1
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025; 17:1038-1063. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
6
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
7
|
Liao W, Hu R, Ji Y, Zhong Z, Huang X, Cai T, Zhou C, Wang Y, Ye Z, Yang P. Oleic acid regulates CD4+ T cells differentiation by targeting ODC1-mediated STAT5A phosphorylation in Vogt-Koyanagi-Harada disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156660. [PMID: 40203473 DOI: 10.1016/j.phymed.2025.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Vogt-Koyanagi-Harada (VKH) is a multisystemic autoimmune disorder characterized by bilateral panuveitis frequently accompanied by neurologic manifestations. While metabolic dysregulation is increasingly recognized in the context of autoimmune diseases, the role of specific metabolites in VKH disease remains unexplored. METHODS Non-targeted and targeted metabolomics analysis, phospho-antibody array, proteome microarray, surface plasmon resonance, and molecular simulation were used to identify molecular target of OA. RESULTS We investigated metabolic profile of VKH disease and found that oleic acid (OA) was enriched in this disease. A series of functional assays showed that OA could exacerbate experimental autoimmune uveitis (EAU) in association with increased frequency of Th1 and Th17 cells and decreased proportion of Treg cells in vitro. However, the specific molecular target of OA remains elusive. Through proteome microarrays, molecular simulations and surface plasmon resonance assays, Ornithine decarboxylase 1 (ODC1) was identified as target protein of OA. OA could bind to ODC1, increase ODC1 protein expression in both a time- and concentration-dependent manner and promote subsequently putrescine production. Phospho-antibody array analysis revealed that OA inhibited phosphorylation of STAT5A (Y694) in CD4+T cells, leading to imbalance of Th1/Th17 and Treg cells and decreased transcription of IL-10. OA upregulated ODC1 protein and putrescine levels through binding to LYS-78, inhibited phosphorylation of STAT5A protein and subsequently decreased binding of STAT5A at IL-10 promoter. CONCLUSION These results reveals that OA could be a crucial metabolite for modulation of CD4+T cell differentiation and that ODC1-mediated phosphorylation and transcriptional activity of STAT5A contributes to development of VKH disease progression, highlighting ODC1 as a novel therapeutic target in VKH disease.
Collapse
Affiliation(s)
- Weiting Liao
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Ruixue Hu
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yan Ji
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zhenyu Zhong
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Jinfeng Laboratory, Chongqing, China
| | - Tao Cai
- The First Affiliated Hospital of Chongqing Medical University, department of Dermatology, Chongqing, China
| | - Chunjiang Zhou
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yao Wang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zi Ye
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| | - Peizeng Yang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| |
Collapse
|
8
|
Chen Y, Wu N, Yan X, Kang L, Ou G, Zhou Z, Xu C, Feng J, Shi T. Impact of gut microbiota on colorectal anastomotic healing (Review). Mol Clin Oncol 2025; 22:52. [PMID: 40297498 PMCID: PMC12035527 DOI: 10.3892/mco.2025.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal anastomosis is a critical procedure in both emergency and elective surgeries to maintain intestinal continuity. However, the incidence of anastomotic leakage (AL) has recently increased, reaching up to 20%, imposing major clinical and economic burdens. Substantial perioperative alterations in the intestinal microbiota composition may contribute to AL, particularly due to disruptions in key microbial populations essential for intestinal health and healing. The intricate interplay between the intestinal microbiota and the host immune system, along with microbial changes before and during surgery, significantly influences anastomotic integrity. Notably, specific pathogens such as Enterococcus and Pseudomonas aeruginosa have been implicated in AL pathogenesis. Preventive strategies including dietary regulation, personalized intestinal preparation, microbiota restoration and enhanced recovery after surgery protocols, may mitigate AL risks. Future research should focus on elucidating the precise mechanisms linking intestinal microbiota alterations to anastomotic healing and developing targeted interventions to improve surgical outcomes.
Collapse
Affiliation(s)
- Yangyang Chen
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Nian Wu
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Yan
- Anesthesia Operating Room, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Liping Kang
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Guoyong Ou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Zhenlin Zhou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Changbo Xu
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Jiayi Feng
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Tou Shi
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Jing Z, Yinhang W, Jian C, Zhanbo Q, Xinyue W, Shuwen H. Interaction between gut microbiota and T cell immunity in colorectal cancer. Autoimmun Rev 2025; 24:103807. [PMID: 40139455 DOI: 10.1016/j.autrev.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
This review delves into the complex and multi-layered mechanisms that govern the interaction between gut microbiota and T cells in the context of colorectal cancer (CRC), revealing a novel "microbiota-immune regulatory landscape" within the tumor microenvironment. As CRC progresses, the gut microbiota experiences a significant transformation in both its composition and metabolic patterns. On one hand, specific microbial entities within the gut microbiota can directly engage with T cells, functioning as "immunological triggers" that shape T-cell behavior. Simultaneously, microbial metabolites, such as short-chain fatty acids and bile acids, serve as "molecular regulators" that intricately govern T-cell function and differentiation, fine-tuning the immune response. On the other hand, the quorum-sensing mechanism, a recently recognized communication network among bacteria, also plays a pivotal role in orchestrating T-cell immunity. Additionally, the gut microbiota forms an intriguing connection with the neuro-immune regulatory axis, a largely unexplored "territory" in CRC research. Regarding treatment strategies, a diverse array of intervention approaches-including dietary modifications, the utilization of probiotics, bacteriophages, and targeted antibiotic therapies-offer promising prospects for restoring the equilibrium of the gut microbiota, thereby acting as "ecosystem renovators" that impede tumor initiation and progression. Nevertheless, the current research landscape in this field is fraught with challenges. These include significant variations in microbial composition, dietary preferences, and tumor microenvironments among individuals, a lack of large-scale cohort studies, and insufficient research that integrates tumor mutation analysis, gut microbiota investigations, and immune microenvironment evaluations. This review emphasizes the necessity for future research efforts to seamlessly incorporate multiple factors and utilize bioinformatics analysis to construct a more comprehensive "interactive map" of the gut microbiota-T cell relationship in CRC. The aim is to establish a solid theoretical basis for the development of highly effective and personalized treatment regimens, ultimately transforming the therapeutic approach to CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500 Rueil-Malmaison, France.
| |
Collapse
|
10
|
Martínez-Ruiz M, Robeson MS, Piccolo BD. Fueling the fire: colonocyte metabolism and its effect on the colonic epithelia. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40405692 DOI: 10.1080/10408398.2025.2507701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Colonic permeability is a major consequence of dysbiosis and diseases affecting the colon, further contributing to inflammation and extraintestinal diseases. Recent advances have shed light on the association between colonocyte energy utilization and the mechanisms that support epithelial function and homeostasis. One unifying theme is the induction of colonocyte hypoxia, driven by the aerobic oxidation of microbial-derived butyrate, as a critical factor promoting multiple cellular processes that support intestinal barrier function, mucus secretion, and the maintenance of synergistic luminal microbes. Particular attention will be focused on experimental evidence supporting beta-oxidation via activation of peroxisome proliferators-activated receptor-γ (PPAR) and upregulation and activation of processes that promote barrier function by hypoxia-inducible factor (HIF) signaling. Growing evidence suggests that colonocyte energy utilization is tightly regulated and switches between beta-oxidation of butyrate and anaerobic glycolysis, the latter being associated with several disease states. As most of the primary literature associated with colonocyte energy utilization has focused on adult models, evidence supporting butyrate oxidation in the neonatal gut is lacking. Thus, this review details the current state of knowledge linking colonocyte substrate utilization to mechanisms supporting gut health, but also highlights the counterindications of colonic butyrate availability and utilization in developmental periods.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Liu G, Han S, Hou L, Zeng L, Jiang Y, Liu C, Che H. Sialic Acid (Neu5Ac)-Driven Modulation of Intestinal Sialylation as a Novel Approach to Mitigating Allergic Reactions to Shrimp Tropomyosin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40396838 DOI: 10.1021/acs.jafc.5c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Sialic acids are crucial for maintaining intestinal homeostasis, but their role in food allergies remains poorly understood. This study investigates the regulatory function of sialic acid (Neu5Ac) in tropomyosin-induced allergic responses, with the aim of identifying potential therapeutic targets. In a C57BL/6N mouse model sensitized with shrimp tropomyosin, Neu5Ac treatment alleviated allergic symptoms, as evidenced by reduced anaphylaxis scores, lower levels of allergen-specific antibodies and Th2 cytokines, enhanced gut microbiota composition, and increased short-chain fatty acid production. To validate these findings, we used the sialyltransferase inhibitor 3Fax-Peracetyl Neu5Ac to inhibit sialylation in both the mouse and CMT93 cell models. Mice with reduced sialylation displayed more severe allergic symptoms, including diarrhea, elevated anaphylaxis scores, increased antibody levels, a Th2-skewed immune response, compromised intestinal barriers, and higher mortality rates. Similarly, in CMT93 cells, sialylation inhibition led to increased secretion of inflammatory markers and greater cellular permeability. These findings underscore the protective effects of Neu5Ac in alleviating food allergies and suggest that enhancing sialylation could provide a novel therapeutic strategy for managing allergic responses.
Collapse
Affiliation(s)
- Guirong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
- School of Food and Bioengineering, Xihua University, Chengdu , Sichuan 610039, China
| | - Shiwen Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Lirui Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Lingyu Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Yue Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California 92182, United States
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu, Sichuan 611430, China
| |
Collapse
|
12
|
Han J, Meng X, Kong H, Li X, Chen P, Zhang XA. Links between short-chain fatty acids and osteoarthritis from pathology to clinic via gut-joint axis. Stem Cell Res Ther 2025; 16:251. [PMID: 40390010 PMCID: PMC12090658 DOI: 10.1186/s13287-025-04386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
Short-chain fatty acids (SCFAs), the primary metabolites produced by the microbial fermentation of dietary fibers in the gut, have a key role in protecting gut health. Increasing evidence indicates SCFAs can exert effects on distant tissues and organs beyond the gut via blood circulation. Osteoarthritis (OA) is a chronic inflammatory joint disease that severely diminishes the physical function and quality of life. However, effective clinical treatments for OA remain elusive. Recent studies have shown that SCFAs can exert beneficial effects on damaged joints in OA. SCFAs can mitigate OA progression by preserving intestinal barrier function and maintaining the integrity of cartilage and subchondral bone, suggesting that they have substantial potential to be the adjunctive treatment strategy for OA. This review described the SCFAs in the human body and their cellular signaling mechanism, and summarized the multiple effects of SCFAs (especially butyrate, propionate, and acetate) on the prevention and treatment of OA by regulating the gut-joint axis, providing novel insights into their promising clinical applications.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xin Meng
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xinran Li
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
13
|
Li Y, Liu Q, Pan CY, Lan XY. The free fatty acid receptor 2 (FFA2): Mechanisms of action, biased signaling, and clinical prospects. Pharmacol Ther 2025:108878. [PMID: 40383399 DOI: 10.1016/j.pharmthera.2025.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Free Fatty Acid Receptor 2 (FFA2), also known as GPR43, is a receptor activated by short-chain fatty acids (SCFAs) with fewer than six carbons in their aliphatic chains. This receptor is expressed in immune cells, adipose tissue, the gastrointestinal tract, and pancreatic islet cells, where it plays a crucial role in the modulation of inflammation, lipid metabolism, insulin secretion, and appetite regulation. Extensive research has been conducted to elucidate the structural attributes and physiological functions of FFA2. Furthermore, several synthetic agonists have been developed for FFA2 that can preferentially activate certain G-proteins, demonstrating potential pharmacological advantages in both in vivo and in vitro studies. Herein, we review the structure and physiological functions of FFA2 and its synthetic ligands, discussing the structural basis of FFA2's biased signaling and the potential role of biased ligands targeting this receptor in the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 710038, China
| | - Chuan-Ying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Yadav SK, Chen C, Dhib-Jalbut S, Ito K. The mechanism of disease progression by aging and age-related gut dysbiosis in multiple sclerosis. Neurobiol Dis 2025; 212:106956. [PMID: 40383164 DOI: 10.1016/j.nbd.2025.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease caused by a multifaceted interplay of genetic predispositions and environmental factors. Most patients initially experience the relapsing-remitting form of the disease (RRMS), which is characterized by episodes of neurological deficits followed by periods of symptom resolution. However, over time, many individuals with RRMS advance to a progressive form of the disease, known as secondary progressive MS (SPMS), marked by a gradual worsening of symptoms without periods of remission. The mechanisms underlying this transition remain largely unclear, and current disease-modifying therapies (DMTs) are partially effective in treating SPMS. Age is widely acknowledged as a risk factor for the transition from RRMS to SPMS. One factor associated with aging that may influence the progression of MS is gut dysbiosis. This review discusses how aging and age-related gut dysbiosis affect the progression of MS.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Claire Chen
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
15
|
Wang Y, Dou W, Qian X, Chen H, Zhang Y, Yang L, Wu Y, Xu X. Advancements in the study of short-chain fatty acids and their therapeutic effects on atherosclerosis. Life Sci 2025; 369:123528. [PMID: 40049368 DOI: 10.1016/j.lfs.2025.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis (AS) remains a leading cause of cardiovascular disease and mortality globally. This chronic condition is characterized by inflammation, lipid accumulation, and the deposition of cellular components within arterial walls. Emerging evidence has highlighted the multifaceted therapeutic potential of short-chain fatty acids (SCFAs) in mitigating AS progression. SCFAs have demonstrated anti-inflammatory properties and the ability to regulate immune responses, metabolic pathways, vascular integrity, and intestinal barrier function in animal models of AS. Consequently, SCFAs have garnered significant attention as a promising approach for the prevention and treatment of AS. However, further clinical trials and studies are necessary to fully elucidate the underlying mechanisms and effects of SCFAs. Additionally, different types of SCFAs may exert distinct impacts, necessitating more in-depth investigation into their specific roles and mechanisms. This review provides an overview of the diverse cellular mechanisms contributing to AS formation, as well as a discussion of the significance of SCFAs in AS pathogenesis and their multifaceted therapeutic potential. Nonetheless, additional research is warranted to comprehensively understand and harness the potential of various SCFAs in the context of AS.
Collapse
Affiliation(s)
- Yongsen Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China; Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China; Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Wei Dou
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xin Qian
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Hao Chen
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Yi Zhang
- Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Liu Yang
- Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xiongfei Xu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
16
|
Rytter H, Sturgeon H, Chassaing B. Diet-pathobiont interplay in health and inflammatory bowel disease. Trends Microbiol 2025:S0966-842X(25)00112-X. [PMID: 40379577 DOI: 10.1016/j.tim.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/19/2025]
Abstract
The intestinal microbiota plays a crucial role in maintaining host health by participating in various beneficial functions. However, under certain conditions, it can contribute to the development of inflammatory bowel disease (IBD) and other chronic inflammatory conditions. Importantly, not all commensal microbiota members are drivers of inflammation. A specific subset of commensal bacteria, known as pathobionts, can exhibit pathogenic potential under specific circumstances. Their inflammatory potential is modulated by several factors, including the host's genetic background and the surrounding microbiota. Furthermore, diet has emerged as a critical factor influencing the gut microbiota, with some studies highlighting its role in modulating pathobionts. This review will delve into the role played by pathobionts in chronic intestinal inflammation, in both mouse models as well as in humans, with a focus on the interplay between dietary factors and pathobiont members of the intestinal microbiota. Understanding the complex relationships between diet, pathobionts, and chronic inflammation could pave the way for diet-based therapeutic strategies aimed at managing chronic inflammatory conditions.
Collapse
Affiliation(s)
- Héloïse Rytter
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
| | - Hannah Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France; CHRU Nancy, IHU Infiny, F54000 Nancy, France.
| |
Collapse
|
17
|
Yang T, Hu X, Cao F, Yun F, Jia K, Zhang M, Kong G, Nie B, Liu Y, Zhang H, Li X, Gao H, Shi J, Liang G, Hu G, Kasper DL, Song X, Qian Y. Targeting symbionts by apolipoprotein L proteins modulates gut immunity. Nature 2025:10.1038/s41586-025-08990-4. [PMID: 40369072 DOI: 10.1038/s41586-025-08990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
The mammalian gut harbours trillions of commensal bacteria that interact with their hosts through various bioactive molecules1,2. However, the mutualistic strategies that hosts evolve to benefit from these symbiotic relationships are largely unexplored. Here we report that mouse enterocytes secrete apolipoprotein L9a and b (APOL9a/b) in the presence of microbiota. By integrating flow cytometry sorting of APOL9-binding bacterial taxa with 16S ribosomal RNA gene sequencing (APOL9-seq), we identify that APOL9a/b, as well as their human equivalent APOL2, coat gut bacteria belonging to the order of Bacteroidales with a high degree of specificity through commensal ceramide-1-phosphate (Cer1P) lipids. Genetic abolition of ceramide-1-phosphate synthesis pathways in gut-dominant symbiote Bacteroides thetaiotaomicron significantly decreases the binding of APOL9a/b to the bacterium. Instead of lysing the bacterial cells, coating of APOL9a/b induces the production of outer membrane vesicles (OMVs) from the target bacteria. Subsequently, the Bacteroides-elicited outer membrane vesicles enhance the host's interferon-γ signalling to promote major histocompatibility complex class II expression in the intestinal epithelial cells. In mice, the loss of Apol9a/b compromises the gut major histocompatibility complex class II-instructed immune barrier function, leading to early mortality from infection by intestinal pathogens. Our data show how a host-elicited factor benefits gut immunological homeostasis by selectively targeting commensal ceramide molecules.
Collapse
Affiliation(s)
- Tao Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohu Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fenglin Yun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwen Jia
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gaohui Kong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Nie
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuexing Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Youcun Qian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
18
|
Gao YQ, Tan YJ, Fang JY. Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01026-w. [PMID: 40369317 DOI: 10.1038/s41571-025-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) constitute a major breakthrough in the field of cancer therapy; their use has resulted in improved outcomes across various tumour types. However, ICIs can cause a diverse range of immune-related adverse events (irAEs) that present a considerable challenge to the efficacy and safety of these treatments. The gut microbiota has been demonstrated to have a crucial role in modulating the tumour immune microenvironment and thus influences the effectiveness of ICIs. Accumulating evidence indicates that alterations in the composition and function of the gut microbiota are also associated with an increased risk of irAEs, particularly ICI-induced colitis. Indeed, these changes in the gut microbiota can contribute to the pathogenesis of irAEs. In this Review, we first summarize the current clinical challenges posed by irAEs. We then focus on reported correlations between alterations in the gut microbiota and irAEs, especially ICI-induced colitis, and postulate mechanisms by which these microbial changes influence the occurrence of irAEs. Finally, we highlight the potential value of gut microbial changes as biomarkers for predicting irAEs and discuss gut microbial interventions that might serve as new strategies for the management of irAEs, including faecal microbiota transplantation, probiotic, prebiotic and/or postbiotic supplements, and dietary modulations.
Collapse
Affiliation(s)
- Ya-Qi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jie Tan
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Limketkai BN, Godoy-Brewer G, Shah ND, Maas L, White J, Parian AM, Mullin GE. Prebiotics for Induction and Maintenance of Remission in Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2025; 31:1220-1230. [PMID: 38781004 DOI: 10.1093/ibd/izae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Prebiotics are nondigestible carbohydrates fermented by gut bacteria into metabolites that confer health benefits. However, evidence on their role for inflammatory bowel disease (IBD) is unclear. This study systematically evaluated the research on prebiotics for treatment of IBD. METHODS A search was performed in PubMed, Embase, Cochrane, and Web of Science. Eligible articles included randomized controlled trials or prospective observational studies that compared a prebiotic with a placebo or lower-dose control in patients with IBD. Meta-analyses were performed using random-effects models for the outcomes of clinical remission, clinical relapse, and adverse events. RESULTS Seventeen studies were included. For induction of clinical remission in ulcerative colitis (UC), the fructooligosaccharide (FOS) kestose was effective (relative risk, 2.75, 95% confidence interval, 1.05-7.20; n = 40), but oligofructose-enriched inulin (OF-IN) and lactulose were not. For maintenance of remission in UC, germinated barley foodstuff trended toward preventing clinical relapse (relative risk, 0.40; 95% confidence interval, 0.15-1.03; n = 59), but OF-IN, oat bran, and Plantago ovata did not. For Crohn's disease, OF-IN and lactulose were no different than controls for induction of remission, and FOS was no different than controls for maintenance of remission. Flatulence and bloating were more common with OF-IN; reported adverse events were otherwise similar to controls for other prebiotics. CONCLUSION Prebiotics, particularly FOS and germinated barley foodstuff, show potential as effective and safe dietary supplements for induction and maintenance of remission in UC, respectively. The overall certainty of evidence was very low. There would be benefit in further investigation on the role of prebiotics as treatment adjuncts for IBD.
Collapse
Affiliation(s)
- Berkeley N Limketkai
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Clinical Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gala Godoy-Brewer
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Neha D Shah
- Colitis and Crohn's Disease Center, Division of Gastroenterology, UCSF School of Medicine, San Francisco, CA, USA
| | - Laura Maas
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob White
- Welch Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa M Parian
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard E Mullin
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Uchida A, Imai K, Miki R, Hamaguchi T, Nishiwaki H, Ito M, Ueyama J, Hattori S, Tano S, Fuma K, Matsuo S, Ushida T, Ohno K, Kajiyama H, Kotani T. Butyrate-producing bacteria in pregnancy maintenance: mitigating dysbiosis-induced preterm birth. J Transl Med 2025; 23:533. [PMID: 40355924 PMCID: PMC12067704 DOI: 10.1186/s12967-025-06534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Preterm birth (PTB) is a major contributor to neonatal morbidity, mortality, and long-term health complications. Despite advances in perinatal care, PTB rates remain high, and its multifactorial etiology is not fully understood. Increasing evidence suggests that maternal gut microbiota plays a critical role in pregnancy maintenance, potentially through modulation of immune responses. However, the underlying causal mechanisms remain unclear. We hypothesized that dysbiosis disrupts immune tolerance and promotes PTB, and that butyrate (short-chain fatty acid produced by specific gut bacteria) may counteract this effect by enhancing regulatory T cell (Treg)-mediated immune regulation. METHODS We established a dysbiosis-induced PTB mouse model using vancomycin treatment combined with subclinical immune activation via anti-CD3ε antibody. Pregnant mice were fed either a standard or butyrate-enriched diet. Outcomes included gestational length, PTB incidence, live pup rates, and Treg cell levels assessed by flow cytometry. Parallelly, 16S rRNA gene sequencing was performed on fecal samples from 32 pregnant women to compare gut microbial composition between spontaneous PTB and term birth groups. Multivariate logistic regression and correlation analyses were conducted to assess associations with gestational outcomes. RESULTS Vancomycin-induced dysbiosis in mice significantly reduced Treg cell populations and increased PTB rates (43.3% in dysbiosis vs. 0% in controls; p < 0.05), while butyrate supplementation reduced PTB incidence (p = 0.03), prolonged gestation (p = 0.01), and restored Treg counts (p < 0.001). In human samples, significant reductions in Lachnospiraceae and Ruminococcaceae, representative butyrate-producing bacteria, were seen in PTB cases. Their combined abundance was independently associated with sPTB risk (p = 0.019) and positively correlated with gestational age (r = 0.59, p < 0.001). CONCLUSIONS Our findings demonstrate that maternal dysbiosis increases PTB risk via impaired immune tolerance, and that butyrate supplementation effectively reverses this effect in vivo. Human data support the translational relevance of butyrate-producing microbiota in pregnancy maintenance. These results highlight butyrate as a promising target for dietary interventions aimed at reducing PTB incidence by restoring immune homeostasis. Trial registration Not applicable.
Collapse
Affiliation(s)
- Azusa Uchida
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Imai
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Rika Miki
- Maternal Fetal Health Laboratory, Research Institute, Nozaki Tokushukai Hospital, Daito, Osaka, Japan
- Laboratory of Bell Research Center‑Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satomi Hattori
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sho Tano
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Fuma
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiko Matsuo
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Departments of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
21
|
Chen Y, Xie Y, Yu X. Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review. Front Med 2025:10.1007/s11684-025-1129-3. [PMID: 40347368 DOI: 10.1007/s11684-025-1129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/16/2024] [Indexed: 05/12/2025]
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Collapse
Affiliation(s)
- Yao Chen
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xie
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Huang H, Yang C, Li S, Zhan H, Tan J, Chen C, Liu J, Wang M, Li H. Lizhong decoction alleviates experimental ulcerative colitis via regulating gut microbiota-SCFAs-Th17/Treg axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119958. [PMID: 40350047 DOI: 10.1016/j.jep.2025.119958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a Traditional Chinese Medicine formula, is widely utilized to treat gastrointestinal diseases, including ulcerative colitis in China for thousands of years. AIM OF THE STUDY To investigate whether the protective effect of LZD on ulcerative colitis is dependent on gut microbiota and T-cell immune homeostasis. MATERIAL AND METHODS The preventive effects of LZD on dextran sodium sulfate (DSS)-induced colitis mice were evaluated through the measurement of body weight, disease activity index, colon length and hematoxylin-eosin staining. Flow cytometry was used to detect the ratio of Th17/Treg cells. Pseudo sterile mice and fecal transplantation experiments were used to investigate whether the preventive effect of LZD was dependent on the gut microbiota. The alterations of gut microbiota were identified by the 16S rDNA sequencing. The content of intestinal short-chain fatty acids (SCFAs) was detected by LC-MS/MS analysis. The downstream signal pathways of SCFAs were detected by the immunoblotting. RESULTS LZD administration significantly alleviated weight loss and intestinal injury in DSS-induced colitis mice. LZD administration also promotes the balance of Th17/Treg cells. Moreover, LZD administration relies on gut microbiota to alleviate ulcerative colitis and regulate Th17/Treg cell balance. LZD administration significantly improves gut microbial composition in colitis mice, elevating the abundance of SCFAs producing bacterium such as lachnospiraceae_nk4a136_group and Akkermansia. LZD treatment further increases the abundance of SCFAs and promotes activation of free fatty acid activated receptor 2 (FFAR2). CONCLUSION LZD administration promotes Th17/Treg cell balance in a gut microbiota-SCFAs dependent manner, which in turn ameliorates ulcerative colitis.
Collapse
Affiliation(s)
- Hengjun Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China.
| | - Chengyu Yang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Silu Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Huang Zhan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jinlong Tan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Congcong Chen
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jian Liu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Maolin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Humińska-Lisowska K, Michałowska-Sawczyn M, Kosciolek T, Łabaj PP, Kochanowicz A, Mieszkowski J, Proia P, Cięszczyk P, Zielińska K. Gut microbiome and blood biomarkers reveal differential responses to aerobic and anaerobic exercise in collegiate men of diverse training backgrounds. Sci Rep 2025; 15:16061. [PMID: 40341642 PMCID: PMC12062308 DOI: 10.1038/s41598-025-99485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
The gut microbiome influences physiological responses to exercise by modulating inflammatory markers and metabolite production. Athletes typically exhibit greater microbial diversity, which may be associated with improved performance, but the mechanisms linking different exercise modalities to the gut microbiome are not fully understood. In this study, blood and stool samples were collected from endurance athletes, strength athletes, and non-athletic controls performing two maximal exercise tests (the anaerobic Wingate test and the aerobic Bruce Treadmill Test) to integrate serum biomarker data with gut bacterial metagenomic profiles. While most biochemical markers showed similar post-exercise trends across groups, SPARC (secreted protein acidic and rich in cysteine) and adiponectin levels showed modality-specific responses. Strength-trained participants showed unique microbiome-biomarker associations after the Wingate test. In addition, baseline enrichment of certain bacterial taxa, including Clostridium phoceensis and Catenibacterium spp., correlated with reduced Bruce Treadmill test response in strength-trained individuals. These findings, while requiring further validation, indicate the complex interplay between exercise type, training background, and the gut microbiome, and suggest that specific microbial species may help shape recovery and adaptation.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland.
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy.
| | | | | | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Jan Mieszkowski
- Faculty of Health Sciences, University of Lomza, Lomza, Poland
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kinga Zielińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
24
|
Fang L, Peng H, Tan Z, Deng N, Peng X. The Role of Gut Microbiota on Intestinal Fibrosis in Inflammatory Bowel Disease and Traditional Chinese Medicine Intervention. J Inflamm Res 2025; 18:5951-5967. [PMID: 40357383 PMCID: PMC12067688 DOI: 10.2147/jir.s504827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the intestine, frequently complicated by intestinal fibrosis. As fibrosis progresses, it can result in luminal stricture and compromised intestinal function, significantly diminishing patients' quality of life. Emerging evidence suggests that gut microbiota and their metabolites contribute to the pathogenesis of IBD-associated intestinal fibrosis by influencing inflammation and modulating immune responses. This review systematically explores the mechanistic link between gut microbiota and intestinal fibrosis in IBD and evaluates the therapeutic potential of traditional Chinese medicine (TCM) interventions. Relevant studies were retrieved from PubMed, Web of Science, Embase, Scopus, CNKI, Wanfang, and VIP databases. Findings indicate that TCM, including Chinese herbal prescriptions and bioactive constituents, can modulate gut microbiota composition and microbial metabolites, ultimately alleviating intestinal fibrosis through anti-inflammatory, immunemodulatory, and anti-fibrotic mechanisms. These insights highlight the potential of TCM as a promising strategy for targeting gut microbiota in the management of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huiyi Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
25
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025:10.1038/s42255-025-01287-w. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
26
|
Wang W, Gu W, Schweitzer R, Koren O, Khatib S, Tseng G, Konnikova L. In utero human intestine contains maternally derived bacterial metabolites. MICROBIOME 2025; 13:116. [PMID: 40329366 PMCID: PMC12054239 DOI: 10.1186/s40168-025-02110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that microbial components such as peptides that can prime adaptive immunity and metabolites that can influence the development and function of the immune system are also present in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. RESULTS In the current study, we demonstrate that a number of microbiome-associated metabolites present in the fetal intestines are also present in the placental tissue, and their abundance is different across the fetal intestine, fetal meconium, fetal placental villi, and the maternal decidua. The fetal gastrointestinal samples and maternal decidua samples show substantially higher positive correlation on the abundance of these microbial metabolites than the correlation between the fetal gastrointestinal samples and meconium samples. The expression of genes associated with the transport and signaling of some microbial metabolites is also detectable in utero. CONCLUSIONS We suggest that the microbiome-associated metabolites are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short-chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data. Video Abstract.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA.
- Human Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
- Center for Systems and Engineering Immunology, Yale School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA.
| |
Collapse
|
27
|
Wu X, Yu D, Ma Y, Fang X, Sun P. Function and therapeutic potential of Amuc_1100, an outer membrane protein of Akkermansia muciniphila: A review. Int J Biol Macromol 2025; 308:142442. [PMID: 40157674 DOI: 10.1016/j.ijbiomac.2025.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The gut microbiota-derived protein Amuc_1100, a key outer membrane component of Akkermansia muciniphila, has emerged as a groundbreaking therapeutic agent with unique structural and functional properties. Amuc_1100 exerts multifaceted immune-metabolic effects through novel mechanisms, including modulation of TLR2/4 and JAK/STAT pathways. This review highlights its unique multi-component structure that enables synergistic biological activity, and its pharmacological properties, which underlies its ability to enhance intestinal barrier integrity, restore microbiota balance, and suppress systemic inflammation. Crucially, Amuc_1100 demonstrates unprecedented therapeutic versatility across both intestinal disorders (e.g., inflammatory bowel disease, antibiotic-associated diarrhea) and extraintestinal conditions-notably improving neuropsychiatric symptoms via gut-serotonin axis regulation, combating cancer through CD8+ T cell activation, and mitigating cardiotoxicity via gut-heart immune crosstalk. Emerging innovations in targeted delivery systems, including gut-retentive nano-formulations and engineered probiotic vectors, further amplify its clinical potential. We critically evaluate recent advances distinguishing Amuc_1100's mechanisms from live bacterial interventions. By synthesizing evidence from preclinical models, this work positions Amuc_1100 as a prototype for next-generation microbiome-derived therapeutics, bridging microbial ecology with precision medicine.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yunkun Ma
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
28
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Li H, Zhang Y, Zheng Y, Li X, Li Z, Man C, Zhang Y, Jiang Y. Structural characterization of the exopolysaccharide produced by Bacillus amyloliquefaciens JM033 and evaluation of its ability to regulate immunity and intestinal flora. Int J Biol Macromol 2025; 306:141052. [PMID: 39986497 DOI: 10.1016/j.ijbiomac.2025.141052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The probiotic strain Bacillus amyloliquefaciens JM033 (B. amyloliquefaciens JM033), isolated from the traditional Chinese fermented food Sufu (also known as Fu-ru or fermented bean curd), is distinguished by its high production of exopolysaccharides (EPS). The EPS (BAP-1) produced by this strain was purified and its structure analyzed. BAP-1 is a novel hybrid fructan with a molecular weight of 17.6 kDa. It is composed of →6)-β-D-Fruf-(2 → and →1,6)-β-D-Fruf-(2→, which form the backbone, with a branched chain of β-D-Fruf-(2 → attached at the 1-position of residue B. In vivo studies on mice indicated that BAP-1 improves immunity in immunosuppressed mice by enhancing humoral immunity (P < 0.01), monocyte-macrophage phagocytosis (P < 0.01), and NK cell killing activity (P < 0.05). Additionally, BAP-1 was found to improve the composition of the intestinal microbiota and stimulate the production of short-chain fatty acids. Notably, BAP-1 exhibited a significant effect on the proliferation of Akkermansia. Therefore, BAP-1 shows promise as a prebiotic and may contribute to the development of new immunomodulatory agents.
Collapse
Affiliation(s)
- Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yubo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xuejian Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zimu Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Torres Acosta MA, Gurkan JK, Liu Q, Mambetsariev N, Reyes Flores C, Helmin KA, Joudi AM, Morales-Nebreda L, Cheng K, Abdala-Valencia H, Weinberg SE, Singer BD. AMPK is necessary for Treg functional adaptation to microenvironmental stress during malignancy and viral pneumonia. J Clin Invest 2025; 135:e179572. [PMID: 40100289 PMCID: PMC12043082 DOI: 10.1172/jci179572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
CD4+FOXP3+ Treg cells maintain self tolerance, suppress the immune response to cancer, and protect against tissue injury during acute inflammation. Treg cells require mitochondrial metabolism to function, but how Treg cells adapt their metabolic programs to optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMPK to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during influenza virus pneumonia. AMPK-deficient Treg cells had lower mitochondrial mass and exhibited an impaired ability to maximize aerobic respiration. Mechanistically, we found that AMPK regulates DNA methyltransferase 1 to promote transcriptional programs associated with mitochondrial function in the tumor microenvironment. During viral pneumonia, we found that AMPK sustains metabolic homeostasis and mitochondrial activity. Induction of DNA hypomethylation was sufficient to rescue mitochondrial mass in AMPK-deficient Treg cells, linking AMPK function to mitochondrial metabolism via DNA methylation. These results define AMPK as a determinant of Treg cell adaptation to metabolic stress and offer potential therapeutic targets in cancer and tissue injury.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/enzymology
- Mice
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/immunology
- AMP-Activated Protein Kinases/metabolism
- Tumor Microenvironment/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/enzymology
- Mitochondria/genetics
- Mitochondria/immunology
- Mitochondria/pathology
- Mitochondria/metabolism
- DNA Methylation
- Mice, Knockout
- Adaptation, Physiological
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/enzymology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Manuel A. Torres Acosta
- Division of Pulmonary and Critical Care Medicine
- Medical Scientist Training Program
- Driskill Graduate Program
| | - Jonathan K. Gurkan
- Division of Pulmonary and Critical Care Medicine
- Medical Scientist Training Program
- Driskill Graduate Program
| | - Qianli Liu
- Division of Pulmonary and Critical Care Medicine
- Driskill Graduate Program
| | | | - Carla Reyes Flores
- Division of Pulmonary and Critical Care Medicine
- Driskill Graduate Program
| | | | | | | | - Kathleen Cheng
- Medical Scientist Training Program
- Driskill Graduate Program
- Department of Dermatology
| | | | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Institute for Epigenetics, and
- Simpson Querrey Lung Institute for Translational Science (SQ LIFTS), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
31
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
32
|
Sharma T, Ranawat P, Garg A, Rastogi P, Kaushal N. Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome. Mol Cell Biochem 2025; 480:3169-3184. [PMID: 39709317 DOI: 10.1007/s11010-024-05185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pulkit Rastogi
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
33
|
Cheng M, Liu J, Liang Y, Xu J, Ma L, Liang J. Tissue-Resident Memory T Cells in Tumor Immunity and Immunotherapy of Digestive System Tumors. Immunol Invest 2025; 54:435-456. [PMID: 39840686 DOI: 10.1080/08820139.2024.2447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells possess unique abilities to migrate, establish themselves in tissues, and monitor peripheral tissues without circulating. They are crucial in providing long-lasting and local immune protection against surface infections. TRMs demonstrate distinct phenotypic and functional characteristics compared to central memory T (Tcm) cells and effector memory T (Tem) cells. METHODS We reviewed a large number of literature to explore the physiological and functional roles of tissue-resident memory T cells, as well as the link between TRM cells and the development and prognosis of digestive tract tumors. We also investigated the association between TRM cells, intestinal flora, and metabolites. RESULTS Recent studies have implicated TRMs in the immune response against tumors, making them a potential target for cancer therapy. However, research specifically focused on gastrointestinal tumors is limited. CONCLUSION This review aims to compile and assess the most recent data on the role of TRM cells in gastrointestinal tumor immunity. Additionally, it explores recent advancements in immunotherapy and investigates how TRMs may influence intestinal flora and metabolites.
Collapse
Affiliation(s)
- Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yue Liang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Surgery (Breast Surgery), The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
34
|
Rodriguez VR, Essex M, Poddubnyy D. The gut microbiota in spondyloarthritis: an update. Curr Opin Rheumatol 2025; 37:199-206. [PMID: 39968641 DOI: 10.1097/bor.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW This review provides an updated overview of the gut microbiota's involvement in spondyloarthritis (SpA) from a clinical perspective. It explores mechanisms by which the gut microbiota may influence SpA pathogenesis and considers the therapeutic implications of targeting the microbiome in SpA treatment. RECENT FINDINGS The pathogenesis of SpA is multifactorial, involving genetic predisposition, external factors and dysregulation of the immune system. Recent studies have identified alterations in the gut microbiome of patients with SpA, including changes in microbial diversity and specific taxa linked to disease activity. HLA-B27 status seems to influence gut microbiota composition, potentially impacting disease progression. In HLA-B27 transgenic rats, the association between gut microbiota and SpA development has been confirmed, supporting findings from human studies. A compromised gut barrier, influenced by proteins like zonulin, may allow microbial antigens to translocate, triggering immune responses associated with SpA. SUMMARY These findings highlight the potential for microbiota-modulating therapies, such as probiotics, prebiotics, diet and exercise, in managing SpA. However, methodological variability in human studies exposes the need for more rigorous research to better understand these associations. This may offer the opportunity to refine treatment strategies, offering a personalized approach to managing the disease.
Collapse
Affiliation(s)
- Valeria Rios Rodriguez
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Morgan Essex
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Rheumatology, University of Toronto and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
36
|
Shi Y, Jiang M, Zhu W, Chang K, Cheng X, Bao H, Peng Z, Hu Y, Li C, Fang F, Song J, Jian C, Chen J, Shu X. Cyclosporine combined with dexamethasone regulates hepatic Abca1 and PPARα expression and lipid metabolism via butyrate derived from the gut microbiota. Biomed Pharmacother 2025; 186:118017. [PMID: 40168721 DOI: 10.1016/j.biopha.2025.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Immunosuppression often leads to drastic metabolic, hormonal, and physiological disorders. Changes in the gut microbiota are believed to be one of the factors contributing to these disorders, but the association remains uncertain. Clinical studies can be complicated by confounding variables, such as diet and other drivers of heterogeneity in human microbiomes. In this study, we identified pronounced gut microbiome signatures in rhesus macaques (RMs) with immunosuppression-induced lipid metabolism disorders following cyclosporine combined with dexamethasone. Furthermore, we observed similar changes in the gut microbiota of mice with immunosuppression-induced lipid metabolism disorders, which were associated with short-chain fatty acid metabolism. ELISA showed that immunosuppression significantly reduced the levels of butyric acid in both feces and serum of mice. Spearman correlation analysis identified a significant correlation between serum butyric acid levels and gut microbial dysbiosis induced by immunosuppression, particularly in relation to f_Lachnospiraceae, g_unidentified_Ruminococcaceae, and s_Clostridium leptum. Additionally, mice transplanted with gut microbiota from immunosuppressed mice exhibited hepatic lipid metabolism disorders, and RNA sequencing revealed significant downregulation of ABC transporters and PPARα in the liver, which was closely associated with lipid transport and metabolism, particularly Abca1. Moreover, butyric acid supplementation alleviated hepatic lipid metabolism disorders and upregulated the expression of Abca1 and PPARα in mice transplanted with immunosuppression-induced gut microbiota. Thus, we propose that the combination of cyclosporine and dexamethasone regulates the expression of hepatic Abca1 and PPARα by modulating the gut microbiota and its derived butyrate, particularly Lachnospiraceae and Clostridium leptum, further regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yongping Shi
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mi Jiang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenzhong Zhu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ke Chang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xukai Cheng
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Haijun Bao
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zuojie Peng
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuan Hu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chao Li
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feifei Fang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia Song
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chenxing Jian
- Department of anorectal surgery, Affiliated hospital of Putian University, China
| | - Jinhuang Chen
- Department of emergency surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaogang Shu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
37
|
Nazir A, Hussain FHN, Nadeem Hussain TH, Al Dweik R, Raza A. Therapeutic targeting of the host-microbiota-immune axis: implications for precision health. Front Immunol 2025; 16:1570233. [PMID: 40364844 PMCID: PMC12069365 DOI: 10.3389/fimmu.2025.1570233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
The human body functions as a complex ecosystem, hosting trillions of microbes that collectively form the microbiome, pivotal in immune system regulation. The host-microbe immunological axis maintains homeostasis and influences key physiological processes, including metabolism, epithelial integrity, and neural function. Recent advancements in microbiome-based therapeutics, including probiotics, prebiotics and fecal microbiota transplantation, offer promising strategies for immune modulation. Microbial therapies leveraging microbial metabolites and engineered bacterial consortia are emerging as novel therapeutic strategies. However, significant challenges remain, including individual microbiome variability, the complexity of host-microbe interactions, and the need for precise mechanistic insights. This review comprehensively examines the host microbiota immunological interactions, elucidating its mechanisms, therapeutic potential, and the future directions of microbiome-based immunomodulation in human health. It will also critically evaluate challenges, limitations, and future directions for microbiome-based precision medicine.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | | - Rania Al Dweik
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Yu Z, Wang Y, Guo Y, Zhu R, Fang Y, Yao Q, Fu H, Zhou A, Ma L, Shou Q. Exploring the Therapeutic and Gut Microbiota-Modulating Effects of Qingreliangxuefang on IMQ-Induced Psoriasis. Drug Des Devel Ther 2025; 19:3269-3291. [PMID: 40322026 PMCID: PMC12048299 DOI: 10.2147/dddt.s492044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose To investigate the therapeutic and gut microbiota-modulating effects of Qingreliangxuefang (QRLXF) on psoriasis. Materials and Methods We used network pharmacology, a computational approach, to identify key bioactive compounds and biological targets, and explored the molecular mechanisms of QRLXF. The effects of QRLXF on keratinocyte proliferation and inflammation were evaluated using a mouse model of psoriasis. Changes in the gut microbiota were analyzed via 16SrDNA sequencing, and T cell subsets were assessed using flow cytometry. Results Network pharmacology analysis suggested that QRLXF ameliorated psoriasis by modulating Th17 cell differentiation. Further experiments confirmed the anti-inflammatory effects and relief of psoriatic lesions in IMQ-induced mice. 16SrDNA sequencing revealed significant shifts in the gut microbiota, notably increases in Ligilactobacillus and Lactobacillus genera and decreases in Anaerotruncus, Negativibacillus, Bilophila, and Mucispirillum, suggesting a potential relationship between specific microbiota changes and Th17 cell differentiation. Conclusion QRLXF alleviated psoriatic dermatitis by regulating Th17 cell responses and modifying gut microbiota profiles, highlighting its therapeutic potential for psoriasis treatment.
Collapse
Affiliation(s)
- Zhengyao Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
| | - Yingying Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yingxue Guo
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ruotong Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yimiao Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Huiying Fu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ang Zhou
- Department of Dermatology, Yiwu Central Hospital Medical Community Choujiang Hospital District, Yiwu, Zhejiang, 322000, People’s Republic of China
| | - Lili Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qiyang Shou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
39
|
Hu J, Liu J, Wu H, Zhao T, Li Z, Luo J. Differences in the gut and pharyngeal microbiomes before and after treatment of an acute exacerbation of chronic obstructive pulmonary disease. Microb Pathog 2025; 205:107635. [PMID: 40288425 DOI: 10.1016/j.micpath.2025.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the gut microbiota and pharyngeal microbiome before and after treatment of an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The abundance and diversity of microorganisms in the gut and pharynx were examined in 24 patients before and after treatment of AECOPD. Enzyme-linked immunosorbent assay was used to detect inflammatory factors in venous blood and 16S rDNA sequencing was performed. The concentration of short-chain fatty acids (SCFAs) in fecal samples was measured by chromatography-mass spectrometry. The results indicated that the diversity and richness of the gut microbiota decreased post-treatment. The linear discriminant analysis effect size (LEfSe) algorithm revealed an increase in the abundance of f_Dietziaceae, g_Dietzia, g_Megasphaera, g_Robinsoniella, s_Salivarius, and s_Peoriensis in the gut after treatment. There was also a post-treatment decrease in the richness of the pharyngeal microbiome. LEfSe revealed a high abundance of p_Actinobacteria, f_Bacteriodaceae, o_Thermales, g_Bacteroides, and g_Thermus in the pharynx before treatment, and an increased abundance of o_Enterobacterales, f_Enterobacteriaceae, f_Ruminococcaceae, and g_Faecalibacterium after treatment. There were no post-treatment changes in SCFA levels. However, the serum C-reactive protein level decreased after treatment. Levels of other inflammatory factors, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, transforming growth factor-beta, IL-23, IL-17, and interferon-gamma, were consistent before and after treatment. In this study, changes in the gut microbiota and pharyngeal microbiome occurred after treatment for AECOPD, with no changes in levels of SCFAs or inflammatory factors, except for a decrease in the C-reactive protein level.
Collapse
Affiliation(s)
- Jiangxia Hu
- Department of Respiratory Medicine, Yongkang Hospital, 2 Qianhuayuan, Shengli Street, JiangJinhua, Yongkang City, Zhejiang Province, 321399, China
| | - Juan Liu
- Department of Respiratory Medicine, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Haiyan Wu
- Department of Respiratory Medicine, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Tian Zhao
- Department of Respiratory Medicine, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Zhijun Li
- Department of Respiratory Medicine, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China.
| | - Jinjian Luo
- Department of Pulmonary and Critical Care Medicine of Anji County People's Hospital, 699 Tianmu Road, Anji County, HuZhou, Zhejiang Province, 313399, China.
| |
Collapse
|
40
|
Dumitru IG, Todor SB, Ichim C, Helgiu C, Helgiu A. A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies. J Clin Med 2025; 14:2982. [PMID: 40364013 PMCID: PMC12072304 DOI: 10.3390/jcm14092982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The gut microbiome plays a crucial role in modulating the efficacy and toxicity of cancer therapies, particularly in hematological malignancies. This review examines the dynamic interplay between gut microbiota and cancer treatments, such as chemotherapy, immunotherapy, and hematopoietic stem cell transplantation (HSCT). Disruptions in the gut microbiome, known as dysbiosis, are associated with adverse effects like gastrointestinal toxicity, neutropenia and cardiotoxicity during chemotherapy. Conversely, the supplementation of probiotics has shown potential in mitigating these side effects by enhancing gut barrier function and regulating immune responses. In HSCT, a higher diversity of gut microbiota is linked to better patient outcomes, including reduced graft-versus-host disease (GVHD) and improved survival rates. The microbiome also influences the efficacy of immunotherapies, such as immune checkpoint inhibitors and CAR-T cell therapy, by modulating immune pathways. Research suggests that certain bacteria, including Bifidobacterium and Akkermansia muciniphila, enhance therapeutic responses by promoting immune activation. Given these findings, modulating the gut microbiome could represent a novel strategy for improving cancer treatment outcomes. The growing understanding of the microbiome's impact on cancer therapy underscores its potential as a target for personalized medicine and offers new opportunities to optimize treatment efficacy while minimizing toxic side effects.
Collapse
Affiliation(s)
| | - Samuel Bogdan Todor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (I.G.D.); (C.H.); (A.H.)
| | - Cristian Ichim
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania; (I.G.D.); (C.H.); (A.H.)
| | | | | |
Collapse
|
41
|
Zou YM, Wu MN, Zhou X, Bai YP. Mapping the global research landscape on psoriasis and the gut microbiota: visualization and bibliometric analysis. Front Cell Infect Microbiol 2025; 15:1531355. [PMID: 40353222 PMCID: PMC12062130 DOI: 10.3389/fcimb.2025.1531355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease with a complex pathogenesis. Recently, the role of gut microbiota in psoriasis has attracted increasing attention. A systematic bibliometric analysis of relevant literature is necessary to understand better the current state and development trends in this field. Materials and methods The Web of Science Core Collection database was searched for literature indexed from 2004 to October 15, 2024. Bibliometric analysis was conducted using Bibliometrix, CiteSpace (version 6.3.R1), R 4.2.2 with the Bibliometrix package, Scimago Graphica 1.0.45, and VOSviewer (version 1.6.20.0) to visualize publication types, years, authors, countries, institutions, journal sources, references, and keywords. Results The development of psoriasis and gut microbiota research can be divided into two phases: slow growth (2004-2014) and rapid development (2014-2024). Lidia Rudnicka is the most active and influential author. China produced the highest number of publications, followed by the United States, which had the highest number of citations per article. The International Journal of Molecular Sciences published the most articles. In contrast, articles in the Journal of Investigative Dermatology, British Journal of Dermatology, and Journal of Allergy and Clinical Immunology were cited over 1,000 times. Keyword and co-citation analyses identified evolving research hotspots. Early studies focused on the association between gut microbiota and comorbid inflammatory diseases. Recent research has delved into specific mechanisms, such as disruption of gut barrier function, short-chain fatty acid metabolism alterations, impaired regulatory T-cell function, and excessive activation of Th17 cells. These mechanisms highlight how gut dysbiosis exacerbates psoriasis patients' systemic inflammation and skin lesions. Conclusion The field of psoriasis and gut microbiota research is developing rapidly despite uneven research distribution. This bibliometric evaluation assesses the current state of research and provides new perspectives for understanding the complex interactions between microbes and the host. Future efforts should strengthen international collaboration to deeply explore the mechanisms of gut microbiota's role in psoriasis, especially its potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yue-Min Zou
- Beijing University of Chinese Medicine, Beijing, China
| | - Man-Ning Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiangnan Zhou
- Beijing University of Chinese Medicine, Beijing, China
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan-Ping Bai
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Chinese and Western Medicine, Beijing, China
| |
Collapse
|
42
|
Liu X, Tong Y, Qin J, Zhao Y. Efficacy and safety of probiotic and synbiotic supplementation in metabolic syndrome: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2025:104100. [PMID: 40348630 DOI: 10.1016/j.numecd.2025.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
AIMS This review aims to address current research gaps and evaluate the effectiveness and safety of probiotic and synbiotic supplementation in patients with metabolic syndrome (MetS). DATA SYNTHESIS Four databases (PubMed, Cochrane, Embase, and Web of Science) were searched to find the randomized controlled trials published up to October 20, 2023. Anthropometric measurements, glucose, blood pressure and lipid metabolism were main outcomes, inflammatory markers, liver function, and etc. were the secondary outcomes. A meta-analysis was conducted by Review Manager 5.4 and STATA 15.0. In addition, sensitivity analysis and subgroup analysis were conducted to assess the stability of outcomes and potential sources of heterogeneity. Twenty-four full-text articles met the inclusion criteria, involving 1186 patients. The pooled analysis demonstrated significant reductions in body weight (WMD: -0.79 kg; p = 0.001), waist circumference (WMD: -1.04 cm; p = 0.0007), total cholesterol (SMD: -0.14; p = 0.03), triglyceride (SMD: -0.25; p = 0.0001), fasting blood glucose (SMD: -0.20; p = 0.003), and insulin levels (SMD: -0.17; p = 0.03). Additionally, the probiotic and synbiotic group showed increased high-density lipoprotein cholesterol (SMD: 0.15; p = 0.02). Subgroup analysis implied that age <50 years, intervention duration <12 weeks, and Asian patients may have better curative effects. No significant increase in adverse reactions was reported. CONCLUSIONS Probiotic and synbiotic supplementation can effectively improve body composition, lipid metabolism, and glucose metabolism in MetS patients without increasing adverse reactions. Further rigorous and long-term trials are required to validate these results and refine intervention details.
Collapse
Affiliation(s)
- Xinyue Liu
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Yuhan Tong
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Jinzhong Qin
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Yurong Zhao
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
43
|
Ethridge AD, Yagi K, Martínez LA, Rasky AJ, Morris SB, Falkowski NR, Huffnagle GB, Lukacs NW. RSV infection in neonatal mice and gastrointestinal microbiome alteration contribute to allergic predisposition. Mucosal Immunol 2025:S1933-0219(25)00045-5. [PMID: 40280490 DOI: 10.1016/j.mucimm.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Severe respiratory syncytial virus (RSV) infection during infancy is associated with a 2 to 4-fold increased risk for the development of wheezing and asthma. Recent studies have implicated microbiome changes, either within the lung or gut, during early life can also affect the development of pulmonary disease. Our studies demonstrate long-term gastrointestinal and lung microbiome changes following early life (EL) RSV infection. To determine the respective roles of ELRSV infection and the gut microbiome, we performed germ-free neonatal infection and microbiome colonization using a microbiome from an uninfected animal followed by cockroach allergen (CRA)-induced asthma 4 weeks later. Germ-free animals with ELRSV infection displayed increased airway disease that was diminished by microbiome colonization, including airway hyperreactivity (AHR), mucus, and eosinophil infiltration. To address the role of virus induced gastrointestinal microbiome alterations, we utilized GF mice conventionalized with RSV-associated or naive microbiomes followed by CRA-induced disease. Transfer of neonatal microbiome taken during acute RSV infection did not alter the allergic response to CRA. However, the transfer of a naive adult microbiome conferred protection from enhanced AHR in response to CRA whereas an RSV associated microbiome did not. Taken together, our data indicate that microbiome alteration and early life RSV infection both contribute to allergic predisposition.
Collapse
Affiliation(s)
- Alexander D Ethridge
- Immunology Graduate Program, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole R Falkowski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Gary B Huffnagle
- Immunology Graduate Program, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas W Lukacs
- Immunology Graduate Program, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Lu Y, Chen L, Lin Y, Zhang Y, Wang Y, Yu W, Ren F, Guo H. Fatty acid metabolism: The crossroads in intestinal homeostasis and tumor. Metabolism 2025; 169:156273. [PMID: 40280478 DOI: 10.1016/j.metabol.2025.156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Fatty acids (FAs) have various functions on cell regulation considering their abundant types and metabolic pathways. In addition, the relation between FA and other nutritional metabolism makes their functions more complex. As the first place for diet-derived FA metabolism, intestine is significantly influenced despite lack of clear conclusions due to the inconsistent findings. In this review, we discuss the regulation of fatty acid metabolism on the fate of intestinal stem cells in homeostasis and disorders, and also focus on the intestinal tumor development and treatment from the aspect of gut microbiota-epithelium-immune interaction. We summarize that the balances between FA oxidation and glycolysis, between oxidative phosphorylation and ketogenesis, between catabolism and anabolism, and the specific roles of individual FA types determine the diverse effects of intestinal FA metabolism in different cases. We hope this will inspire further dissection and suggest precise dietary/metabolic intervention for different demands related to intestinal health.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lining Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqi Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Zhang X, Pan Q, Yao G, Kong D, Chen H, Zhang Q, Wang Z. Bacteroides fragilis and propionate synergize with low-dose methimazole to treat Graves' disease. Microbiol Spectr 2025:e0318624. [PMID: 40265938 DOI: 10.1128/spectrum.03186-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Graves' disease (GD) is a common autoimmune thyroid disease with limited treatment efficacy, high relapse rates, and severe adverse effects. Gut microbiota dysbiosis is thought to play a critical role in GD, with the potential for microbiota-based therapies in GD treatment. However, experimental evidence is needed to validate this hypothesis. In this study, we evaluated the therapeutic effects of the commensal bacterium B. fragilis and its metabolite, propionate, in a GD mouse model. We found that oral supplementation with B. fragilis or propionate significantly reduced serum levels of inflammatory cytokines, total thyroxine (TT4), and TSH receptor antibodies (TRAb). It also decreased the proportion of circulating Th17 cells while increasing the proportion of circulating regulatory T cells (Tregs), thus mitigating systemic inflammation, hyperthyroidism, and the autoimmune response against TSHR. In addition, B. fragilis and propionate significantly decreased the levels of inflammatory cytokines and the proportion of M1 macrophages in thyroid tissue, while increasing the proportions of Treg cells and M2 macrophages, thereby reducing thyroid inflammation and size. Notably, the combination of B. fragilis or propionate with methimazole (MMI) significantly ameliorated pathological changes in GD mice and markedly reduced MMI dosage requirements, demonstrating a synergistic therapeutic effect. Our findings suggest that B. fragilis and propionate could serve as effective adjuvant agents in combination with MMI, thereby enhancing therapeutic efficacy while reducing drug dosage and minimizing side effects. This study opens a new avenue for microbiota-based treatments in managing GD.IMPORTANCEThis study explores a new approach to treat Graves' disease (GD), a major type of hyperthyroidism. Traditional treatments for GD often come with significant side effects and high relapse rates. Researchers found that Bacteroides fragilis, a gut commensal bacterium, and its metabolite propionate can improve the condition of GD mice. When combined with methimazole, a conventional medication for GD treatment, these natural agents demonstrated enhanced therapeutic efficacy, enabling dose reduction of methimazole and consequently reducing adverse effects. This research suggests that combining gut microbiota-based treatments with standard therapies may offer a more effective and safer way to manage GD.
Collapse
Affiliation(s)
- Xinjie Zhang
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Biology, University College London, London, United Kingdom
| | - Qingxin Pan
- Shandong First Medical University Second Affiliated Hospital, Tai'an, Shandong, China
| | - Guixiang Yao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China
| | - Danxia Kong
- Department of Occupational Lung Disease, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Haiyan Chen
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China
| | - Zhe Wang
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
46
|
Bhardwaj A, Sapra L, Madan D, Ahuja V, Sharma HP, Velpandian T, Mishra PK, Srivastava RK. Gut-resident regulatory T cells (GTregs) play a pivotal role in maintaining bone health under postmenopausal osteoporotic conditions. J Leukoc Biol 2025; 117:qiaf008. [PMID: 39829025 DOI: 10.1093/jleuko/qiaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025] Open
Abstract
Osteoporosis is a skeletal condition characterized by the deterioration of bone tissue. The immune system plays a crucial role in maintaining bone homeostasis and combating the development of osteoporosis. Immunoporosis is the term used to describe the recent convergence of research on the immune system's role in osteoporosis. The gut harbors the largest component of the immune system, and there is growing evidence that intestinal immunity plays a vital role in regulating bone health. Gut-resident regulatory T cells are essential in inhibiting immune responses and preventing various inflammatory manifestations. Our findings show that gut-resident regulatory T cells are pivotal in the pathophysiology of postmenopausal osteoporosis. We investigated the potential of gut-resident regulatory T cells in regulating the development of bone cells in vitro. We observed that gut-resident regulatory T cells significantly enhance osteoblastogenesis with concomitant inhibition of osteoclastogenesis in a cell ratio-dependent manner. We further report that the deficiency of short-chain fatty acids in osteoporotic conditions substantially disrupts the composition of gut-resident regulatory T cells, leading to a loss of peripherally derived regulatory T cells and an expansion of thymus-derived regulatory T cells. Moreover, the administration of probiotics Lactobacillus rhamnosus (UBLR-58) and Bifidobacterium longum (UBBL-64) modulated the gut-resident regulatory T cells compartment in a short-chain fatty acid-dependent manner to mitigate inflammatory bone loss in postmenopausal osteoporosis. Notably, short-chain fatty acid-primed gut-resident regulatory T cells were found to be significantly more effective in inhibiting osteoclastogenesis compared with unprimed gut-resident regulatory T cells. Altogether our results, for the first time, highlight the crucial role of gut-resident regulatory T cells in the pathophysiology of postmenopausal osteoporosis, with potential clinical implications.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), ICMR-Collaborative Centre for Excellence in Bone Health, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), ICMR-Collaborative Centre for Excellence in Bone Health, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Divya Madan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Hanuman Prasad Sharma
- Bioanalytics Facility, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Thirumurthy Velpandian
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP 462001, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), ICMR-Collaborative Centre for Excellence in Bone Health, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
47
|
López-Gálvez R, Orenes-Piñero E, Rivera-Caravaca JM, Pérez-Sanz F, Ramos-Bratos MP, Roca MI, Mandaglio-Collados D, López-García C, Gil-Pérez P, Esteve-Pastor MA, Marín F. Microbial Insights: The Role of Diet in Modulating Gut Microbiota and Metabolites After Acute Coronary Syndrome. Mol Nutr Food Res 2025:e70046. [PMID: 40260991 DOI: 10.1002/mnfr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Acute coronary syndrome (ACS) is a leading cause of global mortality, largely due to atherosclerosis influenced by lifestyle factors like diet. Gut microbiota impacts lipid metabolism, inflammation, and endothelial function, all vital in atherosclerosis. Dysbiosis increases intestinal permeability, causing inflammation and plaque instability, elevating cardiac event risk. This study investigates the impact of dietary improvements on gut microbiota and metabolite release in recent ACS patients versus healthy individuals. A cohort of 29 recent ACS patients receiving lipid-lowering therapy and dietary advice was analyzed alongside 56 healthy controls. Dietary habits, serum, and stool samples were collected at admission and after 3 months. Metagenomic analysis of stool and metabolomic analysis of serum were conducted. The results showed bacterial dysbiosis in ACS patients, characterized by a reduction in beneficial genera and an increase in potentially pro-inflammatory bacteria. After 3 months of dietary improvements, three metabolites with anti-inflammatory properties were significantly upregulated. The findings highlight the association between gut microbiota dysbiosis, fatty diets, and inflammation in ACS patients. The observed increase in anti-inflammatory metabolites following dietary changes underscore the following dietary interventions in modulating gut microbiota and improving cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Raquel López-Gálvez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
- Faculty of Nursing, University of Murcia, Murcia, Spain
| | - Fernando Pérez-Sanz
- Department of Bioinformatics, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
| | - María Pilar Ramos-Bratos
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Marta Isabel Roca
- Unidad Analítica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Darío Mandaglio-Collados
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Cecilia López-García
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Pablo Gil-Pérez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - María Asunción Esteve-Pastor
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| |
Collapse
|
48
|
Sabit H, Abouelnour S, Hassen BM, Magdy S, Yasser A, Wadan AHS, Abdel-Ghany S, Radwan F, Alqosaibi AI, Hafiz H, Awlya OFA, Arneth B. Anticancer Potential of Prebiotics: Targeting Estrogen Receptors and PI3K/AKT/mTOR in Breast Cancer. Biomedicines 2025; 13:990. [PMID: 40299687 PMCID: PMC12025111 DOI: 10.3390/biomedicines13040990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptors (ERs) play a critical role in breast cancer (BC) development and progression, with ERα being oncogenic and ERβ exhibiting tumor-suppressive properties. The interaction between ER signaling and other molecular pathways, such as PI3K/AKT/mTOR, influences tumor growth and endocrine resistance. Emerging research highlights the role of prebiotics in modulating gut microbiota, which may influence estrogen metabolism, immune function, and therapeutic responses in BC. This review explores the impact of prebiotics on estrogen receptor modulation, gut microbiota composition, immune regulation, and metabolic pathways in breast cancer. The potential of prebiotics as adjunctive therapies to enhance treatment efficacy and mitigate chemotherapy-related side effects is discussed. A comprehensive analysis of recent preclinical and clinical studies was conducted, examining the role of prebiotics in gut microbiota modulation, immune regulation, and metabolic reprogramming in breast cancer. The impact of short-chain fatty acids (SCFAs) derived from prebiotic fermentation on epigenetic regulation and endocrine resistance was also evaluated. Prebiotics were found to modulate the gut microbiota-estrogen axis, reduce inflammation, and influence immune responses. SCFAs demonstrated selective estrogen receptor downregulation and metabolic reprogramming, suppressing tumor growth. Synbiotic interventions mitigate chemotherapy-related side effects, improving the quality of life in breast cancer patients. Prebiotics offer a promising avenue for breast cancer prevention and therapy by modulating estrogen metabolism, immune function, and metabolic pathways. Future clinical trials are needed to validate their efficacy as adjunctive treatments in breast cancer management.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Sama Abouelnour
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Bassel M. Hassen
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Salma Magdy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Ahmed Yasser
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate 15888, Egypt;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Faisal Radwan
- Center for Coastal Environmental Health and Biomolecular Research, NCCOS/NOS/NOAA, Charleston, SC 29412, USA
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hala Hafiz
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ohaad F. A. Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
49
|
Rahaman MM, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025; 205:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD pathogenesis and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Phurpa Wangchuk
- College of Science and Engineering, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
50
|
Basgaran A, Lymberopoulos E, Burchill E, Reis-Dehabadi M, Sharma N. Machine learning determines the incidence of Alzheimer's disease based on population gut microbiome profile. Brain Commun 2025; 7:fcaf059. [PMID: 40235960 PMCID: PMC11999016 DOI: 10.1093/braincomms/fcaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/14/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
The human microbiome is a complex and dynamic community of microbes, thought to have symbiotic benefit to its host. Influences of the gut microbiome on brain microglia have been identified as a potential mechanism contributing to neurodegenerative diseases, such as Alzheimer's disease, motor neurone disease and Parkinson's disease (Boddy SL, Giovannelli I, Sassani M, et al. The gut microbiome: A key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med. 2021;19(1):13). We hypothesize that population level differences in the gut microbiome will predict the incidence of Alzheimer's disease using machine learning methods. Cross-sectional analyses were performed in R, using two large, open-access microbiome datasets (n = 959 and n = 2012). Countries in these datasets were grouped based on Alzheimer's disease incidence and the gut microbiome profiles compared. In countries with a high incidence of Alzheimer's disease, there is a significantly lower diversity of the gut microbiome (P < 0.05). A permutational analysis of variance test (P < 0.05) revealed significant differences in the microbiome profile between countries with high versus low incidence of Alzheimer's disease with several contributing taxa identified: at a species level Escherichia coli, and at a genus level Haemophilus and Akkermansia were found to be reproducibly protective in both datasets. Additionally, using machine learning, we were able to predict the incidence of Alzheimer's disease within a country based on the microbiome profile (mean area under the curve 0.889 and 0.927). We conclude that differences in the microbiome can predict the varying incidence of Alzheimer's disease between countries. Our results support a key role of the gut microbiome in neurodegeneration at a population level.
Collapse
Affiliation(s)
- Amedra Basgaran
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Eva Lymberopoulos
- Centre for Doctoral Training in AI-enabled Healthcare Systems, Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Ella Burchill
- King's College London, School of Medical Education, London WC2R 2LS, UK
| | - Maryam Reis-Dehabadi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|