1
|
The ClC-2 Chloride Channel Activator, Lubiprostone, Improves Intestinal Barrier Function in Biopsies from Crohn’s Disease but Not Ulcerative Colitis Patients. Pharmaceutics 2023; 15:pharmaceutics15030811. [PMID: 36986672 PMCID: PMC10053841 DOI: 10.3390/pharmaceutics15030811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The prostone analog, lubiprostone, is approved to manage constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in animal models of colitis. The aim of this study was to determine if lubiprostone improves barrier properties in isolated colonic biopsies from Crohn’s disease (CD) and ulcerative colitis (UC) patients. Sigmoid colon biopsies from healthy subjects, CD and UC patients in remission, and CD patients with active disease were mounted in Ussing chambers. Tissues were treated with lubiprostone or vehicle to determine the effects on transepithelial electrical resistance (TER), FITC-dextran 4kD (FD4) permeability, and electrogenic ion transport responses to forskolin and carbachol. Localization of the tight junction protein, occludin, was determined by immunofluorescence. Lubiprostone significantly increased ion transport across control, CD and UC remission biopsies but not active CD. Lubiprostone selectively improved TER in both CD remission and active disease biopsies but not in control or UC biopsies. The improved TER was associated with increased membrane localization of occludin. Lubiprostone selectively improved barrier properties of biopsies from CD patients vs. UC and independent of an ion transport response. These data indicate that lubiprostone has potential efficacy in improving mucosal integrity in Crohn’s disease.
Collapse
|
2
|
Shaughnessy CA, Yadav S, Bratcher PE, Zeitlin PL. Receptor-mediated activation of CFTR via prostaglandin signaling pathways in the airway. Am J Physiol Lung Cell Mol Physiol 2022; 322:L305-L314. [PMID: 35020527 PMCID: PMC8858663 DOI: 10.1152/ajplung.00388.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations of the gene encoding a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR modulator therapies consist of small-molecule drugs that rescue mutant CFTR. Regimens of single or combinations of CFTR modulators still rely on endogenous levels of cAMP to regulate CFTR activity. We investigated CFTR activation by the natural mediator prostaglandin E2 (PGE2) and lubiprostone (a Food and Drug Administration-approved drug known to target prostaglandin receptors) and tested the hypothesis that receptor-mediated CFTR activators can be used in combination with currently available CFTR modulators to increase function of mutant CFTR. Primary-cultured airway epithelia were assayed in Ussing chambers. Experimental CFTR activators and established CFTR modulators were applied for 24 h and/or acutely and analyzed for their effect on CFTR activity as measured by changes in short-circuit current (ISC). In non-CF airway epithelia, acute application of lubiprostone and PGE2 activated CFTR to the levels comparable to forskolin (Fsk). Pretreatment (24 h) with antagonists to prostaglandin receptors EP2 and EP4 abolished the ability of lubiprostone to acutely activate CFTR. In F508del homozygous airway epithelia pretreated with the triple combination of elexacaftor, tezacaftor, and ivacaftor (ELEXA/TEZ/IVA; i.e., Trikafta), acute application of lubiprostone was able to maximally activate CFTR. Prolonged (24 h) cotreatment of F508del homozygous epithelia with ELEXA/TEZ/IVA and lubiprostone increased acute CFTR activation by ∼60% compared with the treatment with ELEXA/TEZ/IVA alone. This work establishes the feasibility of targeting prostaglandin receptors to activate CFTR on the airway epithelia and demonstrates that cotreatment with lubiprostone can further restore modulator-rescued CFTR.
Collapse
Affiliation(s)
| | - Sangya Yadav
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Preston E. Bratcher
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Pamela L. Zeitlin
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Benninga MA, Hussain SZ, Sood MR, Nurko S, Hyman P, Clifford RA, O'Gorman M, Losch-Beridon T, Mareya S, Lichtlen P, Di Lorenzo C. Lubiprostone for Pediatric Functional Constipation: Randomized, Controlled, Double-Blind Study With Long-term Extension. Clin Gastroenterol Hepatol 2022; 20:602-610.e5. [PMID: 33838349 DOI: 10.1016/j.cgh.2021.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Pediatric functional constipation (PFC) is a common problem in children that causes distress and presents treatment challenges to health care professionals. We conducted a randomized, placebo-controlled trial (study 1) in patients with PFC (6-17 years of age) to evaluate the efficacy and safety of lubiprostone, followed by an open-label extension for those who completed the placebo-controlled phase (study 2). METHODS Study 1 (NCT02042183) was a phase 3, multicenter, randomized, double-blind, placebo-controlled, 12-week study evaluating the efficacy and safety of lubiprostone 12 μg twice daily (BID) and 24 μg BID. Study 2 (NCT02138136) was a phase 3, long-term, open-label extension of study 1. In both studies, lubiprostone doses were based on patients' weight. Efficacy was assessed solely based on study 1, with a primary endpoint of overall spontaneous bowel movement (SBM) response (increase of ≥1 SBM/wk vs baseline and ≥3 SBMs/wk for ≥9 weeks, including 3 of the final 4 weeks). RESULTS 606 patients were randomized to treatment (placebo: n = 202; lubiprostone: n = 404) in study 1. No statistically significant difference in overall SBM response rate was observed between the lubiprostone and placebo groups (18.5% vs 14.4%; P = .2245). Both the 12-μg BID and 24-μg BID doses of lubiprostone were well tolerated in the double-blind and extension phases, with a safety profile consistent with that seen in adult studies. CONCLUSIONS Lubiprostone did not demonstrate statistically significant effectiveness over placebo in children and adolescents with PFC but did demonstrate a safety profile similar to that in adults. (ClinicalTrials.gov: Number: NCT02042183; Number: NCT02138136).
Collapse
Affiliation(s)
- Marc A Benninga
- Department of Paediatric Gastroenterology & Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Sunny Z Hussain
- Willis-Knighton Pediatric Gastroenterology and Research, Shreveport, Louisiana
| | - Manu R Sood
- Division of Pediatric Gastroenterology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Nurko
- Center for Motility and Functional Gastrointestinal Disorders, Boston Children's Hospital, Boston, Massachusetts
| | - Paul Hyman
- Gastroenterology Department, Children's Hospital, New Orleans, Louisiana
| | | | - Molly O'Gorman
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | | | - Shadreck Mareya
- Clinical Program Management, Sucampo Pharmaceuticals, Rockville, Maryland
| | | | - Carlo Di Lorenzo
- Division of Pediatric Gastroenterology, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
4
|
Cuppoletti J, Tewari KP, Chakrabarti J, Malinowska DH. Identification of the fatty acid activation site on human ClC-2. Am J Physiol Cell Physiol 2017; 312:C707-C723. [PMID: 28424169 DOI: 10.1152/ajpcell.00267.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023]
Abstract
Fatty acids (including lubiprostone and cobiprostone) are human ClC-2 (hClC-2) Cl- channel activators. Molecular and cellular mechanisms underlying this activation were examined. Role of a four-amino acid PKA activation site, RGET691, of hClC-2 was investigated using wild-type (WT) and mutant (AGET, RGEA, and AGAA) hClC-2 expressed in 293EBNA cells as well as involvement of PKA, intracellular cAMP concentration ([cAMP]i), EP2, or EP4 receptor agonist activity. All fatty acids [lubiprostone, cobiprostone, eicosatetraynoic acid (ETYA), oleic acid, and elaidic acid] caused significant rightward shifts in concentration-dependent Cl- current activation (increasing EC50s) with mutant compared with WT hClC-2 channels, without changing time and voltage dependence, current-voltage rectification, or methadone inhibition of the channel. As with lubiprostone, cobiprostone activation of hClC-2 occurred with PKA inhibitor (myristoylated protein kinase inhibitor) present or when using double PKA activation site (RRAA655/RGEA691) mutant. Cobiprostone did not activate human CFTR. Fatty acids did not increase [cAMP]i in hClC-2/293EBNA or T84 cells. Using T84 CFTR knockdown cells, cobiprostone increased hClC-2 Cl- currents without increasing [cAMP]i, while PGE2 and forskolin-IBMX increased both. Fatty acids were not agonists of EP2 or EP4 receptors. L-161,982, a supposed EP4-selective inhibitor, had no effect on lubiprostone-activated hClC-2 Cl- currents but significantly decreased T84 cell barrier function measured by transepithelial resistance and fluorescent dextran transepithelial movement. The present findings show that RGET691 of hClC-2 (possible binding site) plays an important functional role in fatty acid activation of hClC-2. PKA, [cAMP]i, and EP2 or EP4 receptors are not involved. These studies provide the molecular basis for fatty acid regulation of hClC-2.
Collapse
Affiliation(s)
- John Cuppoletti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Kirti P Tewari
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jayati Chakrabarti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Danuta H Malinowska
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
5
|
GRG Profiles: Jackie D. Wood. Dig Dis Sci 2016; 61:1793-802. [PMID: 27146411 DOI: 10.1007/s10620-016-4182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Qu MH, Ji WS, Zhao TK, Fang CY, Mao SM, Gao ZQ. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine. World J Gastrointest Pathophysiol 2016; 7:150-159. [PMID: 26909238 PMCID: PMC4753181 DOI: 10.4291/wjgp.v7.i1.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/29/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. METHODS Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). RESULTS Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. CONCLUSION The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.
Collapse
|
7
|
Jin Y, Blikslager AT. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target. Tissue Barriers 2015; 3:e1105906. [PMID: 26716076 DOI: 10.1080/21688370.2015.1105906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
The ClC-2 chloride channel is a member of the voltage-gated chloride channel family. ClC-2 is involved in various physiological processes, including fluid transport and secretion, regulation of cell volume and pH, maintaining the membrane potential of the cell, cell-to-cell communication, and tissue homeostasis. Recently, our laboratory has accumulated evidence indicating a critical role of ClC-2 in the regulation of intestinal barrier function by altering inter-epithelial tight junction composition. This review will detail the role of ClC-2 in intestinal barrier function during intestinal disorders, including experimental ischemia/reperfusion injury and dextran sodium sulfate (DSS)-induced inflammatory bowel disease. Details of pharmacological manipulation of ClC-2 via prostone agonists will also be provided in an effort to show the potential therapeutic relevance of ClC-2 regulation, particularly during intestinal barrier disruption.
Collapse
Affiliation(s)
- Younggeon Jin
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University ; Raleigh, NC, USA
| | - Anthony T Blikslager
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University ; Raleigh, NC, USA
| |
Collapse
|
8
|
Kang SB, Marchelletta RR, Penrose H, Docherty MJ, McCole DF. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa. Pharmacol Res Perspect 2015; 3:e00128. [PMID: 26038704 PMCID: PMC4448989 DOI: 10.1002/prp2.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022] Open
Abstract
Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.
Collapse
Affiliation(s)
- Sang Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, St. Mary's Hospital, Catholic University of Korea Seoul, Korea ; Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Ronald R Marchelletta
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Harrison Penrose
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Michael J Docherty
- Division of Gastroenterology, School of Medicine, University of California, San Diego La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside Riverside, California
| |
Collapse
|
9
|
Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K, Tomioka Y, Ito S, Soga T, Abe T. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD. J Am Soc Nephrol 2014; 26:1787-94. [PMID: 25525179 DOI: 10.1681/asn.2014060530] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022] Open
Abstract
The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hisato Shima
- Division of Nephrology, Endocrinology, and Vascular Medicine and
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yasutoshi Akiyama
- Division of Nephrology, Endocrinology, and Vascular Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoichi Takeuchi
- Division of Nephrology, Endocrinology, and Vascular Medicine and
| | - Noriko N Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine and
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine and
| | - Akinori Yuri
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan; and
| | - Koichi Kikuchi
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan; and
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine and
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine and Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
10
|
Jiao HY, Kim DH, Ki JS, Ryu KH, Choi S, Jun JY. Effects of lubiprostone on pacemaker activity of interstitial cells of cajal from the mouse colon. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:341-6. [PMID: 25177167 PMCID: PMC4146637 DOI: 10.4196/kjpp.2014.18.4.341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
Lubiprostone is a chloride (Cl-) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K+] channel blocker) and apamin (a calcium [Ca2+]-dependent K+ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K+ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K+ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K+ channel through a prostanoid EP receptor-independent mechanism.
Collapse
Affiliation(s)
- Han-Yi Jiao
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Dong Hyun Kim
- Department of Radiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Jung Suk Ki
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Kwon Ho Ryu
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
11
|
Musch MW, Wang Y, Claud EC, Chang EB. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota. Dig Dis Sci 2013; 58:668-77. [PMID: 23329012 PMCID: PMC3618493 DOI: 10.1007/s10620-012-2509-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Lubiprostone has been used to treat constipation through its effects to stimulate Cl(-) secretion, resulting in water and electrolyte secretion. AIM Potential associated changes in intestinal mucus and the colonizing bacteria (microbiome) have not been studied. As mucus obstructions may play a role in cystic fibrosis, the hypothesis that lubiprostone alters intestinal mucus and the microbiome was investigated. METHODS Ion transport studies were performed ex vivo. For mucus and microbiome studies, mice were gavaged daily with lubiprostone or vehicle. Mucin from intestinal sections was analyzed in Carnoy's fixed tissues stained with Alcian blue. Microbiome composition was analyzed by 16S rRNA gene-based sequencing. RESULTS Lubiprostone stimulated short circuit current in all mouse intestinal segments after both serosal and mucosal additions, albeit at lower concentrations in the latter. Current was Cl-dependent and blocked by mucosal diphenylcarboxylic acid, serosal bumetanide, and serosal Ba(++). The CFTR inhibitor CFTRinh172 had a marginal effect. Mucus near epithelial cells (inner layer mucus) was not present in the small intestine of any mice. Proximal colon inner mucus layer was thicker in ∆F/∆F compared with +/∆F and +/+ mice. Lubiprostone decreased inner mucus layer thickness in both proximal and distal colon of all mice. Furthermore, lubiprostone altered the intestinal microbiome by increasing abundance of Lactobacillus and Alistipes. CONCLUSIONS Lubiprostone activates non-CFTR Cl(-) secretion and alters the colonic inner mucus layer, which is associated with changes in the composition of the enteric microbiome.
Collapse
Affiliation(s)
- Mark W Musch
- Division of Biological Sciences, Department of Medicine, The University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci 2012; 57:2826-45. [PMID: 22923315 PMCID: PMC3482986 DOI: 10.1007/s10620-012-2352-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Lubiprostone is a chloride channel activator in clinical use for the treatment of chronic constipation, but the mechanisms of action of the drug are poorly understood. The aim of this study was to determine whether lubiprostone exerts secretory effects in the intestine by membrane trafficking of ion transporters and associated machinery. METHODS Immunolabeling and quantitative fluorescence intensity were used to examine lubiprostone-induced trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR), sodium/potassium-coupled chloride co-transporter 1 (NKCC1), electrogenic sodium/bicarbonate co-transporter 1 (NBCe1), down-regulated in adenoma (DRA), putative anion transporter 1 (PAT1), sodium/proton exchanger 3 (NHE3), Ca(2+) activated chloride channel 2 (ClC-2) serotonin and its transporter SERT, E prostanoid receptors EP4 and EP1, sodium/potassium ATPase (Na-K-ATPase) and protein kinase A (PKA). The effects of lubiprostone on mucus exocytosis in rat intestine and human rectosigmoid explants were also examined. RESULTS Lubiprostone induced contraction of villi and proximal colonic plicae and membrane trafficking of transporters that was more pronounced in villus/surface cells compared to the crypt. Membrane trafficking was determined by: (1) increased membrane labeling for CFTR, PAT1, NKCC1, and NBCe1 and decreased membrane labeling for NHE3, DRA and ClC-2; (2) increased serotonin, SERT, EP4, EP1 and PKA labeling in enterochromaffin cells; (3) increased SERT, EP4, EP1, PKA and Na-K-ATPase in enterocytes; and (4) increased mucus exocytosis in goblet cells. CONCLUSION These data suggest that lubiprostone can target serotonergic, EP4/PKA and EP1 signaling in surface/villus regions; stimulate membrane trafficking of CFTR/NBCe1/NKCC1 in villus epithelia and PAT1/NBCe1/NKCC1 in colonic surface epithelia; suppress NHE3/DRA trafficking and fluid absorption; and enhance mucus-mobilization and mucosal contractility.
Collapse
|
13
|
Akiba Y, Kaunitz JD. May the truth be with you: lubiprostone as EP receptor agonist/ClC-2 internalizing "inhibitor". Dig Dis Sci 2012; 57:2740-2. [PMID: 23001408 DOI: 10.1007/s10620-012-2410-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Baldassano S, Wang GD, Mulè F, Wood JD. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol Gastrointest Liver Physiol 2012; 302:G352-8. [PMID: 22075777 PMCID: PMC3287398 DOI: 10.1152/ajpgi.00333.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks that control secretomotor functions.
Collapse
Affiliation(s)
- Sara Baldassano
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and ,2Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, University of Palermo, Palermo, Italy
| | - Guo-Du Wang
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and
| | - Flavia Mulè
- 2Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, University of Palermo, Palermo, Italy
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and
| |
Collapse
|
15
|
O'Brien CE, Anderson PJ, Stowe CD. Lubiprostone for Constipation in Adults with Cystic Fibrosis: A Pilot Study. Ann Pharmacother 2011; 45:1061-6. [DOI: 10.1345/aph.1q219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Catherine E O'Brien
- Department of Pharmacy Practice, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Paula J Anderson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, College of Medicine, University of Arkansas for Medical Sciences
| | - Cindy D Stowe
- Department of Pharmacy Practice, College of Pharmacy, University of Arkansas for Medical Sciences
| |
Collapse
|
16
|
Abstract
BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues.
Collapse
Affiliation(s)
- A W Cuthbert
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, UK.
| |
Collapse
|
17
|
Sun X, Wang X, Wang GD, Xia Y, Liu S, Qu M, Needleman BJ, Mikami DJ, Melvin WS, Bohn LM, Ueno R, Wood JD. Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine. Dig Dis Sci 2011; 56:330-338. [PMID: 21181441 PMCID: PMC4757489 DOI: 10.1007/s10620-010-1515-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/22/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Treatments with morphine or opioid agonists cause constipation. Lubiprostone is approved for treatment of adult idiopathic constipation and constipation-predominant IBS in adult women. We tested whether lubiprostone can reverse morphine-suppression of mucosal secretion in human intestine and explored the mechanism of action. METHODS Fresh segments of jejunum discarded during Roux-En-Y gastric bypass surgeries were used. Changes in short-circuit current (ΔIsc) were recorded in Ussing flux chambers as a marker for electrogenic chloride secretion during pharmacological interactions between morphine, prostaglandin receptor antagonists, chloride channel blockers and lubiprostone. RESULTS Morphine suppressed basal Isc. Lubiprostone reversed morphine suppression of basal Isc. Lubiprostone, applied to the mucosa in concentrations ranging from 3 nM to 30 μM, evoked increases in Isc in concentration-dependent manner when applied to the mucosal side of muscle-stripped preparations. Blockade of enteric nerves did not change stimulation of Isc by lubiprostone. Removal of chloride or application of bumetanide or NPPB suppressed or abolished responses to lubiprostone. Antagonists acting at CFTR channels and prostaglandin EP(4) receptors, but not at E(1), EP(1-3) receptors, partially suppressed stimulation of Isc by lubiprostone. CONCLUSIONS Antisecretory action of morphine results from suppression of excitability of secretomotor neurons in the enteric nervous system. Lubiprostone, which does not affect enteric neurons directly, bypasses the action of morphine by directly opening mucosal chloride channels.
Collapse
Affiliation(s)
- Xiaohong Sun
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Xiyu Wang
- Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Guo-Du Wang
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA,
| | - Yun Xia
- Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Sumei Liu
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Meihua Qu
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA,
| | - Bradley J. Needleman
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Dean J. Mikami
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - W. Scott Melvin
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Laura M. Bohn
- Department of Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ryuji Ueno
- Sucampo Pharmaceuticals, Inc., Bethesda, MD, USA,
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci 2011; 56:339-51. [PMID: 21140215 DOI: 10.1007/s10620-010-1495-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/10/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. AIM To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. METHODS Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. RESULTS Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. CONCLUSIONS Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.
Collapse
|
19
|
Lunsford TN, Harris LA. Lubiprostone: evaluation of the newest medication for the treatment of adult women with constipation-predominant irritable bowel syndrome. Int J Womens Health 2010; 2:361-74. [PMID: 21151683 PMCID: PMC2990905 DOI: 10.2147/ijwh.s4537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder that affects primarily female patients and is thought also to afflict approximately 7%-10% of the population of the Western World. Although bowel habits may change over the course of years, patients with IBS are characterized according to their predominant bowel habit, constipation (IBS-C), diarrhea (IBS-D), or mixed type (IBS-M), and treatments are focused toward the predominant symptom. Current treatments for IBS-C have included fiber, antispasmodics, osmotic and stimulant laxatives, and the now severely limited 5-HT(4) agonist tegaserod. No one agent has been universally successful in the treatment of this bothersome syndrome and the search for new agents continues. Lubiprostone (Amitiza(®)), a novel compound, is a member of a new class of agents called prostones and was approved for the treatment of chronic idiopathic constipation in 2006 at a dose of 24 μg twice daily and then in 2008 for the treatment of IBS-C in women only at a dose of 8 μg twice daily. Its purported mechanism is as a type 2 chloride channel activator, but recent evidence suggests that it may also work at the cystic fibrosis transport receptor. This article will compare the newly proposed mechanism of action of this compound to the purported mechanism and review the structure, pharmacology, safety, efficacy, and tolerability of this new therapeutic option. Clinical trial data leading to the approval of this agent for the treatment of IBS-C and the gender-based understanding of IBS, as well as this agent's place among existing and emerging therapies, will be examined.
Collapse
Affiliation(s)
- Tisha N Lunsford
- Department of Gastroenterology and Hepatology, Mayo Clinic – School of Medicine, Scottsdale, Arizona, USA
| | - Lucinda A Harris
- Department of Gastroenterology and Hepatology, Mayo Clinic – School of Medicine, Scottsdale, Arizona, USA
| |
Collapse
|
20
|
De Lisle RC, Mueller R, Roach E. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype. BMC Gastroenterol 2010; 10:107. [PMID: 20843337 PMCID: PMC2945989 DOI: 10.1186/1471-230x-10-107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 09/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
21
|
Fei G, Raehal K, Liu S, Qu MH, Sun X, Wang GD, Wang XY, Xia Y, Schmid CL, Bohn LM, Wood JD. Lubiprostone reverses the inhibitory action of morphine on intestinal secretion in guinea pig and mouse. J Pharmacol Exp Ther 2010; 334:333-40. [PMID: 20406855 PMCID: PMC2912047 DOI: 10.1124/jpet.110.166116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/15/2010] [Indexed: 12/12/2022] Open
Abstract
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.
Collapse
Affiliation(s)
- Guijun Fei
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210-1218, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The enteric nervous system integrates secretion and motility into homeostatic patterns of behavior susceptible to disorder. Progress in understanding mechanosensory detection in these processes, disordered enteric nervous system integration in diarrhea and constipation and pharmacotherapy is summarized. RECENT FINDINGS Most neurons in the enteric nervous system discharge in response to distortion. Drugs acting directly to open chloride conductance channels in the mucosal epithelium are therapeutic options for constipation. SUMMARY Mechanoreception is required for negative feedback control. At issue is identification of the neurons that fulfil the requirement for mechanoreception. Understanding secretomotor neurons is basic to understanding neurogenic secretory diarrhea and constipation and therapeutic strategies. A strategy for treatment of chronic constipation is development of agents that act directly to open Cl channels, which thereby increases the liquidity of the luminal contents. Lubiprostone, a recently Food and Drug Administration-approved drug, increases intraluminal liquidity by opening Cl channels. The future for the drug is clouded by controversy over whether its action is directly at one or the other of chloride channel type 2 (ClC-2) or cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels or both and whether action reflects involvement of G protein-coupled prostaglandin receptors expressed by mucosal epithelial cells.
Collapse
|
23
|
O'Brien CE, Anderson PJ, Stowe CD. Use of the chloride channel activator lubiprostone for constipation in adults with cystic fibrosis: a case series. Ann Pharmacother 2010; 44:577-81. [PMID: 20179256 DOI: 10.1345/aph.1m642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To describe the use of lubiprostone for constipation in 3 adults with cystic fibrosis (CF). CASE SUMMARY This case series describes the use of lubiprostone for the treatment of constipation in 3 adults with CF (mean +/- SD length of therapy 17.3 +/- 1.5 mo). All 3 patients were prescribed lubiprostone 24 microg twice daily after hospitalization for treatment of intestinal obstruction. Patient 1 continues on chronic polyethylene glycol (PEG) 3350 and lubiprostone and has not had a recurrence of obstruction. Patient 2 requires aggressive chronic therapy with PEG 3350, lubiprostone, and methylnaltrexone. She has had 1 recurrence of obstruction. Patient 3 continues with lubiprostone taken several times per week with good control of constipation and no recurrence of obstruction to date. The adverse effect profile has been tolerable in all 3 patients. DISCUSSION CF is caused by a genetic mutation resulting in a dysfunctional or absent CF transmembrane conductance regulator that normally functions as a chloride channel. This results in viscous secretions in multiple organ systems including the lungs and intestinal tract. Accumulation of viscous intestinal contents contributes to constipation, which is common among adults with CF and can sometimes lead to intestinal obstruction. Lubiprostone is indicated for chronic constipation and works by activating type 2 chloride channels (ClC-2) in the intestinal tract. Because it utilizes an alternate chloride channel, lubiprostone may be especially effective for constipation in patients with CF. CONCLUSIONS Lubiprostone provides an additional option for the treatment of constipation in adults with CF. Its use in the CF population deserves further study.
Collapse
Affiliation(s)
- Catherine E O'Brien
- College of Pharmacy, Department of Pharmacy Practice, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
24
|
Baldassano S, Liu S, Qu MH, Mulè F, Wood JD. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G800-5. [PMID: 19628655 PMCID: PMC2763802 DOI: 10.1152/ajpgi.00170.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 07/17/2009] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons.
Collapse
Affiliation(s)
- Sara Baldassano
- Departments of Physiology and Cell Biology, Ohio State University College of Medicine, Columbus, Ohio 43210-1218, USA
| | | | | | | | | |
Collapse
|
25
|
Mizumori M, Akiba Y, Kaunitz JD. Lubiprostone stimulates duodenal bicarbonate secretion in rats. Dig Dis Sci 2009; 54:2063-9. [PMID: 19657734 PMCID: PMC2737111 DOI: 10.1007/s10620-009-0907-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/02/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND Lubiprostone, a bicyclic fatty acid, is used for the treatment of chronic constipation. No published study has addressed the effect of lubiprostone on intestinal ion secretion in vivo. AIM The aim of this study was to test the hypothesis that lubiprostone augments duodenal HCO(3) (-) secretion (DBS). METHODS Rat proximal duodenal loops were perfused with pH 7.0 Krebs, control vehicle (medium-chain triglycerides), or lubiprostone (0.1-10 microM). We measured DBS with flow-through pH and CO(2) electrodes, perfusate [Cl(-)] with a Cl(-) electrode, and water flux using a non-absorbable ferrocyanide marker. Some rats were pretreated with a potent, selective CFTR antagonist, CFTR(inh)-172 (1 mg/kg, ip), 1 h before experiments. RESULTS Perfusion of lubiprostone concentration dependently increased DBS, whereas net Cl(-) output and net water output were only increased at 0.1 microM, compared with vehicle. CFTR(inh)-172 reduced lubiprostone (10 microM)-induced DBS increase, whereas net Cl(-) output was also unchanged. Nevertheless, CFTR(inh)-172 reduced basal net water output, which was reversed by lubiprostone. Furthermore, lubiprostone-induced DBS was inhibited by EP4 receptor antagonist, not by an EP1/2 receptor antagonist or by indomethacin pretreatment. CONCLUSIONS In this first study of the effect of lubiprostone on intestinal ion secretion in vivo, lubiprostone stimulated CFTR-dependent DBS without changing net Cl(-) secretion. This effect supports the hypothesis that Cl(-) secreted by CFTR is recycled across the apical membrane by anion exchangers. Recovery of water output during CFTR inhibition suggests that lubiprostone may improve the intestinal phenotype in CF patients. Furthermore, increased DBS suggests that lubiprostone may protect the duodenum from acid-induced injury via EP4 receptor activation.
Collapse
Affiliation(s)
- Misa Mizumori
- Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Yasutada Akiba
- Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, 11301 Wilshire Blvd., Bldg. 114, Suite 217, Los Angeles, CA 90073 USA
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073 USA
| | - Jonathan D. Kaunitz
- Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, 11301 Wilshire Blvd., Bldg. 114, Suite 217, Los Angeles, CA 90073 USA
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073 USA
| |
Collapse
|