1
|
Teratani T, Kasahara N, Fujimoto Y, Sakuma Y, Miki A, Goto M, Sata N, Kitayama J. Mesenchymal Stem Cells Secretions Enhanced ATP Generation on Isolated Islets during Transplantation. Islets 2022; 14:69-81. [PMID: 35034568 PMCID: PMC8765074 DOI: 10.1080/19382014.2021.2022423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The success of islet transplantation in both basic research and clinical settings has proven that cell therapy has the potential to cure diabetes. Islets intended for transplantation are inevitably subjected to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here, we found that protein factors secreted by porcine adipose-tissue mesenchymal stem cells (AT-MSCs) were capable of activating preserved porcine islets. A conditioned medium was prepared from the supernatant obtained by culturing porcine AT-MSCs for 2 days in serum-free medium. Islets were preserved at 4°C in University of Wisconsin solution during transportation and then incubated at 37°C in RPMI-1620 medium with fractions of various molecular weights prepared from the conditioned medium. After treatment with certain fractions of the AT-MSC secretions, the intracellular ATP levels of the activated islets had increased to over 160% of their initial values after 4 days of incubation. Our novel system may be able to restore the condition of isolated islets after transportation or preservation and may help to improve the long-term outcome of islet transplantation.Abbreviations: AT-MSC, adipose-tissue mesenchymal stem cell; Cas-3, caspase-3; DAPI, 4,6-diamidino-2-phenylindole; DTZ, dithizone; ES cell, embryonic stem cell; FITC, fluorescein isothiocyanate; IEQ, islet equivalent; INS, insulin; iPS cell, induced pluripotent stem cell; Luc-Tg rat, luciferase-transgenic rat; PCNA, proliferating cell nuclear antigen; PDX1, pancreatic and duodenal homeobox protein-1; UW, University of Wisconsin; ZO1, zona occludens 1.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
- CONTACT Takumi Teratani Division of Clinical Investigation, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi329-0498, Japan
| | - Naoya Kasahara
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masafumi Goto
- New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Pancreas Preservation in Modified Histidine-lactobionate Solution Is Superior to That in University of Wisconsin Solution for Porcine Islet Isolation. Transplantation 2022; 106:1770-1776. [PMID: 36001489 DOI: 10.1097/tp.0000000000003636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported that modified extracellular-type trehalose-containing Kyoto (MK) solution, which contains a trypsin inhibitor (ulinastatin), significantly improved the islet yield compared with University of Wisconsin (UW) preservation, which is the gold standard for organ preservation for islet isolation. In this study, we evaluated the efficiency of a modified histidine-lactobionate (MHL) solution in addition to UW or MK solution. The MHL solution has a high sodium-low potassium composition with low viscosity compared with the UW solution. Moreover, similar to MK solution, MHL solution also contains ulinastatin. METHODS Porcine pancreata were preserved in UW, MK, or MHL solution, followed by islet isolation. An optimized number (1500 IE) of isolated islets from each group were then transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the MHL group than in the UW group. On the contrary, the islet yield before and after purification was not significantly different between the MHL and MK groups. Preserving the porcine pancreata in MHL solution improved the outcome of islet transplantation in streptozotocin-induced diabetic mice compared with that in UW solution. CONCLUSIONS Pancreas preservation with MHL solution preserves islet function better than UW solution. The effect of MHL solution is similar to that of MK solution, suggesting that MHL solution can be used as an alternative to MK solution for pancreatic islet transplantation.
Collapse
|
3
|
Clinical Islet Transplantation Covered by Health Insurance in Japan. J Clin Med 2022; 11:jcm11143977. [PMID: 35887740 PMCID: PMC9321768 DOI: 10.3390/jcm11143977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic islet transplantation is a treatment option for patients with type 1 diabetes mellitus and has been performed in various countries [1–5]. [...]
Collapse
|
4
|
Shindo Y, Kalivarathan J, Saravanan PB, Levy MF, Kanak MA. Assessment of Culture/Preservation Conditions of Human Islets for Transplantation. Cell Transplant 2022; 31:9636897221086966. [PMID: 35343264 PMCID: PMC8958522 DOI: 10.1177/09636897221086966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Islet culture before clinical transplantation has been adopted by various centers, but its effect on the survival and function of islets relative to the culture conditions and media needs further assessment. Human islets were cultured or preserved under four different conditions and three media options. Parameters such as recovery, viability, function, islet damage, and gene expressions for markers of hypoxia, and inflammation were assessed after 48-h culture or preservation. Preservation of islets was performed at 4°C in Connaught’s Medical Research Lab (CMRL) and University of Wisconsin (UW) media. Islets were cultured at 22°C, 37°C, and 37°C–22°C in CMRL and PRODO culture media. Islets preserved in UW solution had visually good morphology and exhibited higher recovery with less islet damage compared with the rest of the groups, whereas islets preserved in CMRL at 4°C resulted in poor morphology, recovery, viability, and function compared with the rest of the treatment conditions. Culture at 22°C and 37°C demonstrated an increase in the expression of inflammatory and hypoxia-related genes. In conclusion, islets preserved at 4°C in UW solution showed the best overall outcomes after 48 h compared with islets cultured at 22°C, 37°C, or 37°C–22°C in PRODO. Advancement in islet culture media is warranted to reduce inflammatory gene activation and improve recovery of islets for transplantation.
Collapse
Affiliation(s)
- Yoshitaro Shindo
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jagan Kalivarathan
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Marlon F Levy
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Hume-Lee Transplant Center, VCU Health System, Richmond, VA, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Nakashima Y, Iguchi H, Takakura K, Nakamura Y, Izumi K, Koba N, Haneda S, Tsukahara M. Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold. Cell Transplant 2022; 31:9636897221120500. [PMID: 36062469 PMCID: PMC9449504 DOI: 10.1177/09636897221120500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We reported in 2018 that among several extracellular matrices, fibronectin, type I collagen, type IV collagen, laminin I, fibrinogen, and bovine serum albumin, fibronectin is particularly useful for adhesion of porcine pancreatic tissue. Subsequently, we developed a technology that enables the chemical coating of the constituent motifs of fibronectin onto cell culture dishes. In this experiment, we used islets (purity ≥ 90%), duct epithelial cells (purity ≥ 60%), and acinar cells (purity ≥ 99%) isolated from human pancreas according to the Edmonton protocol published in 2000 and achieved adhesion to the constituent motifs of fibronectin. A solution including cGMP Prodo Islet Media was used as the assay solution. In islets, adhesion was enhanced with the constitutive motifs of fibronectin compared with uncoated islets. In the functional evaluation of islets, insulin mRNA expression and insulin secretion were enhanced by the constitutive motif of fibronectin compared with non-coated islets. The stimulation index was comparable between non-coated islets and fibronectin motifs. In duct epithelial cells, adhesion was mildly promoted by the fibronectin component compared with non-coated component, while in acinar cells, adhesion was inhibited by the fibronectin component compared with the non-coated component. These data suggest that the constitutive motifs of fibronectin are useful for the adhesion of islets and duct epithelial cells.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| | - Hiroki Iguchi
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Kenta Takakura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Yuta Nakamura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | | | | | - Satoshi Haneda
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Masayoshi Tsukahara
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Tokuda K, Ikemoto T, Saito Y, Miyazaki K, Yamashita S, Yamada S, Imura S, Morine Y, Shimada M. The Fragility of Cryopreserved Insulin-producing Cells Differentiated from Adipose-tissue-derived Stem Cells. Cell Transplant 2021; 29:963689720954798. [PMID: 32878465 PMCID: PMC7784513 DOI: 10.1177/0963689720954798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aim of our study is to determine whether insulin-producing cells (IPCs) differentiated from adipose-tissue-derived stem cells (ADSCs) can be cryopreserved. Human ADSCs were differentiated into IPCs using our two-step protocol encompassing a three-dimensional culture and xenoantigen-free method. Thereafter, IPCs were frozen using three different methods. First, IPCs were immediately frozen at -80°C (-80°C group). Second, IPCs were initially placed into a Bicell freezing container before freezing at -80°C (BICELL group). Third, a vitrification method for oocytes and embryos was used (CRYOTOP group). Cell counting kit-8 (CCK-8) assay showed that cell viability was decreased in all groups after cryopreservation (P < 0.01). Corroboratively, the amount of adenosine triphosphate was markedly decreased after cryopreservation in all groups (P < 0.01). Immunofluorescence staining showed a reduced positive staining area for insulin in all cryopreservation groups. Furthermore, 4',6-diamidino-2-phenylindole and merged immunofluorescence images showed that cryopreserved cells appeared to be randomly reduced in the -80°C group and CRYOTOP group, while only the central region was visibly reduced in the BICELL group. Using immunohistochemical staining, IPCs after cryopreservation were shown to be positive for cleaved caspase-3 antibody in all groups. Finally, insulin secretion following glucose stimulation was significantly reduced in IPCs from all groups after cryopreservation (P < 0.01). In conclusion, IPCs may be too fragile for cryopreservation with accomplished methods and further investigations for a suitable preservation method are required.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Shoko Yamashita
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Imura
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Institute of Biomedical Sciences, 163647Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
7
|
Optimizing Temperature and Oxygen Supports Long-term Culture of Human Islets. Transplantation 2019; 103:299-306. [PMID: 29781952 DOI: 10.1097/tp.0000000000002280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.
Collapse
|
8
|
Llacua LA, Hoek A, de Haan BJ, de Vos P. Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets 2018; 10:60-68. [PMID: 29521546 PMCID: PMC5895175 DOI: 10.1080/19382014.2017.1420449] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
Collagens are the most abundant fibrous protein in the human body and constitute the main structural element of the extracellular matrix. It provides mechanical and physiological support for cells. In the pancreas, collagen VI content is more than double that of collagen I or IV. It is a major component of the islet-exocrine interface and could be involved in islet-cell survival. To test the impact of collagen VI on human encapsulated pancreatic islets-cells, we tested the effects of exogenous collagen type VI on in vitro functional survival of alginate encapsulated human islet-cells. Concentrations tested ranged from 0.1 to 50 µg/ml. Islets in capsules without collagen type VI served as control. Islet-cell interaction with collagen type VI at concentrations of 0.1 and 10 µg/ml, promoted islet-cell viability (p<0.05). Although no improvement in glucose induced insulin secretion (GSIS) was observed, islets in capsules without incorporation of collagen type VI showed more dysfunction and oxygen consumption rates was improved by inclusion of collagen type VI. Our results demonstrate that incorporation of collagen type VI in immunoisolated human islets supports in vitro viability and survival of human pancreatic islets.
Collapse
Affiliation(s)
- L. Alberto Llacua
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Arjan Hoek
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Bart J. de Haan
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Rojas-Canales DM, Waibel M, Forget A, Penko D, Nitschke J, Harding FJ, Delalat B, Blencowe A, Loudovaris T, Grey ST, Thomas HE, Kay TWH, Drogemuller CJ, Voelcker NH, Coates PT. Oxygen-permeable microwell device maintains islet mass and integrity during shipping. Endocr Connect 2018; 7:490-503. [PMID: 29483160 PMCID: PMC5861371 DOI: 10.1530/ec-17-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023]
Abstract
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping.
Collapse
Affiliation(s)
- Darling M Rojas-Canales
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Michaela Waibel
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Aurelien Forget
- Science and Engineering FacultyQueensland University of Technology, Brisbane, Queensland, Australia
| | - Daniella Penko
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Jodie Nitschke
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Fran J Harding
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
| | - Bahman Delalat
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
| | - Anton Blencowe
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
- School of Pharmacy and Medical SciencesUniversity of South Australia, Adelaide, South Australia, Australia
| | - Thomas Loudovaris
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
| | - Shane T Grey
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Transplantation Immunology GroupGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Helen E Thomas
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Chris J Drogemuller
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
- Monash Institute of Pharmaceutical SciencesMonash University, Parkville, Victoria, Australia
| | - Patrick T Coates
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Forget A, Staehly C, Ninan N, Harding FJ, Vasilev K, Voelcker NH, Blencowe A. Oxygen-Releasing Coatings for Improved Tissue Preservation. ACS Biomater Sci Eng 2017; 3:2384-2390. [DOI: 10.1021/acsbiomaterials.7b00297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aurelien Forget
- School of Pharmacy
and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Collaborative Research Centre for Cell Therapy Manufacturing (CRC-CTM), Adelaide, South Australia 5000, Australia
- School of Chemistry,
Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Camille Staehly
- Collaborative Research Centre for Cell Therapy Manufacturing (CRC-CTM), Adelaide, South Australia 5000, Australia
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Neethu Ninan
- School of Pharmacy
and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Frances J. Harding
- Collaborative Research Centre for Cell Therapy Manufacturing (CRC-CTM), Adelaide, South Australia 5000, Australia
- Cell Therapies Pty Ltd, Victorian Comprehensive Cancer Centre (VCCC), Melbourne, Victoria 3000, Australia
| | - Krasimir Vasilev
- Collaborative Research Centre for Cell Therapy Manufacturing (CRC-CTM), Adelaide, South Australia 5000, Australia
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
- School of Engineering, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H. Voelcker
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Anton Blencowe
- School of Pharmacy
and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Collaborative Research Centre for Cell Therapy Manufacturing (CRC-CTM), Adelaide, South Australia 5000, Australia
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| |
Collapse
|
11
|
Pawlick R, Gala-Lopez B, Pepper AR, Abualhassan N, Bruni A, Suzuki K, Rayat G, Elliott JF, Shapiro AMJ. Low energy X-ray (grenz ray) treatment of purified islets prior to allotransplant markedly decreases passenger leukocyte populations. Islets 2017; 9:e1330742. [PMID: 28692319 PMCID: PMC5510618 DOI: 10.1080/19382014.2017.1330742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Grenz rays, or minimally penetrating X-rays, are known to be an effective treatment of certain recalcitrant immune-mediated skin diseases, but their use in modulating allograft rejection has not been tested. We examined the capacity of grenz ray treatment to minimize islet immunogenicity and extend allograft survival in a mouse model. In a preliminary experiment, 1 of 3 immunologically intact animals demonstrated long-term acceptance of their grenz ray treated islet allograft. Further experiments revealed that 28.6% (2 of 7) grenz ray treated islet allografts survived >60 d. A low dose of 20Gy, was important; a 4-fold increase in radiation resulted in rapid graft failure, and transplanting a higher islet mass did not alter this outcome. To determine whether increased islet allograft survival after grenz treatment would be masked by immunosuppression, we treated the recipients with CTLA-4 Ig, and found an additive effect, whereby 17.5% more animals accepted the graft long-term versus those with CTLA-4 Ig alone. Cell viability assays verified that islet integrity was maintained after treatment with 20Gy. As well, through splenocyte infiltration analysis, donor CD4+ T cell populations 24-hours after transplant were decreased by more than16-fold in recipients receiving irradiated islets compared with control. Donor CD8+ T cell populations, although less prevalent, decreased in all treatment groups compared with control. Our results suggest that brief treatment of isolated islets with low energy grenz rays before allotransplantation can significantly reduce passenger leukocytes and promote graft survival, possibly by inducing donor dendritic cells to differentiate toward a tolerogenic phenotype.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- CTLA-4 Antigen/antagonists & inhibitors
- Cell Survival/radiation effects
- Combined Modality Therapy/adverse effects
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/surgery
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Graft Survival/drug effects
- Graft Survival/radiation effects
- Hyperglycemia/prevention & control
- Immunosuppression Therapy/adverse effects
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/therapeutic use
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/radiation effects
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/pathology
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Leukocytes/radiation effects
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/therapeutic use
- Tissue Culture Techniques
- X-Rays
Collapse
Affiliation(s)
- Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Nasser Abualhassan
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| | - Gina Rayat
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - John F. Elliott
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- CONTACT A. M. James Shapiro, MD, PhD, FRCS(Eng), FRCSC, DSc (Hon), MSM Professor of Surgery, Director of Clinical Islet Transplant Program, AHFMR Clinical Senior Scholar, Hepatobiliary, Oncology, Pancreatic, Transplant Surgery, Roberts Centre, 2000 College Plaza, Edmonton, Alberta, Canada T6G 2C8
| |
Collapse
|
12
|
The Optimization of Short-Term Hepatocyte Preservation Before Transplantation. Transplant Direct 2017; 3:e176. [PMID: 28706979 PMCID: PMC5498017 DOI: 10.1097/txd.0000000000000687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Background No optimal methods for short-term hepatocyte preservation have been established. We have recently developed a prominent oxygen-permeable bag (Tohoku Device [TD]) for pancreatic islet culture and transplantation. In this study, we investigated whether TD is also effective for hepatocyte preservation and tried to optimize other conditions. Methods Hepatocytes were preserved in the following conditions, and their outcomes were observed. First, the effectiveness of TD was investigated. Second, hepatocyte medium (HM) and organ preservation solutions with or without fetal bovine serum (FBS) were compared. Third, as supplementations, FBS and human serum albumin (HSA) were compared. Fourth, low, room and high temperature were compared. And finally, hepatocytes preserved in various conditions were transplanted into the subrenal capsule space of nonalbumin rats and engrafted areas were assessed. Results The survival rate of hepatocytes preserved in TD tended to be higher and their viability and function were maintained significantly greater than those of non-TD group. Irrespective of FBS supplementation, the survival rate of HM group was significantly higher than those of organ preservation solution group while viabilities and plating efficiency were similar among them. Although survival rates of groups without FBS were extremely low, results of HSA supplemented group were not inferior to FBS supplemented group. Hepatocytes preserved at high temperature had the worst results. The engrafted area of TD group tended to be higher than those of other groups. Conclusions TD is effective for short-term hepatocyte preservation. HSA is a useful substitute for FBS, and preserving in HM at low temperature is recommended.
Collapse
|
13
|
Shahbazov R, Kanak MA, Takita M, Kunnathodi F, Khan O, Borenstein N, Lawrence MC, Levy MF, Naziruddin B. Essential phospholipids prevent islet damage induced by proinflammatory cytokines and hypoxic conditions. Diabetes Metab Res Rev 2016; 32:268-77. [PMID: 26378630 DOI: 10.1002/dmrr.2714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND The pancreatic islet damage that occurs through an inflammatory response and hypoxia after infusion is a major hurdle in islet transplantation. Because essential phospholipids (EPL) have been shown to exhibit anti-inflammatory properties in liver disease, we analysed their protective effect on islets in inflammatory or hypoxic conditions. METHODS We evaluated the viability of mouse and human islets cultured with cytokines or in hypoxic conditions for 48 h and measured cytokine expression in islets by quantitative polymerase chain reaction. We then employed an in vivo mouse assay, transplanting a marginal dose of human islets treated with or without EPL into the subcapsule of the kidney in diabetic nude mice and determining the cure rate. RESULTS The viability of mouse and human islets damaged by cytokines was significantly improved by supplementation of EPL in the culture (p = 0.003 and <0.001 for mouse and human islets respectively). EPL significantly inhibited intracellular expression of IL-1β and IL-6 in cytokine-damaged human islets (p < 0.001). The viability of human islets in hypoxic conditions was significantly better when treated with EPL (p < 0.001). In the in vivo mouse assay, the EPL-treated islet group had a higher cure rate than the untreated control, with marginal statistical significance (75 and 17% respectively, p = 0.07). CONCLUSIONS EPL could be a potent agent to protect islets from inflammatory and hypoxic conditions after isolation procedures. Further studies to clarify the effect of EPL in islet transplantation are warranted.
Collapse
Affiliation(s)
- Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX, USA
| | - Mazhar A Kanak
- The Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX, USA
| | | | - Omar Khan
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX, USA
| | - Nofit Borenstein
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX, USA
| | | | - Marlon F Levy
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Bashoo Naziruddin
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PRV. High Seeding Density Induces Local Hypoxia and Triggers a Proinflammatory Response in Isolated Human Islets. Cell Transplant 2015; 25:1539-46. [PMID: 26628048 DOI: 10.3727/096368915x689929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is the main threat to morphological and functional integrity of isolated pancreatic islets. Lack of oxygen seems to be of particular importance for functionality of encapsulated islets. The present study was initiated as an experimental model for the environment experienced by human islets in a confined space present during culture, shipment, and in an implanted macrodevice. Quadruplicate aliquots of isolated human islets (n = 12) were cultured for 24 h at 37°C under normoxic conditions using 24-well plates equipped with 8-µm pore size filter inserts and filled with islet aliquots adjusted to obtain a seeding density of 75, 150, 300, or 600 IEQ/cm(2). After culture viability, glucose-stimulated insulin release, DNA content as well as Bax and Bcl-2 gene expression were measured. Culture supernatants were collected to determine production of VEGF and MCP-1. Viability correlated inversely with IEQ seeding density (r = -0.71, p < 0.001), while the correlation of VEGF and MCP-1 secretion with seeding density was positive (r = 0.78, p < 0.001; r = 0.54, p < 0.001). Decreased viability corresponded with a significant increase in the Bax/Bcl-2 mRNA ratio at 300 and 600 IEQ/cm(2) and with a sigificantly reduced glucose-stimulated insulin secretion and insulin content compared to 75 or 150 IEQ/cm(2) (p < 0.01). The present study demonstrates that the seeding density is inversely correlated with islet viability and in vitro function. This is associated with a significant increase in VEGF and MCP-1 release suggesting a hypoxic and proinflammatory islet microenvironment.
Collapse
Affiliation(s)
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | | | | | | |
Collapse
|
15
|
Noguchi H, Miyagi-Shiohira C, Kurima K, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Matsushita M. Islet Culture/Preservation Before Islet Transplantation. CELL MEDICINE 2015; 8:25-9. [PMID: 26858905 DOI: 10.3727/215517915x689047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although islet culture prior to transplantation provides flexibility for the evaluation of isolated islets and the pretreatment of patients, it is well known that isolated islets deteriorate rapidly in culture. Human serum albumin (HSA) is used for medium supplementation instead of fetal bovine serum (FBS), which is typically used for islet culture research, to avoid the introduction of xenogeneic materials. However, FBS contains several factors that are beneficial to islet viability and which also neutralize the endogenous pancreatic enzymes or exogenous enzymes left over from the isolation process. Several groups have reported the comparison of cultures at 22°C and 37°C. Recent studies have demonstrated the superiority of 4°C preservation to 22°C and 37°C cultures. We herein review the current research on islet culture/preservation for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Kiyoto Kurima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | | | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Masami Watanabe
- § Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasufumi Noguchi
- ¶ Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Masayuki Matsushita
- # Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
16
|
Chandravanshi B, Dhanushkodi A, Bhonde R. High Recovery of Functional Islets Stored at Low and Ultralow Temperatures. Rev Diabet Stud 2015; 11:267-78. [PMID: 26177487 DOI: 10.1900/rds.2014.11.267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Poor recovery of islets upon cryopreservation is the main hurdle in islet banking. Pancreatic islets have a poor antioxidative defense mechanism, and exposure of islets to low temperature leads to oxidative stress. AIM We aimed to investigate whether known compounds such as metformin, γ aminobutyric acid (GABA), docosahexanoic acid (DHA), or eicosapentaenoic acid (EPA) alone or in combination are capable of reducing oxidative stress for better islet recovery upon storage at suboptimal temperatures. METHODS Islets isolated from mouse pancreas were stored at low temperature (4°C) for 15 days and at ultralow temperature (-196°C) for 30 days with or without additives. After revival from cold storage, islets were assessed by using three methods: (1) specificity by dithizone (DTZ), (2) viability by fluorescein diacetate/propidium iodide (FDA/PI) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay, and (3) functionality by glucose-stimulated insulin secretion (GSIS). The oxidative status of the islets stored at suboptimal temperatures was determined by both intracellular free radical release (fluorometric analysis) and lipid peroxidation (enzymatic determination). RESULTS Supplementation with additives led to an improvement in islet survival upon storage at suboptimal temperatures, without depletion of insulin secretory activity, which was comparable to that of controls. The additives acted as cryoprotectants and antioxidants as revealed by high recovery of viable islets and reduction in total reactive oxygen species (ROS) and malonidealdehyde (MDA), respectively. CONCLUSIONS Our results demonstrate for the first time that supplementation with EPA, DHA, and metformin may lead to higher islet recovery from -196°C storage, enabling proper islet banking.
Collapse
Affiliation(s)
- Bhawna Chandravanshi
- School of Regenerative Medicine, Manipal University, Bellary Road, Yelahanka, Bangalore 560065, India
| | - Anandh Dhanushkodi
- School of Regenerative Medicine, Manipal University, Bellary Road, Yelahanka, Bangalore 560065, India
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, Bellary Road, Yelahanka, Bangalore 560065, India
| |
Collapse
|
17
|
Abstract
OBJECTIVE Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of 2 different solutions for pancreatic ductal perfusion (PDP) at organ procurement. METHODS Eighteen human pancreases were assigned to 3 groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. RESULTS No significant differences in donor characteristics, including cold ischemia time, were observed between the 3 groups. All islet isolations in the PDP groups had more than 400,000 islet equivalence in total islet yield after purification, a significant increase when compared with the control (P = 0.04 and P < 0.01). The islet quality assessments, including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation, also showed no significant differences. The proportion of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). CONCLUSIONS Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions.
Collapse
|
18
|
Liu F, Tian W, Yang Y, Zhang Q, Zhu M, Yang L, Yang L, Li J, Liu J, Wu P, Yang K, Wang X, Shen Y, Qi Z. Optimal method for short-term or long-term islet preservation: comparison of islet culture, cold preservation and cryopreservation. J Artif Organs 2014; 17:337-43. [PMID: 24944122 DOI: 10.1007/s10047-014-0777-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Islet preservation plays an important role for the success of islet transplantation. To determine the optimal method for islet preservation, we compared the outcomes of islet culture, cold preservation, and cryopreservation in this study. Isolated rat islets were divided into three groups: 37 °C group (conventional culture at 37 °C in RPMI-1640 medium), 4 °C group (cold preservation at 4 °C in University of Wisconsin (UW) solution), and -80 °C group (cryopreservation at -80 °C with dimethyl sulfoxide (DMSO)). Recovery rate, Calcein-AM/PI double staining, insulin release, mRNA level of hypoxia-inducible factor-1α (HIF-1α), and protein level of Bax in islets were examined after short-term (1 day) or long-term (7 days) preservation. After either short-term or long-term preservation, 4 °C group showed higher recovery rate of the islets number, lower percentage of PI positive area, better insulin release ability, and lower expression levels of HIF-1α and Bax in comparison to the 37 or -80 °C group. Meanwhile, islets in 37 °C group showed better function, and down-regulation of HIF-1α and Bax than those in -80 °C group on day 1; however, worse function of islets, up-regulated HIF-1α and Bax in 37 °C group were observed in comparison to -80 °C group on day 7. These results suggest that cold preservation at 4 °C in UW solution is the optimal method in comparison to the conventional culture at 37 °C or cryopreservation at -80 °C for short-term or long-term islet preservation. Furthermore, the potential mechanism may relate to, at least in part, apoptosis induced by the HIF-1α.
Collapse
Affiliation(s)
- Fei Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yamashita S, Ohashi K, Utoh R, Kin T, Shapiro AMJ, Yamamoto M, Gotoh M, Okano T. Quality of Air-Transported Human Islets for Single Islet Cell Preparations. CELL MEDICINE 2013; 6:33-8. [PMID: 26858878 DOI: 10.3727/215517913x674243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In new generation medical therapies for type 1 diabetes mellitus (DM), cell-based approaches using pancreatic islets have attracted significant attention worldwide. In particular, dispersed islet cells obtained from isolated pancreatic islets have been a valuable source in the cell biology and tissue engineering fields. Our experimental approach to the development of new islet-based DM therapies consisted of creating a monolithic islet cell sheet format using dispersed islet cells. In this experiment, we explored the potential of internationally transporting human islets from Alberta, Canada to Tokyo, Japan and obtaining viable dispersed islet cells. A total of 34 batches of isolated and purified human islets were transported using a commercial air courier service. Prior to shipping, the human islets had been in culture for 0-108 h at the University of Alberta. The transportation period from Alberta to Tokyo was 2-5 days. The transported human islet cells were enzymatically dispersed as single cells in Tokyo. The number of single islet cells decreased as the number of transportation days increased. In contrast, cell viability was maintained regardless of the number of transportation days. The preshipment culture time had no effect on the number or viability of single cells dispersed in Tokyo. When dispersed single islet cells were plated on laminin-5-coated temperature-responsive polymer-grafted culture dishes, the cells showed favorable attachment followed by extension as a monolithic format. The present study demonstrated that long-distance transported human islets are a viable cell source for experiments utilizing dispersed human islet cells.
Collapse
Affiliation(s)
- Shingo Yamashita
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan; †Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| | - Tatsuya Kin
- ‡ Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - A M James Shapiro
- ‡ Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - Masakazu Yamamoto
- † Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University , Tokyo , Japan
| | - Mitsukazu Gotoh
- § Department of Regenerative Surgery, Fukushima Medical University , Fukushima , Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| |
Collapse
|
20
|
Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK. Manufacturing porcine islets: culture at 22 °C has no advantage above culture at 37 °C: a gene expression evaluation. Xenotransplantation 2013; 20:418-28. [PMID: 23941232 DOI: 10.1111/xen.12048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37 °C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. METHODS Porcine islets were isolated from three donors and cultured at 37 °C for 1 day, and then under three different conditions: 37 °C for 6 days (condition A); 22 °C for 6 days (condition B); or 22 °C for 5 days followed by 37 °C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. RESULTS Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129-159 nmol/min·mgDNA before culture, and 259-291, 204-212, and 207-228 nmol/min·mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular, most of lymphocyte markers showed a >10-fold reduction and also six markers in the lymphokine and chemokine series; these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B, the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those under condition A: this indicates that 24 h at 37 °C is sufficient to re-equilibrate gene expression levels from those in islets cultured at 22 °C to those in islets cultured at 37 °C. Results were consistent among the preparations from the three donors. CONCLUSIONS Culture of porcine islets at 37 °C provides benefits over culture at 22 °C with respect to OCR/DNA outcomes and reduced expression of genes encoding lymphocyte markers, lymphokines and chemokines, and markers for apoptosis and stress.
Collapse
Affiliation(s)
- Kate R Mueller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
21
|
Noguchi H, Saitoh I, Kataoka HU, Watanabe M, Noguchi Y, Fujiwara T. Culture Conditions for Mouse Pancreatic Stem Cells. CELL MEDICINE 2013; 5:63-8. [PMID: 26858867 DOI: 10.3727/215517913x666495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, mouse pancreatic stem cells have been isolated from adult mouse pancreata. However, these pancreatic stem cells could be maintained only under specific culture conditions with lot-limited fetal bovine serum (FBS). For the efficient isolation and maintenance of mouse pancreatic stem cells, it is important to identify culture conditions that can be used independent of the FBS lot. In this study, we evaluated the culture conditions required to maintain mouse pancreatic stem cells. The mouse pancreatic stem cells derived from the pancreas of a newborn mouse, HN#101, were cultured under the following conditions: 1) Dulbecco's modified Eagle's medium (DMEM) with 20% lot-limited FBS, in which mouse pancreatic stem cells could be cultured without changes in morphology and growth activity; 2) complete embryonic stem (ES) cell media; and 3) complete ES cell media on feeder layers of mitomycin C-treated STO cells, which were the same culture conditions used for mouse ES cells. Under culture conditions #1 and #3, the HN#101 cells continued to form a flat "cobblestone" monolayer and continued to divide actively beyond the population doubling level (PDL) 100 without growth inhibition, but this did not occur under culture condition #2. The gene expression profile and differentiated capacity of the HN#101 cells cultured for 2 months under culture condition #3 were similar to those of HN#101 cells at PDL 50. These data suggest that complete ES cell media on feeder layers could be useful for maintaining the undifferentiated state of pancreatic stem cells.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Surgery, Clinical Research Center, Chiba-East Hospital, National Hospital Organization , Chiba , Japan
| | - Issei Saitoh
- † Department of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Hitomi Usui Kataoka
- ‡ Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masami Watanabe
- § Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasufumi Noguchi
- ¶ Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Toshiyoshi Fujiwara
- # Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
22
|
Yang KC, Wu CC, Yang SH, Chiu CC, Sumi S, Lee HS. Investigating the suspension culture on aggregation and function of mouse pancreatic β-cells. J Biomed Mater Res A 2013; 101:2273-82. [PMID: 23348877 DOI: 10.1002/jbm.a.34547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/23/2012] [Accepted: 11/27/2012] [Indexed: 01/21/2023]
Abstract
The integrity and hierarchical structure of islet influence β-cells physiology dramatically. A culture substrate which can maintain or improve β-cells aggregation shall benefit cell therapy for diabetics. In this study, nontreated, type IV collagen, Lipidure, and ultralow attachment dishes were used to culture a murine β-cell line, MIN-6. The formation and biological performances of pseudoislets were investigated. Results showed that β-cells formed loose and irregular aggregates on nontreated dishes. Oppositely, pseudoislets formed on other three substrates. Most pseudoislets on Lipidure and type IV collagen dishes had a diameter between 100-150 μm with high survival rate, while large pseudoislets (>250 μm) with seriously central necrosis were found on ultralow attachment dishes. Western blot analysis revealed that pseudoislets had relatively higher connexin 36 protein productions relative to single cells. The glucose-stimulated insulin secretion test showed pseudoislets on type IV collagen have high stimulation index. Monolayers from TCPS dishes and pseudoislets from type IV collagen or Lipidure dishes were further transplanted into diabetic mice. Animals received both single cells and pseudoislets had decreasing blood glucose level and regained body weight. Histologic examination revealed that all implants successfully engrafted with positive insulin staining. Interestingly, the area under curve for the intraperitoneal glucose tolerance test showed pseudoislets had superior glucose disappearance rate. This study reveals that isolated islets or insulin-producing cells can be cultured on type IV collagen or Lipidure dishes to improve/maintain integrity prior to transplantation.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Jung HS, Kim MJ, Hong SH, Lee YJ, Kang S, Lee H, Chung SS, Park JS, Park KS. The potential of endothelial colony-forming cells to improve early graft loss after intraportal islet transplantation. Cell Transplant 2013; 23:273-83. [PMID: 23294520 DOI: 10.3727/096368912x661364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early graft loss in islet transplantation means that a large amount of donor islets is required. Endothelial cells and endothelial colony-forming cells (ECFCs) have been reported to improve instant blood-mediated inflammatory reaction (IBMIR) in vitro. In this study, we examined if ECFC-coated porcine islets would prevent early graft loss in vivo. Human ECFCs were prepared from cord blood and cocultured with islets to make composite grafts. Diabetic nude mice underwent intraportal transplantation. Blood glucose levels were monitored, and morphological examination of the grafts along with analysis of the components of IBMIR and inflammatory reaction were performed with the liver tissues. The ECFC-coated islets significantly decreased blood glucose levels immediately after transplantation compared to the uncoated islets. Composite ECFC islet grafts were observed in the liver sections, associated with a more insulin(+) area compared to that of the uncoated group within 48 h after transplantation. Deposition of CD41a, C5b-9, and CD11b(+) cells was also decreased in the ECFC-coated group. Expression of porcine HMGB1 and mouse TNF-α was increased in the transplantated groups compared to the sham operation group, with a trend of a decreasing trend across the uncoated group, the ECFC-coated group, and the sham group. We demonstrated that the composite ECFC porcine islets transplanted into the portal vein of nude mice improved early graft loss and IBMIR in vivo.
Collapse
Affiliation(s)
- Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kimura Y, Okitsu T, Xibao L, Teramae H, Okonogi A, Toyoda K, Uemoto S, Fukushima M. Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions. Islets 2013; 5:45-52. [PMID: 23552019 PMCID: PMC3655792 DOI: 10.4161/isl.24025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Preserving isolated islets at low temperature appears attractive because it can keep islet quantity comparable to freshly isolated islets. In this study, we evaluated the effect of serum as an additive to preservation solutions on islet quality after short-term hypothermic storage. Isolated mouse islets were preserved at 4°C in University of Wisconsin solution (UW) alone, UW with serum, M-Kyoto solution (MK) alone or MK with serum. We then assessed islet quantity, morphology, viability and function in vitro as well as in vivo. Islet quantity after storage in all four solutions was well maintained for up to 120 h. However, islets functioned for different duration; glucose-stimulated insulin release assay revealed that the duration was 72 h when islets were stored in UW with serum and MK with serum, but only 24 h in UW alone, and the islet function disappeared immediately in MK alone. Viability assay confirmed that more than 70% islet cells survived for up to 48 h when islets are preserved in UW with serum and MK with serum, but the viability decreased rapidly in UW alone and MK alone. In in vivo bioassays using 48-h preserved isogeneic islets, all recipient mice restored normal blood glucose concentrations by transplants preserved in UW with serum or MK with serum, whereas 33.3% recipients and no recipient restored diabetes by transplants preserved in UW alone and in MK alone respectively. Adding serum to both UW and MK improves their capability to store isolated islets by maintaining islet functional viability.
Collapse
Affiliation(s)
- Yasuko Kimura
- Translational Research Informatics Center; Foundation for Biomedical Research and Innovation; Kobe, Japan
| | - Teru Okitsu
- Institute of Industrial Science; University of Tokyo; Tokyo, Japan
- Correspondence to: Teru Okitsu,
| | - Liu Xibao
- Department of Endocrinology; the First Hospital of Hebei Medical University; ShiJiaZhuang, China
| | - Hiroki Teramae
- Faculty of Teacher Education; Shumei University ; Yachiyo, Chiba, Japan
| | | | - Kentaro Toyoda
- Department of Diabetes and Clinical Nutrition; Graduate School of Medicine; Kyoto University; Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery; Division of Hepato-Pancreato-Biliary Surgery and Transplantation; Kyoto University Hospital; Kyoto, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center; Foundation for Biomedical Research and Innovation; Kobe, Japan
| |
Collapse
|
25
|
Kaddis JS, Hanson MS, Cravens J, Qian D, Olack B, Antler M, Papas KK, Iglesias I, Barbaro B, Fernandez L, Powers AC, Niland JC. Standardized transportation of human islets: an islet cell resource center study of more than 2,000 shipments. Cell Transplant 2012; 22:1101-11. [PMID: 22889479 DOI: 10.3727/096368912x653219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Preservation of cell quality during shipment of human pancreatic islets for use in laboratory research is a crucial, but neglected, topic. Mammalian cells, including islets, have been shown to be adversely affected by temperature changes in vitro and in vivo, yet protocols that control for thermal fluctuations during cell transport are lacking. To evaluate an optimal method of shipping human islets, an initial assessment of transportation conditions was conducted using standardized materials and operating procedures in 48 shipments sent to a central location by eight pancreas-processing laboratories using a single commercial airline transporter. Optimization of preliminary conditions was conducted, and human islet quality was then evaluated in 2,338 shipments pre- and postimplementation of a finalized transportation container and standard operating procedures. The initial assessment revealed that the outside temperature ranged from a mean of -4.6 ± 10.3°C to 20.9 ± 4.8°C. Within-container temperature drops to or below 15°C occurred in 16 shipments (36%), while the temperature was found to be stabilized between 15°C and 29°C in 29 shipments (64%). Implementation of an optimized transportation container and operating procedure reduced the number of within-container temperature drops (≤ 15°C) to 13% (n = 37 of 289 winter shipments), improved the number desirably maintained between 15°C and 29°C to 86% (n = 250), but also increased the number reaching or exceeding 29°C to 1% (n = 2; overall p < 0.0001). Additionally, postreceipt quality ratings of excellent to good improved pre- versus postimplantation of the standardized protocol, adjusting for preshipment purity/viability levels (p < 0.0001). Our results show that extreme temperature fluctuations during transport of human islets, occurring when using a commercial airline transporter for long distance shipping, can be controlled using standardized containers, materials, and operating procedures. This cost-effective and pragmatic standardized protocol for the transportation of human islets can potentially be adapted for use with other mammalian cell systems and is available online at http://iidp.coh.org/sops.aspx.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stokes RA, Cheng K, Deters N, Lau SM, Hawthorne WJ, O'Connell PJ, Stolp J, Grey S, Loudovaris T, Kay TW, Thomas HE, Gonzalez FJ, Gunton JE. Hypoxia-inducible factor-1α (HIF-1α) potentiates β-cell survival after islet transplantation of human and mouse islets. Cell Transplant 2012; 22:253-66. [PMID: 22710383 DOI: 10.3727/096368912x647180] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A high proportion of β-cells die within days of islet transplantation. Reports suggest that induction of hypoxia-inducible factor-1α (HIF-1α) predicts adverse transplant outcomes. We hypothesized that this was a compensatory response and that HIF-1α protects β-cells during transplantation. Transplants were performed using human islets or murine β-cell-specific HIF-1α-null (β-HIF-1α-null) islets with or without treatment with deferoxamine (DFO) to increase HIF-1α. β-HIF-1α-null transplants had poor outcomes, demonstrating that lack of HIF-1α impaired transplant efficiency. Increasing HIF-1α improved outcomes for mouse and human islets. No effect was seen in β-HIF-1α-null islets. The mechanism was decreased apoptosis, resulting in increased β-cell mass posttransplantation. These findings show that HIF-1α is a protective factor and is required for successful islet transplant outcomes. Iron chelation with DFO markedly improved transplant success in a HIF-1α-dependent manner, thus demonstrating the mechanism of action. DFO, approved for human use, may have a therapeutic role in the setting of human islet transplantation.
Collapse
Affiliation(s)
- Rebecca A Stokes
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research GIMR, Sydney NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sakata N, Sumi S, Yoshimatsu G, Goto M, Egawa S, Unno M. Encapsulated islets transplantation: Past, present and future. World J Gastrointest Pathophysiol 2012; 3:19-26. [PMID: 22368783 PMCID: PMC3284522 DOI: 10.4291/wjgp.v3.i1.19] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation could become an ideal treatment for severe diabetes to prevent hypoglycemia shock and irreversible diabetic complications, once some of the major and unresolved obstacles are overcome, including limited donor supplies and side effects caused by permanent immunosuppressant use. Approximately 30 years ago, some groups succeeded in improving the blood glucose of diabetic animals by transplanting encapsulated islets with semi-permeable membranes consisting of polymer. A semi-permeable membrane protects both the inner islets from mechanical stress and the recipient's immune system (both cellular and humoral immunities), while allowing bidirectional diffusion of nutrients, oxygen, glucose, hormones and wastes, i.e., immune-isolation. This device, which enables immune-isolation, is called encapsulated islets or bio-artificial pancreas. Encapsulation with a semi-permeable membrane can provide some advantages: (1) this device protects transplanted cells from the recipient's immunity even if the xenogeneic islets (from large animals such as pig) or insulin-producing cells are derived from cells that have the potential for differentiation (some kinds of stem cells). In other words, the encapsulation technique can resolve the problem of limited donor supplies; and (2) encapsulation can reduce or prevent chronic administration of immunosuppressants and, therefore, important side effects otherwise induced by immunosuppressants. And now, many novel encapsulated islet systems have been developed and are being prepared for testing in a clinical setting.
Collapse
|
28
|
Ishii S, Saito T, Ise K, Yamashita M, Sato Y, Saito T, Tsukada M, Oshibe I, Kenjo A, Kimura T, Anazawa T, Suzuki S, Gotoh M. Preservation of pancreatic islets in cold UW solution before transplantation. Islets 2012; 4:32-9. [PMID: 22504908 DOI: 10.4161/isl.18607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Culture of islets prior to transplantation needs to be revisited for maintaining functional islet capacity. This study was conducted to compare cold UW (University of Wisconsin) preservation with conventional culture based on insulin secretory capacity in vitro and in vivo. Islets isolated from Wistar rats were either cultured for 24 h at 37°C in RPMI1640 medium or DMEM containing various concentrations of glucose or preserved for the same period in UW solution or in DMEM solution at 4°C. The islet yield in UW group, but not in other groups, was maintained as comparable with that of fresh islets. Insulin secretory capacity in response to glucose was maintained only in the islets of UW group, but not in other groups. SCID mice given 300 IEQ islets of UW group showed gradual restoration of normoglycemia as found in the mice given freshly isolated islets. Meanwhile, those mice given cultured islets for 24 h at 37°C in RPMI1640 medium showed rapid decrease of blood glucose levels on day 1 followed by relatively elevated levels on day 2, suggesting unstable insulin secretory capacity of islets. Morphological staining with anti-HMGB1 (high mobility group B1) antibody revealed central damage of islets in all culture groups regardless of glucose concentration and in islets of cold DMEM group, whereas those in the UW group were quite intact. These results suggest that cold preservation in UW solution is simple and beneficial in protecting islets morphologically and functionally before transplantation.
Collapse
Affiliation(s)
- Show Ishii
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Takuro Saito
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Kazuya Ise
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Michitoshi Yamashita
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Yoshihiro Sato
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Takaharu Saito
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Manabu Tsukada
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Ikuro Oshibe
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Akira Kenjo
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Takashi Kimura
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Takayuki Anazawa
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| | - Shigeya Suzuki
- Research and Development Division; Kikkoman Co., Ltd; Noda City, Chiba, Japan
| | - Mitsukazu Gotoh
- Department of Surgery; Fukushima Medical University; Fukushima City, Fukushima, Japan
| |
Collapse
|
29
|
Kuise T, Noguchi H. Recent progress in pancreatic islet transplantation. World J Transplant 2011; 1:13-8. [PMID: 24175188 PMCID: PMC3782227 DOI: 10.5500/wjt.v1.i1.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus remains a major burden. More than 200 million people are affected worldwide, which represents 6% of the world’s population. Type 1 diabetes mellitus is an autoimmune disease, which induces the permanent destruction of the β-cells of the pancreatic islets of Langerhans. Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy, neuropathy or retinopathy, it is difficult to achieve and maintain long term in most subjects. The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficient β cells. However, islet transplantation efforts have various limitations, including the limited supply of donor pancreata, the paucity of experienced islet isolation teams, side effects of immunosuppressants and poor long term results. The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research, which has opened up several possibilities for the development of new treatments for diabetes.
Collapse
Affiliation(s)
- Takashi Kuise
- Takashi Kuise, Hirofumi Noguchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
30
|
Knowledge and Demand for Information about Islet Transplantation in Patients with Type 1 Diabetes. J Transplant 2011; 2011:136298. [PMID: 22174981 PMCID: PMC3235901 DOI: 10.1155/2011/136298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/09/2011] [Indexed: 12/30/2022] Open
Abstract
This cross-sectional
study based on self-administrated questionnaire
was conducted to investigate knowledge,
related factors, and sources of information
regarding islet transplantation in patients with
type 1 diabetes in Japan. Among 137 patients who
provided valid responses, 67 (48.9%) knew
about islet transplantation. Their main source
of information was newspapers or magazines
(56.7%) and television or radio (46.3%).
However, 85.8% of patients preferred the
attending physician as their source of
information. Although more than half of the
patients were correctly aware of issues related
to islet transplantation, the following specific
issues for islet transplantation were not
understood or considered, and there was little
knowledge of them: need for immunosuppressants,
lifestyle and dietary adaptations, fewer bodily
burdens, and complications. The experience of
hypoglycaemia, a high level of academic
background, frequent self-monitoring of blood
glucose, and the use of continuous subcutaneous
insulin infusion were related to higher
knowledge about islet
transplantation.
Collapse
|
31
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
32
|
Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz) 2011; 59:421-9. [PMID: 21984594 DOI: 10.1007/s00005-011-0143-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. In recent years, the proportion of patients achieving initial insulin independence has improved, but longer term outcomes remain poor compared to those for whole pancreas transplants. This review article will discuss factors affecting islet yield and viability leading up to transplantation and in the immediate post-transplant period.
Collapse
|
33
|
Pancreas procurement and preservation for islet transplantation: personal considerations. J Transplant 2011; 2011:783168. [PMID: 21918716 PMCID: PMC3171759 DOI: 10.1155/2011/783168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet transplantation is a promising option for the treatment of type 1 diabetic patients. After the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas procurement and preservation systems. Since we frequently use pancreata from donors after cardiac death in Japan,we have applied the in situ regional organ cooling system for pancreas procurement to reduce the warm ischemic time. To reduce the apoptosis of pancreatic tissue during cold preservation, we have applied the ductal injection of preservation solution. For pancreas preservation, we use modified Kyoto solution, which is advantageous at trypsin inhibition and less collagenase inhibition. In this paper, we show pancreas procurement and preservation in our group for islet transplantation.
Collapse
|
34
|
Klaffschenkel RA, Waidmann M, Northoff H, Mahmoud AAA, Lembert N. PK11195, a specific ligand of the peripheral benzodiazepine receptor, may protect pancreatic beta-cells from cytokine-induced cell death. ACTA ACUST UNITED AC 2011; 40:56-61. [PMID: 21806502 DOI: 10.3109/10731199.2011.585617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We cultured isolated islets from human or porcine origin in the presence or absence of IL1 and TNFα and studied cytoprotective effects of two structurally different PBR ligands. Storage of pig or human islets in the presence of cytokines significantly lowered the fraction of vital beta-cells. Compared with cytokine incubations PK11195 alone or in combination with cytokines was effective to prevent cytokine induced cell death. The data indicate that cold storage in the presence of PK11195 may further protect beta-cells from cytokine induced cell death. This ligand may be helpful to preserve beta-cell survival before transplantation.
Collapse
Affiliation(s)
- Roland A Klaffschenkel
- Department of Transfusion Medicine, Institute of Clinical and Experimental Transfusion Medicine, Tübingen University, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
35
|
Bastian JD, Egli RJ, Ganz R, Hofstetter W, Leunig M. Chondrocytes within osteochondral grafts are more resistant than osteoblasts to tissue culture at 37°C. J INVEST SURG 2011; 24:28-34. [PMID: 21275527 DOI: 10.3109/08941939.2010.523511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is proposed that an ideal osteochondral allograft for cartilage repair consists of a devitalized bone but functional cartilage. The different modes of nutrient supply in vivo for bone (vascular support) and cartilage (diffusion) suggest that a modulation of storage conditions could differentially affect the respective cells, resulting in the proposed allograft. For this purpose, osteochondral tissues from porcine humeral heads were either cultured at 37°C for up to 24 hr or stored at 4°C for 24 hr, the temperature at which osteochondral allografts are routinely stored. Functionality of the cells was assessed by in situ hybridization for transcripts encoding collagen types I and II. At 37°C, a time-dependent significant reduction of the bone surface covered with functional cells was observed with only 5% ± 5% coverage left at 24 hr compared with 41% ± 10% at 0 hr. Similarly, cartilage area containing functional cells was significantly reduced from 84% ± 7% at 0 hr to 70% ± 3% after 24 hr. After 24 hr at 4°C, a significantly reduced amount of functional cells covering bone surfaces was observed (27% ± 5%) but not of cells within the cartilage (79% ± 8%). In the applied experimental setup, bone cells were more affected by tissue culture at 37°C than cartilage cells. Even though chondrocytes appear to be more sensitive to 37°C than to 4°C, the substantially reduced amount of functional bone cells at 37°C warrants further investigation of whether a preincubation of osteochondral allografts at 37°C--prior to regular storage at 4°C--might result in an optimized osteochondral allograft with devitalized bone but viable cartilage.
Collapse
Affiliation(s)
- Johannes D Bastian
- Group for Bone Biology and Orthopaedic Research, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Noguchi H. Pancreatic islet transplantation. World J Gastrointest Surg 2009; 1:16-20. [PMID: 21160790 PMCID: PMC2999120 DOI: 10.4240/wjgs.v1.i1.16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease, which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans. While exogenous insulin therapy has dramatically improved the quality of life, chronic diabetic complications develop in a substantial proportion of subjects and these complications generally progress and worsen over time. Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy, neuropathy or retinopathy, it is difficult to achieve and maintain long term in most subjects. Reasons for this difficulty include compliance issues and the increased risk of severe hypoglycemic episodes, which are generally associated with intensification of exogenous insulin therapy. Clinical studies have shown that transplantation of pancreas or purified pancreatic islets can support glucose homeostasis in type 1 diabetic patients. Islet transplantation carries the special advantages of being less invasive and resulting in fewer complications compared with the traditional pancreas or pancreas-kidney transplantation. However, islet transplantation efforts have limitations including the short supply of donor pancreata, the paucity of experienced islet isolation teams, side effects of immunosuppressants and poor long-term results. The purpose of this article is to review recent progress in clinical islet transplantation for the treatment of diabetes.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Hirofumi Noguchi, Regenerative Research Islet Cell Transplant Program, Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, United States
| |
Collapse
|