Using the chick embryo model, we have previously revealed the neurotoxicity of 2,5-HD during development and established that high dose of 2,5-HD was embryo lethal. In view of the close linkage in biology for neurogenesis and angiogenesis, we speculated that it was most likely caused by cardiovascular dysplasia, therefore in this study, we investigated the effects of 2,5-HD on the development of the vasculature, which involves vasculogenesis and angiogenesis. Using gastrulating chick embryos as a model, we demonstrated that the hemangioblasts (precursor of hematopoietic and endothelial cells) migrated to the area opaca where they form the blood islands. However, this process was impaired when the embryos were treated with 2,5-HD, suggesting that 2,5-HD is capable of impairing vasculogenesis. To study the effect of 2,5-HD exposure on angiogenesis, we used the chick yolk-sac membrane (YSM) and chorioallantoic membrane (CAM) models. We found that, at low (0.02M) concentration, 2,5-HD stimulated angiogenesis while at higher concentrations (>0.1M) it inhibited this process. This biphasic response of angiogenesis to 2,5-HD exposure was found to be associated with altered expression of the VEGF-R, FGF-2 and angiogenin. Moreover, we also determined that 2,5-HD exposure increased the reactive oxygen species (ROS) production. In conclusion, 2,5-HD could induce dysplasia in the developing vasculature, which in turn could cause extravascular hemolysis and the embryos to die.
Collapse
Affiliation(s)
- Xin Cheng
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Rong Luo
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| | - Chang-Jun Xu
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Feng
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Ren-Hao Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - E Ding
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Yan-Qing He
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|