1
|
Hong H, Wu Y, Li Y, Han Y, Cao X, Wu VWY, Chan TTH, Zhou J, Cao Q, Lui KO, Wong CK, Dai Z, Tian XY. Endothelial PPARδ Ablation Exacerbates Vascular Hyperpermeability via STAT1/CXCL10 Signaling in Acute Lung Injury. Circ Res 2025; 136:735-751. [PMID: 39996324 DOI: 10.1161/circresaha.124.325855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Vascular hyperpermeability is one of the hallmarks of acute lung injury, contributing to excessive inflammation and respiratory failure. The PPARδ (peroxisome proliferator-activated receptor delta) is an anti-inflammatory transcription factor, although its role in endothelial barrier function remains unclear. Here, we studied the essential role of PPARδ in maintaining vascular endothelial barrier integrity during lung inflammation and investigated the underlying mechanisms. METHODS Endothelial cell (EC)-selective PPARδ knockout mice (PpardEC-KO) and littermate control mice (PpardEC-WT) received lipopolysaccharide injection to induce acute lung injury. Lung inflammation, pulmonary vascular leakage, and mouse mortality were monitored. Single-cell RNA sequencing was performed on sorted mouse lung ECs. RESULTS PpardEC-KO mice exhibited aggravated lung inflammation, characterized by increased leukocyte infiltration, elevated production of proinflammatory cytokines, and higher mortality rates. The enhanced inflammatory responses were associated with increased protein leakage, interstitial edema, and impaired endothelial barrier structure, leading to vascular hyperpermeability in PpardEC-KO mice. Mechanistically, with single-cell RNA sequencing, we identified the emergence of an interferon-activated capillary EC population marked by CXCL10 (C-X-C motif chemokine 10) expression following lipopolysaccharide challenge. PPARδ silencing significantly increased CXCL10 expression in ECs through activating STAT1 (Signal transducer and activator of transcription 1). Notably, CXCL10 treatment induced degradation of tight junction proteins ZO-1 (zonula occludens protein 1) and claudin-5 through the ubiquitin-proteasome system, disrupting membrane junction continuity in ECs. Administration of anti-CXCL10 antibody or CXCL10 receptor antagonist AMG487 suppressed both lipopolysaccharide-induced lung inflammation and vascular leakage in PpardEC-KO mice. CONCLUSIONS These results highlighted a novel anti-inflammatory role of PPARδ in ECs by suppressing CXCL10-mediating vascular hyperpermeability. Targeting the CXCL10 signaling shows therapeutic potential against vascular injury in acute lung injury.
Collapse
Affiliation(s)
- Huiling Hong
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Yalan Wu
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China (Y.W.)
| | - Yangxian Li
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Yumeng Han
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Xiaoyun Cao
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Vivian Wei Yan Wu
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Thomas Ting Hei Chan
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Jingying Zhou
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Qin Cao
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Kathy O Lui
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Chun-Kwok Wong
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Zhiyu Dai
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona (Z.D.)
| | - Xiao Yu Tian
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| |
Collapse
|
2
|
Zhu M, Zhong W, Wong S, Luo X, Hong Z, Lin J, Wu J, Zhou Y, Qi Z, Chen S. E3 ubiquitin ligase ITCH-mediated proteasomal degradation of WBP2 sensitizes breast cancer cells to chemotherapy through restraining AMOTL2/c-JUN axis. Biochem Pharmacol 2025; 232:116720. [PMID: 39709035 DOI: 10.1016/j.bcp.2024.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Our study had demonstrated that WW domain-binding protein 2 (WBP2) conferred chemoresistance in breast cancer (BC). However, the underlying mechanism remains unclear. Herein, a decreased expression of itchy E3 ubiquitin protein ligase (ITCH) was observed in drug-resistant BC tissues which negatively regulated the expression of WBP2. However, ligase-deficient ITCH C830A mutant missed this function. WBP2 upregulation-initiated the chemoresistance to doxorubicin was reversed by exogenous ITCH, which was not affected by ITCH C830A mutant. In in vivo model, exogenous ITCH obstructed WBP2-mediated chemoresistance, which was destroyed by the proteasome inhibitor (MG132). Upon RNA sequencing, the excessive activations of angiomotin-like 2 (AMOTL2) and c-JUN (Jun proto-oncogene, AP-1 transcription factor subunit) were screened in WBP2-overexpressed BC cells. Additionally, AMOTL2 and endonuclear phosphorylated c-JUN were at a high level in chemoresistant BC tumors and WBP2-overexpressed BC cells. Mechanistically, exogenous ITCH transfection prevented the activation of AMOTL2/c-JUN induced by WBP2 overexpression, which was restored by MG132-mediated inhibition on ITCH activation. The increase of multiple drug-resistant proteins caused by WBP2 upregulation were restrained by AMOTL2 knockdown or c-JUN antagonist, respectively. Our findings present how ITCH/WBP2 signaling functions to link the intricate AMOTL2/c-JUN signaling networks in chemoresistant BC cells. Targeting WBP2 combined with c-JUN inhibitors may be a potential option to overcome chemoresistance in breast cancer patients.
Collapse
Affiliation(s)
- Maoshu Zhu
- School of Medicine, Guangxi University, Nanning, 530004, China; The Fifth Hospital of Xiamen, Xiamen 361101, Fujian, China
| | - Weimin Zhong
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian, China
| | - Solomon Wong
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China
| | - Zhicong Hong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China
| | - Juli Lin
- Department of Breast Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, No.10, Zhenhai Road, Xiamen 361003, Fujian Province, China
| | - Junhua Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, 530004, China.
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| |
Collapse
|
3
|
Duan Y, Liu D, Yu H, Zhang S, Xia Y, Du Z, Qin Y, Wang Y, Ma X, Liu H, Du Y. Transcription and post-translational mechanisms: dual regulation of adiponectin-mediated Occludin expression in diabetes. Cell Biosci 2024; 14:126. [PMID: 39354565 PMCID: PMC11443667 DOI: 10.1186/s13578-024-01306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Occludin, a crucial component of tight junctions, has emerged as a promising biomarker for the diagnosis of acute ischemic disease, highlighting its significant potential in clinical applications. In the diabetes, Occludin serves as a downstream target gene intricately regulated by the adiponectin (APN) signaling pathway. However, the specific mechanism by which adiponectin regulates Occludin expression remains unclear. METHODS AND RESULTS Endothelial-specific Ocln knockdown reduced APN-mediated blood flow recovery after femoral artery ligation and nullified APN's protection against high-fat diet (HFD)-triggered apoptosis and angiogenesis inhibition in vivo. Mechanically, we have meticulously elucidated APN's regulatory role in Occludin expression through a comprehensive analysis spanning transcriptional and post-translational dimensions. Foxo1 has been elucidated as a crucial transcriptional regulator of Occludin that is modulated by the APN/APPL1 signaling axis, as evidenced by validation through ChIP-qPCR assays and Western blot analysis. APN hindered Occludin degradation via the ubiquitin-proteasome pathway. Mass spectrometry analysis has recently uncovered a novel phosphorylation site, Tyr467, on Occludin. This site responds to APN, playing a crucial role in inhibiting Occludin ubiquitination by APN. The anti-apoptotic and pro-angiogenic effects of APN were attenuated in vitro and in vivo following Foxo1 knockdown or expression of a non-phosphorylatable mutant, OccludinY467A. Clinically, elevated plasma concentrations of Occludin were observed in patients with diabetes. A significant negative correlation was found between Occludin levels and APN concentrations. CONCLUSION Our study proposes that APN modulates Occludin expression through mechanisms involving both transcriptional and post-translational interactions, thereby conferring a protective effect on endothelial integrity within diabetic vasculature.
Collapse
Affiliation(s)
- Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, People's Republic of China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, China.
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
5
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
6
|
Idrees S, Paudel KR, Hansbro PM. Prediction of motif-mediated viral mimicry through the integration of host-pathogen interactions. Arch Microbiol 2024; 206:94. [PMID: 38334822 PMCID: PMC10858152 DOI: 10.1007/s00203-024-03832-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Baldassi D, Ngo TMH, Merkel OM. Optimization of Lung Surfactant Coating of siRNA Polyplexes for Pulmonary Delivery. Pharm Res 2024; 41:77-91. [PMID: 36447020 PMCID: PMC9708138 DOI: 10.1007/s11095-022-03443-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The aim of this study was to understand how coating with a pulmonary surfactant, namely Alveofact, affects the physicochemical parameters as well as in vitro behavior of polyethylenimine (PEI) polyplexes for pulmonary siRNA delivery. METHODS Alveofact-coated polyplexes were prepared at different Alveofact:PEI coating ratios and analyzed in terms of size, PDI and zeta potential as well as morphology by transmission electron microscopy. The biological behavior was evaluated in a lung epithelial cell line regarding cell viability, cellular uptake via flow cytometry and gene downregulation by qRT-PCR. Furthermore, a 3D ALI culture model was established to test the mucus diffusion and cellular uptake by confocal microscopy as well as gene silencing activity by qRT-PCR. RESULTS After optimizing the coating process by testing different Alveofact:PEI coating ratios, a formulation with suitable parameters for lung delivery was obtained. In lung epithelial cells, Alveofact-coated polyplexes were well tolerated and internalized. Furthermore, the coating improved the siRNA-mediated gene silencing efficiency. Alveofact-coated polyplexes were then tested on a 3D air-liquid interface (ALI) culture model that, by expressing tight junctions and secreting mucus, resembles important traits of the lung epithelium. Here, we identified the optimal Alveofact:PEI coating ratio to achieve diffusion through the mucus layer while retaining gene silencing activity. Interestingly, the latter underlined the importance of establishing appropriate in vitro models to achieve more consistent results that better predict the in vivo activity. CONCLUSION The addition of a coating with pulmonary surfactant to polymeric cationic polyplexes represents a valuable formulation strategy to improve local delivery of siRNA to the lungs.
Collapse
Affiliation(s)
- Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany
| | - Thi My Hanh Ngo
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany.
| |
Collapse
|
8
|
Torices S, Daire L, Simon S, Naranjo O, Mendoza L, Teglas T, Fattakhov N, Adesse D, Toborek M. Occludin: a gatekeeper of brain Infection by HIV-1. Fluids Barriers CNS 2023; 20:73. [PMID: 37840143 PMCID: PMC10577960 DOI: 10.1186/s12987-023-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Daniel Adesse
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA.
| |
Collapse
|
9
|
Diao X, Han H, Li B, Guo Z, Fu J, Wu W. The Rare Marine Bioactive Compounds in Neurological Disorders and Diseases: Is the Blood-Brain Barrier an Obstacle or a Target? Mar Drugs 2023; 21:406. [PMID: 37504937 PMCID: PMC10381592 DOI: 10.3390/md21070406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier separating neurocytes and brain tissues from blood that is extremely sealed and strictly regulated by transporters such as aquaporin-4 (AQP-4), glucose transporter (GLUT), and specialized tight junctional complexes (TJCs) including tight junctions (TJs), adherens junctions (AJs), and Zonulae occludens (ZOs). With specifically selective transcellular and paracellular permeability, the BBB maintains a homeostatic microenvironment to protect the central nervous system (CNS). In recent years, increasing attention has been paied to the importance of BBB disruption and dysfunction in the pathology of neurological disorders and diseases, such as Alzheimer's diseases (AD), Parkinson diseases (PD), stroke and cerebral edema. However, the further research on how the integral structure and function of BBB are altered under the physiological or pathological conditions is still needed. Focusing on the ultrastructural features of the BBB and combining the latest research on associated proteins and transporters, physiological regulation and pathological change of the BBB were elucidated. By summarizing the protective effects of known bioactive compounds derived from marine life on the BBB, this review aims to highlight the BBB as a key to the treatment of several major neurological diseases instead of a normally described obstacle to drug absorption and transport. Overall, the BBB's morphological characteristics and physiological function and their regulation provide the theoretical basis for the study on the BBB and inspire the diagnosis of and therapy for neurological diseases.
Collapse
Affiliation(s)
- Xiaozhen Diao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Hui Han
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Bailin Li
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Zhen Guo
- Innovation Center, Shanghai BociMed Pharmaceutical Co., Ltd., Shanghai 201203, China; (Z.G.); (J.F.)
| | - Jun Fu
- Innovation Center, Shanghai BociMed Pharmaceutical Co., Ltd., Shanghai 201203, China; (Z.G.); (J.F.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| |
Collapse
|
10
|
Zhou T, Liao W, Wang X, Wang Y, Yang P, Zuo L, Zhang X. Low temperature reduces occludin expression in bronchial epithelial cells: Implications in cold-induced asthma. Mol Immunol 2023; 157:176-185. [PMID: 37044043 DOI: 10.1016/j.molimm.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Cold exposure is a common factor to trigger asthma attacks. However, the underlying mechanism has not been thoroughly elucidated. We aimed to investigate the hypothesis that low temperature reduces occludin expression and compromises epithelial barrier function in airways, which in turn, results in asthma exacerbation. METHODS We examined occludin expression in human bronchial epithelial cell line (Beas-2B) cells exposed to either 29 °C or 37 °C. The following drugs were administered prior to cold treatment: MG132 (a proteasome inhibitor), cycloheximide (a protein synthesis inhibitor), HC-067047 plus GSK2193874 (transient receptor potential vanilloid 4 [TRPV4] antagonists), or C4-ceramide (a glucocorticoid-inducible kinase [SGK1] activator). siNedd4-2 was transfected into Beas-2B cells to investigate the role that Nedd4-2 plays in mediating occludin instability induced by cold. In animal experiments, we treated ovalbumin (OVA)-induced asthmatic mice with a thermoneutral temperature of 30 °C or cold exposure (10 °C, 6 h/day) for 2 weeks. GSK2193874 or C4-ceramide was administered during the cold treatment. Occludin expression of the lung, pulmonary permeability, serum IgE levels, and lung inflammation were assessed. RESULTS Low temperature treatment (29 °C) significantly reduced the expression of occludin in Beas-2B cells from 1 to 9 h, which was rescued upon treatment with MG132, HC-067047 plus GSK2193874, C4-ceramide, or Nedd4-2 knockdown. Low temperatures affected occludin stability through SGK1/Nedd4-2-dependent proteolysis. In vivo mice data revealed that cold exposure compromised the airway epithelial barrier function, decreased occludin expression, and exacerbated lung inflammation, which was attenuated by the GSK2193874 or C4-ceramide injection. CONCLUSION We identified a potential mechanism underlying cold-induced asthma exacerbation involving Nedd4-2-mediated occludin proteolysis and airway epithelial barrier disruption.
Collapse
Affiliation(s)
- Tingyang Zhou
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Liao
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofen Wang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiyan Wang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Allergy and Clinical Immunology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Zuo
- School of Medicine, The University of Texas and UT Health Rio Grande Valley, TX 78539, USA
| | - Xiaowen Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Cancer, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, China; Department of Allergy and Clinical Immunology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Improving endothelial cell junction integrity by diphenylmethanone derivatives at oxidative stress: A dual-action directly targeting caveolar caveolin-1. Toxicol Appl Pharmacol 2022; 455:116264. [DOI: 10.1016/j.taap.2022.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
|
12
|
Pan-claudin family interactome analysis reveals shared and specific interactions. Cell Rep 2022; 41:111588. [DOI: 10.1016/j.celrep.2022.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
13
|
Palomino SM, Levine AA, Wahl J, Liktor-Busa E, Streicher JM, Largent-Milnes TM. Inhibition of HSP90 Preserves Blood-Brain Barrier Integrity after Cortical Spreading Depression. Pharmaceutics 2022; 14:1665. [PMID: 36015292 PMCID: PMC9416719 DOI: 10.3390/pharmaceutics14081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Cortical spreading depression (CSD) is a pathophysiological mechanism underlying headache disorders, including migraine. Blood-brain barrier (BBB) permeability is increased during CSD. Recent papers have suggested that heat shock proteins (HSP) contribute to the integrity of the blood-brain barrier. In this study, the possible role of HSP90 in CSD-associated blood-brain barrier leak at the endothelial cell was investigated using an in vitro model, for the blood-endothelial barrier (BEB), and an in vivo model with an intact BBB. We measured barrier integrity using trans endothelial electric resistance (TEER) across a monolayer of rodent brain endothelial cells (bEnd.3), a sucrose uptake assay, and in situ brain perfusion using female Sprague Dawley rats. CSD was induced by application of 60 mM KCl for 5 min in in vitro experiments or cortical injection of KCl (1 M, 0.5 µL) through a dural cannula in vivo. HSP90 was selectively blocked by 17-AAG. Our data showed that preincubation with 17-AAG (1 µM) prevented the reduction of TEER values caused by the KCl pulse on the monolayer of bEnd.3 cells. The elevated uptake of 14C-sucrose across the same endothelial monolayer induced by the KCl pulse was significantly reduced after preincubation with HSP90 inhibitor. Pre-exposure to 17-AAG significantly mitigated the transient BBB leak after CSD induced by cortical KCl injection as determined by in situ brain perfusion in female rats. Our results demonstrated that inhibition of HSP90 with the selective agent 17-AAG reduced CSD-associated BEB/BBB paracellular leak. Overall, this novel observation supports HSP90 inhibition mitigates KCl-induced BBB permeability and suggests the development of new therapeutic approaches targeting HSP90 in headache disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85719, USA
| |
Collapse
|
14
|
Chou HC, Cheng CM, Yang CH, Lin TY, Liu YW, Tan TH, Chen YR. DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. J Biomed Sci 2022; 29:40. [PMID: 35705979 PMCID: PMC9199239 DOI: 10.1186/s12929-022-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tight junctions (TJ) are multi-protein complexes that hold epithelial cells together and form structural and functional barriers for maintaining proper biological activities. Dual specificity phosphatase 3 (DUSP3), a suppressor of multiple protein tyrosine (Tyr) kinases, is decreased in lung cancer tissues. Here we demonstrated the role of DUSP3 in regulation of epithelial TJ. Methods Barrier functions of TJ were examined in wild-type or DUSP3-deficient lung epithelial cells. Animal and clinical data were analyzed for the association between DUSP3 deficiency and lung cancer progression. Proximity ligation assay, immunoblotting, and phosphatase assay were performed to study the effect of DUSP3 on the TJ protein occludin (OCLN). Mutations of Tyr residues on OCLN showed the role of Tyr phosphorylation in regulating OCLN. Results Compared to those of the DUSP3-expressing cells, we found the expression and distribution of ZO-1, a TJ-anchoring molecule, were abnormal in DUSP3-deficient cells. OCLN had an increased phosphorylation level in DUSP3-deficient cells. We identified that OCLN is a direct substrate of DUSP3. DUSP3 regulated OCLN ubiquitination and degradation through decreasing OCLN tyrosine phosphorylation directly or through suppressing focal adhesion kinase, the OCLN kinase. Conclusion Our study revealed that DUSP3 is an important TJ regulatory protein and its decrease may be involved in progression of epithelial cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00826-x.
Collapse
Affiliation(s)
- Hsiao-Chin Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chi-Hwa Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tzu-Yin Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Rong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan.
| |
Collapse
|
15
|
Li Y, Wei JY, Liu H, Wang KJ, Jin SN, Su ZK, Wang HJ, Shi JX, Li B, Shang DS, Fang WG, Qin XX, Zhao WD, Chen YH. An oxygen-adaptive interaction between SNHG12 and occludin maintains blood-brain barrier integrity. Cell Rep 2022; 39:110656. [PMID: 35417709 DOI: 10.1016/j.celrep.2022.110656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022] Open
Abstract
Tight junctions (TJs) of brain microvascular endothelial cells (BMECs) play a pivotal role in maintaining the blood-brain barrier (BBB) integrity; however, precise regulation of TJs stability in response to physiological and pathological stimuli remains elusive. Here, using RNA immunoprecipitation with next-generation sequencing (RIP-seq) and functional characterization, we identify SNHG12, a long non-coding RNA (lncRNA), as being critical for maintaining the BBB integrity by directly interacting with TJ protein occludin. The interaction between SNHG12 and occludin is oxygen adaptive and could block Itch (an E3 ubiquitin ligase)-mediated ubiquitination and degradation of occludin in human BMECs. Genetic ablation of endothelial Snhg12 in mice results in occludin reduction and BBB leakage and significantly aggravates hypoxia-induced BBB disruption. The detrimental effects of hypoxia on BBB could be alleviated by exogenous SNHG12 overexpression in brain endothelium. Together, we identify a direct TJ modulator lncRNA SNHG12 that is critical for the BBB integrity maintenance and oxygen adaption.
Collapse
Affiliation(s)
- Yuan Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Kang-Ji Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Sheng-Nan Jin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Zheng-Kang Su
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui-Jie Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - De-Shu Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Xiao-Xue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| |
Collapse
|
16
|
Ruan T, Sun Y, Zhang J, Sun J, Liu W, Prinz RA, Peng D, Liu X, Xu X. H5N1 infection impairs the alveolar epithelial barrier through intercellular junction proteins via Itch-mediated proteasomal degradation. Commun Biol 2022; 5:186. [PMID: 35233032 PMCID: PMC8888635 DOI: 10.1038/s42003-022-03131-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
The H5N1 subtype of the avian influenza virus causes sporadic but fatal infections in humans. H5N1 virus infection leads to the disruption of the alveolar epithelial barrier, a pathologic change that often progresses into acute respiratory distress syndrome (ARDS) and pneumonia. The mechanisms underlying this remain poorly understood. Here we report that H5N1 viruses downregulate the expression of intercellular junction proteins (E-cadherin, occludin, claudin-1, and ZO-1) in several cell lines and the lungs of H5N1 virus-infected mice. H5N1 virus infection activates TGF-β-activated kinase 1 (TAK1), which then activates p38 and ERK to induce E3 ubiquitin ligase Itch expression and to promote occludin ubiquitination and degradation. Inhibition of the TAK1-Itch pathway restores the intercellular junction structure and function in vitro and in the lungs of H5N1 virus-infected mice. Our study suggests that H5N1 virus infection impairs the alveolar epithelial barrier by downregulating the expression of intercellular junction proteins at the posttranslational level.
Collapse
Affiliation(s)
- Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yuling Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jingting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, 60201, USA
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
17
|
Wang J, Kimura E, Mongan M, Xia Y. Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells 2021; 11:cells11010034. [PMID: 35011600 PMCID: PMC8750206 DOI: 10.3390/cells11010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ying Xia
- Correspondence: ; Tel.: +1-513-558-0371
| |
Collapse
|
18
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Yu P, Li Y, Zhong G, Li W, Chen B, Zhang J. Claudin-5 Affects Endothelial Autophagy in Response to Early Hypoxia. Front Physiol 2021; 12:737474. [PMID: 34531766 PMCID: PMC8438321 DOI: 10.3389/fphys.2021.737474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 02/03/2023] Open
Abstract
Hypoxic injury to cerebrovascular endothelial cells (ECs) after stroke leads to blood-brain barrier (BBB) dysfunction, which is commonly associated with disruptions of endothelial tight junctions (TJs) and increased permeability. Therefore, maintaining the structural integrity and proper function of the BBB is essential for the homeostasis and physiological function of the central nervous system (CNS). Our previous study revealed that autophagy functions on protecting the BBB by regulating the dynamics of Claudin-5, the essential TJ protein, under short-term starvation or hypoxia conditions. Here, we show that in zebrafish and in vitro cells, loss of membranous Claudin-5 conversely determine the occurrence of hypoxia-induced autophagy in cerebrovascular ECs. Absence of endothelial Claudin-5 could partly attenuate endothelial cell apoptosis caused by short-term hypoxic injury. Mechanism studies revealed that under hypoxic conditions, the existence of membranous Claudin-5 affects the stimulation of hypoxia inducible factor 1 subunit alpha (HIF-1a) and the inducible nitric oxide synthase (iNOS), which are responsible for the translocation of and endocytosis of caveole-packaged Claudin-5 into cytosol. Meanwhile, loss of Claudin-5 affects the generation of reactive oxygen species (ROS) and the downstream expression of BCL2/adenovirus E1B 19kDa protein interacting protein 3 (Bnip3). These together suppress the endothelial autophagy under hypoxia. This finding provides a theoretical basis for clarifying the mechanism of hypoxia-induced BBB injury and its potential protection mechanisms.
Collapse
Affiliation(s)
- Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Gaoliang Zhong
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Yeh TY, Liu PH. Removal of a compressive mass causes a transient disruption of blood-brain barrier but a long-term recovery of spiny stellate neurons in the rat somatosensory cortex. Restor Neurol Neurosci 2021; 39:111-127. [PMID: 34024792 DOI: 10.3233/rnn-201085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. OBJECTIVE The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. METHODS Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi-Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. RESULTS The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. CONCLUSIONS Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.
Collapse
Affiliation(s)
- Tzu-Yin Yeh
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Pei-Hsin Liu
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan.,Medical Physiology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
21
|
ALS-causing SOD1 mutants regulate occludin phosphorylation/ubiquitination and endocytic trafficking via the ITCH/Eps15/Rab5 axis. Neurobiol Dis 2021; 153:105315. [PMID: 33636390 DOI: 10.1016/j.nbd.2021.105315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
It is increasingly recognized that blood-spinal cord barrier (BSCB) breakdown is a hallmark of amyotrophic lateral sclerosis (ALS). BSCB integrity is disrupted prior to disease onset. Occludin, as the functional component of the endothelial barrier, is downregulated in mouse models expressing ALS-linked superoxide dismutase-1 (SOD1) mutants. However, the molecular mechanisms underlying the regulation of occludin expression remain elusive. Here, using SOD1G93A transgenic mice and endothelial cells expressing SOD1 mutants of different biochemical characteristics, we found that the SOD1 mutation disrupted endothelial barrier integrity and that the occludin expression level was downregulated with disease progression. Our mechanistic studies revealed that abnormal reactive oxygen species (ROS) in mutant SOD1-expressing cells induced occludin phosphorylation, which facilitated the subsequent occludin ubiquitination mediated by the E3 ligase ITCH. Moreover, ubiquitinated occludin interacted with Eps15 to initiate its internalization, then trafficked to Rab5-positive vesicles and be degraded by proteasomes, resulting in a reduction in cell surface localization and total abundance. Notably, either ITCH or Eps15 knockdown was sufficient to rescue occludin degradation and ameliorate endothelial barrier disruption. In conclusion, our study reveals a novel mechanism of occludin degradation mediated by ALS-causing SOD1 mutants and demonstrates a role for occludin in regulating BSCB integrity.
Collapse
|
22
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
23
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
24
|
Yang Z, Lin P, Chen B, Zhang X, Xiao W, Wu S, Huang C, Feng D, Zhang W, Zhang J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 2020; 17:3048-3067. [PMID: 33280500 DOI: 10.1080/15548627.2020.1851897] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB integrity remains unclear. Here we report that in BMECs of patients suffering stroke, CLDN5 (claudin 5) abnormally aggregates in the cytosol accompanied by autophagy activation. In vivo zebrafish and in vitro cell studies reveal that BBB breakdown is partially caused by CAV1 (caveolin 1)-mediated redistribution of membranous CLDN5 into the cytosol under hypoxia. Meanwhile, autophagy is activated and contributes mainly to the degradation of CAV1 and aggregated CLDN5 in the cytosol of BMECs, therefore alleviating BBB breakdown. Blockage of autophagy by genetic methods or chemicals aggravates cytosolic aggregation of CLDN5, resulting in severer BBB impairment. These data demonstrate that autophagy functions in the protection of BBB integrity by regulating CLDN5 redistribution and provide a potential therapeutic strategy for BBB disorder-related cerebrovascular disease.Abbreviations: BBB: blood-brain barrier; BECN1: beclin 1; BMEC: brain microvascular endothelial cell; CAV1: caveolin 1; CCA: common carotid artery; CLDN5: claudin 5; CNS: central nervous system; CQ: chloroquine; HIF1A: hypoxia inducible factor 1 subunit alpha; MCAO: middle cerebral artery occlusion-reperfusion; OCLN: occludin; ROS: reactive oxygen species; STED: stimulated emission depletion; TEER: trans-endothelial electrical resistance; TEM: transmission electron microscopy; TJ: tight junction; TJP1: tight junction protein 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Zhenguo Yang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Panpan Lin
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqi Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Chunnian Huang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Du Feng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenqing Zhang
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Aguanno D, Coquant G, Postal BG, Osinski C, Wieckowski M, Stockholm D, Grill JP, Carrière V, Seksik P, Thenet S. The intestinal quorum sensing 3-oxo-C12:2 Acyl homoserine lactone limits cytokine-induced tight junction disruption. Tissue Barriers 2020; 8:1832877. [PMID: 33100129 PMCID: PMC7714502 DOI: 10.1080/21688370.2020.1832877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestine is home to the largest microbiota community of the human body and strictly regulates its barrier function. Tight junctions (TJ) are major actors of the intestinal barrier, which is impaired in inflammatory bowel disease (IBD), along with an unbalanced microbiota composition. With the aim to identify new actors involved in host-microbiota interplay in IBD, we studied N-acyl homoserine lactones (AHL), molecules of the bacterial quorum sensing, which also impact the host. We previously identified in the gut a new and prominent AHL, 3-oxo-C12:2, which is lost in IBD. We investigated how 3-oxo-C12:2 impacts the intestinal barrier function, in comparison to 3-oxo-C12, a structurally close AHL produced by the opportunistic pathogen P. aeruginosa. Using Caco-2/TC7 cells as a model of polarized enterocytes, we compared the effects on paracellular permeability and TJ integrity of these two AHL, separately or combined with pro-inflammatory cytokines, Interferon-γ and Tumor Necrosis Factor-α, known to disrupt the barrier function during IBD. While 3-oxo-C12 increased paracellular permeability and decreased occludin and tricellulin signal at bicellular and tricellular TJ, respectively, 3-oxo-C12:2 modified neither permeability nor TJ integrity. Whereas 3-oxo-C12 potentiated the hyperpermeability induced by cytokines, 3-oxo-C12:2 attenuated their deleterious effects on occludin and tricellulin, and maintained their interaction with their partner ZO-1. In addition, 3-oxo-C12:2 limited the cytokine-induced ubiquitination of occludin and tricellulin, suggesting that this AHL prevented their endocytosis. In conclusion, the role of 3-oxo-C12:2 in maintaining TJ integrity under inflammatory conditions identifies this new AHL as a potential beneficial actor of host–microbiota interactions in IBD.
Collapse
Affiliation(s)
- Doriane Aguanno
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Garance Coquant
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Barbara G Postal
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Université de Paris, Centre De Recherche sur l'Inflammation, INSERM UMR 1149 , Paris, France.,Biology and Genetics of Bacterial Cell Wall Unit, Pasteur Institute , Paris, France
| | - Céline Osinski
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches , Paris, France
| | - Margaux Wieckowski
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Daniel Stockholm
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Département De Gastroentérologie Et Nutrition , Paris, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| |
Collapse
|
26
|
Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020; 6:152-162. [PMID: 33210038 PMCID: PMC7646391 DOI: 10.4103/bc.bc_29_20] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a key structural component of the blood–brain barrier (BBB) that has recently become an important focus of research in BBB damages. Many studies have demonstrated that occludin could regulate the integrity and permeability of the BBB. The function of BBB depends on the level of occludin protein expression in brain endothelial cells. Moreover, occludin may serve as a potential biomarker for hemorrhage transformation after acute ischemic stroke. In this review, we summarize the role of occludin in BBB integrity and the regulatory mechanisms of occludin in the permeability of BBB after ischemic stroke. Multiple factors have been found to regulate occludin protein functions in maintaining BBB permeability, such as Matrix metalloproteinas-mediated cleavage, phosphorylation, ubiquitination, and related inflammatory factors. In addition, various signaling pathways participate in regulating the occludin expression, including nuclear factor-kappa B, mitogen-activated protein kinase, protein kinase c, RhoK, and ERK1/2. Emerging therapeutic interventions for ischemic stroke targeting occludin are described, including normobaric hyperoxia, Chinese medicine, chemical drugs, genes, steroid hormones, small molecular peptides, and other therapies. Since occludin has been shown to play a critical role in regulating BBB integrity, further preclinical studies will help evaluate and validate occludin as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shuhua Yuan
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zhifeng Qi
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Post-translational modifications of tight junction transmembrane proteins and their direct effect on barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183330. [PMID: 32376223 DOI: 10.1016/j.bbamem.2020.183330] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) such as phosphorylation, ubiquitination or glycosylation are processes affecting the conformation, stability, localization and function of proteins. There is clear evidence that PTMs can act upon tight junction (TJ) proteins, thus modulating epithelial barrier function. Compared to transcriptional or translational regulation, PTMs are rapid and more dynamic processes so in the context of barrier maintenance they might be essential for coping with changing environmental or external impacts. The aim of this review is to extract literature deciphering PTMs in TJ proteins directly contributing to epithelial barrier changes in permeability to ions and macromolecules. It is not intended to cover the entire scope of PTMs in TJ proteins and should rather be understood as a digest of TJ protein modifications directly resulting in the tightening or opening of the epithelial barrier.
Collapse
|
28
|
Yin Q, Wyatt CJ, Han T, Smalley KSM, Wan L. ITCH as a potential therapeutic target in human cancers. Semin Cancer Biol 2020; 67:117-130. [PMID: 32165318 DOI: 10.1016/j.semcancer.2020.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The ITCH/AIP4 ubiquitin E3 ligase was discovered independently by two groups searching for atrophin-1 interacting proteins and studying the genetics of mouse coat color alteration, respectively. ITCH is classified as a NEDD4 family E3 ligase featured with the C-terminal HECT domain for E3 ligase function and WW domains for substrate recruiting. ITCH deficiency in the mouse causes severe multi-organ autoimmune disease. Its roles in maintaining a balanced immune response have been extensively characterized over the past two and a half decades. A wealth of reports demonstrate a multifaceted role of ITCH in human cancers. Given the versatility of ITCH in catalyzing both proteolytic and non-proteolytic ubiquitination of its over fifty substrates, ITCH's role in malignancies is believed to be context-dependent. In this review, we summarize the downstream substrates of ITCH, the functions of ITCH in both tumor cells and the immune system, as well as the implications of such functions in human cancers. Moreover, we describe the upstream regulatory mechanisms of ITCH and the efforts have been made to target ITCH using small molecule inhibitors.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Clayton J Wyatt
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
29
|
Naylor A, Hopkins A, Hudson N, Campbell M. Tight Junctions of the Outer Blood Retina Barrier. Int J Mol Sci 2019; 21:ijms21010211. [PMID: 31892251 PMCID: PMC6981689 DOI: 10.3390/ijms21010211] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
The outer blood retina barrier (oBRB) formed by the retinal pigment epithelium (RPE) is critical for maintaining retinal homeostasis. Critical to this modified neuro-epithelial barrier is the presence of the tight junction structure that is formed at the apical periphery of contacting cells. This tight junction complex mediates size-selective passive diffusion of solutes to and from the outer segments of the retina. Unlike other epithelial cells, the apical surface of the RPE is in direct contact with neural tissue and it is centrally involved in the daily phagocytosis of the effete tips of photoreceptor cells. While much is known about the intracellular trafficking of material within the RPE, less is known about the role of the tight junction complexes in health and diseased states. Here, we provide a succinct overview of the molecular composition of the RPE tight junction complex in addition to highlighting some of the most common retinopathies that involve a dysregulation of RPE integrity
Collapse
|
30
|
Li R, Qi Y, Jiang M, Zhang T, Wang H, Wang L, Han M. Primary tumor-secreted VEGF induces vascular hyperpermeability in premetastatic lung via the occludin phosphorylation/ubiquitination pathway. Mol Carcinog 2019; 58:2316-2326. [PMID: 31553086 DOI: 10.1002/mc.23120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
Abstract
Primary tumor can induce the formation of premetastatic niche. The hyperpermeability of the vessels in the premetastatic niche is the first step in the development of metastasis. However, the cellular and molecular mechanisms of vascular hyperpermeability remain to be elucidated. In this study, 4T1 breast cells were injected into the breasts of mice to establish a tumor model. Our results showed that primary tumors induced hyperpermeability of the vessels in the premetastatic lung. Subsequent studies showed that the level of vascular endothelial growth factor (VEGF) was elevated in the tumor-bearing mice serum and the levels of tight junction (TJ) proteins occludin and ZO-1 were decreased in the premetastatic lung. In vitro studies demonstrated that VEGF increased the permeability of dextran and decreased the levels of occludin and ZO-1 in human umbilical vein endothelial cells. Moreover, the hyperpermeability of vessels and the degradation of occludin was blocked by bevacizumab. Overexpression of occludin alleviated the VEGF-induced hyperpermeability. Further investigations revealed that VEGF-induced occludin phosphorylation at Ser-490 and ubiquitination. Finally, we showed that VEGF accelerated the process of occludin degradation through the ubiquitin-proteasome system. In conclusion, primary tumor-secrete VEGF induce the occludin phosphorylation/ubiquitination and downregulation, resulting in the disruption of TJs and hyperpermeability of vessels in premetastatic lung. The occludin phosphorylation/ubiquitination pathway may be the mechanism of VEGF-induced vascular hyperpermeability in the lung premetastatic niche.
Collapse
Affiliation(s)
- Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Man Jiang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tiehong Zhang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongwei Wang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Liguang Wang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
31
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
32
|
Chen AC, Shyu LY, Lin YC, Chen KM, Lai SC. Proteasome serves as pivotal regulator in Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis. PLoS One 2019; 14:e0220503. [PMID: 31415587 PMCID: PMC6695157 DOI: 10.1371/journal.pone.0220503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/17/2019] [Indexed: 01/12/2023] Open
Abstract
Proteasome primarily degrades the unneeded or damaged proteins by proteolysis. Disruption of the brain barrier and its resulting meningoencephalitis caused by Angiostrongylus cantonensis are important pathological events in non-permissive hosts. In this study, the results showed upregulated proteasome during A. cantonensis infection. Occludin degradation and matrix metalloproteinase-9 (MMP-9) activity were significantly increased in infected mice than in uninfected mice. Moreover, confocal immunoflourescence microscopy showed that occludin was co-localized with MMP-9. The infected-mice were treated with proteasomal activity inhibitor MG132 by 1.5 and 3.0 mg/kg/day, which resulted in significantly reduced protein levels of phosphorylated IκBα (P<0.05) compared with the untreated control. The phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) showed similar result. In addition, MMP-9 activity and occludin degradation were reduced because of MG132 treatment. These results suggested that the proteasome in A. cantonensis infection degraded phosphorylated IκBα, modulated phosphorylated NF-κB, and then regulated the activation of MMP-9 and occludin degradation. Proteasome alterations were presented in eosinophilic meningitis of BALB/c mice and may contribute to the pathophysiology of eosinophilic meningitis by increasing occludin degradation. This molecule would serve as pivotal regulator in A. cantonensis-induced eosinophilic meningoencephalitis.
Collapse
Affiliation(s)
- An-Chih Chen
- Department of Neurology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ling-Yuh Shyu
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chieh Lin
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Schmidt H, Braubach P, Schilpp C, Lochbaum R, Neuland K, Thompson K, Jonigk D, Frick M, Dietl P, Wittekindt OH. IL-13 Impairs Tight Junctions in Airway Epithelia. Int J Mol Sci 2019; 20:ijms20133222. [PMID: 31262043 PMCID: PMC6651493 DOI: 10.3390/ijms20133222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin-13 (IL-13) drives symptoms in asthma with high levels of T-helper type 2 cells (Th2-cells). Since tight junctions (TJ) constitute the epithelial diffusion barrier, we investigated the effect of IL-13 on TJ in human tracheal epithelial cells. We observed that IL-13 increases paracellular permeability, changes claudin expression pattern and induces intracellular aggregation of the TJ proteins zonlua occludens protein 1, as well as claudins. Furthermore, IL-13 treatment increases expression of ubiquitin conjugating E2 enzyme UBE2Z. Co-localization and proximity ligation assays further showed that ubiquitin and the proteasomal marker PSMA5 co-localize with TJ proteins in IL-13 treated cells, showing that TJ proteins are ubiquitinated following IL-13 exposure. UBE2Z upregulation occurs within the first day after IL-13 exposure. Proteasomal aggregation of ubiquitinated TJ proteins starts three days after IL-13 exposure and transepithelial electrical resistance (TEER) decrease follows the time course of TJ-protein aggregation. Inhibition of JAK/STAT signaling abolishes IL-13 induced effects. Our data suggest that that IL-13 induces ubiquitination and proteasomal aggregation of TJ proteins via JAK/STAT dependent expression of UBE2Z, resulting in opening of TJs. This may contribute to barrier disturbances in pulmonary epithelia and lung damage of patients with inflammatory lung diseases.
Collapse
Affiliation(s)
- Hanna Schmidt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kathrin Neuland
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kristin Thompson
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
34
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Goichon A, Bahlouli W, Ghouzali I, Chan P, Vaudry D, Déchelotte P, Ducrotté P, Coëffier M. Colonic Proteome Signature in Immunoproteasome-Deficient Stressed Mice and Its Relevance for Irritable Bowel Syndrome. J Proteome Res 2018; 18:478-492. [DOI: 10.1021/acs.jproteome.8b00793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexis Goichon
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Wafa Bahlouli
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Ibtissem Ghouzali
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
- INSERM unit 1239, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - Pierre Déchelotte
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| | - Philippe Ducrotté
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Gastroenterology Department, Rouen University Hospital, Rouen, F-76031, France
| | - Moïse Coëffier
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| |
Collapse
|
37
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Pradhan-Sundd T, Zhou L, Vats R, Jiang A, Molina L, Singh S, Poddar M, Russell JM, Stolz DB, Oertel M, Apte U, Watkins S, Ranganathan S, Nejak-Bowen KN, Sundd P, Monga SP. Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 2018; 67:2320-2337. [PMID: 29023813 PMCID: PMC5893443 DOI: 10.1002/hep.29585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/03/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
UNLABELLED β-Catenin, the downstream effector of the Wnt signaling, plays important roles in hepatic development, regeneration, and tumorigenesis. However, its role at hepatocyte adherens junctions (AJ) is relatively poorly understood, chiefly due to spontaneous compensation by γ-catenin. We simultaneously ablated β- and γ-catenin expression in mouse liver by interbreeding β-catenin-γ-catenin double-floxed mice and Alb-Cre transgenic mice. Double knockout mice show failure to thrive, impaired hepatocyte differentiation, cholemia, ductular reaction, progressive cholestasis, inflammation, fibrosis, and tumorigenesis, which was associated with deregulation of tight junctions (TJ) and bile acid transporters, leading to early morbidity and mortality, a phenotype reminiscent of progressive familial intrahepatic cholestasis (PFIC). To address the mechanism, we specifically and temporally eliminated both catenins from hepatocytes using adeno-associated virus 8 carrying Cre-recombinase under the thyroid-binding globulin promoter (AAV8-TBG-Cre). This led to a time-dependent breach of the blood-biliary barrier associated with sequential disruption of AJ and TJ verified by ultrastructural imaging and intravital microscopy, which revealed unique paracellular leaks around individual hepatocytes, allowing mixing of blood and bile and leakage of blood from one sinusoid to another. Molecular analysis identified sequential losses of E-cadherin, occludin, claudin-3, and claudin-5 due to enhanced proteasomal degradation, and of claudin-2, a β-catenin transcriptional target, which was also validated in vitro. CONCLUSION We report partially redundant function of catenins at AJ in regulating TJ and contributing to the blood-biliary barrier. Furthermore, concomitant hepatic loss of β- and γ-catenin disrupts structural and functional integrity of AJ and TJ via transcriptional and posttranslational mechanisms. Mice with dual catenin loss develop progressive intrahepatic cholestasis, providing a unique model to study diseases such as PFIC. (Hepatology 2018;67:2320-2337).
Collapse
Affiliation(s)
| | - Lili Zhou
- Dept. of General Surgery, School of Medicine, Xi'an Jiaotong University, China
| | - Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - An Jiang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Laura Molina
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jacquelyn M Russell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michael Oertel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA,Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Kari N. Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Satdarshan Pal Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,Address Correspondence to: Satdarshan P. S. Monga, MD, FAASLD., Endowed Chair for Experimental Pathology, Director: Pittsburgh Liver Research Center, Professor of Pathology (EP) & Medicine (Gastroenterology, Hepatology & Nutrition), Assistant Dean and Co-Director: Medical Scientist Training Program, University of Pittsburgh, School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261, Tel: (412) 648-9966; Fax: (412) 648-1916;
| |
Collapse
|
39
|
Diaz-Cañestro C, Merlini M, Bonetti NR, Liberale L, Wüst P, Briand-Schumacher S, Klohs J, Costantino S, Miranda M, Schoedon-Geiser G, Kullak-Ublick GA, Akhmedov A, Paneni F, Beer JH, Lüscher TF, Camici GG. Sirtuin 5 as a novel target to blunt blood–brain barrier damage induced by cerebral ischemia/reperfusion injury. Int J Cardiol 2018; 260:148-155. [DOI: 10.1016/j.ijcard.2017.12.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 10/25/2022]
|
40
|
Morgan SV, Garwood CJ, Jennings L, Simpson JE, Castelli LM, Heath PR, Mihaylov SR, Vaquéz-Villaseñor I, Minshull TC, Ince PG, Dickman MJ, Hautbergue GM, Wharton SB. Proteomic and cellular localisation studies suggest non-tight junction cytoplasmic and nuclear roles for occludin in astrocytes. Eur J Neurosci 2018; 47:1444-1456. [PMID: 29738614 PMCID: PMC6079634 DOI: 10.1111/ejn.13933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Occludin is a component of tight junctions, which are essential structural components of the blood–brain barrier. However, occludin is expressed in cells without tight junctions, implying additional functions. We determined the expression and localisation of occludin in astrocytes in cell culture and in human brain tissue, and sought novel binding partners using a proteomic approach. Expression was investigated by immunocytochemistry and immunoblotting in the 1321N1 astrocytoma cell line and ScienCell human primary astrocytes, and by immunohistochemistry in human autopsy brain tissue. Recombinant N‐ and C‐terminal occludin was used to pull‐down proteins from 1321N1 cell lysates and protein‐binding partners identified by mass spectrometry analysis. Occludin was expressed in both the cytoplasm and nucleus of astrocytes in vitro and in vivo. Mass spectrometry identified binding to nuclear and cytoplasmic proteins, particularly those related to RNA metabolism and nuclear function. Occludin is expressed in several subcellular compartments of brain cell‐types that do not form tight junctions and the expression patterns in cell culture reflect those in human brain tissue, indicating they are suitable model systems. Proteomic analysis suggests that occludin has novel functions in neuroepithelial cells that are unrelated to tight junction formation. Further research will establish the roles of these functions in both cellular physiology and in disease states.
Collapse
Affiliation(s)
- Sarah V Morgan
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Luke Jennings
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Thomas C Minshull
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
42
|
Shigetomi K, Ikenouchi J. Regulation of the epithelial barrier by post-translational modifications of tight junction membrane proteins. J Biochem 2017; 163:265-272. [DOI: 10.1093/jb/mvx077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
44
|
Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: Cellular basis and development. Vision Res 2017; 139:123-137. [PMID: 28619516 DOI: 10.1016/j.visres.2017.05.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
The blood-retinal barrier (BRB) regulates transport across retinal capillaries maintaining proper neural homeostasis and protecting the neural tissue from potential blood borne toxicity. Loss of the BRB contributes to the pathophysiology of a number of blinding retinal diseases including diabetic retinopathy. In this review, we address the basis of the BRB, including the molecular mechanisms that regulate flux across the retinal vascular bed. The routes of transcellular and paracellular flux are described as well as alterations in these pathways in response to permeabilizing agents in diabetes. Finally, we provide information on exciting new studies that help to elucidate the process of BRB development or barriergenesis and how understanding this process may lead to new opportunities for barrier restoration in diabetic retinopathy.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Carla Ramos
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
45
|
Aroclor1254 disrupts the blood-testis barrier by promoting endocytosis and degradation of junction proteins via p38 MAPK pathway. Cell Death Dis 2017; 8:e2823. [PMID: 28542131 PMCID: PMC5520738 DOI: 10.1038/cddis.2017.224] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022]
Abstract
The blood–testis barrier (BTB) constituted by coexisting junction apparatus between Sertoli cells (SCs) plays an important role in spermatogenesis, which is a known target of various environmental toxicants. The commercial polychlorinated biphenyls mixture, Aroclor1254, has been shown to impair male reproduction by decreasing sperm count and affecting SC metabolism. This study was designed to investigate the effects of Aroclor1254 on the BTB integrity and elucidate the underlying mechanisms. We found that Aroclor1254 treatment in rats (1 or 3 mg/kg per day for 21 consecutive days) and in primary cultured SCs (5 or 10 μg/ml for 48 h) could induce BTB disruption via p38 MAPK pathway, concurrently with increments in junction proteins (JAM-A, N-cadherin, and β-catenin) endocytosis, and occludin ubiquitination. Either inhibition of caveolin-dependent membrane protein internalization by cholesterol oxidase or silencing E3 ubiquitine ligase Itch by small interfering RNA could partially counteract the effects of Aroclor1254 on the barrier function of cultured SCs. These results demonstrate that Aroclor1254 disrupts the BTB function by promoting the caveolin-dependent endocytosis and ubiquitine–proteasome degradation of junction proteins through the p38 MAPK pathway, which might be the potential reasons for its negative effects on spermatogenesis and male reproduction.
Collapse
|
46
|
Jennek S, Mittag S, Reiche J, Westphal JK, Seelk S, Dörfel MJ, Pfirrmann T, Friedrich K, Schütz A, Heinemann U, Huber O. Tricellulin is a target of the ubiquitin ligase Itch. Ann N Y Acad Sci 2017; 1397:157-168. [DOI: 10.1111/nyas.13349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Susanne Jennek
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Sonnhild Mittag
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Juliane Reiche
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Julie K. Westphal
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Stefanie Seelk
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Max J. Dörfel
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, University Hospital Halle; Martin Luther University Halle-Wittenberg; Halle/Saale Germany
| | - Karlheinz Friedrich
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Anja Schütz
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - Udo Heinemann
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
- Crystallography; Max Delbrück Center for Molecular Medicine; Berlin Germany
- Chemistry and Biochemistry Institute; Freie Universität Berlin; Berlin Germany
| | - Otmar Huber
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| |
Collapse
|
47
|
Stamatovic SM, Johnson AM, Sladojevic N, Keep RF, Andjelkovic AV. Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci 2017; 1397:54-65. [PMID: 28415156 DOI: 10.1111/nyas.13346] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Internalization of tight junction (TJ) proteins from the plasma membrane is a pivotal mechanism regulating TJ plasticity and function in both epithelial and endothelial barrier tissues. Once internalized, the TJ proteins enter complex vesicular machinery, where further trafficking is directly dependent on the initiating stimulus and downstream signaling pathways that regulate the sorting and destiny of TJ proteins, as well as on cell and barrier responses. The destiny of internalized TJ proteins is recycling to the plasma membrane or sorting to late endosomes and degradation. This review highlights recent advances in our knowledge of endocytosis and vesicular trafficking of TJ proteins in both epithelial and endothelial cells. A greater understanding of these processes may allow for the development of methods to modulate barrier permeability for drug delivery or prevent barrier dysfunction in disease states.
Collapse
Affiliation(s)
| | | | | | - Richard F Keep
- Neurosurgery.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
48
|
Fujimoto K, Kinoshita M, Tanaka H, Okuzaki D, Shimada Y, Kayama H, Okumura R, Furuta Y, Narazaki M, Tamura A, Hatakeyama S, Ikawa M, Tsuchiya K, Watanabe M, Kumanogoh A, Tsukita S, Takeda K. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol 2017; 10:446-459. [PMID: 27381925 DOI: 10.1038/mi.2016.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Genome-wide association studies and subsequent deep sequencing analysis have identified susceptible loci for inflammatory bowel diseases (IBDs) including ulcerative colitis (UC). A gene encoding RING finger protein 186 (RNF186) is located within UC-susceptible loci. However, it is unclear whether RNF186 is involved in IBD pathogenesis. Here, we show that RNF186 controls protein homeostasis in colonic epithelia and regulates intestinal inflammation. RNF186, which was highly expressed in colonic epithelia, acted as an E3 ligase mediating polyubiquitination of its substrates. Permeability of small organic molecules was augmented in the intestine of Rnf186-/- mice. Increased expression of several RNF186 substrates, such as occludin, was found in Rnf186-/- colonic epithelia. The disturbed protein homeostasis in Rnf186-/- mice correlated with enhanced endoplasmic reticulum (ER) stress in colonic epithelia and increased sensitivity to intestinal inflammation after dextran sulfate sodium (DSS) treatment. Introduction of an UC-associated Rnf186 mutation led to impaired E3 ligase activity and increased sensitivity to DSS-induced intestinal inflammation in mice. Thus, RNF186 maintains gut homeostasis by controlling ER stress in colonic epithelia.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Shimada
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoki Furuta
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sachiko Tsukita
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
49
|
Ghouzali I, Lemaitre C, Bahlouli W, Azhar S, Bôle-Feysot C, Meleine M, Ducrotté P, Déchelotte P, Coëffier M. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability. Biochim Biophys Acta Gen Subj 2016; 1861:3278-3288. [PMID: 27544233 DOI: 10.1016/j.bbagen.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal hyperpermeability has been reported in several intestinal and non-intestinal disorders. We aimed to investigate the role of the ubiquitin proteasome system in gut barrier regulation in two mice models: the water avoidance stress model (WAS) and a post-inflammatory model (post-TNBS). METHODS Both models were applied in C57BL/6 male mice (n=7-8/group); Proteasome was targeted by injection of a selective proteasome inhibitor or by using knock-out mice for β2i proteasome subunit. Finally, glutamine supplementation was evaluated. RESULTS In both models (WAS at day 10, post-TNBS at day 28), we observed an increase in proteasome trypsin-like activity and in inducible β2/constitutive β2 subunit protein expression ratio, associated with an increase in intestinal permeability. Moreover, intestinal hyperpermeability was blunted by intraperitoneal injection of selective proteasome inhibitor in WAS and post-TNBS mice. Of note, knock-out mice for the β2i subunit exhibited a significant decrease in intestinal permeability and fecal pellet output during WAS. Glutamine supplementation also improved colonic permeability in both models. CONCLUSIONS In conclusion, the proteasome system is altered in the colonic mucosa of WAS and post-TNBS mice with increased trypsin-like activity. Associated intestinal hyperpermeability was blunted by immunoproteasome inhibition.
Collapse
Affiliation(s)
- Ibtissem Ghouzali
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Lemaitre
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Wafa Bahlouli
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Saïda Azhar
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bôle-Feysot
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Mathieu Meleine
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Philippe Ducrotté
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France.
| |
Collapse
|
50
|
Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM, Kwon YG. The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal 2016; 28:1642-51. [PMID: 27498087 DOI: 10.1016/j.cellsig.2016.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Cell-to-cell junctions are critical for the formation of endothelial barriers, and its disorganization is required for sprouting angiogenesis. Members of the angiomotin (AMOT) family have emerged as key regulators in the control of endothelial cell (EC) junction stability and permeability. However, the underlying mechanism by which the AMOT family is regulated in ECs remains unclear. Here we report that HECW2, a novel EC ubiquitin E3 ligase, plays a critical role in stabilizing endothelial cell-to-cell junctions by regulating AMOT-like 1 (AMOTL1) stability. HECW2 physically interacts with AMOTL1 and enhances its stability via lysine 63-linked ubiquitination. HECW2 depletion in human ECs decreases AMOTL1 stability, loosening the cell-to-cell junctions and altering subcellular localization of yes-associated protein (YAP) from cytoplasm into the nucleus. Knockdown of HECW2 also results in increased angiogenic sprouting, and this effect is blocked by depletion of ANG-2, a potential target of YAP. These results demonstrate that HECW2 is a novel regulator of angiogenesis and provide new insights into the mechanisms coordinating junction stability and angiogenic activation in ECs.
Collapse
Affiliation(s)
- Kyu-Sung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun-Jung Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin-Kyu Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Suhjean Im
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Haiying Zhang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonjeong Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu 700-721, Republic of Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|