1
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
2
|
Henick BS, Taylor AM, Nakagawa H, Wong KK, Diehl JA, Rustgi AK. Squamous cell cancers of the aero-upper digestive tract: A unified perspective on biology, genetics, and therapy. Cancer Cell 2025; 43:178-194. [PMID: 39933897 PMCID: PMC11875029 DOI: 10.1016/j.ccell.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Squamous cell cancers (SCCs) of the head and neck, esophagus, and lung, referred to as aero-upper digestive SCCs, are prevalent in the United States and worldwide. Their incidence and mortality are projected to increase at alarming rates, posing diagnostic, prognostic, and therapeutic challenges. These SCCs share certain epigenetic, genomic, and genetic alterations, immunologic properties, environmental exposures, as well as lifestyle and nutritional risk factors, which may underscore common complex gene-environmental interactions across them. This review focuses upon the frequent shared epigenetic, genomic, and genetic alterations, emerging preclinical model systems, and how this collective knowledge can be leveraged into perspectives on standard of care therapies and mechanisms of resistance, nominating new potential directions in translational therapeutics.
Collapse
Affiliation(s)
- Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Hematology-Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology-Oncology, Department of Medicine, NYU Perlmutter Cancer Center, New York, NY, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Chan C, Jansen JHM, Hendriks IST, van der Peet IC, Verdonschot MEL, Passchier EM, Tsioumpekou M, Nederend M, Klomp SA, Valerius T, Peipp M, Leusen JHW, Olofsen PA. Enhancing Neutrophil Cytotoxicity of a Panel of Clinical EGFR Antibodies by Fc Engineering to IgA3.0. Mol Cancer Ther 2024; 23:1317-1331. [PMID: 38958494 DOI: 10.1158/1535-7163.mct-24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
EGFR plays an essential role in cellular signaling pathways that regulate cell growth, proliferation, and survival and is often dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years, which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and inducing Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, which are the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition, and ligand blockade. In addition, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared with their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We showed that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared with the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J H Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ilona S T Hendriks
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ida C van der Peet
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meggy E L Verdonschot
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elsemieke M Passchier
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sharon A Klomp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Al-brechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Wang D, Ruan Z, Wang R, Ma L, Tang S, Wang X, Ma A. Decoding the mechanism of earthworm extract against wounds: an integrated metabolomics and network pharmacology study. Mol Divers 2024; 28:631-647. [PMID: 36705857 DOI: 10.1007/s11030-023-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Earthworms are used to cure wounds in Chinese villages for thousands of years. Recently, scientists realized their extracts could promote wound healing and they have anti-inflammatory, antioxidant, anti-apoptosis, and anti-microbial properties, but its mechanism of promoting wound healing remains unclear. In the presented study, electronic literature databases and LC-MS/MS were used to determine earthworms' ingredients and differential metabolites. Swiss Target Prediction database was used for ingredients' target prediction and wound disease-relevant genes were found from GeneCards, OMIM, and DrugBank databases. Network pharmacology was conducted to demonstrate filtering hub targets, biological functions, and the signaling pathways of earthworms extract against wounds. Molecular docking and metabolism analysis were used to look for core target genes and key bioactive molecules from earthworms. Finally, the investigation shows 5 most important signal pathways, 5 core genes, and 6 bioactive ingredients-related cell-cell adhesion, cell proliferation, and cell migration processes could be affected by earthworms' extract. On 3rd day, the extract could regulate HIF1A and EGFR targets to make the differences of quantities of 4-pyridoxate, tetradecanoic acid, and L-kynurenine. While on 7th day, the regulation refers 6 earthworms' bioactive ingredients, 4 core genes (CTNNB1, EGFR, SRC, and CASP3), and 4 differential metabolites (4-hydoxy-2-quinolinecarboxylic acid, urocanate, deoxyinosine, creatine, and sn-glycerol-3-phosphocholine). on 14th day, 2 core genes (EGFR, SRC) are influenced in the biological processes. Briefly, we found that 6 ingredients from earthworms have most bioactive and 5 core genes play an important role in promoting wound-healing processes. These discovers indicates earthworms could against wound via AGE-RAGE, PI3K-Akt, HIF1A, MAPK, and Axon guidance pathways.
Collapse
Affiliation(s)
- Dong Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment, Xianyang, China.
| | - Zhen Ruan
- Xianyang Central Hospital, Xianyang, China
| | - Ruihui Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Ma
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Saiqing Tang
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuejing Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Axue Ma
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
6
|
Martinez-Uribe O, Becker TC, Garman KS. Promises and Limitations of Current Models for Understanding Barrett's Esophagus and Esophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:1025-1038. [PMID: 38325549 PMCID: PMC11041847 DOI: 10.1016/j.jcmgh.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS This review was developed to provide a thorough and effective update on models relevant to esophageal metaplasia, dysplasia, and carcinogenesis, focusing on the advantages and limitations of different models of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). METHODS This expert review was written on the basis of a thorough review of the literature combined with expert interpretation of the state of the field. We emphasized advances over the years 2012-2023 and provided detailed information related to the characterization of established human esophageal cell lines. RESULTS New insights have been gained into the pathogenesis of BE and EAC using patient-derived samples and single-cell approaches. Relevant animal models include genetic as well as surgical mouse models and emphasize the development of lesions at the squamocolumnar junction in the mouse stomach. Rat models are generated using surgical approaches that directly connect the small intestine and esophagus. Large animal models have the advantage of including features in human esophagus such as esophageal submucosal glands. Alternatively, cell culture approaches remain important in the field and allow for personalized approaches, and scientific rigor can be ensured by authentication of cell lines. CONCLUSIONS Research in BE and EAC remains highly relevant given the morbidity and mortality associated with cancers of the tubular esophagus and gastroesophageal junction. Careful selection of models and inclusion of human samples whenever possible will ensure relevance to human health and disease.
Collapse
Affiliation(s)
- Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Thomas C Becker
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
7
|
Rani M, Nath A, Kumer A. In-silico investigations on the anticancer activity of selected 2-aryloxazoline derivatives against breast cancer. J Biomol Struct Dyn 2023; 41:8392-8401. [PMID: 36245134 DOI: 10.1080/07391102.2022.2134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
As the in-silico study has become an important tool to search for new drugs in the concurrent era with towering acceptance and accuracy, it has been employed in our research to unearth effective cancer drugs. Breast cancer has accounted for the most serious diseases for both men and women. Although few research outputs have been obtained on breast cancer, these are not an adequate amount to ascertain new drugs. Due to this gap, virtual screening, in-silico study, and computational techniques have been used to provide the ability to design and select anticancer compounds with desirable drug-like properties of breast cancer protein, which is commonly known as fatty acid synthase. A total of nine derivatives of 2-aryloxazoline compounds were chosen, and In-silico was studied to evaluate as a potential anticancer agent with the comparison of seven Food and Drug Administration(FDA) approved breast cancer drugs. These compounds were subjected to computational studies for quantum calculations, ADME and Lipinski analysis, as well as molecular docking and MD simulations against a variety of therapeutic targets involved in cell proliferation of fatty acid synthase (PDB ID:3TJM, 3ERT, 4OAR, 2J6M). An in-silico docking study reveals that ligands Hit-4, Hit-6, and Hit-8 had the highest docking scores at -10.3 kcal/mol, -10.3 kcal/mol, and -10.2 kcal/mol towards the protein of fatty acid synthase. The ligands had docking scores better than the standard anti-breast cancer drug gefitinib (-5.3 kcal/mole). Our findings demonstrate how crucial it is for pharmaceutical researchers to develop novel drugs for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moly Rani
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Ashutosh Nath
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
- Department of Chemistry, University of Massachusetts Boston, MA, USA
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
8
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
9
|
Mahmoudian RA, Fathi F, Farshchian M, Abbaszadegan MR. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 2023; 65:350-360. [PMID: 35474410 DOI: 10.1007/s12033-022-00490-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.
Collapse
Affiliation(s)
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR) Razavi Khorasan, ACECR Central Building, Ferdowsi University Campus, Mashhad- Azadi Square, Mashhad Branch, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Li H, Zhu X, Zhang W, Lu W, Liu C, Ma J, Zang R, Song Y. Association of High Expression of Mitochondrial Fission Regulator 2 with Poor Survival of Patients with Esophageal Squamous Cell Carcinoma. J Cancer Prev 2021; 26:250-257. [PMID: 35047451 PMCID: PMC8749323 DOI: 10.15430/jcp.2021.26.4.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial fission regulator 2 (MTFR2) is associated with mitochondrial fission, while few studies have assessed the associations between MTFR2 expression and clinical characteristics or prognosis of esophageal squamous cell carcinoma (ESCC). In this study, we compared the expression of MTFR2 in 6 ESCC tumors and relative normal tissues by immunohistochemistry (IHC). To assess the effect of MTFR2 expression on clinicopathologic characteristics and survival, 115 paraffin embedded ESCC tissue samples were assessed by IHC staining. Furthermore, the association between clinicopathological properties and MTFR2 expression in patients with ESCC was examined. The survival analysis was performed using the Cox regression models. We found that MTFR2 expression was significantly increased in ESCC tumors compared with normal esophageal epithelial cells. IHC analysis of 115 paraffin embedded ESCC tumor specimens of the patients showed that the expression of MTFR2 was significantly associated with clinical stage (P < 0.001), tumor classification (P < 0.001), histological grade (P < 0.001), and other clinicopathological characteristics. Both univariate and multivariate analyses showed that MTFR2 expression was inversely correlated with the survival of ESCC patients. In conclusion, the expression of MTFR2 is significantly associated with clinicopathologic characteristics and prognosis of ESCC. Thus, MTFR2 expression could serve as a potentially important prognostic biomarker and clinical target for patients with ESCC.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xingzhuang Zhu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Ma
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
12
|
Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res 2021; 406:112757. [PMID: 34331909 DOI: 10.1016/j.yexcr.2021.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.
Collapse
Affiliation(s)
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | |
Collapse
|
13
|
Chen J, Wang Y, Zhang W, Zhao D, Zhang L, Zhang J, Fan J, Zhan Q. NOX5 mediates the crosstalk between tumor cells and cancer-associated fibroblasts via regulating cytokine network. Clin Transl Med 2021; 11:e472. [PMID: 34459125 PMCID: PMC8329696 DOI: 10.1002/ctm2.472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and lactate from tumor cells. Subsequently, TNF-α, IL-1β, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-β1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
14
|
Hwang SJ, Kim SH, Seo WY, Jeong Y, Shin MC, Ryu D, Lee SB, Choi YJ, Kim K. Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts. BMB Rep 2021. [PMID: 34078526 PMCID: PMC8249875 DOI: 10.5483/bmbrep.2021.54.6.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.
Collapse
Affiliation(s)
| | - Su Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | | | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Min Cheol Shin
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
15
|
Sachdeva UM, Shimonosono M, Flashner S, Cruz-Acuña R, Gabre JT, Nakagawa H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett 2021; 509:39-52. [PMID: 33838281 DOI: 10.1016/j.canlet.2021.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) organoids are a novel tool to model epithelial cell biology and human diseases of the esophagus. 3D organoid culture systems have been utilized to investigate the pathobiology of esophageal cancer, including both squamous cell carcinoma and adenocarcinoma. Additional organoid-based approaches for study of esophageal development and benign esophageal diseases have provided key insights into esophageal keratinocyte differentiation and mucosal regeneration. These investigations have implications for the identification of esophageal cancer stem cells, as well as the potential to halt malignant progression through induction of differentiation pathways. Patient-derived organoids (PDOs) from human tissue samples allow for unique and faithful in vitro modeling of esophageal cancers, and provide an exciting platform for investigation into personalized medicine and targeted treatment approaches, as well as new models for understanding therapy resistance and recurrent disease. Future directions include high-throughput genomic screening using PDOs, and study of tumor-microenvironmental interactions through co-culture with immune and stromal cells and novel extracellular matrix complexes.
Collapse
Affiliation(s)
- Uma M Sachdeva
- Divison of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joel T Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Wei SG, Yu Y, Felder RB. TNF-α-induced sympathetic excitation requires EGFR and ERK1/2 signaling in cardiovascular regulatory regions of the forebrain. Am J Physiol Heart Circ Physiol 2021; 320:H772-H786. [PMID: 33337962 PMCID: PMC8082799 DOI: 10.1152/ajpheart.00606.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Peripherally or centrally administered TNF-α elicits a prolonged sympathetically mediated pressor response, but the underlying molecular mechanisms are unknown. Activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cardiovascular regions of the brain has recently been recognized as a key mediator of sympathetic excitation, and ERK1/2 signaling is induced by activation of epidermal growth factor receptor (EGFR) tyrosine kinase activity. The present study examined the role of EGFR and ERK1/2 signaling in the sympathetic response to TNF-α. In urethane-anesthetized rats, intracarotid artery injection of TNF-α increased phosphorylation of EGFR and ERK1/2 in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN); upregulated the gene expression of excitatory mediators in SFO and PVN; and increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA). A continuous intracerebroventricular infusion of the selective EGFR tyrosine kinase inhibitor AG1478 or the ERK1/2 inhibitor PD98059 significantly attenuated these responses. Bilateral PVN microinjections of TNF-α also increased phosphorylated ERK1/2 and the gene expression of excitatory mediators in PVN, along with increases in BP, HR, and RSNA, and these responses were substantially reduced by prior bilateral PVN microinjections of AG1478. These results identify activation of EGFR in cardiovascular regulatory regions of the forebrain as an important molecular mediator of TNF-α-driven sympatho-excitatory responses and suggest that EGFR activation of the ERK1/2 signaling pathway plays an essential role. These mechanisms likely contribute to sympathetic excitation in pathophysiological states like heart failure and hypertension, in which circulating and brain TNF-α levels are increased.NEW & NOTEWORTHY Proinflammatory cytokines contribute to the augmented sympathetic nerve activity in hypertension and heart failure, but the central mechanisms involved are largely unknown. The present study reveals that TNF-α transactivates EGFR in the subfornical organ and the hypothalamic paraventricular nucleus to initiate ERK1/2 signaling, upregulate the gene expression of excitatory mediators, and increase sympathetic nerve activity. These findings identify EGFR as a gateway to sympathetic excitation and a potential target for intervention in cardiovascular disease states.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Yang Yu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Robert B Felder
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
17
|
Chen J, Guan L, Fan P, Liu X, Liu R, Liu Y, Bai H. In vitro study of the effects of DC electric fields on cell activities and gene expression in human choriocarcinoma cells. Electromagn Biol Med 2021; 40:49-64. [PMID: 33179558 DOI: 10.1080/15368378.2020.1846555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
Physiological electric fields (EFs), as one of the environmental cues influencing both normal and tumor cells, have profound effects on tumor cell malignancy potential. The cellular responses to EFs by choriocarcinoma cells and their underlying mechanisms are unknown. In this study, the migration/motility, cell cycle progression and proliferation of choriocarcinoma cells in electric field culture showed that choriocarcinoma cells migrated cathodally in an applied EF, and EF stimulation influenced cell cycle progression through G2/M arrest and therefore induced a reduction in cellular proliferation. The transcriptome of choriocarcinoma cells subjected to EF stimulation (150 mV/mm) was analyzed using RNA sequencing (RNA-Seq), and the results were verified by reverse transcription quantitative polymerase chain reaction. A Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that ErbB and HIF-1 signaling pathways that are involved in cell migration/motility, cell cycle progression and proliferation were significantly altered in cells treated with an EF of 150 mV/mm compared with control cells, and in addition, the downstream pathways of these signaling pathways such as AKT and P42/P44 MAPK (ERK1/2) showed primary activation by Western blotting. This study's results suggest that an applied EF is an effective cue in regulating cellular phenotypes of choriocarcinoma cells and that transcriptional analysis contributes to the understanding of the mechanism of EF-guided cell functions.
Collapse
Affiliation(s)
- Jinxin Chen
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University , Chengdu, P. R. China
- Department of Biochemistry, North Sichuan Medical College , Nanchong, P. R. China
| | - Linbo Guan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University , Chengdu, P. R. China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University , Chengdu, P. R. China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University , Chengdu, P. R. China
| | - Rui Liu
- Division of Peptides Related with Human Disease, West China Hospital, Sichuan University , Chengdu, P. R. China
| | - Yu Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, P. R. China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University , Chengdu, P. R. China
| |
Collapse
|
18
|
Landmesser ME, Raup-Konsavage WM, Lehman HL, Stairs DB. Loss of p120ctn causes EGFR-targeted therapy resistance and failure. PLoS One 2020; 15:e0241299. [PMID: 33112928 PMCID: PMC7592761 DOI: 10.1371/journal.pone.0241299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays a vital role in cell division and survival signaling pathways. EGFR is activated in nearly every cancer type, and its high expression in tumors is correlated with poor patient outcome. Altogether, EGFR is a prime candidate as a therapeutic target. While targeted EGFR therapy is initially effective in 75% of patients, a majority of patients relapse within the first year due to poorly understood mechanisms of resistance. p120-catenin (p120ctn) has recently been implicated as a biomarker for EGFR therapy. In previous studies, we demonstrated that p120ctn is a tumor suppressor and its loss is capable of inducing cancer. Furthermore, p120ctn down-regulation synergizes with EGFR overexpression to cause a highly invasive cell phenotype. The purpose of this present study was to investigate whether p120ctn down-regulation induced EGFR therapeutic resistance. Using human esophageal keratinocytes, we have found that EGFR-targeting compounds are toxic to cells overexpressing EGFR. Interestingly, these therapies do not cause toxicity in cells with EGFR overexpression and decreased p120ctn expression. These data suggest that decreased p120ctn causes resistance to EGFR therapy. We believe these findings are of utmost importance, as there is an unmet need to discover mechanisms of EGFR resistance.
Collapse
Affiliation(s)
- Mary E. Landmesser
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Heather L. Lehman
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - Douglas B. Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
20
|
Laskin JD, Wahler G, Croutch CR, Sinko PJ, Laskin DL, Heck DE, Joseph LB. Skin remodeling and wound healing in the Gottingen minipig following exposure to sulfur mustard. Exp Mol Pathol 2020; 115:104470. [PMID: 32445752 DOI: 10.1016/j.yexmp.2020.104470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Sulfur mustard (SM), a dermal vesicant that has been used in chemical warfare, causes inflammation, edema and epidermal erosions depending on the dose and time following exposure. Herein, a minipig model was used to characterize wound healing following dermal exposure to SM. Saturated SM vapor caps were placed on the dorsal flanks of 3-month-old male Gottingen minipigs for 30 min. After 48 h the control and SM wounded sites were debrided daily for 7 days with wet to wet saline gauze soaks. Animals were then euthanized, and full thickness skin biopsies prepared for histology and immunohistochemistry. Control skin contained a well differentiated epidermis with a prominent stratum corneum. A well-developed eschar covered the skin of SM treated animals, however, the epidermis beneath the eschar displayed significant wound healing with a hyperplastic epidermis. Stratum corneum shedding and a multilayered basal epithelium consisting of cuboidal and columnar cells were also evident in the neoepidermis. Nuclear expression of proliferating cell nuclear antigen (PCNA) was contiguous in cells along the basal epidermal layer of control and SM exposed skin; SM caused a significant increase in PCNA expression in basal and suprabasal cells. SM exposure was also associated with marked changes in expression of markers of wound healing including increases in keratin 10, keratin 17 and loricrin and decreases in E-cadherin. Trichrome staining of control skin showed a well-developed collagen network with no delineation between the papillary and reticular dermis. Conversely, a major delineation was observed in SM-exposed skin including a web-like papillary dermis composed of filamentous extracellular matrix, and compact collagen fibrils in the lower reticular dermis. Although the dermis below the wound site was disrupted, there was substantive epidermal regeneration following SM-induced injury. Further studies analyzing the wound healing process in minipig skin will be important to provide a model to evaluate potential vesicant countermeasures.
Collapse
Affiliation(s)
- Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, United States of America
| | - Gabriella Wahler
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | | | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States of America
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
21
|
Kim DM, Kim MJ, Moon JH, Lee EY, Hong JK, Lee S, Koh DI, Ryu YS, Kim SM, Jung SA, Shin JS, Kim J, Park YS, Hong SW, Lee SH, Jung J, Park SS, Kim DY, Kim EH, Jeong HR, Gong JH, Kim J, Chan Kim S, Yu HN, Ki SY, Kim TW, Jin DH. Inhibition of JAK1/2 can overcome EGFR-TKI resistance in human NSCLC. Biochem Biophys Res Commun 2020; 527:305-310. [PMID: 32446385 DOI: 10.1016/j.bbrc.2020.04.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Non-small lung cancer (NSCLC) is the most common cancer in the world. The epidermal growth factor receptor (EGFR) gene is mutated in approximately 10% of lung cancer cases in the US and 50% of lung cancer in Asia. The representative target therapeutic agent, erlotinib (EGFR tyrosine kinase inhibitor; EGFR TKI), is effective in inactivating EGFR in lung cancer patients. However, approximately 50-60% of patients are resistant to EGFR TKI. These populations are associated with the EGFR mutation. To overcome resistance to EGFR TKI, we discovered a JAK1 inhibitor, CJ14939. We investigated the efficacy of CJ14939 in human NSCLC cell lines in vitro and in vivo. Our results showed that CJ14939 induced the inhibition of cell growth. Moreover, we demonstrated that combination treatment with erlotinib and CJ14939 induced cell death in vitro and inhibited tumor growth in vivo. In addition, we confirmed the suppression of phosphorylated EGFR, JAK1, and Stat3 expression in erlotinib and CJ14939-treated human NSCLC cell lines. Our results provide evidence that JAK inhibition overcomes resistance to EGFR TKI in human NSCLCs.
Collapse
Affiliation(s)
- Dong Min Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Convergence Medicine, Asan Medical Center University of Ulsan College of Medicine, Seoul, Republic Korea
| | - Mi Jin Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Convergence Medicine, Asan Medical Center University of Ulsan College of Medicine, Seoul, Republic Korea
| | - Jai-Hee Moon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Young Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Ki Hong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yae Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Mi Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Soo-A Jung
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Sik Shin
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Joseph Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Sun Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - So Hee Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Joonyee Jung
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Soo Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Ho Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hong-Rae Jeong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hee Gong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jieun Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Chan Kim
- CJ HealthCare R&D Center, Icheon-si, Gyeonggi-do, Republic of Korea
| | - Ha Na Yu
- CJ HealthCare R&D Center, Icheon-si, Gyeonggi-do, Republic of Korea
| | - So Young Ki
- CJ HealthCare R&D Center, Icheon-si, Gyeonggi-do, Republic of Korea
| | - Tae Won Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Oncology, Asan Medical Center University of Ulsan College of Medicine, Seoul, Republic Korea.
| | - Dong-Hoon Jin
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea; Department of Convergence Medicine, Asan Medical Center University of Ulsan College of Medicine, Seoul, Republic Korea.
| |
Collapse
|
22
|
Chen L, Du L, Zhang L, Xie S, Zhang X, Li H. EGFR inhibitor AG1478 blocks the formation of 3D structures mainly through ERK signaling pathway in Matrigel-induced 3D reconstruction of eccrine sweat gland-like structures. J Mol Histol 2020; 51:191-197. [PMID: 32219645 DOI: 10.1007/s10735-020-09869-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
EGFR signaling plays important roles in the development of eccrine sweat glands. We previously demonstrate that Matrigel induces eccrine sweat gland cells to reconstruct the three-dimensional (3D) structures of eccrine sweat glands, but the mechanisms are still unknown. In the study, eccrine sweat gland cells were cultured within a 3D Matrigel, and EGFR inhibitor AG1478, or MEK1/2 inhibitor U0126, were added to the medium respectively. The morphology of the 3D-reconstructed eccrine sweat gland-like structures was observed, the localization of phospho-EGFR was detected, and protein levels of EGFR, phospho-EGFR, phospho-JAK, phospho-AKT and phospho-ERK were examined. The results showed that cells treatment with AG1478 from Day 0 of 3D cultures blocked formation of spheroid-like structures. AG1478 administration caused reduced phospho-EGFR, concomitant with downregulation of phospho-ERK1/2, but not phospho-JAK or phospho-AKT. Phospho-EGFR and phospho-ERK were reduced, and only a small number of 3D-structures were formed following treatment with U0126. We conclude that EGFR plays important roles in Matrigel-induced 3D structures of eccrine sweat gland-like structures, and ERK1/2 signaling is responsible, at least in part, for the effect of EGFR.
Collapse
Affiliation(s)
- Liyun Chen
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan Province, 442000, Hubei, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
23
|
Zhou S, Liu S, Lin C, Li Y, Ye L, Wu X, Jian Y, Dai Y, Ouyang Y, Zhao L, Liu M, Song L, Xi M. TRIB3 confers radiotherapy resistance in esophageal squamous cell carcinoma by stabilizing TAZ. Oncogene 2020; 39:3710-3725. [PMID: 32157210 DOI: 10.1038/s41388-020-1245-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Radioresistance becomes the major obstacle to reduce tumor recurrence and improve prognosis in the treatment of esophageal squamous cell carcinoma (ESCC). Thus new strategies for radioresistant ESCC are urgently needed. Herein, we reported that tribbles pseudokinase 3 (TRIB3) serves as a key regulator of radioresistance in ESCC. TRIB3 is overexpressed in ESCC tissues and cell lines. High expression of TRIB3 significantly correlates with poor radiotherapy response and prognosis in ESCC patients. Upregulation of TRIB3 in ESCC cells conferred radioresistance in vitro and in vivo by interacting with TAZ thus impeding β-TrCP-mediated TAZ ubiquitination and degradation. Conversely, silencing TRIB3 sensitized ESCC cells to ionizing radiation. More importantly, TRIB3 was significantly correlated with TAZ activation in ESCC biopsies, and patients with high expression of both TRIB3 and TAZ suffered the worst radiotherapy response and survival. Our study uncovers the critical mechanism of ESCC resistance to radiotherapy, and provides a new pharmacological opportunity for developing a mechanism-based strategy to eliminate radioresistant ESCC in clinical practice.
Collapse
Affiliation(s)
- Sha Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chuyong Lin
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yue Li
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Liping Ye
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xianqiu Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yunting Jian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, 510080, China
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Libing Song
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Model-Based Integration Analysis Revealed Presence of Novel Prognostic miRNA Targets and Important Cancer Driver Genes in Triple-Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12030632. [PMID: 32182819 PMCID: PMC7139587 DOI: 10.3390/cancers12030632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: miRNAs (microRNAs) play a key role in triple-negative breast cancer (TNBC) progression, and its heterogeneity at the expression, pathological and clinical levels. Stratification of breast cancer subtypes on the basis of genomics and transcriptomics profiling, along with the known biomarkers’ receptor status, has revealed the existence of subgroups known to have diverse clinical outcomes. Recently, several studies have analysed expression profiles of matched mRNA and miRNA to investigate the underlying heterogeneity of TNBC and the potential role of miRNA as a biomarker within cancers. However, the miRNA-mRNA regulatory network within TNBC has yet to be understood. Results and Findings: We performed model-based integrated analysis of miRNA and mRNA expression profiles on breast cancer, primarily focusing on triple-negative, to identify subtype-specific signatures involved in oncogenic pathways and their potential role in patient survival outcome. Using univariate and multivariate Cox analysis, we identified 25 unique miRNAs associated with the prognosis of overall survival (OS) and distant metastases-free survival (DMFS) with “risky” and “protective” outcomes. The association of these prognostic miRNAs with subtype-specific mRNA genes was established to investigate their potential regulatory role in the canonical pathways using anti-correlation analysis. The analysis showed that miRNAs contribute to the positive regulation of known breast cancer driver genes as well as the activation of respective oncogenic pathway during disease formation. Further analysis on the “risk associated” miRNAs group revealed significant regulation of critical pathways such as cell growth, voltage-gated ion channel function, ion transport and cell-to-cell signalling. Conclusion: The study findings provide new insights into the potential role of miRNAs in TNBC disease progression through the activation of key oncogenic pathways. The results showed previously unreported subtype-specific prognostic miRNAs associated with clinical outcome that may be used for further clinical evaluation.
Collapse
|
25
|
Vanoni S, Zeng C, Marella S, Uddin J, Wu D, Arora K, Ptaschinski C, Que J, Noah T, Waggoner L, Barski A, Kartashov A, Rochman M, Wen T, Martin L, Spence J, Collins M, Mukkada V, Putnam P, Naren A, Chehade M, Rothenberg ME, Hogan SP. Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2020; 145:239-254.e2. [PMID: 31647967 PMCID: PMC7366251 DOI: 10.1016/j.jaci.2019.07.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The pathology of eosinophilic esophagitis (EoE) is characterized by eosinophil-rich inflammation, basal zone hyperplasia (BZH), and dilated intercellular spaces, and the underlying processes that drive the pathologic manifestations of the disease remain largely unexplored. OBJECTIVE We sought to investigate the involvement of the calcium-activated chloride channel anoctamin 1 (ANO1) in esophageal proliferation and the histopathologic features of EoE. METHODS We examined mRNA and protein expression of ANO1 in esophageal biopsy samples from patients with EoE and in mice with EoE. We performed molecular and cellular analyses and ion transport assays on an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI) and murine models of EoE to define the relationship between expression and function of ANO1 and esophageal epithelial proliferation in patients with EoE. RESULTS We observed increased ANO1 expression in esophageal biopsy samples from patients with EoE and in mice with EoE. ANO1 was expressed within the esophageal basal zone, and expression correlated positively with disease severity (eosinophils/high-power field) and BZH. Using an in vitro esophageal epithelial 3-dimensional model system revealed that ANO1 undergoes chromatin modification and rapid upregulation of expression after IL-13 stimulation, that ANO1 is the primary apical IL-13-induced Cl- transport mechanism within the esophageal epithelium, and that loss of ANO1-dependent Cl- transport abrogated esophageal epithelial proliferation. Mechanistically, ANO1-dependent regulation of basal cell proliferation was associated with modulation of TP63 expression and phosphorylated cyclin-dependent kinase 2 levels. CONCLUSIONS These data identify a functional role for ANO1 in esophageal cell proliferation and BZH in patients with EoE and provide a rationale for pharmacologic intervention of ANO1 function in patients with EoE.
Collapse
Affiliation(s)
- Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; PharmGenetix Gmbh, Niederalm-Anif, Austria
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sahiti Marella
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Jazib Uddin
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Taeko Noah
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrey Kartashov
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Spence
- Departments of Biomedical Engineering, Internal Medicine and Cell and Developmental Biology, University of Michigan, Ann Arbor, Mich
| | - Margaret Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Phillip Putnam
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich.
| |
Collapse
|
26
|
DpdtbA-Induced Growth Inhibition in Human Esophageal Cancer Cells Involved Inactivation of the p53/EGFR/AKT Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5414670. [PMID: 31354907 PMCID: PMC6636558 DOI: 10.1155/2019/5414670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Esophageal cancer (ESC) is one of the most deadly diseases for human. p53 in most cancers, including ESC cell, is mutated, and the mutated p53 losses its original function and acquires “gain of function” that allows for promoting the hallmarks of cancer, such as antiapoptosis, metastasis, invasion, angiogenesis, and resistance to chemotherapy. Targeting p53 through either introducing wild-type or degrading mutated p53 is an important strategy in cancer therapy. Di-2,2′-pyridine ketone dithiocarbamate s-butyric acid (DpdtbA) has significant growth inhibition against gastric cancer lines in previous study. Similar action in ESC cell lines but a novel molecular mechanism was observed in the present study. The results showed that DpdtbA exhibited an excellent antiproliferative effect for ESC cell lines (IC50 ≤ 4.5 ± 0.4 μM for Kyse 450, 3.2 ± 0.6 μM for Kyse 510 cell, and 10.0 ± 0.6 μM for Kyse 150) and led to cell cycle arrest at the S phase which correlated to CDK2 downregulation. The mechanistic study suggested that growth inhibition was related to ROS-mediated apoptosis, and ROS production was due to SOD inhibition initiated by DpdtbA rather than occurrence of ferritinophagy. In addition, DpdtbA also induced a downregulation of EGFR, p53, and AKT, which hinted that mutant p53 still played a role in the regulation of its downstream targets. Further study revealed that the downregulation of p53 was through stub1- (chip-) mediated autophagic degradation rather than MDM2-mediated ubiquitination. Taken together, the DpdtbA-induced growth inhibition in a mechanism was through inactivating the p53/EGFR/AKT signal pathway.
Collapse
|
27
|
Watanabe S, Noma K, Ohara T, Kashima H, Sato H, Kato T, Urano S, Katsube R, Hashimoto Y, Tazawa H, Kagawa S, Shirakawa Y, Kobayashi H, Fujiwara T. Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biol Ther 2019; 20:1234-1248. [PMID: 31185791 DOI: 10.1080/15384047.2019.1617566] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are strongly implicated in tumor progression, including in the processes of tumorigenesis, invasion, and metastasis. The targeting of CAFs using various therapeutic approaches is a novel treatment strategy; however, the efficacy of such therapies remains limited. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a novel targeted therapy employing a cell-specific mAb conjugated to a photosensitizer, has been introduced as a new type of phototherapy. In this study, we have developed a novel NIR-PIT technique to target CAFs, by focusing on fibroblast activation protein (FAP), and we evaluate the treatment efficacy in vitro and in vivo. Esophageal carcinoma cells exhibited enhanced activation of fibroblasts, with FAP over-expressed in the cytoplasm and on the cell surface. FAP-IR700-mediated PIT showed induced rapid cell death specifically for those cells in vitro and in vivo, without adverse effects. This novel therapy for CAFs, designed as local control phototherapy, was safe and showed a promising inhibitory effect on FAP+ CAFs. PIT targeting CAFs via the specific marker FAP may be a therapeutic option for CAFs in the tumor microenvironment in the future.
Collapse
Affiliation(s)
- Shinichiro Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Shinichi Urano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Ryoichi Katsube
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital , Okayama , Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
28
|
Wheeler JC, Vanoni S, Zeng C, Waggoner L, Yang Y, Wu D, Uddin J, Karns R, Kottyan L, Mukkada V, Rothenberg ME, Hogan SP. 17β-Estradiol protects the esophageal epithelium from IL-13-induced barrier dysfunction and remodeling. J Allergy Clin Immunol 2019; 143:2131-2146. [PMID: 30578870 PMCID: PMC6556402 DOI: 10.1016/j.jaci.2018.10.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The incidence of eosinophilic esophagitis (EoE) is greater in male than female subjects, and the underlying molecular basis for this sex bias remains unclear. OBJECTIVE We sought to delineate the contribution of the sex hormone estrogen to the EoE phenotype and esophageal epithelial barrier function and remodeling. METHODS We performed demographic and incidence analyses of EoE in male and female subjects from a single-center pediatric cohort. Estrogen-responsive gene expression analyses and estrogen receptor (ESR) immunofluorescence staining of esophageal biopsy specimens from patients with EoE and control subjects were performed. The effect of 17β-estradiol (E2) on IL-13-induced signaling pathways, gene expression, and esophageal epithelial architecture and barrier function in a primary human esophageal keratinocyte cell (EPC2) culture system (EPC2-air-liquid interface) was examined. RESULTS We observed a male predominance in patients with EoE. Analyses of RNA sequencing data sets revealed a significant dysregulation of the estrogen-responsive gene network and expression of ESR1 and ESR2 in esophageal biopsy specimens from patients with EoE compared with control subjects. IL-13 stimulation of EPC2-air-liquid interface cells led to altered cellular architecture with induced dilation of intercellular spaces and barrier dysfunction. Pretreatment of EPC2s with E2 prior to IL-13 exposure abrogated IL-13-induced architectural changes and esophageal barrier dysfunction. Mechanistically, E2-protective effects were dependent on ESR2 and associated with diminishing of IL-13-induced tyrosine kinase 2 and signal transducer and activator of transcription 6 phosphorylation and EoE-dysregulated gene expression. CONCLUSIONS Estrogen-responsive genes are modified in patients with EoE compared with control subjects. E2 attenuated IL-13-induced architectural changes and esophageal epithelial barrier dysfunction through inhibition of the IL-13/tyrosine kinase 2/signal transducer and activator of transcription 6 pathway via ESR2-dependent process. Estrogen hormone signaling may protect against development of EoE in female subjects.
Collapse
Affiliation(s)
- Justin C Wheeler
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simone Vanoni
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang Zeng
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yanfen Yang
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Wu
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jazib Uddin
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leah Kottyan
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Department of Pathology, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
29
|
Yang YT, Hsu IL, Cheng TY, Wu WJ, Lee CW, Li TJ, Cheung CI, Chin YC, Chen HC, Chiu YC, Huang CC, Liao MY. Off-Resonance SERS Nanoprobe-Targeted Screen of Biomarkers for Antigens Recognition of Bladder Normal and Aggressive Cancer Cells. Anal Chem 2019; 91:8213-8220. [DOI: 10.1021/acs.analchem.9b00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yao-Tzu Yang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Ling Hsu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Cheng
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Wei Lee
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Ju Li
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chun In Cheung
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiao-Chien Chen
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Zhong Xiao Branch, Taipei City Hospital, Taipei 11556, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei City 11221, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| |
Collapse
|
30
|
Jeyapalina S, Colombo JS, Beck JP, Agarwal JP, Schmidt LA, Bachus KN. Epidermal growth factor receptor genes are overexpressed within the periprosthetic soft-tissue around percutaneous devices: A pilot study. J Biomed Mater Res B Appl Biomater 2019; 108:527-537. [PMID: 31074946 DOI: 10.1002/jbm.b.34409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Epidermal downgrowth around percutaneous devices produce sinus tracts, which then accumulate bacteria becoming foci of infection. This mode to failure is epidermal-centric, and is accelerated by changes in the chemokines and cytokines of the underlying periprosthetic granulation tissue (GT). In order to more fully comprehend the mechanism of downgrowth, in this 28-day study, percutaneous devices were placed in 10 Zucker diabetic fatty rats; 5 animals were induced with diabetes mellitus II (DM II) prior to the surgery and 5 animals served as a healthy, nondiabetic cohort. At necropsy, periprosthetic tissues were harvested, and underwent histological and polymerase chain reaction (PCR) studies. After isolating GTs from the surrounding tissue and extracting ribonucleic acids, PCR array and quantitative-PCR (qPCR) analyses were carried-out. The PCR array for 84 key wound-healing associated genes showed a five-fold or greater change in 31 genes in the GTs of healthy animals compared to uninjured healthy typical skin tissues. Eighteen genes were overexpressed and these included epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Thirteen genes were underexpressed. When GTs of DM II animals were compared to healthy animals, there were 8 genes overexpressed and 25 genes underexpressed; under expressed genes included EGF and EGFR. The qPCR and immunohistochemistry data further validated these observations. Pathway analysis of genes up-regulated 15-fold or more indicated two, EGFR and interleukin-10, centric clustering effects. It was concluded that EGFR could be a key player in exacerbating the epidermal downgrowth, and might be an effective target for preventing downgrowth.
Collapse
Affiliation(s)
- Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.,Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - John S Colombo
- Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,The School of Dentistry, University of Utah School of Medicine, Salt Lake City, Utah
| | - James P Beck
- Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Orthopaedic Research Laboratories, University of Utah Orthopaedic Center, Salt Lake City, Utah
| | - Jayant P Agarwal
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.,Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Linda A Schmidt
- Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kent N Bachus
- Research, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Orthopaedic Research Laboratories, University of Utah Orthopaedic Center, Salt Lake City, Utah.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
31
|
Zhou L, Deng ZZ, Li HY, Jiang N, Wei ZS, Hong MF, Wang JH, Zhang MX, Shi YH, Lu ZQ, Huang XM. Overexpression of PRR11 promotes tumorigenic capability and is associated with progression in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:2677-2693. [PMID: 31040705 PMCID: PMC6462166 DOI: 10.2147/ott.s180255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies of gastrointestinal tract in the world, and the long-term prognosis for ESCC patients still remains dismal due to the lack of effective early diagnosis biomarkers. MATERIALS AND METHODS Western blot and immunochemistry were used to determine the expression of PRR11 in 201 clinicopathologically characterized ESCC specimens. The effects of PRR11 on stem cell-like traits and tumorigenicity were examined by tumor sphere formation assay and SP assays in vitro and by a tumorigenesis model in vivo. The mechanism by which PRR11 mediated Wnt/β-catenin signaling was explored using luciferase reporter, immuno-chemistry, and real time-PCR (RT-PCR) assays. RESULTS We found that PRR11 was markedly upregulated, at the level of both transcription and translation, in ESCC cell lines as compared with normal esophageal epithelial cells (NECCs). Immunohistochemical analysis showed that 69.2% paraffin-embedded archival ESCC specimens exhibited high levels of PRR11 expression, and multivariate analysis revealed that PRR11 upregulation might be an independent prognostic indicator for the survival of patients with ESCC. Furthermore, overexpression of PRR11 dramatically enhanced, whereas inhibition of PRR11 reduced the capability of cancer stem cell (CSC)-like phenotypes and tumorigenicity of ESCC cells both in vitro and in vivo. Mechanically, we demonstrated PRR11-enhanced tumorigenicity of ESCC cells via activating Wnt/β-catenin signaling, and PRR11 expression is found to be significantly correlated with β-catenin nuclear location in ESCC. CONCLUSION Our findings suggest that the PRR11 might represent a novel and valuable prognostic marker for ESCC progression and play a role during the development and progression of this malignancy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China, ,
| | - Zhe-Zhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China,
| | - Hai-Yan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China,
| | - Nan Jiang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhi-Sheng Wei
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ming-Fan Hong
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ji-Hui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China,
| | - Ming-Xing Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China, ,
| | - Yi-Hua Shi
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China, ,
| | - Zheng-Qi Lu
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China, ,
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China,
| | - Xu-Ming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China, ,
| |
Collapse
|
32
|
Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147-159. [PMID: 30671100 PMCID: PMC6333611 DOI: 10.5625/lar.2018.34.4.147] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models are commonly preferred for studying the human disease due to genetic and pathophysiological similarities between mice and humans. In particular, Cre-loxP system is widely used as an integral experimental tool for generating the conditional. This system has enabled researchers to investigate genes of interest in a tissue/cell (spatial control) and/or time (temporal control) specific manner. A various tissue-specific Cre-driver mouse lines have been generated to date, and new Cre lines are still being developed. This review provides a brief overview of Cre-loxP system and a few commonly used promoters for expression of tissue-specific Cre recombinase. Also, we finally introduce some available links to the Web sites that provides detailed information about Cre mouse lines including their characterization.
Collapse
|
33
|
Chen J, Zhang W, Wang Y, Zhao D, Wu M, Fan J, Li J, Gong Y, Dan N, Yang D, Liu R, Zhan Q. The diacylglycerol kinase α (DGKα)/Akt/NF-κB feedforward loop promotes esophageal squamous cell carcinoma (ESCC) progression via FAK-dependent and FAK-independent manner. Oncogene 2018; 38:2533-2550. [DOI: 10.1038/s41388-018-0604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
|
34
|
Wang Y, Xu Z, Wang X. miRNA-373 promotes urinary bladder cancer cell proliferation, migration and invasion through upregulating epidermal growth factor receptor. Exp Ther Med 2018; 17:1190-1195. [PMID: 30679992 PMCID: PMC6327664 DOI: 10.3892/etm.2018.7061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNA (miRNA)-373 has been demonstrated to be involved in several types of cancer, whereas its involvement in urinary bladder cancer and the mechanism of its function remains poorly understood. The present study aimed to investigate the functionality of miRNA-373 in urinary bladder cancer. Tumor tissues and adjacent healthy tissues were collected from patients with urinary bladder cancer (n=55), and blood samples were collected from patients with urinary bladder cancer and healthy controls (n=45). The expression of miRNA-373 in these tissues was detected by reverse transcription quantitative polymerase chain reaction. The diagnostic value of serum miRNA-373 for urinary bladder cancer was investigated by receiver operating characteristic curve analysis and survival curve analysis, respectively. miRNA-373 mimics were transfected into urinary bladder cancer cells, and the effects on cancer cell proliferation, migration and invasion, and on epidermal growth factor receptor (EGFR) expression was assessed by Cell Counting kit-8 assay, Transwell migration and invasion assays, and western blot analysis. It was identified that the miRNA-373 expression level was increased in tumor tissues compared with adjacent healthy tissues. The serum level of miRNA-373 was increased in patients with cancer compared with the healthy controls. Serum miRNA-373 may be used to accurately predict urinary bladder cancer. miRNA-373 overexpression promoted tumor cell proliferation, migration and invasion, and resulted in upregulated EGFR expression in urinary bladder cancer cells. It was concluded that miRNA-373 overexpression may promote urinary bladder cancer cell proliferation, migration and invasion by upregulating EGFR.
Collapse
Affiliation(s)
- Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
35
|
Yu DL, Li HW, Wang Y, Li CQ, You D, Jiang L, Song YP, Li XH. Acyl-CoA dehydrogenase long chain expression is associated with esophageal squamous cell carcinoma progression and poor prognosis. Onco Targets Ther 2018; 11:7643-7653. [PMID: 30464513 PMCID: PMC6217208 DOI: 10.2147/ott.s171963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Acyl-CoA dehydrogenase long chain (ACADL) was revealed to have a correlation with malignant progression of cancer. However, whether ACADL plays a role in clinical therapy remains unclear. The clinicopathological role of ACADL in esophageal squamous cell carcinoma (ESCC) will be discussed in this study. Materials and methods The expression of ACADL was analyzed via real-time PCR and Western blotting to assess mRNA and protein levels in ESCC cell lines and normal esophageal epithelial cells (NEECs), in six paired ESCC tumors and relative normal tissues. Furthermore, immunohistochemical staining was performed on 135 paraffin-embedded ESCC specimens to assess ACADL expression. The clinicopathological significance of ACADL expression was further investigated via survival analysis and Cox regression analysis. Results ACADL was found to be markedly upregulated in ESCC cell lines when compared with NEECs. Moreover, various experiments such as quantitative real-time PCR, Western blot, and immunohistochemical analyses all revealed that ACADL expression was increased in all six paired ESCC tumors and matched normal tissues. Furthermore, immunohistochemical analysis revealed an increased level of ACADL protein expression in all 135 paraffin-embedded samples from ESCC patients, which increased with disease progression. Conclusion We demonstrated that ACADL is overexpressed in ESCC, both in cell lines and clinical specimens. ACADL is found to be a vital regulator in ESCC progression and can predict a worse outcome for ESCC patients, suggesting that ACADL might be a valuable molecule to be targeted for clinical therapy of ESCC treatment.
Collapse
Affiliation(s)
- Dong-Lin Yu
- Department of basic Theory of traditional Chinese Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Hong-Wei Li
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| | - Yang Wang
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| | - Cun-Qi Li
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| | - Dong You
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| | - Lei Jiang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Yi-Peng Song
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| | - Xing-Hua Li
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China, ;
| |
Collapse
|
36
|
Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, Han L, Nasr T, Chaturvedi P, Rothenberg ME, Mandegar MA, Wells SI, Zorn AM, Wells JM. Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell 2018; 23:501-515.e7. [PMID: 30244869 DOI: 10.1016/j.stem.2018.08.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/24/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Tracheal and esophageal disorders are prevalent in humans and difficult to accurately model in mice. We therefore established a three-dimensional organoid model of esophageal development through directed differentiation of human pluripotent stem cells. Sequential manipulation of bone morphogenic protein (BMP), Wnt, and RA signaling pathways was required to pattern definitive endoderm into foregut, anterior foregut (AFG), and dorsal AFG spheroids. Dorsal AFG spheroids grown in a 3D matrix formed human esophageal organoids (HEOs), and HEO cells could be transitioned into two-dimensional cultures and grown as esophageal organotypic rafts. In both configurations, esophageal tissues had proliferative basal progenitors and a differentiated stratified squamous epithelium. Using HEO cultures to model human esophageal birth defects, we identified that Sox2 promotes esophageal specification in part through repressing Wnt signaling in dorsal AFG and promoting survival. Consistently, Sox2 ablation in mice causes esophageal agenesis. Thus, HEOs present a powerful platform for modeling human pathologies and tissue engineering.
Collapse
Affiliation(s)
- Stephen L Trisno
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine E D Philo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily M Catá
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Talia Nasr
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Zhang W, Hong R, Li L, Wang Y, Du P, Ou Y, Zhao Z, Liu X, Xiao W, Dong D, Wu Q, Chen J, Song Y, Zhan Q. The chromosome 11q13.3 amplification associated lymph node metastasis is driven by miR-548k through modulating tumor microenvironment. Mol Cancer 2018; 17:125. [PMID: 30131072 PMCID: PMC6103855 DOI: 10.1186/s12943-018-0871-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The prognosis for esophageal squamous cell carcinoma (ESCC) patients with lymph node metastasis (LNM) is still dismal. Elucidation of the LNM associated genomic alteration and underlying molecular mechanisms may provide clinical therapeutic strategies for ESCC treatment. METHODS Joint analysis of ESCC sequencing data were conducted to comprehensively survey SCNAs and identify driver genes which significantly associated with LNM. The roles of miR-548k in lymphangiogensis and lymphatic metastasis were validated both in vitro and in vivo. ESCC tissue and blood samples were analyzed for association between miR-548k expression and patient clinicopathological features and prognosis and diagnosis. RESULTS In the pooled cohort of 314 ESCC patients, we found 76 significant focused regions including 43 amplifications and 33 deletions. Clinical implication analysis revealed a panel of genes associated with LNM with the most frequently amplified gene being MIR548K harbored in the 11q13.3 amplicon. Overexpression of miR-548k remarkably promotes lymphangiogenesis and lymphatic metastasis in vitro and in vivo. Furthermore, we demonstrated that miR-548k modulating the tumor microenvironment by promoting VEGFC secretion and stimulating lymphangiogenesis through ADAMTS1/VEGFC/VEGFR3 pathways, while promoting metastasis by regulating KLF10/EGFR axis. Importantly, we found that serum miR-548k and VEGFC of early stage ESCC patients were significantly higher than that in healthy donators, suggesting a promising application of miR-548k and VEGFC as biomarkers in early diagnosis of ESCC. CONCLUSIONS Our study comprehensively characterized SCNAs in ESCC and highlighted the crucial role of miR-548k in promoting lymphatic metastasis, which might be employed as a new diagnostic and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Weimin Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142 China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ruoxi Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083 Guangdong China
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumours, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200240 China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Peina Du
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083 Guangdong China
| | - Yunwei Ou
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044 China
| | - Wenchang Xiao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Dezuo Dong
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142 China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
38
|
Wu YC, Shen YC, Chang JWC, Hsieh JJ, Chu Y, Wang CH. Autocrine CCL5 promotes tumor progression in esophageal squamous cell carcinoma in vitro. Cytokine 2018; 110:94-103. [PMID: 29705397 DOI: 10.1016/j.cyto.2018.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
The pro-tumoral effects of CCL5 have been identified in numerous cancer types. We successfully cultivated 4 esophageal squamous cell carcinoma (ESCC) cell lines, including TWES-1, TWES-3 and a pair of cell lines derived from primary lesion (TWES-4PT) and metastatic lymph node (TWES-4LN) of the same patient. Whole genome screening showed that TWES-4LN expressed higher levels of CCL5 compared to that of TWES-4PT; quantification of protein secretion displayed comparable results, suggesting that CCL5 could be associated with lymph node metastasis in ESCC. CCL5 knockdown by siRNA significantly reduced basal growth rate, tumor migration and invasiveness in the paired cell lines; whereas this treatment induced cell apoptosis in TWES-1 and TWES-3. CCR5 antagonist maraviroc significantly inhibited tumor migration and invasion in the paired cell lines without affecting tumor growth. Collectively, these results suggest that CCL5 autocrine loop may promote ESCC progression; targeting the CCL5/CCR5 axis could be a potential therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yung-Chi Shen
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Jia-Juan Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yen Chu
- Department of Medical Research and Development, Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
| | - Cheng-Hsu Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan.
| |
Collapse
|
39
|
Sherrill JD, Kc K, Wang X, Wen T, Chamberlin A, Stucke EM, Collins MH, Abonia JP, Peng Y, Wu Q, Putnam PE, Dexheimer PJ, Aronow BJ, Kottyan LC, Kaufman KM, Harley JB, Huang T, Rothenberg ME. Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis. JCI Insight 2018; 3:99922. [PMID: 29669943 DOI: 10.1172/jci.insight.99922] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an allergic inflammatory esophageal disorder with a complex underlying genetic etiology often associated with other comorbidities. Using whole-exome sequencing (WES) of 63 patients with EoE and 60 unaffected family members and family-based trio analysis, we sought to uncover rare coding variants. WES analysis identified 5 rare, damaging variants in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1). Rare variant burden analysis revealed an overabundance of putative, potentially damaging DHTKD1 mutations in EoE (P = 0.01). Interestingly, we also identified 7 variants in the DHTKD1 homolog oxoglutarate dehydrogenase-like (OGDHL). Using shRNA-transduced esophageal epithelial cells and/or patient fibroblasts, we further showed that disruption of normal DHTKD1 or OGDHL expression blunts mitochondrial function. Finally, we demonstrated that the loss of DHTKD1 expression increased ROS production and induced the expression of viperin, a gene previously shown to be involved in production of Th2 cytokines in T cells. Viperin had increased expression in esophageal biopsies of EoE patients compared with control individuals and was upregulated by IL-13 in esophageal epithelial cells. These data identify a series of rare genetic variants implicating DHTKD1 and OGDHL in the genetic etiology of EoE and underscore a potential pathogenic role for mitochondrial dysfunction in EoE.
Collapse
Affiliation(s)
| | - Kiran Kc
- Division of Allergy and Immunology and
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ting Wen
- Division of Allergy and Immunology and
| | - Adam Chamberlin
- Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | | | | | | | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qiang Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
40
|
Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, Wang J, Benitez AJ, DeMarshall M, Tobias JW, Hamilton KE, Falk GW, Spergel JM, Klein-Szanto AJ, Rustgi AK, Muir AB, Nakagawa H. The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive Epithelial Changes. Cell Mol Gastroenterol Hepatol 2018; 5:333-352. [PMID: 29552622 PMCID: PMC5852293 DOI: 10.1016/j.jcmgh.2017.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Aberrations in the esophageal proliferation-differentiation gradient are histologic hallmarks in eosinophilic esophagitis (EoE) and gastroesophageal reflux disease. A reliable protocol to grow 3-dimensional (3D) esophageal organoids is needed to study esophageal epithelial homeostasis under physiological and pathologic conditions. METHODS We modified keratinocyte-serum free medium to grow 3D organoids from endoscopic esophageal biopsies, immortalized human esophageal epithelial cells, and murine esophagi. Morphologic and functional characterization of 3D organoids was performed following genetic and pharmacologic modifications or exposure to EoE-relevant cytokines. The Notch pathway was evaluated by transfection assays and by gene expression analyses in vitro and in biopsies. RESULTS Both murine and human esophageal 3D organoids displayed an explicit proliferation-differentiation gradient. Notch inhibition accumulated undifferentiated basal keratinocytes with deregulated squamous cell differentiation in organoids. EoE patient-derived 3D organoids displayed normal epithelial structure ex vivo in the absence of the EoE inflammatory milieu. Stimulation of esophageal 3D organoids with EoE-relevant cytokines resulted in a phenocopy of Notch inhibition in organoid 3D structures with recapitulation of reactive epithelial changes in EoE biopsies, where Notch3 expression was significantly decreased in EoE compared with control subjects. CONCLUSIONS Esophageal 3D organoids serve as a novel platform to investigate regulatory mechanisms in squamous epithelial homeostasis in the context of EoE and other diseases. Notch-mediated squamous cell differentiation is suppressed by cytokines known to be involved in EoE, suggesting that this may contribute to epithelial phenotypes associated with disease. Genetic and pharmacologic manipulations establish proof of concept for the utility of organoids for future studies and personalized medicine in EoE and other esophageal diseases.
Collapse
Key Words
- 3D, 3-dimensional
- BCH, basal cell hyperplasia
- DAPI, 4′,6-Diamidino-2-Phenylindole, Dihydrochloride
- DNMAML1, dominant negative MAML1
- DOX, doxycycline
- EGF, epidermal growth factor
- EMT, epithelial-mesenchymal transition
- EoE, eosinophilic esophagitis
- Eosinophilic Esophagitis
- GERD, gastroesophageal reflux disease
- GFP, green fluorescent protein
- GSI, γ-secretase inhibitor
- H&E, hematoxylin and eosin
- IF, immunofluorescence
- IHC, immunohistochemistry
- IL, interleukin
- IVL, Involucrin
- KSFM, keratinocyte SFM
- KSFMC, KSFM containing 0.6 mM Ca2+
- Keratinocytes
- MAML1, Mastermind-like protein1
- OFR, organoid formation rate
- Squamous Cell Differentiation
- TNF-α, tumor necrosis factor-α
- Three-Dimensional
- Tslp, thymic stromal lymphopoietin
- aDMEM/F12, advanced Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Kelly A. Whelan
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Koji Tanaka
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Veronique Giroux
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Medha Sharma
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Joshua Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alain J. Benitez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maureen DeMarshall
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John W. Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan M. Spergel
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, Peltonen S, Wahl JK, Mahoney MG. c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget 2018; 7:37536-37555. [PMID: 26918609 PMCID: PMC5122330 DOI: 10.18632/oncotarget.7675] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
The desmosomal cadherin, desmoglein 2 (Dsg2), is deregulated in a variety of human cancers including those of the skin. When ectopically expressed in the epidermis of transgenic mice, Dsg2 activates multiple mitogenic signaling pathways and increases susceptibility to tumorigenesis. However, the molecular mechanism responsible for Dsg2-mediated cellular signaling is poorly understood. Here we show overexpression as well as co-localization of Dsg2 and EGFR in cutaneous SCCs in vivo. Using HaCaT keratinocytes, knockdown of Dsg2 decreases EGFR expression and abrogates the activation of EGFR, c-Src and Stat3, but not Erk1/2 or Akt, in response to EGF ligand stimulation. To determine whether Dsg2 mediates signaling through lipid microdomains, sucrose density fractionation illustrated that Dsg2 is recruited to and displaces Cav1, EGFR and c-Src from light density lipid raft fractions. STED imaging confirmed that the presence of Dsg2 disperses Cav1 from the cell-cell borders. Perturbation of lipid rafts with the cholesterol-chelating agent MβCD also shifts Cav1, c-Src and EGFR out of the rafts and activates signaling pathways. Functionally, overexpression of Dsg2 in human SCC A431 cells enhances EGFR activation and increases cell proliferation and migration through a c-Src and EGFR dependent manner. In summary, our data suggest that Dsg2 stimulates cell growth and migration by positively regulating EGFR level and signaling through a c-Src and Cav1-dependent mechanism using lipid rafts as signal modulatory platforms.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brett J Roberts
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Felicia Cooper
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Donna M Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahiro Deguchi
- Laboratory of Biophysics, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku Hospital, Turku, Finland
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Whelan KA, Muir AB, Nakagawa H. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cell Mol Gastroenterol Hepatol 2018; 5:461-478. [PMID: 29713660 PMCID: PMC5924738 DOI: 10.1016/j.jcmgh.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine.
Collapse
Key Words
- 3D, 3-dimensional
- BE, Barrett’s esophagus
- COX, cyclooxygenase
- CSC, cancer stem cell
- EADC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- EoE, eosinophilic esophagitis
- Esophageal Disease
- FEF3, primary human fetal esophageal fibroblast
- GERD, gastroesophageal reflux disease
- OTC, organotypic 3-dimensional culture
- Organoid
- Organotypic Culture
- STAT3, signal transducer and activator of transcription-3
- Spheroid Culture
Collapse
Affiliation(s)
- Kelly A. Whelan
- Pathology and Laboratory Medicine, Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence Address correspondence to: Amanda B. Muir, MD, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center 902E, Philadelphia, Pennsylvania 19103. fax: (267) 426–7814.
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation. Oncotarget 2018. [PMID: 29541406 PMCID: PMC5834278 DOI: 10.18632/oncotarget.24358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Four out of five patients diagnosed with esophageal squamous cell carcinoma (ESCC) will die within five years. This is primarily a result of the aggressive invasive potential of the disease. Our research is focused on the interplay between tumor suppressors and oncogenes in the invasive process. Specifically, EGFR and p120-catenin (p120ctn) are commonly dysregulated genes that are indicative of poor prognosis in ESCC. In a previous study we demonstrated that in our 3D organotypic culture model, only when EGFR overexpression is combined with p120ctn inactivation do the cells transform and invade – as opposed to either event alone. The purpose of this present study was to identify the components of the molecular pathways downstream of p120ctn and EGFR that lead to invasion. Using both human esophageal keratinocytes and human ESCC cells, we have identified NFkB as a central regulator of the invasive process downstream of p120ctn down-regulation and EGFR overexpression. Interestingly, we found that NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation than with either EGFR or p120ctn alone. Inhibition of this NFkB hyperactivation results in complete loss of invasion, suggesting that NFkB signaling is necessary for invasion in this aggressive cell type. Furthermore, we have identified RhoA and Rho-kinase as upstream regulators of NFkB in this process. We believe the cooperation of p120ctn down-regulation and EGFR overexpression is not only important in the aggressive mechanisms of ESCC but could be broadly applicable to many other cancer types in which p120ctn and EGFR are involved.
Collapse
|
44
|
Fichter CD, Przypadlo CM, Buck A, Herbener N, Riedel B, Schäfer L, Nakagawa H, Walch A, Reinheckel T, Werner M, Lassmann S. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. J Pathol 2017; 243:481-495. [PMID: 28940194 DOI: 10.1002/path.4987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Oesophageal squamous cell carcinomas and oesophageal adenocarcinomas show distinct patterns of ErbB expression and dimers. The functional effects of specific ErbB homodimers or heterodimers on oesophageal (cancer) cell behaviour, particularly invasion during early carcinogenesis, remain unknown. Here, a new cellular model system for controlled activation of epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) and EGFR-HER2 or HER2-human epidermal growth factor receptor 3 (HER3) homodimers and heterodimers was studied in non-neoplastic squamous oesophageal epithelial Het-1A cells. EGFR, HER2 and HER3 intracellular domains (ICDs) were fused to dimerization domains (DmrA/DmrA and DmrC), and transduced into Het-1A cells lacking ErbB expression. Dimerization of EGFR, HER2 or EGFR-HER2 and HER2-HER3 ICDs was induced by synthetic ligands (A/A or A/C dimerizers). This was accompanied by phosphorylation of the respective EGFR, HER2 and HER3 ICDs and activation of distinct downstream signalling pathways, such as phospholipase Cγ1, Akt, STAT and Src family kinases. Phenotypically, ErbB dimers caused cell rounding and non-apoptotic blebbing, specifically in EGFR-HER2 and HER2-HER3 heterodimer cells. In a Transwell assay, cell migration velocity was elevated in HER2 dimer cells as compared with empty vector cells. In addition, HER2 dimer cells showed in increased cell invasion, reaching significance for induced HER2-HER3 heterodimers (P = 0.015). Importantly, in three-dimensional organotypic cultures, empty vector cells grew as a superficial cell layer, resembling oesophageal squamous epithelium. In contrast, induced HER2 homodimer cells were highly invasive into the matrix and formed cell clusters. This was associated with partial loss of cytokeratin 7 (when HER2 homodimers were modelled) and p63 (when EGFR-HER2 heterodimers were modelled), which suggests a change or loss of squamous cell differentiation. Controlled activation of specific EGFR, HER2 and HER3 homodimers and heterodimers caused oesophageal squamous epithelial cell migration and/or invasion, especially in a three-dimensional microenvironment, thereby functionally identifying ErbB homodimers and heterodimers as important drivers of oesophageal carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christiane Daniela Fichter
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Camilla Maria Przypadlo
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Schäfer
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Reinheckel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
RORα2 requires LSD1 to enhance tumor progression in breast cancer. Sci Rep 2017; 7:11994. [PMID: 28931919 PMCID: PMC5607251 DOI: 10.1038/s41598-017-12344-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/07/2017] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear. Here, we generate RORα2-specific antibody and characterize the role of RORα2 in promoting tumor progression in breast cancer. RORα2 requires lysine specific demethylase 1 (LSD1/KDM1A) as a coactivator for transcriptional activation of RORα2 target genes, exemplified by CTNND1. Intriguingly, RORα2 and LSD1 protein levels are dramatically elevated in human breast cancer specimens compared to normal counterparts. Taken together, our studies indicate that LSD1-mediated RORα2 transcriptional activity is important to promote tumor cell migration in human breast cancer as well as breast cancer cell lines. Therefore, our data establish that suppression of LSD1-mediated RORα2 transcriptional activity may be potent therapeutic strategy to attenuate tumor cell migration in human breast cancer.
Collapse
|
46
|
Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:101. [PMID: 28764725 PMCID: PMC5540425 DOI: 10.1186/s13046-017-0572-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Background Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Methods Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Results Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. Conclusions The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0572-7) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S, Jiang L, Wu J, Li M, Song L, Li J. Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Mol Cancer 2017. [PMID: 28633632 PMCID: PMC5479030 DOI: 10.1186/s12943-017-0669-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The plasticity of cancer stem cells (CSCs)/tumor-initiating cells (T-ICs) suggests that multiple CSC/T-IC subpopulations exist within a tumor and that multiple oncogenic pathways collaborate to maintain the CSC/T-IC state. Here, we aimed to identify potential therapeutic targets that concomitantly regulate multiple T-IC subpopulations and CSC/T-IC-associated pathways. Methods A chemoresistant patient-derived xenograft (PDX) model of human esophageal squamous cell carcinoma (ESCC) was employed to identify microRNAs that contribute to ESCC aggressiveness. The oncogenic effects of microRNA-455-3p (miR-455-3p) on ESCC chemoresistance and tumorigenesis were examined by in vivo and in vitro chemoresistance, tumorsphere formation, side-population, and in vivo limiting dilution assays. The roles of miR-455-3p in activation of the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad pathways were determined by luciferase and RNA immunoprecipitation assays. Results We found that miR-455-3p played essential roles in ESCC chemoresistance and tumorigenesis. Treatment with a miR-455-3p antagomir dramatically chemosensitized ESCC cells and reduced the subpopulations of CD90+ and CD271+ T-ICs via deactivation of multiple stemness-associated pathways, including Wnt/β-catenin and TGF-β signaling. Importantly, miR-455-3p exhibited aberrant upregulation in various human cancer types, and was significantly associated with decreased overall survival of cancer patients. Conclusions Our results demonstrate that miR-455-3p functions as an oncomiR in ESCC progression and may provide a potential therapeutic target to achieve better clinical outcomes in cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0669-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aibin Liu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinrong Zhu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Geyan Wu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lixue Cao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Zhanyao Tan
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Shuxia Zhang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lili Jiang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jun Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
48
|
Kidacki M, Lehman HL, Green MV, Warrick JI, Stairs DB. p120-Catenin Downregulation and PIK3CA Mutations Cooperate to Induce Invasion through MMP1 in HNSCC. Mol Cancer Res 2017. [PMID: 28637905 DOI: 10.1158/1541-7786.mcr-17-0108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite recent improvements in treatment for head and neck squamous cell carcinoma (HNSCC), half of all patients with a regional or advanced disease will die within 5 years from diagnosis. Therefore, identification of mechanisms driving the aggressive behavior of HNSCC is of utmost importance. Because p120-catenin (CTNND1/P120CTN) downregulation and PIK3CA mutations are commonly found in HNSCC, the objective of this study was to identify their impact on fundamental processes of metastasis, specifically, migration and invasion. Furthermore, this study aimed to identify the key effector proteins regulated by P120CTN downregulation and PIK3CA mutations. Studies using oral keratinocytes demonstrated that P120CTN downregulation and PIK3CA mutations increased migration and invasion. In addition, P120CTN downregulation and PIK3CA mutations resulted in elevated matrix metallopeptidase 1 (MMP1) levels. Inhibition of MMP1 resulted in decreased invasion, suggesting that MMP1 plays a critical role in HNSCC invasion. Moreover, analysis of HNSCC patient specimens from The Cancer Genome Atlas confirmed these findings. Tumors with low P120CTN and PI3K pathway mutations have higher levels of MMP1 compared to tumors with high P120CTN and no PI3K pathway mutations. In conclusion, this study demonstrates that P120CTN downregulation and PIK3CA mutations promote MMP1-driven invasion, providing a potential novel target for limiting metastasis in HNSCC.Implications: Because of its role in invasion, MMP1 represents a novel, potential target for limiting metastasis in a subset of HNSCCs with P120CTN downregulation and PIK3CA mutations. Mol Cancer Res; 15(10); 1398-409. ©2017 AACR.
Collapse
Affiliation(s)
- Michal Kidacki
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Heather L Lehman
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michelle V Green
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joshua I Warrick
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
49
|
Xiao L, Tian X, Harihar S, Li Q, Li L, Welch DR, Zhou A. Gd 2O 3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:218-225. [PMID: 28365452 PMCID: PMC5427483 DOI: 10.1016/j.saa.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm-1. By spatially mapping the SERS intensity at 1075cm-1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA
| | - Xiumei Tian
- Department of Biomedical Engineering, Guangzhou Medical College, Guangzhou 510182, People's Republic of China
| | - Sitaram Harihar
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA; Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning 530003, Guangxi, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA.
| |
Collapse
|
50
|
Zhang W, Hong R, Xue L, Ou Y, Liu X, Zhao Z, Xiao W, Dong D, Dong L, Fu M, Ma L, Lu N, Chen H, Song Y, Zhan Q. Piccolo mediates EGFR signaling and acts as a prognostic biomarker in esophageal squamous cell carcinoma. Oncogene 2017; 36:3890-3902. [PMID: 28263981 DOI: 10.1038/onc.2017.15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
The presynaptic cytomatrix protein Piccolo, encoded by PCLO, is frequently mutated and amplified in esophageal squamous cell carcinoma (ESCC), but its exact roles in ESCC remain unclear. Here we report that Piccolo expression correlates significantly with clinical stage, patient survival and tumor embolus. Functional studies demonstrate that PCLO knockdown remarkably attenuates ESCC malignancy in vitro and in vivo, and ectopic EGFR expression partially compensates for Piccolo loss. PCLO knockdown promotes ubiquitination and degradation of EGFR, which is associated with the negative regulatory effect of Piccolo on E3 ligase Siah1. An anti-Piccolo monoclonal antibody inhibited tumor proliferation in a mouse model of ESCC. These results demonstrate that Piccolo contributes to tumor aggressiveness in ESCC, likely by stabilizing EGFR and promoting EGFR-dependent signaling. Our results further suggest that Piccolo may represent a novel prognostic biomarker and therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- W Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan, China.,Guangdong Koheala Precision Medicine Institute, Guangzhou, China
| | - R Hong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - L Xue
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Ou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, China
| | - X Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Z Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - W Xiao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - D Dong
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L Dong
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - M Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L Ma
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - N Lu
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - H Chen
- Guangdong Koheala Precision Medicine Institute, Guangzhou, China
| | - Y Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital &Institute, Beijing, China
| |
Collapse
|