1
|
Rai AK, Yadav M, Duary RK, Shukla P. Gut Microbiota Modulation Through Dietary Approaches Targeting Better Health During Metabolic Disorders. Mol Nutr Food Res 2025:e70033. [PMID: 40195821 DOI: 10.1002/mnfr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
The impact of gut microbiota is known to play a significant role in an individual's metabolism and health. Many harmful food products or dietary imbalance adversely affect human health and changing lifestyle, environmental factors, and food habits may have their effect on gut microbiota. It has emerged that gut microbiota is regarded as an emerging metabolic organ, which is dependent on individual's diet and its composition. This review discusses the significance of lactic acid bacteria as a prominent inhabitant in the gut microbiota and the role of probiotics, prebiotics, and polyphenols to improve human health and metabolism. The role of fermented foods as an important source of probiotics and bioactive molecules is also discussed along with the role of gut microbiota in metabolic disorders like dyslipidemia, obesity, hypercholesterolemia, cancer, and hypertension. Finally, the review gives insights into the effective therapeutic prospects through gut microbiota alterations to tackle these metabolic disorders.
Collapse
Affiliation(s)
- Amit Kumar Rai
- BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI), SAS Nagar, Mohali, India
| | | | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Jadhav A, Vadiveloo M, Laforge R, Melanson KJ. Dietary fermentable carbohydrate consumption and association with cardiometabolic risk markers in college students: A cross-sectional study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2025:1-10. [PMID: 40126399 DOI: 10.1080/07448481.2025.2475309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/03/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Objective: Determine fermentable carbohydrates (FCs) consumption and health parameter differences between high and low FC consumers in US college students. Participants: Consented students (n = 571; 18-22 years) in a general nutrition course. Methods: Diet History Questionnaire quantified total FC plus subclasses, soluble dietary fibers (SDF), and polyols. Anthropometrics, blood pressure, and blood glucose were collected by standard measures. Median split classified FC intakes; multiple linear regression evaluated differences in health parameters between low and high FC consumers. Results: Average FC intakes for low and high FC consumers were 4.6 ± 1.4gand 10.9 ± 4.0g, with most coming from soluble dietary fibers. After controlling for confounders, low FCs showed higher diastolic blood pressure (β = 2.95, p = 0.04), blood glucose (β = 2.65 mg/dL; p = 0.02*), and BMI (β = 0.99, p = 0.050*, R2=0.04) than high consumers. Conclusions: Despite low intakes, these college students showed inverse associations between FC and diastolic blood pressure, blood glucose, and BMI. Long-term mechanistic studies are needed to evaluate potential relationships.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
3
|
Liu Z, Xu H, You W, Pan K, Li W. Helicobacter pylori eradication for primary prevention of gastric cancer: progresses and challenges. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:299-310. [PMID: 39735441 PMCID: PMC11674435 DOI: 10.1016/j.jncc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 12/31/2024] Open
Abstract
Gastric cancer remains a significant global health challenge, causing a substantial number of cancer-related deaths, particularly in China. While the exact causes of gastric cancer are still being investigated, Helicobacter pylori (H. pylori) infection has been identified as the primary risk factor, which triggers chronic inflammation and a multistage progression of gastric lesions that may lead to carcinogenesis over a long latency time. Since the 1990s, numerous efforts have focused on assessing the effectiveness of H. pylori eradication in preventing new cases of gastric cancer among both the general population and patients who have undergone early-stage cancer treatment. This body of work, including several community-based interventions and meta-analyses, has shown a reduction in both the incidence of and mortality from gastric cancer following H. pylori treatment, alongside a decreased risk of metachronous gastric cancer. In this review, we seek to consolidate current knowledge on the effects of H. pylori treatment on gastric cancer prevention, its systemic consequences, cost-effectiveness, and the influence of antibiotic resistance and host characteristics on treatment outcomes. We further discuss the potential for precision primary prevention of H. pylori treatment and comment on the efficient implementation of test-and-treat policies and allocation of health resources towards minimizing the burden of gastric cancer globally.
Collapse
Affiliation(s)
- Zongchao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hengmin Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kaifeng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenqing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, Wang G. Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism. World J Microbiol Biotechnol 2024; 40:198. [PMID: 38727952 DOI: 10.1007/s11274-024-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1β, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.
Collapse
Affiliation(s)
- Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Liao Xiaoling
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
5
|
Beckers KF, Flanagan JP, Sones JL. Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. Int J Obes (Lond) 2024; 48:439-448. [PMID: 38145995 PMCID: PMC10978494 DOI: 10.1038/s41366-023-01438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Obesity is becoming a worldwide pandemic with over one billion people affected. Of women in the United States, who are of childbearing age, two-thirds of them are considered overweight/obese. Offspring of women with obesity have a greater likelihood of developing cardiometabolic disease later in life, therefore making obesity a transgenerational issue. Emerging topics such as maternal microbial dysbiosis with altered levels of bacterial phyla and maternal obesity programming offspring cardiometabolic disease are a novel area of research discussed in this review. In the authors' opinion, beneficial therapeutics will be developed from knowledge of bacterial-host interactions at the most specific level possible. Although there is an abundance of obesity-related microbiome research, it is not concise, readily available, nor easy to interpret at this time. This review details the current knowledge regarding the relationship between obesity and the gut microbiome, with an emphasis on maternal obesity.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
- Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Chitre AS, Palmer AA, Moore JH. Interaction models matter: an efficient, flexible computational framework for model-specific investigation of epistasis. BioData Min 2024; 17:7. [PMID: 38419006 PMCID: PMC10900690 DOI: 10.1186/s13040-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.
Collapse
Affiliation(s)
- Sandra Batista
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| | | | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
7
|
Zhi N, Chang X, Wang X, Guo J, Chen J, Gui S. Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review. Front Nutr 2024; 10:1341583. [PMID: 38299183 PMCID: PMC10828026 DOI: 10.3389/fnut.2023.1341583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity.
Collapse
Affiliation(s)
- Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
8
|
Harcęko‐Zielińska E, Niedoszytko M, Górska A, Małgorzewicz S, Gruchała‐Niedoszytko M, Bronk M, Dąbrowski S, Chełminska M, Jassem E. The influence of nutritional habits, body mass index and intestinal microbiota in mastocytosis on clinical symptoms using conventional culture and next generation sequencing. Clin Transl Allergy 2024; 14:e12310. [PMID: 38282197 PMCID: PMC10787583 DOI: 10.1002/clt2.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Mastocytosis is a rare neoplastic disease of the bone marrow associated with the proliferation and accumulation of mast cells in various internal organs, including the gastrointestinal tract. There are few studies describing the gut microbiome of patients with mastocytosis using next generation sequencing supported using traditional culture methods. The aims of the study were, firstly, the determination of nutrition habits, composition of the intestinal microflora and BMI in mastocytosis, and secondly, analysis of mastocytosis severity and symptoms depending on the composition of the intestinal microflora. METHODS The study included 47 patients with indolent systemic mastocytosis and 18 healthy controls. All participants gave their informed consent to participate in the study. The study consisted of 3 parts: I-clinical assessment, II - examination of the intestinal microflora using the biochemical method, III - 16S rRNA sequencing. RESULTS The nutrition habits and BMI of mastocytosis patients were similar to controls; however, most patients with mastocytosis had a low dietary vitamin and mineral content. As many as 94.5% of patients had too little fiber intake and mineral content. The most common cause of the abnormal stool test result with traditional culture was a titer of E. coli <106 . The low richness of microbiota species indicated by the Simpson index was observed in mastocytosis, p = 0.04. There were no significant differences in the composition of the intestinal microflora depending on the type of mastocytosis; however, the tryptase level correlated with the amount of Suterella, Barnesiellaceae, Eubacterium, Odoribacter, and Anaerostipes. CONCLUSIONS The nutritional habits and BMI of mastocytosis patients are similar to the general population, except for too little fiber intake and mineral content. The gastrointestinal symptoms of mastocytosis patients may be related to the low richness of microbiota species and the amount of Suterella, Barnesiellaceae, Eubacterium, Odoribacter, Anaerostipes, which correlated with tryptase levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Bronk
- Laboratory of Clinical MicrobiologyGdańskPoland
| | | | - Marta Chełminska
- Department of AllergologyMedical University of GdańskGdańskPoland
| | - Ewa Jassem
- Department of AllergologyMedical University of GdańskGdańskPoland
| |
Collapse
|
9
|
Montagnani M, Potenza MA, Corsalini M, Barile G, Charitos IA, De Giacomo A, Jirillo E, Colella M, Santacroce L. Current View on How Human Gut Microbiota Mediate Metabolic and Pharmacological Activity of Panax ginseng. A Scoping Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1756-1773. [PMID: 38504564 DOI: 10.2174/0118715303270923240307120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brainand the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Barile
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, Bari, Italy
| | - Andrea De Giacomo
- Department of Neurological and Psychiatric Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Doctoral School, eCampus University, Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
10
|
Hong GH, Lee SY, Yoo JI, Chung JH, Park KY. Catechin with Lactic Acid Bacteria Starters Enhances the Antiobesity Effect of Kimchi. J Med Food 2023; 26:560-569. [PMID: 37405755 DOI: 10.1089/jmf.2023.k.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
The antiobesity effects of kimchi with catechin and lactic acid bacteria as starters were studied in C57BL/6 mice with high-fat diet (HFD)-induced obesity. We prepared four types of kimchi: commercial kimchi, standard kimchi, green tea functional kimchi, and catechin functional kimchi (CFK). Body weight and weight of adipose tissue were significantly lower in the kimchi-treated groups than in the HFD and Salt (HFD +1.5% NaCl) groups. In addition, in the CFK group, the serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol were significantly lower and those of high-density lipoprotein cholesterol were markedly higher than the corresponding levels in the HFD and Salt groups. Moreover, CFK reduced fat cells and crown-like structures in the liver and epididymal fat tissues. The protein expression of adipo/lipogenesis-related genes in the liver and epididymal fat tissues was significantly lower (1.90-7.48-fold) in the CFK group than in the HFD and Salt groups, concurrent with upregulation of lipolysis-related genes (1.71-3.38-fold) and downregulation of inflammation-related genes (3.17-5.06-fold) in epididymal fat tissues. In addition, CFK modulated the gut microbiomes of obese mice by increasing the abundance of Bacteroidetes (7.61%), while in contrast, Firmicutes (82.21%) decreased. In addition, the presence of the Erysipelotrichaceae (8.37%) family in the CFK group decreased, while the number of beneficial bacteria of the families, Akkermansiaceae (6.74%), Lachnospiraceae (14.95%), and Lactobacillaceae (38.41%), increased. Thus, CFK exhibited an antiobesity effect through its modulation of lipid metabolism and the microbiome.
Collapse
Affiliation(s)
- Geun-Hye Hong
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| | - So-Young Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| | - Jung-Im Yoo
- Pungmi Food Agricultural Co. Ltd., Suwon, South Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, CHA University, Seongnam, Gyeonggi-do, South Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| |
Collapse
|
11
|
Peng K, Dong W, Luo T, Tang H, Zhu W, Huang Y, Yang X. Butyrate and obesity: Current research status and future prospect. Front Endocrinol (Lausanne) 2023; 14:1098881. [PMID: 36909336 PMCID: PMC9999029 DOI: 10.3389/fendo.2023.1098881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.
Collapse
Affiliation(s)
- Ke Peng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Taimin Luo
- Department of Pharmacy, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Miles AM, McArt JAA, Lima SF, Neves RC, Ganda E. The association of hyperketonemia with fecal and rumen microbiota at time of diagnosis in a case-control cohort of early lactation cows. BMC Vet Res 2022; 18:411. [PMID: 36411435 PMCID: PMC9677665 DOI: 10.1186/s12917-022-03500-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Many dairy cows experience a state of energy deficit as they transition from late gestation to early lactation. The aims of this study were to 1) determine if the development of hyperketonemia in early lactation dairy cows is indicated by their gut microbiome, and 2) to identify microbial features which may inform health status. We conducted a prospective nested case-control study in which cows were enrolled 14 to 7 days before calving and followed through their first 14 days in milk (DIM). Hyperketonemic cows (HYK, n = 10) were classified based on a blood β-hydroxybutyrate (BHB) concentration 1.2 mmol/L within their first 14 DIM. For each HYK cow, two non-HYK (CON, n = 20) cows were matched by parity and 3 DIM, with BHB < 1.2 mmol/L. Daily blood BHB measures were used to confirm CON cows maintained their healthy status; some CON cows displayed BHB 1.2 mmol/L after matching and these cows were reclassified as control-HYK (C-HYK, n = 9). Rumen and fecal samples were collected on the day of diagnosis or matching and subjected to 16S rRNA profiling. RESULTS No differences in taxa abundance, or alpha and beta diversity, were observed among CON, C-HYK, and HYK health groups for fecal microbiomes. Similar microbiome composition based on beta diversity analysis was detected for all health statuses, however the rumen microbiome of CON and HYK cows were found to be significantly different. Interestingly, highly similar microbiome composition was observed among C-HYK cow rumen and fecal microbiomes, suggesting that these individual animals which initially appear healthy with late onset of hyperketonemia were highly similar to each other. These C-HYK cows had significantly lower abundance of Ruminococcus 2 in their rumen microbiome compared to CON and HYK groups. Multinomial regressions used to compute log-fold changes in microbial abundance relative to health status were not found to have predictive value, therefore were not useful to identify the role of certain microbial features in predicting health status. CONCLUSIONS Lower relative abundance of Ruminococcus 2 in C-HYK cow rumens was observed, suggesting these cows may be less efficient at degrading cellulose although the mechanistic role of Ruminococcus spp. in rumen metabolism is not completely understood. Substantial differences in fecal or rumen microbiomes among cows experiencing different levels of energy deficit were not observed, suggesting that hyperketonemia may not be greatly influenced by gut microbial composition, and vice versa. Further studies using higher resolution -omics approaches like meta-transcriptomics or meta-proteomics are needed to decipher the exact mechanisms at play.
Collapse
Affiliation(s)
- Asha M. Miles
- grid.29857.310000 0001 2097 4281Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, State College, PA 16802 USA ,grid.508984.8Current address: Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, MD 20705 USA
| | - Jessica A. A. McArt
- grid.5386.8000000041936877XDepartment of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Svetlana F. Lima
- grid.5386.8000000041936877XDepartment of Medicine, Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021 USA
| | - Rafael C. Neves
- grid.169077.e0000 0004 1937 2197Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, Lafayette, IN 47907 USA
| | - Erika Ganda
- grid.29857.310000 0001 2097 4281Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, State College, PA 16802 USA
| |
Collapse
|
13
|
Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients 2022; 14:nu14214515. [PMID: 36364776 PMCID: PMC9654759 DOI: 10.3390/nu14214515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternal-fetal-placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed.
Collapse
|
14
|
Bottin JH, Eussen SRBM, Igbinijesu AJ, Mank M, Koyembi JCJ, Nyasenu YT, Ngaya G, Mad-Bondo D, Kongoma JB, Stahl B, Sansonetti PJ, Bourdet-Sicard R, Moya-Alvarez V. Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant's Birth and 6 Months after Birth in Central-Africa. Nutrients 2022; 14:4015. [PMID: 36235668 PMCID: PMC9573613 DOI: 10.3390/nu14194015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Although the World Health Organization (WHO) and UNICEF recommend that infants should be exclusively breastfed for the first 6 months of life, evidence is scarce on how the mother’s undernourishment status at delivery and maternal dietary factors influence human milk (HM) composition during the first 6 months of life in regions with high food insecurity. The maternal undernourishment status at delivery, maternal diet, and HM nutrients were assessed among 46 women and their 48 vaginally born infants in Bangui at 1, 4, 11, 18, and 25 weeks after birth through 24-h recalls and food consumption questionnaires from December 2017 to June 2019 in the context of the "Mother-to-Infant TransmIssion of microbiota in Central-Africa" (MITICA) study. High food insecurity indexes during the follow-up were significantly associated with them having lower levels of many of the human milk oligosaccharides (HMOs) that were measured and with lower levels of retinol (aß-coef = −0.2, p value = 0.04), fatty acids (aß-coef = −7.2, p value = 0.03), and amino acids (aß-coef = −2121.0, p value < 0.001). On the contrary, women from food-insecure households displayed significantly higher levels of lactose in their HM (aß-coef = 3.3, p value = 0.02). In parallel, the consumption of meat, poultry, and fish was associated with higher HM levels of many of the HMOs that were measured, total amino acids (aß-coef = 5484.4, p value < 0.001), and with lower HM levels of lactose (aß-coef = −15.6, p value = 0.01). Food insecurity and maternal diet had a meaningful effect on HM composition with a possible impact being an infant undernourishment risk. Our results plead for consistent actions on food security as an effective manner to influence the nutritional content of HM and thereby, potentially improve infant survival and healthy growth.
Collapse
Affiliation(s)
| | | | | | - Marko Mank
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands or
| | | | - Yawo Tufa Nyasenu
- Laboratoire d’Analyses Médicales, Institut Pasteur de Bangui, Bangui BP923, Central African Republic
- Laboratoire de Biologie Moléculaire et d’Immunologie, Université de Lomé, Lomé P.O. Box 1396, Togo
| | - Gilles Ngaya
- Laboratoire d’Analyses Médicales, Institut Pasteur de Bangui, Bangui BP923, Central African Republic
| | - Daniel Mad-Bondo
- Direction du Service de Santé de la Gendarmerie, Sis Camp Henri IZAMO, Bangui BP790, Central African Republic
| | - Jean-Bertrand Kongoma
- Direction du Service de Santé de la Gendarmerie, Sis Camp Henri IZAMO, Bangui BP790, Central African Republic
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands or
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philippe J. Sansonetti
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75005 Paris, France
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France
| | | | - Violeta Moya-Alvarez
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France
- Epidemiology of Emergent Diseases Unit, Global Health Department, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
15
|
Chen L, Xu X, Wu X, Cao H, Li X, Hou Z, Wang B, Liu J, Ji X, Zhang P, Li H. A comparison of the composition and functions of the oral and gut microbiotas in Alzheimer’s patients. Front Cell Infect Microbiol 2022; 12:942460. [PMID: 36093178 PMCID: PMC9448892 DOI: 10.3389/fcimb.2022.942460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Alterations in the oral or gut microbiotas have been reported in patients with subjective and mild cognitive impairment or AD dementia. However, whether these microbiotas change with the severity of the AD spectrum (mild, moderate, and severe AD) remains unknown. Thus, we compared alterations in the composition and gene functions of the oral and gut microbiota between different phases of AD. Methods We recruited 172 individuals and classified these into three groups: healthy controls (n = 40), a mild AD group (n = 43) and a moderate AD group (n = 89). Subgingival plaques and fecal samples were collected from all individuals. Then, we conducted 16S ribosomal RNA. sequencing to analyze the microbiotas. Results In order of the severity of cognition impairment (from normal to mild and to moderate AD), the oral abundances of the phyla Firmicutes and Fusobacteria showed a gradual upwards trend, while the abundance of the Proteobacteria phylum gradually decreased. In contrast, the abundance of the Firmicutes and Bacteroidetes phyla in the gut decreased progressively, while that of the Proteobacteria, Verrucomicrobia and Actinobacteria phyla increased gradually. Key differences were identified in the microbiomes when compared between the mild AD and moderate AD groups when applying the linear discriminant analysis effect size (LEfSe) algorithm. LEfSe analysis revealed alterations that were similar to those described above; furthermore, different bacterial taxa were associated with MMSE scores and age. KEGG analysis showed that the functional pathways associated with the oral microbiota were mainly involved in membrane transport and carbohydrate metabolism, while the gene functions of the fecal microbiota related to metabolism of amino acids, energy, cofactors and vitamins; identified significant differences among the three groups. Venn diagram analysis revealed that the number of genera that were present in both the oral and gut microbiota increased progressively from NC to mild AD and then to moderate AD. Conclusions This study is the first to report a comparative analysis of the oral and fecal microbiota of patients with mild and moderate AD. The compositions and functions of the oral and gut microbiotas differed when compared between different stages of AD.
Collapse
Affiliation(s)
- Lili Chen
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital, Fuzhou, China
| | - Xinhua Xu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xiaoqi Wu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huizhen Cao
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Hong Li,
| |
Collapse
|
16
|
Iglesia Altaba I, Larqué E, Mesa MD, Blanco-Carnero JE, Gomez-Llorente C, Rodríguez-Martínez G, Moreno LA. Early Nutrition and Later Excess Adiposity during Childhood: A Narrative Review. Horm Res Paediatr 2022; 95:112-119. [PMID: 34758469 DOI: 10.1159/000520811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Studies on childhood obesity mainly focus on the genetic component and on the lifestyle that may be associated with the development of obesity. However, the study of perinatal factors in their programming effect toward future obesity in children or adults is somewhat more recent, and there are still mechanisms to be disentangled. SUMMARY In this narrative review, a comprehensive route based on the influence of some early factors in life in the contribution to later obesity development is presented. Maternal pre-pregnancy BMI and gestational weight gain have been pointed out as independent determinants of infant later adiposity. Lifestyle interventions could have an impact on pregnant mothers through epigenetic mechanisms capable of redirecting the genetic expression of their children toward a future healthy weight and body composition and dietary-related microbiome modifications in mothers and newborns might also be related. After birth, infant feeding during the first months of life is directly associated with its body composition and nutritional status. From this point of view, all the expert committees in the world are committed to promote exclusive breastfeeding up to 6 months of age and to continue at least until the first year of life together with complementary feeding based on healthy dietary patterns such as Mediterranean Diet. KEY MESSAGES To develop future effective programs to tackle early obesity, it is necessary not only by controlling lifestyle behaviors like infant feeding but also understanding the role of other mechanisms like the effect of perinatal factors such as maternal diet during pregnancy, epigenetics, or microbiome.
Collapse
Affiliation(s)
- Iris Iglesia Altaba
- Aragon Health Research Institute, University of Zaragoza, Zaragoza, Spain.,Maternal-Infant and Developmental Health Network (SAMID), RETICS Carlos III Health Institute (ISCIII), Madrid, Spain.,Growth, Exercise, Nutrition and Development (GENUD), Faculty of Health Sciences, University of Zaragoza, and Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Elvira Larqué
- Maternal-Infant and Developmental Health Network (SAMID), RETICS Carlos III Health Institute (ISCIII), Madrid, Spain.,Department of Physiology, Murcia University, Murcia, Spain
| | - María Dolores Mesa
- Maternal-Infant and Developmental Health Network (SAMID), RETICS Carlos III Health Institute (ISCIII), Madrid, Spain.,Department of Biochemistry and Molecular Biology II, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Granada, Spain.,ibs.GRANADA, Biosanitary Research Institute, Granada, Spain
| | | | - Carolina Gomez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Granada, Spain.,ibs.GRANADA, Biosanitary Research Institute, Granada, Spain.,Center for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Gerardo Rodríguez-Martínez
- Aragon Health Research Institute, University of Zaragoza, Zaragoza, Spain.,Maternal-Infant and Developmental Health Network (SAMID), RETICS Carlos III Health Institute (ISCIII), Madrid, Spain.,Growth, Exercise, Nutrition and Development (GENUD), Faculty of Health Sciences, University of Zaragoza, and Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Department of Pediatrics, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Luis A Moreno
- Aragon Health Research Institute, University of Zaragoza, Zaragoza, Spain.,Growth, Exercise, Nutrition and Development (GENUD), Faculty of Health Sciences, University of Zaragoza, and Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Center for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Vetrani C, Di Nisio A, Paschou SA, Barrea L, Muscogiuri G, Graziadio C, Savastano S, Colao A, on behalf of the Obesity Programs of Nutrition, Education, Research and Assessment (OPERA) Group. From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients 2022; 14:2103. [PMID: 35631244 PMCID: PMC9145366 DOI: 10.3390/nu14102103] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
During the last decades, the gut microbiota has gained much interest in relation to human health. Mounting evidence has shown a strict association between gut microbiota and obesity and its related diseases. Inflammation has been appointed as the driving force behind this association. Therefore, a better understanding of the mechanisms by which gut microbiota might influence inflammation in the host could pave for the identification of effective strategies to reduce inflammation-related diseases, such as obesity and obesity-related diseases. For this purpose, we carried out an extensive literature search for studies published in the English language during the last 10 years. Most relevant studies were used to provide a comprehensive view of all aspects related to the association of gut microbiota and low-grade inflammation with obesity. Accordingly, this narrative review reports the evidence on the key players supporting the role of gut microbiota in the modulation of inflammation in relation to obesity and its complications. Moreover, therapeutic approaches to reduce microbiota-related inflammation are discussed to provide potential targets for future research.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, 35128 Padova, Italy;
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Napoli, Italy;
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | | |
Collapse
|
18
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. Excess DHA Induces Liver Injury via Lipid Peroxidation and Gut Microbiota-Derived Lipopolysaccharide in Zebrafish. Front Nutr 2022; 9:870343. [PMID: 35571918 PMCID: PMC9096794 DOI: 10.3389/fnut.2022.870343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiol Spectr 2022; 10:e0083722. [PMID: 35467389 PMCID: PMC9241680 DOI: 10.1128/spectrum.00837-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity are growing health problems in domestic cats, increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease, and decreasing longevity. The signature of obesity in the feline gut microbiota has not been studied at the whole-genome metagenomic level. We performed whole-genome shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and eight normal cats housed in the same research environment. We obtained 271 Gbp of sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 million annotated microbial genes. In the obese cat microbiome, we discovered a significant reduction in microbial diversity (P < 0.01) and Firmicutes abundance (P = 0.005), as well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) validation revealed significant increases of Bifidobacterium sp., Olsenella provencensis, Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota among 400 enriched species, whereas 1,525 bacterial species have decreased abundance in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized Erysipelotrichaceae bacterium are highly abundant (>0.05%) in the normal gut with over 400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are significantly overrepresented in the obese compared with the normal cat microbiome. In conclusion, we discovered dramatically decreased microbial diversity in obese cat gut microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat microbiome composition, abundance, and functional capacities provide new insights into feline obesity. IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for treating feline obesity are lacking. Physical exercise and calorie restrictions are commonly used for weight loss but with limited efficacy. Through comprehensive analyses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the obese gut microbiome, including four bacterial species significantly enriched and two species depleted in the obese cats. The key bacterial community and functional capacity alterations discovered from this study will inform new weight management strategies for obese cats, such as evaluations of specific diet formulas that alter the microbiome composition, and the development of prebiotics and probiotics that promote the increase of beneficial species and the depletion of obesity-associated species. Interestingly, these bacteria identified in our study were also reported to affect the weight loss success in human patients, suggesting translational potential in human obesity.
Collapse
|
20
|
Rastogi S, Rastogi D. The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Front Cardiovasc Med 2022; 9:844905. [PMID: 35391836 PMCID: PMC8980933 DOI: 10.3389/fcvm.2022.844905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Obesity has reached pandemic proportions in the last few decades. The global increase in obesity has contributed to an increase in the number of pregnant women with pre-pregnancy obesity or with excessive gestational weight gain. Obesity during pregnancy is associated with higher incidence of maternal co-morbidities such as gestational diabetes and hypertension. Both obesity during pregnancy and its associated complications are not only associated with immediate adverse outcomes for the mother and their newborns during the perinatal period but, more importantly, are linked with long-term morbidities in the offsprings. Neonates born to women with obesity are at higher risk for cardiac complications including cardiac malformations, and non-structural cardiac issues such as changes in the microvasculature, e.g., elevated systolic blood pressure, and overt systemic hypertension. Pulmonary diseases associated with maternal obesity include respiratory distress syndrome, asthma during childhood and adolescence, and adulthood diseases, such as chronic obstructive pulmonary disease. Sequelae of short-term complications compound long-term outcomes such as long-term obesity, hypertension later in life, and metabolic complications including insulin resistance and dyslipidemia. Multiple mechanisms have been proposed to explain these adverse outcomes and are related to the emerging knowledge of pathophysiology of obesity in adults. The best investigated ones include the role of obesity-mediated metabolic alterations and systemic inflammation. There is emerging evidence linking metabolic and immune derangements to altered biome, and alteration in epigenetics as one of the intermediary mechanisms underlying the adverse outcomes. These are initiated as part of fetal adaptation to obesity during pregnancy which are compounded by rapid weight gain during infancy and early childhood, a known complication of obesity during pregnancy. This newer evidence points toward the role of specific nutrients and changes in biome that may potentially modify the adverse outcomes observed in the offsprings of women with obesity.
Collapse
Affiliation(s)
- Shantanu Rastogi
- Division of Neonatology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
21
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|
22
|
Wu D, Wang H, Xie L, Hu F. Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:908868. [PMID: 35865314 PMCID: PMC9294175 DOI: 10.3389/fendo.2022.908868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid increase of obesity and associated diseases has become a major global health problem. Adipose tissues are critical for whole-body homeostasis. The gut microbiota has been recognized as a significant environmental factor in the maintenance of energy homeostasis and host immunity. A growing body of evidence suggests that the gut microbiota regulates host metabolism through a close cross-talk with adipose tissues. It modulates energy expenditure and alleviates obesity by promoting energy expenditure, but it also produces specific metabolites and structural components that may act as the central factors in the pathogenesis of inflammation, insulin resistance, and obesity. Understanding the relationship between gut microbiota and adipose tissues may provide potential intervention strategies to treat obesity and associated diseases. In this review, we focus on recent advances in the gut microbiota and its actions on adipose tissues and highlight the joint actions of the gut microbiota and adipose tissue with each other in the regulation of energy metabolism.
Collapse
|
23
|
Kobylińska M, Antosik K, Decyk A, Kurowska K. Malnutrition in Obesity: Is It Possible? Obes Facts 2021; 15:19-25. [PMID: 34749356 PMCID: PMC8820192 DOI: 10.1159/000519503] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) classifies malnutrition as the biggest threat to public health worldwide, and this condition is observed in 20-60% of hospitalized patients. Malnutrition is a state of the body in which due to insufficient supply or incorrect absorption of essential nutrients, the body composition changes and the body's functions are impaired. Malnutrition is associated not only with reduced body mass index but also with obesity. SUMMARY Obesity is defined as a paradoxical state of malnutrition, which despite excessive energy consumption is associated with a shortage of individual microelements. Deficiency or lack of homeostasis of essential micronutrients can significantly affect daily performance, intellectual and emotional state, but also the physical state of the body. Food deficiency can also contribute to further weight gain or the development of other metabolic diseases. Micronutrient deficiency may include not only incorrect dietary choices and insufficient access to nutrient-rich foods but also changes in the absorption, distribution or excretion of nutrients, and altered micronutrient metabolism resulting from systemic inflammation caused by obesity. An effective therapy method recommended for people with morbid obesity is bariatric surgery aimed at both weight loss and improving quality of life. Unfortunately, the effects of these treatments are often medium- and long-term complications associated with micronutrient deficiency as a result of reduced consumption or absorption. Therefore, the use of bariatric surgery in patients with extreme obesity can affect the metabolism of microelements and increase the risk of nutritional deficiencies. Key Messages: Studies by many authors indicate a higher incidence of food deficiency among people with excessive body weight, than in people with normal body weight of the same age and same sex. Monitoring the concentration of minerals and vitamins in blood serum is a good practice in the treatment of obesity. The proper nutritional status of the body affects not only the state of health but also the effectiveness of therapy. The aim of the review was to present the issue of malnutrition in the context of obesity.
Collapse
Affiliation(s)
| | - Katarzyna Antosik
- Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | | | |
Collapse
|
24
|
冯 荣, 余 茜, 李 怡, 冯 丹, 李 亚. [Dysbiosis of Gut Microbiota in Patients with Post-Stroke Cognitive Impairment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:966-974. [PMID: 34841763 PMCID: PMC10408829 DOI: 10.12182/20211160507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To identify the differences in the composition of gut microbiota of patients with post-stroke cognitive impairment (PSCI) in comparison with the normal cognition healthy controls (HC), and to study the potential association between gut microbiota and cognition function. METHODS A total of 24 patients were recruited for the PSCI group, which was matched with 23 healthy subjects with no history of cardiovascular disease recruited over the same period for the control group. Fecal samples were collected for both groups, and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to evaluate cognitive functions. The abundance, diversity and group difference of gut bacterial communities were determined with 16S rRNA gene sequencing, and the correlations between differences in bacterial species of the gut microbiota and cognitive function scores were examined with redundancy analysis (RDA)/canonical correspondence analysis (CCA). RESULTS There was no significant difference in the general data or the alpha diversity of gut microbiota between the two groups ( P>0.05). Inter-group comparison of microbial species composition revealed differences at the phylum and species levels, mainly represented as reduction in the relative abundance of Firmicutes and Bacteroidetes, and the relative enrichment of Proteobacteria. The relative abundance of Intestinibacter bartlettii, uncultured bacterium Tyzzerella_3, Lactobacillus gasseri, and Fusicatenibacter saccharivorans of phylum Firmicutes in the PSCI patients were significantly reduced in comparison to that of the HC (LDA score>2), and these bacteria were positively correlated with MMSE and MoCA scores. In addition, the Ruminococcus gnavus and Faecalimonas umbilicata of phylum Firmicutes and uncultured bacterium Prevotellaceae_NK3 B31 group of phylum Bacteroidetes were significantly enriched in comparison with those of the HC (LDA score>2), and these bacteria were negatively correlated with MMSE and MoCA scores. There were also correlations among these bacteria. CONCLUSION In this study, we observed compositional differences between the gut microbiota of PSCI patients and those of HC, and revealed that the differences were correlated, to some degree, to the cognitive functions, which will provide new perspectives for the clinical diagnosis and treatment of PSCI.
Collapse
Affiliation(s)
- 荣建 冯
- 电子科技大学附属医院·四川省人民医院 康复医学科 (成都 611731)Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - 茜 余
- 电子科技大学附属医院·四川省人民医院 康复医学科 (成都 611731)Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - 怡 李
- 电子科技大学附属医院·四川省人民医院 康复医学科 (成都 611731)Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - 丹 冯
- 电子科技大学附属医院·四川省人民医院 康复医学科 (成都 611731)Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - 亚梅 李
- 电子科技大学附属医院·四川省人民医院 康复医学科 (成都 611731)Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
25
|
Immunogenetic, Molecular and Microbiotic Determinants of Eosinophilic Esophagitis and Clinical Practice-A New Perspective of an Old Disease. Int J Mol Sci 2021; 22:ijms221910830. [PMID: 34639170 PMCID: PMC8509128 DOI: 10.3390/ijms221910830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic oesophagitis (EoE) is a chronic, allergic disease associated with a T-lymphocyte response inducing esophageal eosinophilic infiltration in the esophagus. Inflammation and tissue fibrosis are responsible for the main clinical symptoms such as food impaction and dysphagia. The etiopathogenesis is multifactorial in which genetic and environmental factors coexist. The most common trigger is a non-IgE-mediated food allergy to milk, wheat, egg, soybean, nuts, fish, and seafood. The second factor we focus on is the contribution of genetic variation to the risk of EoE, describing the expression profile of selected genes associated with eosinophilic oesophagitis. We raise the topic of treatment, aiming to eliminate inflammation through an elimination diet and/or use of pharmacologic therapy with the use of proton pump inhibitors or steroids and endoscopic procedures to dilate the esophagus. We demonstrate that early diagnosis and effective treatment prevent the development of food impaction and decreased quality of life. The increasing presence of EoE requires bigger awareness among medical specialists concerning clinical features, the course of EoE, diagnostic tools, and management strategies.
Collapse
|
26
|
Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients 2021; 13:2905. [PMID: 34578783 PMCID: PMC8466470 DOI: 10.3390/nu13092905] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (J.E.M.); (A.V.); (T.P.-S.); (I.J.E.)
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (J.E.M.); (A.V.); (T.P.-S.); (I.J.E.)
| |
Collapse
|
27
|
Li Y, Shi G, Han Y, Shang H, Li H, Liang W, Zhao W, Bai L, Qin C. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther 2021; 12:407. [PMID: 34266502 PMCID: PMC8281645 DOI: 10.1186/s13287-021-02490-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a complex disease caused in part by dyslipidemia and chronic inflammation. AS is associated with serious cardiovascular disease and remains the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) have evolved as an attractive therapeutic agent in various diseases including AS. Human umbilical cord MSCs (UCSCs) have been used in cell therapy trials due to their ability to differentiate and proliferate. The present study aimed to investigate the effect of UCSCs treatment on atherosclerotic plaque formation and the progression of lesions in a high-fat diet rabbit model. METHODS Rabbits were fed a high-fat diet and then randomly divided into three groups: control, model, and treatment groups. Rabbits in the treatment group were injected with UCSCs (6 × 106 in 500 μL phosphate buffered saline) after 1 month of high-fat diet, once every 2 weeks, for 3 months. The model group was given PBS only. We analyzed serum biomarkers, used ultrasound and histopathology to detect arterial plaques and laser Doppler imaging to measure peripheral blood vessel blood filling, and analyzed the intestinal flora and metabolism. RESULTS Histological analysis showed that the aortic plaque area was significantly reduced in the treatment group. We also found a significant decrease in macrophage accumulation and apoptosis, an increase in expression of scavenger receptors CD36 and SRA1, a decrease in uptake of modified low-density protein (ox-LDL), and a decrease in levels of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α following UCSCs treatment. We also found that anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β expression increased in the aorta atherosclerotic plaque of the treatment group. UCSCs treatment improved the early peripheral blood filling, reduced the serum lipid level, and inhibited inflammation progression by regulating the intestinal flora dysbiosis caused by the high-fat diet. More specifically, levels of the microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) were down-regulated in the treatment group. CONCLUSIONS UCSCs treatment alleviated atherosclerotic plaque burden by reducing inflammation, regulating the intestinal flora and TMAO levels, and repairing the damaged endothelium.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Guiying Shi
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Yunlin Han
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Haiquan Shang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Huiwu Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wei Liang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wenjie Zhao
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Lin Bai
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| |
Collapse
|
28
|
Park SY, Ustulin M, Park S, Han KD, Kim JY, Shin DW, Rhee SY. Systemic Antibiotics and Obesity: Analyses from a Population-Based Cohort. J Clin Med 2021; 10:jcm10122601. [PMID: 34204698 PMCID: PMC8231544 DOI: 10.3390/jcm10122601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In this study, we analyzed the association between antibiotic use and obesity and metabolic syndrome (MS) in a Korean adult population. METHODS Subjects using the Korean National Health Insurance Service sample cohort were retrospectively analyzed in 2015. The differences in obesity and metabolic syndrome (MS) status were compared and analyzed according to duration of systemic antibiotic treatment in the previous 10 years (non-users, 1st, 2nd, and 3rd tertile). RESULTS Subjects who used systemic antibiotics for longer periods were older, satisfied more criteria for MS, and had more comorbidities than non-users (non-users vs. 3rd tertile, p < 0.0001 for all). After adjusting for confounding factors, the risk of obesity was higher in subjects who used systemic antibiotics for longer periods than in non-users (non-users vs. 3rd tertile, OR (odds ratio) (95% CI (confidence interval)); 1.20 (1.12-1.38)). The criteria for MS were more satisfied in the 3rd tertile than in non-users. A higher obesity risk was also found in subjects treated with antibiotics targeting Gram-negative organisms than in those targeting Gram-positive organisms. CONCLUSION The risk of obesity was higher in subjects who took systemic antibiotics more frequently. The risk was more prominent when they took antibiotics targeting Gram-negative bacteria.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul 03080, Korea;
| | - Morena Ustulin
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 03080, Korea;
| | - SangHyun Park
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul 03080, Korea;
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 03080, Korea;
| | - Joo Young Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanil General Hospital, Seoul 03080, Korea;
| | - Dong Wook Shin
- Supportive Care Center, Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03080, Korea;
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-958-8200
| |
Collapse
|
29
|
Liu Q, Liu S, Cao H, Ji W, Li C, Huan Y, Lei L, Fu Y, Gao X, Liu Y, Shen Z. Ramulus Mori (Sangzhi) Alkaloids (SZ-A) Ameliorate Glucose Metabolism Accompanied by the Modulation of Gut Microbiota and Ileal Inflammatory Damage in Type 2 Diabetic KKAy Mice. Front Pharmacol 2021; 12:642400. [PMID: 33935735 PMCID: PMC8082153 DOI: 10.3389/fphar.2021.642400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
The novel Traditional Chinese Medicine Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) are approved by The China National Medical Products Administration for the treatment of type 2 diabetes mellitus (T2DM). However, the extensive pharmacological characteristics and the underlying mechanism are unknown. This study investigated the mechanisms by which SZ-A ameliorates glucose metabolism in KKAy mice, an animal model of T2DM. Diabetic KKAy mice were treated intragastrically with SZ-A once daily for 8 weeks, after which glucose levels, lipid metabolism, gut microbiome, systemic inflammatory factors, luminal concentrations of short-chain fatty acids (fecal samples), and ileal proteomic changes were evaluated. The ileum tissues were collected, and the effects of SZ-A on pathological inflammatory damage were evaluated by hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry. The mRNA and protein expression levels of various inflammatory markers, including monocyte chemoattractant protein-1 and phosphorylated nuclear factor kappa B p65, were detected in the ileum tissues. SZ-A improved glucose metabolism with enhanced insulin response and elevated glucagon-like peptide 1 (GLP-1) nearly 2.7-fold during the glucose tolerance test in diabetic KKAy mice. Gut microbiota analysis demonstrated that SZ-A administration elevated the abundance of Bacteroidaceae and Verrucomicrobia, reduced the levels of Rikenellaceae and Desulfovibrionaceae; and increased the concentrations of fecal acetic and propionic acids compared to the diabetic model group. Additionally, SZ-A markedly improved ileal inflammatory injury and pro-inflammatory macrophage infiltration and improved intestinal mucosal barrier function in diabetic KKAy mice. SZ-A also attenuated the levels of circulating endotoxin, pro-inflammatory cytokines, and chemokines in the mice sera. Collectively, SZ-A ameliorated the overall metabolic profile including glucose and lipid metabolism in KKAy mice, which may be associated with an improvement in GLP-1 and insulin secretion, at least in part by modulating the gut microbiome and relieving the degree of ileal and systemic inflammation.
Collapse
Affiliation(s)
- Quan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caina Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaxin Fu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
El-Mallah CA, Beyh YS, Obeid OA. Iron Fortification and Supplementation: Fighting Anemia of Chronic Diseases or Fueling Obesity? Curr Dev Nutr 2021; 5:nzab032. [PMID: 33959691 PMCID: PMC8085477 DOI: 10.1093/cdn/nzab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation. Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or obesity.
Collapse
Affiliation(s)
- Carla A El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Yara S Beyh
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Omar A Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
31
|
Power N, Turpin W, Espin-Garcia O, Smith MI, Croitoru K. Serum Zonulin Measured by Commercial Kit Fails to Correlate With Physiologic Measures of Altered Gut Permeability in First Degree Relatives of Crohn's Disease Patients. Front Physiol 2021; 12:645303. [PMID: 33841181 PMCID: PMC8027468 DOI: 10.3389/fphys.2021.645303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intestinal epithelial cell tight junctions (TJs) contribute to the integrity of the intestinal barrier allowing for control of the physical barrier between external antigens or bacterial products and the internal environment. Zonula occludens-1 (ZO-1) is a protein that modulates intestinal TJs, and serum levels of ZO-1 has been suggested as a biomarker of disrupted barrier function in humans. Previous studies suggested that increased intestinal permeability was associated with evidence of TJ abnormalities. However, there is limited information on the serological measurement of ZO-1 and its relation to other tests of barrier function in healthy subjects. We investigated the correlation of serum ZO-1, with physiologic measures of intestinal permeability (as the ratio of the fractional excretion of lactulose-mannitol or LMR) in a cohort of 39 healthy FDRs of Crohn's disease (CD) patients. No significant correlation was found between LMR and ZO-1 levels (r2 = 0.004, P < 0.71), or intestinal fatty acid binding proteins (I-FABP) (r2 = 0.004, P < 0.71). In conclusion, our data show that ZO-1 and I-FABP are not a marker of gut permeability as defined by LMR.
Collapse
Affiliation(s)
- Namita Power
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | | | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021; 13:nu13030757. [PMID: 33652785 PMCID: PMC7996849 DOI: 10.3390/nu13030757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HF→HFB) or LF (11% fat as kcal; HF→LF) (n = 12/group). HF→HFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HF→LF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HF→HFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HF→HFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.
Collapse
|
33
|
The influence of gut microbiota in cardiovascular diseases-a brief review. Porto Biomed J 2021; 6:e106. [PMID: 33490701 PMCID: PMC7817281 DOI: 10.1097/j.pbj.0000000000000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Lately, the gut microbiota has emerged as an important mediator of the development and the outcomes of certain diseases. It's well known that the gut microbiota plays an important role in maintaining human health. Still far from being completely understood and analyzed is the complexity of this ecosystem, although a close relationship between the gut microbiota and cardiovascular diseases (CVD) has been established. A loss of diversity in the microbiota will lead to physiological changes, which can improve inflammatory or infection states like atherosclerosis and hypertension, the basic pathological process of CVD. Targeting the gut microbiota and its metabolites are new and promising strategies for the treatment and prognosis of CVD.
Collapse
|
34
|
Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients 2021; 13:nu13010144. [PMID: 33401598 PMCID: PMC7824497 DOI: 10.3390/nu13010144] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging data have demonstrated a strong association between the gut microbiota and the development of cardiovascular disease (CVD) risk factors such as atherosclerosis, inflammation, obesity, insulin resistance, platelet hyperactivity, and plasma lipid abnormalities. Several studies in humans and animal models have demonstrated an association between gut microbial metabolites such as trimethylamine-N-oxide (TMAO), short-chain fatty acids, and bile acid metabolites (amino acid breakdown products) with CVD. Human blood platelets are a critical contributor to the hemostatic process. Besides, these blood cells play a crucial role in developing atherosclerosis and, finally, contribute to cardiac events. Since the TMAO, and other metabolites of the gut microbiota, are asociated with platelet hyperactivity, lipid disorders, and oxidative stress, the diet-gut microbiota interactions have become an important research area in the cardiovascular field. The gut microbiota and their metabolites may be targeted for the therapeutic benefit of CVD from a clinical perspective. This review's main aim is to highlight the complex interactions between microbiota, their metabolites, and several CVD risk factors.
Collapse
|
35
|
Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. J Pers Med 2020; 11:jpm11010013. [PMID: 33375615 PMCID: PMC7823692 DOI: 10.3390/jpm11010013] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major risk factor for developing gallstone disease (GSD). Previous studies have shown that obesity is associated with an elevated Firmicutes/Bacteroidetes ratio in the gut microbiota. These findings suggest that the development of GSD may be related to gut dysbiosis. This review presents and summarizes the recent findings of studies on the gut microbiota in patients with GSD. Most of the studies on the gut microbiota in patients with GSD have shown a significant increase in the phyla Firmicutes (Lactobacillaceae family, genera Clostridium, Ruminococcus, Veillonella, Blautia, Dorea, Anaerostipes, and Oscillospira), Actinobacteria (Bifidobacterium genus), Proteobacteria, Bacteroidetes (genera Bacteroides, Prevotella, and Fusobacterium) and a significant decrease in the phyla Bacteroidetes (family Muribaculaceae, and genera Bacteroides, Prevotella, Alistipes, Paludibacter, Barnesiella), Firmicutes (genera Faecalibacterium, Eubacterium, Lachnospira, and Roseburia), Actinobacteria (Bifidobacterium genus), and Proteobacteria (Desulfovibrio genus). The influence of GSD on microbial diversity is not clear. Some studies report that GSD reduces microbial diversity in the bile, whereas others suggest the increase in microbial diversity in the bile of patients with GSD. The phyla Proteobacteria (especially family Enterobacteriaceae) and Firmicutes (Enterococcus genus) are most commonly detected in the bile of patients with GSD. On the other hand, the composition of bile microbiota in patients with GSD shows considerable inter-individual variability. The impact of GSD on the Firmicutes/Bacteroidetes ratio is unclear and reports are contradictory. For this reason, it should be stated that the results of reviewed studies do not allow for drawing unequivocal conclusions regarding the relationship between GSD and the Firmicutes/Bacteroidetes ratio in the microbiota.
Collapse
|
36
|
Zawada A, Rychter AM, Ratajczak AE, Lisiecka-Masian A, Dobrowolska A, Krela-Kaźmierczak I. Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders? Microorganisms 2020; 9:18. [PMID: 33374597 PMCID: PMC7822472 DOI: 10.3390/microorganisms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide. Moreover, the influence of the gut-brain axis on obesity is also crucial, since it can affect metabolism and food intake. The quantitative and qualitative changes in the microbiota composition are called dysbiosis; however, in view of the current knowledge, it is difficult to conclude which microbial imbalances are adverse or beneficial. Increased numbers of pathological microorganisms were observed among patients with obesity and comorbidities associated with it, such as diabetes, cardiovascular disease, and insulin resistance. Our review provides current knowledge regarding changes in the intestinal microbiota associated with obesity and obesity-associated comorbidities. Nevertheless, given that dietary patterns and nutrients are two of the factors affecting the intestinal microbiota, we also discuss the role of different dietary approaches, vitamins, and minerals in the shaping of the intestinal microbiota.
Collapse
Affiliation(s)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.Z.); (A.E.R.); (A.L.-M.); (A.D.); (I.K.-K.)
| | | | | | | | | |
Collapse
|
37
|
Oynotkinova OS, Nikonov EL, Demidova TY, Baranov AP, Kryukov EV, Dedov EI, Karavashkina EA. [Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention]. TERAPEVT ARKH 2020; 92:94-101. [PMID: 33346437 DOI: 10.26442/00403660.2020.09.000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The review presents an analysis of studies on the role of the intestinal microbiota and microbiome in lipid metabolism and the development of dyslipidemia, atherosclerosis and cardiovascular diseases. The role of the intestine as a metabolic organ with a multifactorial strain evolution, involved in lipid metabolism, cholesterol homeostasis and enterohepatic circulation is shown. The influence of microbial imbalance on the development of dyslipidemia and atherosclerosis is considered. Special attention is paid to preventive therapy with hypolipidemic probiotics. It is shown that the use of probiotics with hypolipidemic properties and consisting of a mixture of such strains asLactobacillus plantarumCECT7527, CET7528 and CECT7529, mixtures ofLactobacillus acidophilusLa-5,Bifidobacterium lactisBB-12,Bifidobacterium animalis lactisBB-12 contribute to reducing the level of LDL-C, CCS, TG, are safe and well tolerated, can be used as an adjuvant non-drug therapy in combination with hypolipidemic drugs for dyslipidemia, multifocal atherosclerosis.
Collapse
Affiliation(s)
- O S Oynotkinova
- Research Institute of the Organization of Health Care and Medical Management.,Pirogov Russian National Research Medical University.,Lomonosov Moscow State University
| | - E L Nikonov
- Pirogov Russian National Research Medical University
| | - T Y Demidova
- Pirogov Russian National Research Medical University
| | - A P Baranov
- Pirogov Russian National Research Medical University.,Lomonosov Moscow State University
| | | | - E I Dedov
- Pirogov Russian National Research Medical University
| | | |
Collapse
|
38
|
Diehl KL, Vorac J, Hofmann K, Meiser P, Unterweger I, Kuerschner L, Weighardt H, Förster I, Thiele C. Kupffer Cells Sense Free Fatty Acids and Regulate Hepatic Lipid Metabolism in High-Fat Diet and Inflammation. Cells 2020; 9:cells9102258. [PMID: 33050035 PMCID: PMC7600268 DOI: 10.3390/cells9102258] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.
Collapse
|
39
|
Singh Y, Trautwein C, Dhariwal A, Salker MS, Alauddin M, Zizmare L, Pelzl L, Feger M, Admard J, Casadei N, Föller M, Pachauri V, Park DS, Mak TW, Frick JS, Wallwiener D, Brucker SY, Lang F, Riess O. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep 2020; 10:16131. [PMID: 32999308 PMCID: PMC7528091 DOI: 10.1038/s41598-020-72903-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The proper communication between gut and brain is pivotal for the maintenance of health and, dysregulation of the gut-brain axis can lead to several clinical disorders. In Parkinson’s disease (PD) 85% of all patients experienced constipation many years before showing any signs of motor phenotypes. For differential diagnosis and preventive treatment, there is an urgent need for the identification of biomarkers indicating early disease stages long before the disease phenotype manifests. DJ-1 is a chaperone protein involved in the protection against PD and genetic mutations in this protein have been shown to cause familial PD. However, how the deficiency of DJ-1 influences the risk of PD remains incompletely understood. In the present study, we provide evidence that DJ-1 is implicated in shaping the gut microbiome including; their metabolite production, inflammation and innate immune cells (ILCs) development. We revealed that deficiency of DJ-1 leads to a significant increase in two specific genera/species, namely Alistipes and Rikenella. In DJ-1 knock-out (DJ-1-/-) mice the production of fecal calprotectin and MCP-1 inflammatory proteins were elevated. Fecal and serum metabolic profile showed that malonate which influences the immune system was significantly more abundant in DJ-1−/− mice. DJ-1 appeared also to be involved in ILCs development. Further, inflammatory genes related to PD were augmented in the midbrain of DJ-1−/− mice. Our data suggest that metabolites and inflammation produced in the gut could be used as biomarkers for PD detection. Perhaps, these metabolites and inflammatory mediators could be involved in triggering inflammation resulting in PD pathology.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany. .,Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany.
| | - Christoph Trautwein
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Röntgenweg 13, 72076, Tübingen, Germany
| | - Achal Dhariwal
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Madhuri S Salker
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Md Alauddin
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Röntgenweg 13, 72076, Tübingen, Germany
| | - Lisann Pelzl
- Department of Vegetative Physiology, Tübingen University, Wilhelmstraße 56, 72076, Tübingen, Germany.,Clinical Transfusion Medicine Centre, Tübingen University, Otfried-Müller-Straße 4/1, 72076, Tübingen, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Vivek Pachauri
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - David S Park
- Health Research Innovation Centre, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, UHN, 620 University Ave, Toronto, M5G 2C1, Canada
| | - Julia-Stefanie Frick
- Institute for Medical Microbiology and Hygiene, Tübingen University, Elfriede-Aulhorn-Straße 6, 72076, Tübingen, Germany
| | - Diethelm Wallwiener
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Sara Y Brucker
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Vegetative Physiology, Tübingen University, Wilhelmstraße 56, 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| |
Collapse
|
40
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J Mol Med (Berl) 2020; 98:1235-1244. [PMID: 32737524 PMCID: PMC7447622 DOI: 10.1007/s00109-020-01936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex disease involving several different cell types and their molecular products. Recent studies have revealed that atherosclerosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells. However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis. Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development, centered on a pathological humoral immune response between commensal microbes and activated subpopulations of substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis.
|