1
|
Martínez-Perafán F, Fromm A, van der Veen RE, Waldow A, Lehmann M, Krug SM, Günzel D, Rosenthal R, Fromm M, Piontek J. Effect of claudin-1 or -3 expression on cation and water channel properties of claudin-2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119930. [PMID: 40068709 DOI: 10.1016/j.bbamcr.2025.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Claudin-2 (Cldn2) is a typical tight junction protein of leaky epithelia that forms paracellular channels for small cations and water. Claudin-3 (Cldn3) and claudin-1 (Cldn1) are barrier formers and may interact with Cldn2. We aimed to investigate whether this interaction affects the permeability of Cldn2 channels to ions and/or water. To achieve this, two knockout kidney cell lines (MDCK C7/Cldn3KO and MDCK II/quinKO) were used to express Cldn2 and Cldn2/Cldn3. Furthermore, MDCK II/quinKO/Cldn2/Cldn1 cells were generated for comparison. Electrophysiological assays were performed to evaluate the function and properties of Cldn2 channels in these cell models. Cis- and trans-interaction of Cldn2 with Cldn1 or Cldn3 was assessed in MDCK II/quinKO cells by FRET and enrichment assays, respectively. At the tight junction, Cldn2 had a closer cis-proximity to Cldn1 than to Cldn3, but a stronger trans-interaction with the latter. In comparison to cells expressing Cldn2 alone, co-expression with Cldn3 (in both cell models) or Cldn1 (in MDCK II/quinKO cells) resulted in lower cation permeabilities without altering the Eisenman sequences. Other than ion permeability, water flux showed no differences between MDCK C7/Cldn3KO cells expressing Cldn2 and those co-expressing Cldn2/Cldn3. Based on these results, we propose a model in which Cldn2-Cldn1 cis- and Cldn2-Cldn3 trans-interaction leads to a mixture of homo-oligomeric Cldn2 and hetero-oligomeric Cldn2/Cldn1 or Cldn2/Cldn3 channels. The latter would have a pore center where charges are neutralized, by this impairing cation permeability while still allowing water to pass.
Collapse
Affiliation(s)
- Fabián Martínez-Perafán
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
2
|
Sobral AF, Costa I, Teixeira V, Silva R, Barbosa DJ. Molecular Motors in Blood-Brain Barrier Maintenance by Astrocytes. Brain Sci 2025; 15:279. [PMID: 40149801 PMCID: PMC11940747 DOI: 10.3390/brainsci15030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The blood-brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB integrity through their end-feet, which form a physical and biochemical interface that enhances endothelial cell function and barrier selectivity. Moreover, they secrete growth factors like vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), which regulate tight junction (TJ) proteins (e.g., claudins and occludins) crucial for limiting paracellular permeability. Molecular motors like kinesins, dynein, and myosins are essential for these astrocyte functions. By facilitating vesicular trafficking and protein transport, they are essential for various functions, including trafficking of junctional proteins to support BBB integrity, the proper mitochondria localization within astrocyte processes for efficient energy supply, the polarized distribution of aquaporin (AQP)-4 at astrocyte end-feet for regulating water homeostasis across the BBB, and the modulation of neuroinflammatory responses. Moreover, myosin motors modulate actomyosin dynamics to regulate astrocyte process outgrowth, adhesion, migration, and morphology, facilitating their functional roles. Thus, motor protein dysregulation in astrocytes can compromise BBB function and integrity, increasing the risk of neurodegeneration. This review explores the complex interplay between astrocytes and molecular motors in regulating BBB homeostasis, which represents an attractive but poorly explored area of research.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Inês Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Vanessa Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Yang L, Wang X, Lin Q, Shen G, Chen H. CLDN11 deficiency upregulates FOXM1 to facilitate breast tumor progression through hedgehog signaling pathway. J Mol Histol 2024; 55:1259-1270. [PMID: 39438406 PMCID: PMC11567981 DOI: 10.1007/s10735-024-10267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Claudins (CLDNs) play a crucial role in regulating the permeability of epithelial barriers and can impact tumor behavior through alterations in their expression. However, the precise mechanisms underlying the involvement of CLDNs in breast cancer progression remain unclear. This study aimed to investigate the role of CLDN11 in breast cancer progression. Utilizing the TCGA database and clinical specimens from breast cancer patients, we observed reduced expression of CLDN11 in tumor tissues, which correlated with poor prognosis in breast cancer patients. In vitro, silencing of CLDN11 enhanced the proliferative and migratory characteristics of breast cancer cell lines MCF-7 and MDA-MB-231. Mechanistically, CLDN11 deficiency promoted the upregulation of Forkhead Box M1 (FOXM1) by activating the hedgehog signaling pathway, thereby sustaining tumor progression in breast cancer. In vivo, blockade of hedgehog signaling suppressed the tumor progression induced by CLDN11 silencing. Our study highlights the significance of the CLDN11/FOXM1 axis in breast cancer progression, suggesting CLDN11 as a potential diagnostic indicator and therapeutic target for clinical therapy.
Collapse
Affiliation(s)
- Leyi Yang
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China
| | - Xiaoping Wang
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China
| | - Qinghai Lin
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China.
| | - Guoyi Shen
- Department of Thoracic Surgery, Zhangzhou Hospital, Fujian Medical University, Zhangzhou, China
| | - Hong Chen
- Department of Ultrasound, Zhangzhou Hospital, Fujian Medical University, Zhangzhou, China
| |
Collapse
|
4
|
van der Veen RE, Piontek J, Bieck M, Saiti A, Gonschior H, Lehmann M. Claudin-4 polymerizes after a small extracellular claudin-3-like substitution. J Biol Chem 2024; 300:107693. [PMID: 39159821 PMCID: PMC11490706 DOI: 10.1016/j.jbc.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/14/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.
Collapse
Affiliation(s)
- Rozemarijn E van der Veen
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Bieck
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arbesa Saiti
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Gonschior
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Martin Lehmann
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
5
|
Zhao Y, Yao Z, Lu L, Xu S, Sun J, Zhu Y, Wu Y, Yu Z. Carbon monoxide-releasing molecule-3 exerts neuroprotection effects after cardiac arrest in mice: A randomized controlled study. Resusc Plus 2024; 19:100703. [PMID: 39040821 PMCID: PMC11260602 DOI: 10.1016/j.resplu.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Post-cardiac arrest brain injury (PCABI) is the leading cause of death in survivors of cardiac arrest (CA). Carbon monoxide-releasing molecule (CORM-3) is a water-soluble exogenous carbon monoxide that has been shown to have neuroprotection benefits in several neurological disease models. However, the effects of CORM-3 on PCABI is still unclear. Methods A mice model combined asystole with hemorrhage was used. Mice were anesthetized and randomized into 4 groups (n = 12/group) and underwent either 9.5 min CA followed by cardiopulmonary resuscitation (CPR) or sham surgery. CORM-3 (30 mg/kg) or vehicle (normal saline) were administered at 1 h after return of spontaneous circulation or sham surgery. Survival, neurologic deficits, alterations in the permeability of the brain-blood barrier and cerebral blood flow, changes of oxidative stress level, level of neuroinflammation and neuronal degeneration, and the activation of Nrf2/HO-1 signaling pathway were measured. Results In CORM-3 treated mice that underwent CA/CPR, significantly improved survival (75.00% vs. 58.33%, P = 0.0146 (24 h) and 66.67% vs. 16.67%, P < 0.0001 (72 h)) and neurological function were observed at 24 h and 72 h after ROSC (P < 0.05 for each). Additionally, increased cerebral blood flow, expression of tight junctions, and reduced reactive oxygen species generation at 24 h after ROSC were observed (P < 0.05 for each). CORM-3 treated mice had less neuron death and alleviated neuroinflammation at 72 h after ROSC (P < 0.05 for each). Notably, the Nrf2/HO-1 signaling pathway was significantly activated in mice subjected to CA/CPR with CORM-3 treatment. Conclusions CORM-3 could improve survival and exert neuroprotection after CA/CPR in mice. CORM-3 may be a novel and promising pharmacological therapy for PCABI.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
7
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab 2024; 326:E791-E806. [PMID: 38630049 DOI: 10.1152/ajpendo.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease and affects approximately 40% of individuals with diabetes . Cases of DKD continue to rise globally as the prevalence of diabetes mellitus increases, with an estimated 415 million people living with diabetes in 2015 and a projected 642 million by 2040. DKD is associated with significant morbidity and mortality, representing 34% and 36% of all chronic kidney disease deaths in men and women, respectively. Common comorbidities including hypertension and ageing-related nephron loss further complicate disease diagnosis and progression. The progression of DKD involves several mechanisms including glomerular endothelial cell dysfunction, inflammation, and fibrosis. Targeting these mechanisms has formed the basis of several therapeutic agents. Renin-angiotensin-aldosterone system (RAAS) blockers, specifically angiotensin receptor blockers (ARBs), demonstrate significant reductions in macroalbuminuria. Sodium-glucose transporter type 2 (SGLT-2) inhibitors demonstrate kidney protection independent of diabetes control while also decreasing the incidence of cardiovascular events. Emerging agents including glucagon-like peptide 1 (GLP-1) agonists, anti-inflammatory agents like bardoxolone, and mineralocorticoid receptor antagonists show promise in mitigating DKD progression. Many novel therapies including monoclonal antibodies CSL346, lixudebart, and tozorakimab; mesenchymal stem/stromal cell infusion; and cannabinoid-1 receptor inverse agonism via INV-202 are currently in clinical trials and present opportunities for further drug development.
Collapse
Affiliation(s)
- Shaarav Ghose
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Saichidroopi Korada
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Thomas Cahill
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Rupesh Raina
- Department of Medicine, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, United States
- Department of Nephrology, Akron Children's Hospital, Akron, Ohio, United States
| |
Collapse
|
9
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
10
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
11
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Raya-Sandino A, Lozada-Soto KM, Rajagopal N, Garcia-Hernandez V, Luissint AC, Brazil JC, Cui G, Koval M, Parkos CA, Nangia S, Nusrat A. Claudin-23 reshapes epithelial tight junction architecture to regulate barrier function. Nat Commun 2023; 14:6214. [PMID: 37798277 PMCID: PMC10556055 DOI: 10.1038/s41467-023-41999-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.
Collapse
Affiliation(s)
- Arturo Raya-Sandino
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | | | - Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Guiying Cui
- Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
14
|
Telgenhoff D. Claudin-2 in hyperproliferative migrating keratinocytes and migration inhibition via siRNA knockdown. Anat Histol Embryol 2023; 52:723-731. [PMID: 37147871 DOI: 10.1111/ahe.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Claudin-2 is a tight junction protein found in various tissues including the epidermis of the skin. Intracellular signalling via claudin-2 may have an effect on cell proliferation and migration. While the role of claudin-2 in the epidermis has not been established, here we show an increase in claudin-2 expression in hyperproliferative archival skin samples. To further examine the role of claudin-2 in cell migration we examined its expression in cultured keratinocytes and found it was increased in wound margins in an in vitro scratch test assay. We then used a claudin-2 knockdown assay using small interfering ribonucleic acid (siRNA) with a 77% transfection efficiency and decrease in claudin-2 protein via Western blot analysis to examine cell migration, which was inhibited following claudin-2 knockdown over a 5-day period. Cells transfected with claudin-2 siRNA also showed a decreased size compared to controls and a more diffuse staining pattern. Lastly we examined claudin-2 expression in migrating keratinocytes by Western blot analysis and found a significant decrease in protein staining in scratch-test assay cultures after 4 h, followed by a significant increase in claudin-2 protein after 24 h. Taken together these results indicate a role for claudin-2 signalling in proliferation and cell migration in the epidermis of the skin.
Collapse
Affiliation(s)
- Dale Telgenhoff
- Clinical and Diagnostic Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
15
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
16
|
van der Krogt JMA, van der Meulen IJE, van Buul JD. Spatiotemporal regulation of Rho GTPase signaling during endothelial barrier remodeling. CURRENT OPINION IN PHYSIOLOGY 2023; 34:None. [PMID: 37547802 PMCID: PMC10398679 DOI: 10.1016/j.cophys.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The vasculature is characterized by a thin cell layer that comprises the inner wall of all blood vessels, the continuous endothelium. Endothelial cells can also be found in the eye's cornea. And even though cornea and vascular endothelial (VE) cells differ from each other in structure, they both function as barriers and express similar junctional proteins such as the adherens junction VE-cadherin and tight-junction member claudin-5. How these barriers are controlled to maintain the barrier and thereby its integrity is of major interest in the development of potential therapeutic targets. An important target of endothelial barrier remodeling is the actin cytoskeleton, which is centrally coordinated by Rho GTPases that are in turn regulated by Rho-regulatory proteins. In this review, we give a brief overview of how Rho-regulatory proteins themselves are spatiotemporally regulated during the process of endothelial barrier remodeling. Additionally, we propose a roadmap for the comprehensive dissection of the Rho GTPase signaling network in its entirety.
Collapse
Affiliation(s)
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
18
|
Costa FG, Gomes CC, Adolfi MC, da Cruz Gallo de Carvalho MC, Zanoni MA, Seiva FRF, Borella MI. New approaches concerning the testis of Astyanax lacustris (Characidae): immunohistochemical studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:543-556. [PMID: 37140738 DOI: 10.1007/s10695-023-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Astyanax lacustris, locally known as lambari-do-rabo-amarelo, is a study model for Neotropical fish. Testis of A. lacustris shows deep morphophysiological changes throughout the annual reproductive cycle. This work analyzed the distribution of claudin-1, actin, and cytokeratin as elements of the cytoskeleton in germinal epithelium and interstitium; the distribution of type I collagen, fibronectin, and laminin as extracellular matrix compounds; and the localization of androgen receptor in the testis of this species. Claudin-1, cytokeratin, and actin were present in the Sertoli cells and modified Sertoli cells, and actin was also detected in peritubular myoid cells. Type I collagen were in the interstitial tissue, laminin in the basement membrane of germinal epithelium and endothelium, but fibronectin was additionally detected in the germinal epithelium compartment. The labeling of androgen receptor was higher in peritubular myoid cells and undifferentiated spermatogonia, and weaker labeling was detected in type B spermatogonia. Therefore, the present work highlights new aspects of the biology of the testis of A. lacustris, and contribute to amplify the understanding of this organ.
Collapse
Affiliation(s)
- Fabiano Gonçalves Costa
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil.
| | - Chayrra Chehade Gomes
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| | - Mateus Contar Adolfi
- Developmental Biochemistry, University of Wuerzburg, Biocenter, Wuerzburg, Germany
| | | | - Marco Antônio Zanoni
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil
| | | | - Maria Inês Borella
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| |
Collapse
|
19
|
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining central nervous system (CNS) homeostasis. An intact BBB protects the brain from undesired compounds and proteins from the blood; however, BBB impairment is involved in various pathological conditions including stroke. In vivo evaluation of BBB integrity in the post-stroke brain is important for investigating stroke-induced CNS pathogenesis and developing CNS-targeted therapeutic agents. In this chapter, we describe both quantitative and morphometric methods and tools to evaluate BBB integrity in vivo. These methods do not require expensive magnetic resonance imaging (MRI) and computed tomography (CT) imaging capabilities and can be conducted in research laboratories with access to a confocal microscope and fluorescence microplate reader.
Collapse
|
20
|
Furuse M, Nakatsu D, Hempstock W, Sugioka S, Ishizuka N, Furuse K, Sugawara T, Fukazawa Y, Hayashi H. Reconstitution of functional tight junctions with individual claudin subtypes in epithelial cells. Cell Struct Funct 2023; 48:1-17. [PMID: 36504093 PMCID: PMC10721951 DOI: 10.1247/csf.22068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The claudin family of membrane proteins is responsible for the backbone structure and function of tight junctions (TJs), which regulate the paracellular permeability of epithelia. It is thought that each claudin subtype has its own unique function and the combination of expressed subtypes determines the permeability property of each epithelium. However, many issues remain unsolved in regard to claudin functions, including the detailed functional differences between claudin subtypes and the effect of the combinations of specific claudin subtypes on the structure and function of TJs. To address these issues, it would be useful to have a way of reconstituting TJs containing only the claudin subtype(s) of interest in epithelial cells. In this study, we attempted to reconstitute TJs of individual claudin subtypes in TJ-deficient MDCK cells, designated as claudin quinKO cells, which were previously established from MDCK II cells by deleting the genes of claudin-1, -2, -3, -4, and -7. Exogenous expression of each of claudin-1, -2, -3, -4, and -7 in claudin quinKO cells resulted in the reconstitution of functional TJs. These TJs did not contain claudin-12 and -16, which are endogenously expressed in claudin quinKO cells. Furthermore, overexpression of neither claudin-12 nor claudin-16 resulted in the reconstitution of TJs, demonstrating the existence of claudin subtypes lacking TJ-forming activity in epithelial cells. Exogenous expression of the channel-forming claudin-2, -10a, -10b, and -15 reconstituted TJs with reported paracellular channel properties, demonstrating that these claudin subtypes form paracellular channels by themselves without interaction with other subtypes. Thus, the reconstitution of TJs in claudin quinKO cells is advantageous for further investigation of claudin functions.Key words: tight junction, claudin, paracellular permeability, epithelial barrier.
Collapse
Affiliation(s)
- Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Wendy Hempstock
- Department of Nursing, School of Nursing, University of Shizuoka, Shizuoka, Japan
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shiori Sugioka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Life Science Innovation Center, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
22
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
23
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
24
|
Fujiwara S, Nguyen TP, Furuse K, Fukazawa Y, Otani T, Furuse M. Tight junction formation by a claudin mutant lacking the COOH-terminal PDZ domain-binding motif. Ann N Y Acad Sci 2022; 1516:85-94. [PMID: 35945631 DOI: 10.1111/nyas.14881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Claudin-based tight junctions (TJs) are formed at the most apical part of cell-cell contacts in epithelial cells. Previous studies suggest that scaffolding proteins ZO-1 and ZO-2 (ZO proteins) determine the location of TJs by interacting with claudins, but this idea is not conclusive. To address the role of the ZO proteins binding to claudins at TJs, a COOH-terminal PDZ domain binding motif-deleted claudin-3 mutant, which lacks the ZO protein binding, was stably expressed in claudin-deficient MDCK cells. The COOH-terminus-deleted claudin-3 was localized at the apicolateral region similar to full-length claudin-3. Consistently, freeze-fracture electron microscopy revealed that the COOH-terminus-deleted claudin-3-expressing cells reconstituted belts of TJs at the most apical region of the lateral membrane and restored functional epithelial barriers. These results suggest that the interaction of claudins with ZO proteins is not a prerequisite for TJ formation at the most apical part of cell-cell contacts.
Collapse
Affiliation(s)
- Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
25
|
Fuladi S, McGuinness S, Khalili-Araghi F. Role of TM3 in claudin-15 strand flexibility: A molecular dynamics study. Front Mol Biosci 2022; 9:964877. [PMID: 36250014 PMCID: PMC9557151 DOI: 10.3389/fmolb.2022.964877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Claudins are cell-cell adhesion proteins within tight junctions that connect epithelial cells together. Claudins polymerize into a network of strand-like structures within the membrane of adjoining cells and create ion channels that control paracellular permeability to water and small molecules. Tight junction morphology and barrier function is tissue specific and regulated by claudin subtypes. Here, we present a molecular dynamics study of claudin-15 strands within lipid membranes and the role of a single-point mutation (A134P) on the third transmembrane helix (TM3) of claudin-15 in determining the morphology of the strand. Our results indicate that the A134P mutation significantly affects the lateral flexibility of the strands, increasing the persistence length of claudin-15 strands by a factor of three. Analyses of claudin-claudin contact in our μsecond-long trajectories show that the mutation does not alter the intermolecular contacts (interfaces) between claudins. However, the dynamics and frequency of interfacial contacts are significantly affected. The A134P mutation introduces a kink in TM3 of claudin-15 similar to the one observed in claudin-3 crystal structure. The kink on TM3 skews the rotational flexibility of the claudins in the strands and limits their fluctuation in one direction. This asymmetric movement in the context of the double rows reduces the lateral flexibility of the strand and leads to higher persistence lengths of the mutant.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
26
|
Rajagopal N, Nangia S. Unique structural features of claudin‐5 and claudin‐15 lead to functionally distinct tight junction strand architecture. Ann N Y Acad Sci 2022; 1517:225-233. [DOI: 10.1111/nyas.14891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York USA
| |
Collapse
|
27
|
Saito AC, Endo C, Fukazawa Y, Higashi T, Chiba H. Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells. Ann N Y Acad Sci 2022; 1517:234-250. [PMID: 36069127 DOI: 10.1111/nyas.14889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)-associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy-terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple-gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double-gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy-terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy-terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy-terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.
Collapse
Affiliation(s)
- Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Chisato Endo
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
28
|
Gonschior H, Schmied C, Van der Veen RE, Eichhorst J, Himmerkus N, Piontek J, Günzel D, Bleich M, Furuse M, Haucke V, Lehmann M. Nanoscale segregation of channel and barrier claudins enables paracellular ion flux. Nat Commun 2022; 13:4985. [PMID: 36008380 PMCID: PMC9411157 DOI: 10.1038/s41467-022-32533-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions. Meshworks of claudin polymers control the paracellular transport and barrier properties of epithelial tight junctions. Here, the authors show different claudin nanoscale organization principles, finding that claudin segregation enables barrier formation and paracellular ion flux across tight junctions.
Collapse
Affiliation(s)
- Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | | | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
| |
Collapse
|
29
|
di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022; 11:cells11162617. [PMID: 36010692 PMCID: PMC9406415 DOI: 10.3390/cells11162617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.
Collapse
|
30
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
31
|
Chen Y, Wei E, Chen Y, He P, Wang R, Wang Q, Tang X, Zhang Y, Zhu F, Shen Z. Identification and subcellular localization analysis of membrane protein Ycf 1 in the microsporidian Nosema bombycis. PeerJ 2022; 10:e13530. [PMID: 35833014 PMCID: PMC9272817 DOI: 10.7717/peerj.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that can infect a wide range of vertebrates and invertebrates including humans and insects, such as silkworm and bees. The microsporidium Nosema bombycis can cause pebrine in Bombyx mori, which is the most destructive disease in the sericulture industry. Although membrane proteins are involved in a wide range of cellular functions and part of many important metabolic pathways, there are rare reports about the membrane proteins of microsporidia up to now. We screened a putative membrane protein Ycf 1 from the midgut transcriptome of the N. bombycis-infected silkworm. Gene cloning and bioinformatics analysis showed that the Ycf 1 gene contains a complete open reading frame (ORF) of 969 bp in length encoding a 322 amino acid polypeptide that has one signal peptide and one transmembrane domain. Indirect immunofluorescence results showed that Ycf 1 protein is distributed on the plasma membrane. Expression pattern analysis showed that the Ycf 1 gene expressed in all developmental stages of N. bombycis. Knockdown of the Ycf 1 gene by RNAi effectively inhibited the proliferation of N. bombycis. These results indicated that Ycf 1 is a membrane protein and plays an important role in the life cycle of N. bombycis.
Collapse
Affiliation(s)
- Yong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Erjun Wei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ying Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Runpeng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Yiling Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, Shangdong, China
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| |
Collapse
|
32
|
Wang JK, Wei W, Zhao DY, Wang HF, Zhang YL, Lei JP, Yao SK. Intestinal mucosal barrier in functional constipation: Dose it change? World J Clin Cases 2022; 10:6385-6398. [PMID: 35979313 PMCID: PMC9294902 DOI: 10.12998/wjcc.v10.i19.6385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The intestinal mucosal barrier is the first line of defense against numerous harmful substances, and it contributes to the maintenance of intestinal homeostasis. Recent studies reported that structural and functional changes in the intestinal mucosal barrier were involved in the pathogenesis of several intestinal diseases. However, no study thoroughly evaluated this barrier in patients with functional constipation (FC). AIM To investigate the intestinal mucosal barrier in FC, including the mucus barrier, intercellular junctions, mucosal immunity and gut permeability. METHODS Forty FC patients who fulfilled the Rome IV criteria and 24 healthy controls were recruited in the Department of Gastroenterology of China-Japan Friendship Hospital. The colonic mucus barrier, intercellular junctions in the colonic epithelium, mucosal immune state and gut permeability in FC patients were comprehensively examined. Goblet cells were stained with Alcian Blue/Periodic acid Schiff (AB/PAS) and counted. The ultrastructure of intercellular junctional complexes was observed under an electron microscope. Occludin and zonula occludens-1 (ZO-1) in the colonic mucosa were located and quantified using immunohistochemistry and quantitative real-time polymerase chain reaction. Colonic CD3+ intraepithelial lymphocytes (IELs) and CD3+ lymphocytes in the lamina propria were identified and counted using immunofluorescence. The serum levels of D-lactic acid and zonulin were detected using enzyme-linked immunosorbent assay. RESULTS Compared to healthy controls, the staining of mucus secreted by goblet cells was darker in FC patients, and the number of goblet cells per upper crypt in the colonic mucosa was significantly increased in FC patients (control, 18.67 ± 2.99; FC, 22.42 ± 4.09; P = 0.001). The intercellular junctional complexes in the colonic epithelium were integral in FC patients. The distribution of mucosal occludin and ZO-1 was not altered in FC patients. No significant differences were found in occludin (control, 5.76E-2 ± 1.62E-2; FC, 5.17E-2 ± 1.80E-2; P = 0.240) and ZO-1 (control, 2.29E-2 ± 0.93E-2; FC, 2.68E-2 ± 1.60E-2; P = 0.333) protein expression between the two groups. The mRNA levels in occludin and ZO-1 were not modified in FC patients compared to healthy controls (P = 0.145, P = 0.451, respectively). No significant differences were observed in the number of CD3+ IELs per 100 epithelial cells (control, 5.62 ± 2.06; FC, 4.50 ± 2.16; P = 0.070) and CD3+ lamina propria lymphocytes (control, 19.69 ± 6.04/mm2; FC, 22.70 ± 11.38/mm2; P = 0.273). There were no significant differences in serum D-lactic acid [control, 5.21 (4.46, 5.49) mmol/L; FC, 4.63 (4.31, 5.42) mmol/L; P = 0.112] or zonulin [control, 1.36 (0.53, 2.15) ng/mL; FC, 0.94 (0.47, 1.56) ng/mL; P = 0.185] levels between FC patients and healthy controls. CONCLUSION The intestinal mucosal barrier in FC patients exhibits a compensatory increase in goblet cells and integral intercellular junctions without activation of mucosal immunity or increased gut permeability.
Collapse
Affiliation(s)
- Jun-Ke Wang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Wei
- Department of Clinical Nutrition and Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong-Yan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui-Fen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Li Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie-Ping Lei
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
33
|
Hempel C, Rosenthal R, Fromm A, Krug SM, Fromm M, Günzel D, Piontek J. Tight junction channels claudin-10b and claudin-15: Functional mapping of pore-lining residues. Ann N Y Acad Sci 2022; 1515:129-142. [PMID: 35650657 DOI: 10.1111/nyas.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although functional and structural models for paracellular channels formed by claudins have been reported, mechanisms regulating charge and size selectivity of these channels are unknown in detail. Here, claudin-15 and claudin-10b cation channels showing high-sequence similarity but differing channel properties were analyzed. Mutants of pore-lining residues were expressed in MDCK-C7 cells. In claudin-15, proposed ion interaction sites (D55 and E64) conserved between both claudins were neutralized. D55N and E64Q substitutions decreased ion permeabilities, and D55N/E64Q had partly additive effects. D55N increased cation dehydration capability and decreased pore diameter. Additionally, residues differing between claudin-15 and -10b close to pore center were analyzed. Claudin-10b-mimicking W63K affected neither assembly nor function of claudin-15 channels. In contrast, in claudin-10b, corresponding (claudin-15b-mimicking) K64W and K64M substitutions disturbed integration into tight junction and slightly altered relative permeabilities for differently sized monovalent cations. Removal of claudin-10b-specific negative charge (D36A substitution) was without effect. The data suggest that a common tetra-aspartate ring (D55/D56) in pore center of claudin-15/-10b channels directly attracts cations, while E64/D65 may be at least partly shielded by W63/K64. Charge at position W63/K64 affects assembly and properties for claudin-10b but not for claudin-15 channels. Our findings add to the mechanistic understanding of the determinants of paracellular cation permeability.
Collapse
Affiliation(s)
- Caroline Hempel
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
35
|
Feng J, Xu Y, Wei Z, Xia Y, Zhang H, Shen C, Wang P, Yan W, Fang D, Fang Y. Capsaicin inhibits migration and invasion via inhibiting epithelial-mesenchymal transition in esophageal squamous cell carcinoma by up-regulation of claudin-3 expression. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
36
|
del Zoppo GJ, Moskowitz MA, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
38
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Ahn JC, Hwang SJ, Lee HJ, Kim KW. Claudin-5a knockdown attenuates blood-neural barrier in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109176. [PMID: 34500089 DOI: 10.1016/j.cbpc.2021.109176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Mammalian claudin-5 (cldn5), a zebrafish cldn5a homolog, is essential to blood-brain barrier (BBB) integrity. Previously, the existence of an endothelial tight junction-based BBB with cldn5a expression in the cerebral microvessels was reported in zebrafish. However, the role of cldn5a in the cerebral microvessels of developing zebrafish has not been elucidated. Here, we further investigated the functional integrity of cldn5a in developing zebrafish by injecting cldn5a morpholinos. At 7 days post-fertilization, cldn5a immunoreactivity was detected on the brain surface, ventricular ependyma, and cerebral mircovessels but disappeared following cldna5a knockdown. Cldn5a morphants showed size-selective leakage of tracers through the BBB and downregulated expression of glucose transporter 1 (glut1) in the cerebral microvessels. In addition, leakiness in the blood-cerebrospinal fluid barrier was observed, implying the overall abnormal development of blood-neural barriers. The results of our study suggest that cldn5a is required for building and maintaining the blood-neural barrier during zebrafish development.
Collapse
Affiliation(s)
- Jong-Chan Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea.
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
40
|
Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, Gee CC, Vecchio A, Dhawan P, Kievit FM. Claudin-1-Targeted Nanoparticles for Delivery to Aging-Induced Alterations in the Blood-Brain Barrier. ACS NANO 2021; 15:18520-18531. [PMID: 34748307 PMCID: PMC9079187 DOI: 10.1021/acsnano.1c08432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aging-induced alterations to the blood-brain barrier (BBB) are increasingly being seen as a primary event in chronic progressive neurological disorders that lead to cognitive decline. With the goal of increasing delivery into the brain in hopes of effectively treating these diseases, a large focus has been placed on developing BBB permeable materials. However, these strategies have suffered from a lack of specificity toward regions of disease progression. Here, we report on the development of a nanoparticle (C1C2-NP) that targets regions of increased claudin-1 expression that reduces BBB integrity. Using dynamic contrast enhanced magnetic resonance imaging, we find that C1C2-NP accumulation and retention is significantly increased in brains from 12 month-old mice as compared to nontargeted NPs and brains from 2 month-old mice. Furthermore, we find C1C2-NP accumulation in brain endothelial cells with high claudin-1 expression, suggesting target-specific binding of the NPs, which was validated through fluorescence imaging, in vitro testing, and biophysical analyses. Our results further suggest a role of claudin-1 in reducing BBB integrity during aging and show altered expression of claudin-1 can be actively targeted with NPs. These findings could help develop strategies for longitudinal monitoring of tight junction protein expression changes during aging as well as be used as a delivery strategy for site-specific delivery of therapeutics at these early stages of disease development.
Collapse
Affiliation(s)
- Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Aria W. Tarudji
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Alex Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, NE, 68588-0664, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68198-5527, USA
- Buffet Cancer Center, Omaha, NE, 68198-5527, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| |
Collapse
|
41
|
Ablation of Red Stable Transfected Claudin Expressing Canine Prostate Adenocarcinoma and Transitional Cell Carcinoma Cell Lines by C-CPE Gold-Nanoparticle-Mediated Laser Intervention. Int J Mol Sci 2021; 22:ijms222212289. [PMID: 34830170 PMCID: PMC8618062 DOI: 10.3390/ijms222212289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Claudin (CLDN) proteins are commonly expressed in cancers and targeted in novel therapeutic approaches. The C-terminal of Clostridium perfringens enterotoxin (C-CPE) efficiently binds several claudins. In this study, recombinant C-CPE conjugated to gold nanoparticles (AuNPs) has been used for prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) cell killing in vitro using gold-nanoparticle-mediated laser perforation (GNOME-LP). A PAC and TCC cell lines, as well as red fluorescence variants, allowing deep tissue imaging, were used. CLDN-3, -4, and -7 expression was confirmed by qPCR and immunofluorescences. The binding of C-CPE-AuNPs complexes on the cell surface was examined by scanning electron microscopy (SEM). Further, transcriptome analysis was carried out to evaluate the effect of C-CPE binder on the biological response of treated cells. Directed C-CPE-AuNP binding verified the capability to target CLDN receptors. Transcriptome analysis showed that C-CPE binding may activate immune and inflammatory responses but does not directly affect cell survival. Cancer cells ablation was demonstrated using a combination of GNOME-LP and C-CPE-AuNPs treatment reducing tumor cell viability to less than 10% depending on cell line. The fluorescent cell lines and the verified proof of concept in vitro provide the basis for perspective xenograft studies in an animal model.
Collapse
|
42
|
Claudin-9 constitutes tight junctions of folliculo-stellate cells in the anterior pituitary gland. Sci Rep 2021; 11:21642. [PMID: 34737342 PMCID: PMC8568902 DOI: 10.1038/s41598-021-01004-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
The anterior pituitary gland regulates growth, metabolism, and reproduction by secreting hormones. Folliculo-stellate (FS) cells are non-endocrine cells located among hormone-producing cells in the anterior pituitary glands. They form follicular lumens, which are sealed by tight junctions (TJs). Although FS cells are hypothesized to contribute to fine-tuning of endocrine cells, little is known about the exact roles of FS cells. Here, we investigated the molecular composition of TJs in FS cells. We demonstrated that occludin is a good marker for TJs in the pituitary gland and examined the structure of the lumens surrounded by FS cells. We also found that claudin-9 is a major component of TJs in the FS cells. In immunoelectron microscopy, claudin-9 was specifically localized at TJs of the FS cells. The expression of claudin-9 was gradually increased in the pituitary gland after birth, suggesting that claudin-9 is developmentally regulated and performs some specific functions on the paracellular barrier of follicles in the pituitary gland. Furthermore, we found that angulin-1, angulin-2, and tricellulin are localized at the tricellular contacts of the FS cells. Our findings provide a first comprehensive molecular profile of TJs in the FS cells, and may lead us towards unveiling the FS cell functions.
Collapse
|
43
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
44
|
Towner RA, Saunders D, Lerner M, Silasi Mansat R, Yuan T, Barber D, Faakye J, Nyul-Toth A, Csiszar A, Greenwood-Van Meerveld B, Smith N. Temporary opening of the blood-brain barrier with the nitrone compound OKN-007. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:363-373. [PMID: 34754607 PMCID: PMC8569329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (β-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
- Department of Neuroscience Program, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Megan Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | | | - Tian Yuan
- Department of Physiology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Dylan Barber
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Janet Faakye
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
- Department of Neuroscience Program, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Adam Nyul-Toth
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH)Szeged, Hungary
| | - Anna Csiszar
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
- Department of Neuroscience Program, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | | | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| |
Collapse
|
45
|
Panwar S, Sharma S, Tripathi P. Role of Barrier Integrity and Dysfunctions in Maintaining the Healthy Gut and Their Health Outcomes. Front Physiol 2021; 12:715611. [PMID: 34630140 PMCID: PMC8497706 DOI: 10.3389/fphys.2021.715611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.
Collapse
Affiliation(s)
- Shruti Panwar
- Infection and Immunology, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
46
|
Sugawara T, Furuse K, Otani T, Wakayama T, Furuse M. Angulin-1 seals tricellular contacts independently of tricellulin and claudins. J Cell Biol 2021; 220:e202005062. [PMID: 34269802 PMCID: PMC8289698 DOI: 10.1083/jcb.202005062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1-deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The C terminus of angulin-1 bound to the TJ scaffold protein ZO-1, and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.
Collapse
Affiliation(s)
- Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| |
Collapse
|
47
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
48
|
Ayala-Torres C, Krug SM, Rosenthal R, Fromm M. Angulin-1 (LSR) Affects Paracellular Water Transport, However Only in Tight Epithelial Cells. Int J Mol Sci 2021; 22:ijms22157827. [PMID: 34360593 PMCID: PMC8346120 DOI: 10.3390/ijms22157827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Water transport in epithelia occurs transcellularly (aquaporins) and paracellularly (claudin-2, claudin-15). Recently, we showed that downregulated tricellulin, a protein of the tricellular tight junction (tTJ, the site where three epithelial cells meet), increased transepithelial water flux. We now check the hypothesis that another tTJ-associated protein, angulin-1 (alias lipolysis-stimulated lipoprotein receptor, LSR) is a direct negative actuator of tTJ water permeability depending on the tightness of the epithelium. For this, a tight and an intermediate-tight epithelial cell line, MDCK C7 and HT-29/B6, were stably transfected with CRISPR/Cas9 and single-guide RNA targeting angulin-1 and morphologically and functionally characterized. Water flux induced by an osmotic gradient using 4-kDa dextran caused water flux to increase in angulin-1 KO clones in MDCK C7 cells, but not in HT-29/B6 cells. In addition, we found that water permeability in HT-29/B6 cells was not modified after either angulin-1 knockout or tricellulin knockdown, which may be related to the presence of other pathways, which reduce the impact of the tTJ pathway. In conclusion, modulation of the tTJ by knockout or knockdown of tTJ proteins affects ion and macromolecule permeability in tight and intermediate-tight epithelial cell lines, while the transepithelial water permeability was affected only in tight cell lines.
Collapse
|
49
|
Ramzan M, Philippe C, Belyantseva IA, Nakano Y, Fenollar-Ferrer C, Tona R, Yousaf R, Basheer R, Imtiaz A, Faridi R, Munir Z, Idrees H, Salman M, Nambot S, Vitobello A, Kartti S, Zarrik O, Witmer PD, Sobreria N, Ibrahimi A, Banfi B, Moutton S, Friedman TB, Naz S. Variants of human CLDN9 cause mild to profound hearing loss. Hum Mutat 2021; 42:1321-1335. [PMID: 34265170 DOI: 10.1002/humu.24260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Hereditary deafness is clinically and genetically heterogeneous. We investigated deafness segregating as a recessive trait in two families. Audiological examinations revealed an asymmetric mild to profound hearing loss with childhood or adolescent onset. Exome sequencing of probands identified a homozygous c.475G>A;p.(Glu159Lys) variant of CLDN9 (NM_020982.4) in one family and a homozygous c.370_372dupATC;p.(Ile124dup) CLDN9 variant in an affected individual of a second family. Claudin 9 (CLDN9) is an integral membrane protein and constituent of epithelial bicellular tight junctions (TJs) that form semipermeable, paracellular barriers between inner ear perilymphatic and endolymphatic compartments. Computational structural modeling predicts that substitution of a lysine for glutamic acid p.(Glu159Lys) alters one of two cis-interactions between CLDN9 protomers. The p.(Ile124dup) variant is predicted to locally misfold CLDN9 and mCherry tagged p.(Ile124dup) CLDN9 is not targeted to the HeLa cell membrane. In situ hybridization shows that mouse Cldn9 expression increases from embryonic to postnatal development and persists in adult inner ears coinciding with prominent CLDN9 immunoreactivity in TJs of epithelia outlining the scala media. Together with the Cldn9 deaf mouse and a homozygous frameshift of CLDN9 previously associated with deafness, the two bi-allelic variants of CLDN9 described here point to CLDN9 as a bona fide human deafness gene.
Collapse
Affiliation(s)
- Memoona Ramzan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan.,Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Christophe Philippe
- UF Innovation en Diagnostic Genomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoko Nakano
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA.,Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA.,Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rasheeda Basheer
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Zunaira Munir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Hafiza Idrees
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Midhat Salman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Sophie Nambot
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France.,Department of Medical Genetics, Reference Center for Developmental Anomalies, Dijon University Hospital, Dijon, France
| | - Antonio Vitobello
- UF Innovation en Diagnostic Genomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Souad Kartti
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Oumaima Zarrik
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Genomics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreria
- Johns Hopkins Genomics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Botond Banfi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA.,Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sebastien Moutton
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France.,Department of Medical Genetics, Reference Center for Developmental Anomalies, Dijon University Hospital, Dijon, France
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| |
Collapse
|
50
|
Popova OP, Kuznetsova AV, Bogomazova SY, Ivanov AA. Claudins as biomarkers of differential diagnosis and prognosis of tumors. J Cancer Res Clin Oncol 2021; 147:2803-2817. [PMID: 34241653 DOI: 10.1007/s00432-021-03725-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Claudins are a superfamily of transmembrane proteins, the optimal expression and localization of which are important for the normal physiological function of the epithelium and any imbalance may have pathological consequences. Not only insufficient but also excessive production of claudins in cancer cells, as well as their aberrant localization, equally manifest the formation of a malignant phenotype. Many works are distinguished by contradictory data, which demonstrate the action of the same claudins both in the role of tumor-growth suppressors and promoters in the same cancers. The most important possible causes of significant discrepancies in the results of the works are a considerable variability of sampling and the absence of a consistent approach both to the assessment of the immune reactivity of claudins and to the differential analysis of their subcellular localization. Combined, these drawbacks hinder the histological assessment of the link between claudins and tumor progression. In particular, ambiguous expression of claudins in breast cancer subtypes, revealed by various authors in immunohistochemical analysis, not only fails to facilitate the identification of the claudin-low molecular subtype but rather complicates these efforts. Research into the role of claudins in carcinogenesis has undoubtedly confirmed the potential value of this class of proteins as significant biomarkers in some cancer types; however, the immunohistochemical approach to the assessment of claudins still has limitations, needs standardization, and, to date, has not reached a diagnostic or a prognostic value.
Collapse
Affiliation(s)
- Olga P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia
| | - Alla V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Svetlana Yu Bogomazova
- Department of Pathology, National Medical Research Treatment and Rehabilitation Centre, Ministry of Health of the Russian Federation, Ivankovskoe shosse, 3, Moscow, 125367, Russia
| | - Alexey A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.
| |
Collapse
|