1
|
Kensiski A, Gavzy SJ, Wu L, Mas V, Ma B, Bromberg JS. Immunosuppressant imprecision: multidirectional effects on metabolism and microbiome. Clin Microbiol Rev 2025; 38:e0017824. [PMID: 40042298 PMCID: PMC12160495 DOI: 10.1128/cmr.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025] Open
Abstract
SUMMARYTransplant recipients require lifelong, multimodal immunosuppression to prevent rejection by dampening alloreactive immunity. These treatments have long been known to lack antigen specificity. Despite empirically selected long-term immunosuppression regimens, most allografts succumb to alloimmune responses that result in chronic inflammation and scarring. Additionally, immunosuppressive medications themselves contribute to unintended intestinal dysbiosis and metabolic disorders. This review focuses on the effect of immunosuppressant treatments on alloimmunity, gut microbiome, and metabolism, with a particular emphasis on the effects on metabolic disorders. We also outline the shared and unique microbial and metabolic signatures produced by each immunosuppressant class, underlining their distinct impacts on immunity and metabolic homeostasis. These observations underscore the need for a holistic understanding of these drugs' on- and off-target effects to refine therapeutic strategies, enhance immunosuppression efficacy, and ultimately enhance graft and patient survival. By characterizing these complex interactions, strategies informed by the gut microbiome and host metabolism may offer a promising adjunctive approach to optimizing immunosuppressive regimens and promoting sustained graft acceptance.
Collapse
Affiliation(s)
- Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samuel J. Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria Mas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan S. Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Haedge F, Reuken PA, Reißing J, Große K, Frissen M, El‐Hassani M, Aschenbach R, Teichgräber U, Stallmach A, Bruns T. Surrogate Markers of Intestinal Permeability, Bacterial Translocation and Gut-Vascular Barrier Damage Across Stages of Cirrhosis. Liver Int 2025; 45:e70119. [PMID: 40317887 PMCID: PMC12047066 DOI: 10.1111/liv.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND AIMS Portal hypertension, gut barrier dysfunction, and pathological bacterial translocation are hallmarks of cirrhosis driving complications. As measuring gut barrier function is demanding, surrogate markers have been proposed, but their intercorrelation and applicability across different stages of advanced liver disease, particularly in acute-on-chronic liver failure (ACLF), are largely unknown. METHODS Proposed markers of gut barrier dysfunction and bacterial translocation were quantified in sera from 160 patients with cirrhosis across different disease stages of compensated and decompensated cirrhosis as well as from 20 patients in hepatic and portal vein serum before and after the insertion of transjugular intrahepatic portosystemic stent (TIPS) using enzyme-linked immunosorbent assay (ELISA). RESULTS Across all stages of liver disease, the gut-vascular barrier (GVB) marker plasmalemma vesicle protein-1 (PV-1) correlated with bacterial translocation markers endogenous endotoxin-core IgA antibodies (EndoCAb) and LPS-binding protein (LBP) but not with intestinal damage markers intestinal fatty acid binding protein (I-FABP) and zonulin-family peptides (ZFP). PV-1 and EndoCAb were higher in decompensated cirrhosis without further increase in ACLF. Among investigated markers, only I-FABP correlated with the portosystemic pressure gradient, and TIPS insertion significantly reduced portal concentrations within 24 h. Higher PV-1 levels indicated poor transplant-free survival in univariate and multivariable analysis. CONCLUSIONS Surrogate markers of bacterial gut barrier dysfunction and bacterial translocation like ZFP, LBP and EndoCAb appear of limited use in advanced stages of cirrhosis and are confounded by hepatic synthesis capacity, portal congestion and acute phase responses. The prognostic implications of circulating PV-1 in decompensated cirrhosis levels demand further investigation.
Collapse
Affiliation(s)
- Frederic Haedge
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Philipp A. Reuken
- Department of Internal Medicine IVJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Johanna Reißing
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Karsten Große
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Mick Frissen
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Majda El‐Hassani
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Rene Aschenbach
- Department of RadiologyJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Ulf Teichgräber
- Department of RadiologyJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Andreas Stallmach
- Department of Internal Medicine IVJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Tony Bruns
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
3
|
Liu M, Ji YL, Hu YJ, Su YX, Yang J, Wang XY, Chu HY, Zhang X, Dong SJ, Yang H, Liu YH, Zhou SM, Guo LP, Ran Y, Li YN, Zhao JW, Zhang ZG, Piao MY, Zhou L. Lactococcus garvieae aggravates cholestatic liver disease by increasing intestinal permeability and enhancing bile acid reabsorption. World J Gastroenterol 2025; 31:101014. [PMID: 40093673 PMCID: PMC11886528 DOI: 10.3748/wjg.v31.i10.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Although an association between gut microbiota and cholestatic liver disease (CLD) has been reported, the precise functional roles of these microbes in CLD pathogenesis remain largely unknown. AIM To explore the function of gut microbes in CLD pathogenesis and the effects of gut microbiota on intestinal barrier and bile acid (BA) metabolism in CLD. METHODS Male C57BL/6J mice were fed a 0.05% 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet for 2 weeks to induce CLD. The sterile liver tissues of mice were then meticulously harvested, and bacteria in homogenates were identified through culture methods. Furthermore, 16S ribosomal DNA sequencing was employed to analyze sterile liver samples collected from eight patients with primary biliary cholangitis (PBC) and three control individuals with hepatic cysts. The functional roles of the identified bacteria in CLD pathogenesis were assessed through microbiota transfer experiments, involving the evaluation of changes in intestinal permeability and BA dynamics. RESULTS Ligilactobacillus murinus (L. murinus) and Lactococcus garvieae (L. garvieae) were isolated from the bacterial culture of livers from CLD mice. L. murinus was prevalently detected in PBC patients and controls, whereas L. garvieae was detected only in patients with PBC but not in controls. Mice inoculated with L. garvieae exhibited increased susceptibility to experimental CLD, with both in vitro and in vivo indicating that L. garvieae disrupted the intestinal barrier function by down-regulating the expression of occludin and zonula occludens-1. Moreover, L. garvieae administration significantly upregulated the expression of the apical sodium-dependent BA transporter in the terminal ileum and increased serum BA levels. CONCLUSION L. garvieae contributes to excessive BA-induced hepatobiliary injury and liver fibrosis by increasing intestinal permeability and enhancing BA reabsorption.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying-Lan Ji
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Jie Hu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying-Xi Su
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China
| | - Xiao-Yi Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Hong-Yu Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xue Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shi-Jing Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Hang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Si-Min Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Li-Ping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan-Ni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Wen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi-Guang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Mei-Yu Piao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Wu Q, Zhang X, Xu A, Zhu S, Zhang X, Wu Q, Zhang S. Efficacy and safety of anticoagulation in asymptomatic cirrhotic patients with portal vein thrombosis: a systematic review and meta-analysis. Scand J Gastroenterol 2025; 60:197-207. [PMID: 39773159 DOI: 10.1080/00365521.2025.2450043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The role of anticoagulation in asymptomatic cirrhotic patients with portal vein thrombosis (PVT) remains unclear. This study aims to evaluate the efficacy and safety of anticoagulation in this patient population. METHODS We systematically searched PubMed, Web of Science, Cochrane Library, and Embase up to August 2024. The primary outcomes analyzed were PVT recanalization, progression of PVT, bleeding events, and mortality. Odds ratios (OR) with 95% confidence intervals (CI) were calculated for dichotomous variables. RESULTS Seventeen studies, including randomized controlled trials (RCTs) and observational studies, were included in the analysis. Compared to no intervention, anticoagulation significantly increased the PVT recanalization rate (OR = 3.89, p < .001) and decreased the PVT progression rate (OR = 0.28, p < .001) as well as overall mortality (OR = 0.66, p = .008). Importantly, anticoagulation did not significantly increase the bleeding rate (OR = 1.21, p = .41). Subgroup analysis revealed a greater benefit in PVT recanalization within the short-term treatment subgroup (≤ 6 months) compared to long-term treatment subgroup (> 6 months), and in the Asian subgroup compared to the European or United States of America (USA) subgroup. In the Warfarin subgroup, while the total bleeding rate increased significantly, there was no significant rise in major bleeding events. Additionally, a downward trend in variceal bleeding was observed in the Asian subgroup (OR = 0.44; 95% CI: 0.19-1.04; p = .06). CONCLUSION Anticoagulation is both safe and effective for asymptomatic cirrhotic patients with PVT. It not only treats PVT and reduces all-cause mortality, but also does so without significantly increasing the risk of bleeding events.
Collapse
Affiliation(s)
- Qingping Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xingfen Zhang
- Department of Liver Disease, Ningbo No. 2 Hospital, Ningbo, China
| | - Anyi Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sidong Zhu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoming Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Wu
- Medical College, Lishui University, Lishui, China
| | - Shengying Zhang
- Department of Respiratory and Critical Care Medicine, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| |
Collapse
|
5
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
6
|
Hu B, Yang Y, Yao J, Lin G, He Q, Bo Z, Zhang Z, Li A, Wang Y, Chen G, Shan Y. Gut Microbiota as Mediator and Moderator Between Hepatitis B Virus and Hepatocellular Carcinoma: A Prospective Study. Cancer Med 2024; 13:e70454. [PMID: 39702929 DOI: 10.1002/cam4.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The impact of gut microbiome on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is unclear. We aimed to evaluate the potential correlation between gut microbiome and HBV-related HCC and introduced novel machine learning (ML) signatures based on gut microbe to predict the risk of HCC. MATERIALS AND METHODS A total of 640 patients with chronic liver diseases or HCC were prospectively recruited between 2019 and 2022. Fecal samples were collected and subjected to 16S rRNA gene sequencing. Univariate and multivariate logistic regression was applied to identify risk characteristics. Several ML methods were employed to construct gut microbe-based models and the predictive performance was evaluated. RESULTS A total of 571 patients were involved in the study, including 374 patients with HCC and 197 patients with chronic liver diseases. After the propensity score matching method, 147 pairs of participants were enrolled in the analysis. Bacteroidia and Bacteroidales were demonstrated to exert mediating effects between HBV and HCC, and the moderating effects varied across Bacilli, Lactobacillales, Erysipelotrichaceae, Actinomyces, and Roseburia. HBV, alpha-fetoprotein, alanine transaminase, triglyceride, and Child-Pugh were identified as independent risk factors for HCC occurrence. Seven ML-based HBV-gut microbe models were established to predict HCC, with AUCs ranging from 0.821 to 0.898 in the training set and 0.813-0.885 in the validation set. Furthermore, the merged clinical-HBV-gut microbe models exhibited a comparable performance to HBV-gut microbe models. CONCLUSIONS Gut microbes are important factors between HBV and HCC through its potential mediating and moderating effects, which can be used as valuable biomarkers for the pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Anlvna Li
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Brochado-Kith O, Rava M, Berenguer J, González-García J, Rojo D, Díez C, Hontañon V, Virseda-Berdices A, Ibañez-Samaniego L, Llop-Herrera E, Olveira A, Pérez-Latorre L, Barbas C, Fernández-Rodríguez A, Resino S, Jiménez-Sousa MA. Altered blood microbiome in patients with HCV-related Child-Pugh class B cirrhosis. J Infect Public Health 2024; 17:102524. [PMID: 39241484 DOI: 10.1016/j.jiph.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Altered bacterial translocation is associated with changes in hepatic function and the progression from compensated to decompensated cirrhosis. Child-Turcotte-Pugh (CTP) score is an essential indicator of liver severity. Thus, we aimed to study differences in the blood microbiome together with metabolome profile between HCV-infected patients with CTP class B (CTP-B, significant functional compromise) and patients with CTP class A (CTP-A, well-compensated cirrhosis). METHODS We conducted a cross-sectional study in patients with advanced HCV-related cirrhosis (n = 88) stratified by CTP-B and CTP-A. Bacterial 16S rRNA sequencing was sequenced by MiSeq Illumina technology and non-targeted metabolomics was performed by GC-MS and LC-MS ESI+ and ESI- to complement the analysis. RESULTS Patients with CTP-B had lower levels of richness (Chao1), and alpha diversity (Shannon and Simpson indexes) at phylum level than patients with CTP-A. Likewise, we observed significant differences in beta diversity between groups at phylum, class, and order levels, showing lower diversity in patients with CTP-B. Higher relative abundance of Proteobacteria (p = 0.012), Alphaproteobacteria (p = 0.005), Sphingomonadales (p = 0.012) and Sphingomonadaceae (p = 0.016) were significantly associated with CTP-B. The phylum Proteobacteria was positively correlated with ethanolamine and oleic acid (p = 0.005 and p = 0.004, respectively) and negatively with p-cresol (p = 0.006). In addition, the order Sphingomonadales and the family Sphingomonadaceae was also negatively correlated with p-cresol (p = 0.001 and p = 0.001). CONCLUSIONS Blood microbial diversity was significantly decreased in patients with CTP-B, who presented an enrichment of Proteobacteria, Alphaproteobacteria, Sphingomonadales and Sphingomonadaceae compared to patients with CTP-A.
Collapse
Affiliation(s)
- Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain.
| | - Marta Rava
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain; Unidad de la Cohorte de la Red de Investigación en Sida (CoRIS). Centro Nacional de Epidemiologia (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Juan González-García
- Servicio de Medicina Interna-Unidad de VIH. Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - David Rojo
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28060 Boadilla del Monte, Spain.
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Victor Hontañon
- Servicio de Medicina Interna-Unidad de VIH. Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain.
| | - Luis Ibañez-Samaniego
- Servicio de Aparato Digestivo, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.
| | - Elba Llop-Herrera
- Departamento de Gastroenterología; Hospital Universitario Puerta de Hierro-Majadahonda; Majadahonda, Madrid; Spain.
| | - Antonio Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain.
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28060 Boadilla del Monte, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain.
| | - María Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid. Spain.
| |
Collapse
|
8
|
Long J, Saw M, Zhang P, Wang L, Li L, Ren H, Liu C, Ma Z, Zhang J, Wang B. Role of tenofovir dipivoxil in gut microbiota recovery from HBV-infection induced dysbiosis. BMC Microbiol 2024; 24:359. [PMID: 39304810 DOI: 10.1186/s12866-024-03457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Studies have found dysbiosis of the gut microbiota in individuals infected with the hepatitis B virus (HBV). Tenofovir dipivoxil (TDF) is one of the preferred oral antiviral drugs used for the treatment of chronic hepatitis B (CHB), but the extent to which TDF is able to affect the gut microbiota and inflammatory factors of a patient remains largely unexplored. In this study, we collected stool samples from HBV patients prior to medication and from CHB patients treated with TDF. RESULTS The gut microbiota and inflammatory factors were assessed in 42 healthy subjects (HC group), 109 HBV-infected subjects, including 48 CHB patients who were not medicated with nucleoside analogue drugs (No-NAs group), and 61 CHB patients who were medicated with TDF (TDF group). 16 S rRNA sequencing revealed that TDF treatment caused significant changes in the gut microbiota of HBV-infected individuals; however, the gut microbiota of HBV-infected individuals did not fully recover to a pre-dysbiosis state. The relative abundance of Bacteroidota gradually decreased from the HC group to the No-NAs and TDF groups. The relative abundance of Fusobacteriota was significantly higher in the No-NAs group than in the HC group. At the genus level, Dialister, Eubacterium_hallii_group, Halomonas, Collinsella, Sphingomonas, Xanthomonadaceae_unclassified, and Rhizobiaceae_unclassified were overrepresented; while the abundance of Bacteroides and Fusobacterium decreased significantly in the No-NAs and TDF groups. CONCLUSIONS This study showed that TDF treatment significantly improved the regulation of the gut microbiota and aided in dysbiosis recovery. We did not observe significant improvement in serum inflammatory factor concentrations, which may be related to the relatively short duration of TDF administration in this study.
Collapse
Affiliation(s)
- Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Maximilian Saw
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Shanghai, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Shanghai, China
| | - Zhenxuan Ma
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Pharmacy, Jing'an District Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Barreto CMDA, do Valle EA, Moreira JPDL, E Silva KF, Rosas SLB, Santana PT, Pittella AM, Pereira G, Fernandes FF, Perez RDM, de Souza HSP. Gut-related molecules as potential biomarkers in patients with decompensated cirrhosis. Ann Hepatol 2024; 30:101567. [PMID: 39276985 DOI: 10.1016/j.aohep.2024.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES Microbial translocation contributes to cirrhosis progression and complications. This study aims to investigate whether molecules related to intestinal permeability or microbial translocation can serve as prognostic biomarkers in patients with decompensated cirrhosis. MATERIALS AND METHODS We prospectively evaluated hospitalized patients with decompensated cirrhosis for liver function, complications during hospitalization, in-hospital mortality, composite outcomes of in-hospital mortality and complications, 12-month mortality, and survival rates. Blood samples were collected upon admission, and 1,3 beta-d-glucan, zonulin, calprotectin, and lipopolysaccharide-binding protein were measured using commercial kits. RESULTS Ninety-one patients with decompensated cirrhosis were enrolled. The mean age was 58 ± 12 years; 57% were male. The three main cirrhosis etiologies were hepatitis C (35%), alcohol (25%), and non-alcoholic steatohepatitis (17%). In terms of liver function, 52% were Child C, and 68% had model for end-stage liver disease ≥15. The in-hospital and one-year mortality rates were 31% and 57%, respectively. Child-Pugh, 1,3 beta-glucan, and model for end-stage liver disease were positively correlated; zonulin was associated with complications during hospitalization (acute kidney injury) and composite outcomes, and calprotectin was associated with all outcomes except 12-month mortality. CONCLUSIONS Serum calprotectin and zonulin levels emerge as noninvasive prognostic biomarkers for potentially unfavorable outcomes in patients with decompensated cirrhosis.
Collapse
Affiliation(s)
- Camila Marques de Alcântara Barreto
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil; Bonsucesso Federal Hospital, Rio de Janeiro, 20950-003, Brazil
| | - Eliane Almeida do Valle
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil; Pedro Ernesto University Hospital, Rio de Janeiro, 20551-030, Brazil
| | | | - Katia Farias E Silva
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil; Pedro Ernesto University Hospital, Rio de Janeiro, 20551-030, Brazil
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Patrícia Teixeira Santana
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | | | - Gustavo Pereira
- Bonsucesso Federal Hospital, Rio de Janeiro, 20950-003, Brazil
| | | | - Renata de Mello Perez
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil; D'Or Institute for Research and Education (IDOR), Botafogo, Rio de Janeiro, 22281-100, Brazil
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil; D'Or Institute for Research and Education (IDOR), Botafogo, Rio de Janeiro, 22281-100, Brazil.
| |
Collapse
|
10
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Dimba NR, Mzimela N, Khathi A. Improved Gut Health May Be a Potential Therapeutic Approach for Managing Prediabetes: A Literature Review. Biomedicines 2024; 12:1275. [PMID: 38927482 PMCID: PMC11201806 DOI: 10.3390/biomedicines12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Given the growing global threat and rising prevalence of type 2 diabetes mellitus (T2DM), addressing this metabolic disease is imperative. T2DM is preceded by prediabetes (PD), an intermediate hyperglycaemia that goes unnoticed for years in patients. Several studies have shown that gut microbial diversity and glucose homeostasis in PD or T2DM patients are affected. Therefore, this review aims to synthesize the existing literature to elucidate the association between high-calorie diets, intestinal permeability and their correlation with PD or T2DM. Moreover, it discusses the beneficial effects of different dietary interventions on improving gut health and glucose metabolism. The primary factor contributing to complications seen in PD or T2DM patients is the chronic consumption of high-calorie diets, which alters the gut microbial composition and increases the translocation of toxic substances from the intestinal lumen into the bloodstream. This causes an increase in inflammatory response that further impairs glucose regulation. Several dietary approaches or interventions have been implemented. However, only a few are currently in use and have shown promising results in improving beneficial microbiomes and glucose metabolism. Therefore, additional well-designed studies are still necessary to thoroughly investigate whether improving gut health using other types of dietary interventions can potentially manage or reverse PD, thereby preventing the onset of T2DM.
Collapse
Affiliation(s)
| | | | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville 4000, South Africa; (N.R.D.); (N.M.)
| |
Collapse
|
12
|
Chuaypen N, Asumpinawong A, Sawangsri P, Khamjerm J, Iadsee N, Jinato T, Sutheeworapong S, Udomsawaengsup S, Tangkijvanich P. Gut Microbiota in Patients with Non-Alcoholic Fatty Liver Disease without Type 2 Diabetes: Stratified by Body Mass Index. Int J Mol Sci 2024; 25:1807. [PMID: 38339096 PMCID: PMC10855659 DOI: 10.3390/ijms25031807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The relationship between gut dysbiosis and body mass index (BMI) in non-diabetic patients with non-alcoholic fatty liver disease (NAFLD) is not adequately characterized. This study aimed to assess gut microbiota's signature in non-diabetic individuals with NAFLD stratified by BMI. The 16S ribosomal RNA sequencing was performed for gut microbiota composition in 100 patients with NAFLD and 16 healthy individuals. The differential abundance of bacterial composition between groups was analyzed using the DESeq2 method. The alpha diversity (Chao1, Shannon, and observed feature) and beta diversity of gut microbiota significantly differed between patients with NAFLD and healthy controls. However, significant differences in their diversities were not observed among subgroups of NAFLD. At the phylum level, there was no trend of an elevated Firmicutes/Bacteroidetes ratio according to BMI. At the genus level, patients with lean NAFLD displayed a significant enrichment of Escherichia-Shigella and the depletion of Lachnospira and Subdoligranulum compared to the non-lean subgroups. Combining these bacterial genera could discriminate lean from non-lean NAFLD with high diagnostic accuracy (AUC of 0.82). Non-diabetic patients with lean NAFLD had a significant difference in bacterial composition compared to non-lean individuals. Our results might provide evidence of gut microbiota signatures associated with the pathophysiology and potential targeting therapy in patients with lean NAFLD.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (J.K.); (N.I.); (T.J.)
- Metabolic Diseases in Gut and Urinary System Research Unit (MeDGURU), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aisawan Asumpinawong
- Treatment of Obesity and Metabolic Disease Research Unit, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (A.A.); (P.S.); (S.U.)
| | - Pattarose Sawangsri
- Treatment of Obesity and Metabolic Disease Research Unit, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (A.A.); (P.S.); (S.U.)
| | - Jakkrit Khamjerm
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (J.K.); (N.I.); (T.J.)
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutta Iadsee
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (J.K.); (N.I.); (T.J.)
- Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (J.K.); (N.I.); (T.J.)
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Research Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand;
| | - Suthep Udomsawaengsup
- Treatment of Obesity and Metabolic Disease Research Unit, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (A.A.); (P.S.); (S.U.)
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (J.K.); (N.I.); (T.J.)
| |
Collapse
|
13
|
López CAM, Freiberger RN, Sviercz FA, Quarleri J, Delpino MV. HIV-Infected Hepatic Stellate Cells or HCV-Infected Hepatocytes Are Unable to Promote Latency Reversal among HIV-Infected Mononuclear Cells. Pathogens 2024; 13:134. [PMID: 38392872 PMCID: PMC10893349 DOI: 10.3390/pathogens13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Due to a common mode of transmission through infected human blood, hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection is relatively prevalent. In alignment with this, HCV co-infection is associated with an increased size of the HIV reservoir in highly active antiretroviral therapy (HAART)-treated individuals. Hence, it is crucial to comprehend the physiological mechanisms governing the latency and reactivation of HIV in reservoirs. Consequently, our study delves into the interplay between HCV/HIV co-infection in liver cells and its impact on the modulation of HIV latency. We utilized the latently infected monocytic cell line (U1) and the latently infected T-cell line (J-Lat) and found that mediators produced by the infection of hepatic stellate cells and hepatocytes with HIV and HCV, respectively, were incapable of inducing latency reversal under the studied conditions. This may favor the maintenance of the HIV reservoir size among latently infected mononuclear cells in the liver. Further investigations are essential to elucidate the role of the interaction between liver cells in regulating HIV latency and/or reactivation, providing a physiologically relevant model for comprehending reservoir microenvironments in vivo.
Collapse
Affiliation(s)
| | | | | | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| |
Collapse
|
14
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
16
|
Akkaya M, Akcaalan S, Perrone FL, Sandiford N, Gehrke T, Citak M. Organism profile and C-reactive protein (CRP) response are different in periprosthetic joint infection in patients with hepatitis. Arch Orthop Trauma Surg 2024; 144:341-346. [PMID: 37742285 DOI: 10.1007/s00402-023-05059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Hepatitis B and C are important and relatively common health issues. It is known that many patients who underwent total knee and hip arthroplasty were also diagnosed with hepatitis. These patients are at higher risk of periprosthetic joint infection (PJI). This study aimed to investigate the differences in PJI cases in hepatitis B and C patients. METHODS This is a retrospective case-controlled single-center study. A total of 270 patients with hepatitis and non-hepatitis (control group) who underwent one-stage septic exchange to the hip and knee joints were included in the study. All patients' previous surgical histories, infective organisms, C-reactive protein (CRP) values before septic exchange, and demographic data were evaluated. All microbiological and laboratory evaluations were performed separately for knee and hip arthroplasty. RESULTS The mean CRP levels of Hep B- and C-positive patients, who underwent one-stage septic exchange in the knee joint, were 23.6 mg/L. In the control group, this value was 43.1 mg/L and a statistically significant difference was found between the groups (p = 0.004). Gram-negative organisms were identified in a larger proportion of patients with hepatitis who developed PJI in both hip and knee joints and underwent one-stage septic exchange (p = 0.041/p = 0.044). CONCLUSION PJIs caused by Gram-negative bacteria are encountered more frequently in patients with hepatitis than in the control group. In addition, the CRP rise is less in patients with hepatitis compared to PJI cases in the control group. Patient-specific evaluation is required in cases of PJI in patient groups with co-existing hepatitis.
Collapse
Affiliation(s)
- Mustafa Akkaya
- Department of Orthopaedic Surgery, Helios ENDO-Klinik, Holstenstr. 2, 22767, Hamburg, Germany
| | - Serhat Akcaalan
- Department of Orthopaedic Surgery, Helios ENDO-Klinik, Holstenstr. 2, 22767, Hamburg, Germany
| | - Fabio Luigi Perrone
- Department of Orthopaedic Surgery, Helios ENDO-Klinik, Holstenstr. 2, 22767, Hamburg, Germany
| | - Nemandra Sandiford
- Joint Reconstruction Unit, Southland Hospital, Invercargill, New Zealand
| | - Thorsten Gehrke
- Department of Orthopaedic Surgery, Helios ENDO-Klinik, Holstenstr. 2, 22767, Hamburg, Germany
| | - Mustafa Citak
- Department of Orthopaedic Surgery, Helios ENDO-Klinik, Holstenstr. 2, 22767, Hamburg, Germany.
| |
Collapse
|
17
|
Martínez-Sanz J, Talavera-Rodríguez A, Díaz-Álvarez J, Rosas Cancio-Suárez M, Rodríguez JM, Alba C, Montes ML, Martín-Mateos R, Burgos-Santamaría D, Moreno S, Serrano-Villar S, Sánchez-Conde M. A gut microbiome signature for HIV and metabolic dysfunction-associated steatotic liver disease. Front Immunol 2023; 14:1297378. [PMID: 38162648 PMCID: PMC10755913 DOI: 10.3389/fimmu.2023.1297378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), has emerged as an increasingly recognized problem among people living with HIV (PLWH). The gut-liver axis is considered to be strongly implicated in the pathogenesis of MASLD. We aimed to characterize the gut microbiota composition in PLWH and MASLD and compare it with that of two control groups: PLWH without MASLD and individuals with MASLD without HIV infection. Methods We collected clinical data and stool samples from participants. Bacterial 16S rRNA genes were amplified, sequenced, and clustered into operational taxonomic unit. Alpha diversity was studied by Shannon and Simpson indexes. To study how different the gut microbiota composition is between the different groups, beta diversity estimation was evaluated by principal coordinate analysis (PCoA) using Bray-Curtis dissimilarity. To further analyze differences in microbiome composition we performed a linear discriminant analysis (LDA) effect size (LEfSe). Results We included 30 HIV+MASLD+, 30 HIV+MASLD- and 20 HIV-MASLD+ participants. Major butyrate producers, including Faecalibacterium, Ruminococcus, and Lachnospira dominated the microbiota in all three groups. Shannon's and Simpson's diversity metrics were higher among MASLD+ individuals (Kruskal-Wallis p = 0.047). Beta diversity analysis showed distinct clustering in MASLD-, with MASLD+ participants overlapping regardless of HIV status (ADONIS significance <0.001). MASLD was associated with increased homogeneity across individuals, in contrast to that observed in the HIV+NAFDL- group, in which the dispersion was higher (Permanova test, p value <0.001; ANOSIM, p value <0.001). MASLD but not HIV determined a different microbiota structure (HIV+MASLD- vs. HIV+MASLD+, q-value = 0.002; HIV-MASLD+ vs. HIV+MASLD+, q-value = 0.930; and HIV-MASLD+ vs. HIV+MASLD-, q-value < 0.001). The most abundant genera in MASLD- were Prevotella, Bacteroides, Dialister, Acidaminococcos, Alloprevotella, and Catenibacterium. In contrast, the most enriched genera in MASLD+ were Ruminococcus, Streptococcus, Holdemanella, Blautia, and Lactobacillus. Conclusions We found a microbiome signature linked to MASLD, which had a greater influence on the overall structure of the gut microbiota than HIV status alone.
Collapse
Affiliation(s)
- Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Rosas Cancio-Suárez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - María Luisa Montes
- HIV Unit - Internal Medicine Service, Hospital Universitario La Paz, Madrid, Spain
| | - Rosa Martín-Mateos
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Burgos-Santamaría
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
19
|
Dimba NR, Mzimela N, Mosili P, Ngubane PS, Khathi A. Investigating the Association Between Diet-Induced "Leaky Gut" and the Development of Prediabetes. Exp Clin Endocrinol Diabetes 2023; 131:569-576. [PMID: 37751850 DOI: 10.1055/a-2181-6664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Chronic consumption of a high-calorie diet compromises the gut microbiota and the integrity of the intestinal wall, which causes translocation of bacterial lipopolysaccharides (LPS) into the blood. This elicits the secretion of pro-inflammatory cytokines, resulting in inflammation. However, how a high-fat high carbohydrate diet affects intestinal permeability and its possible role in the development of prediabetes have not been investigated. This study investigated the effects of HFHC diet-induced prediabetes on gut microbiota and intestinal permeability in male Sprague Dawley rats. METHODS The animals were randomly assigned into the non-prediabetic (NPD) and diet-induced prediabetic (PD) groups (n=6) for 20 weeks. Then, the fecal samples were analyzed to measure the gut microbiota level of Firmicutes, Bacteroidetes, and Proteobacteria in both animal groups. Blood glucose, plasma insulin, serum zonulin, plasma LPS, soluble CD14, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and intestinal fatty-acid binding protein (IFABP) concentrations were measured. RESULTS The PD group had a reduction in the Firmicutes and an increase in Bacteroidetes and Proteobacteria levels compared to those in the NPD group. Blood glucose, insulin concentration, serum zonulin, and plasma sCD14 concentrations in the PD group increased significantly, while plasma LPS concentrations were similar to the NPD group. Concentrations of plasma TNF-α, IL-6, CRP, and IFABP, an intracellular protein expressed in the intestine, increased in PD compared to the NPD group. CONCLUSIONS the study results cumulatively suggest that chronic consumption of the HFHC diet may be associated with the dysregulation of gut microbiota, leading to increased intestinal permeability.
Collapse
Affiliation(s)
- Nosipho R Dimba
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Nhlakanipho Mzimela
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Palesa Mosili
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Phikelelani S Ngubane
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| |
Collapse
|
20
|
Silvano A, Niccolai E, Baldi S, Seravalli V, Strambi N, Nannini G, Pallecchi M, Bartolucci G, Parenti A, Amedei A, Di Tommaso M. Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:13653. [PMID: 37686463 PMCID: PMC10487736 DOI: 10.3390/ijms241713653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The composition of the gut microbiota (GM) undergoes significant changes during pregnancy, influenced by metabolic status, energy homeostasis, fat storage, and hormonal and immunological modifications. Moreover, dysbiosis during pregnancy has been associated with preterm birth, which is influenced by factors such as cervical shortening, infection, inflammation, and oxidative stress. However, dysbiosis also affects the levels of lipopolysaccharide-binding protein (LBP), short-chain fatty acids (SCFAs), and free fatty acids (FFA) in other tissues and the bloodstream. In this study, we investigated the plasmatic levels of some pro-inflammatory cytokines, such as matrix metalloproteinases-8 (MMP-8), interleukin-8 (IL-8), heat shock protein 70 (Hsp70), and microbial markers in pregnant women with a short cervix (≤25 mm) compared to those with normal cervical length (>25 mm). We examined the differences in the concentration of these markers between the two groups, also assessing the impact of gestational diabetes mellitus. Understanding the relationship between GM dysbiosis, inflammatory mediators, and cervical changes during pregnancy may contribute to the identification of potential biomarkers and therapeutic targets for the prevention and management of adverse pregnancy outcomes, including preterm birth.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50019 Sesto Fiorentino, Italy; (M.P.); (G.B.)
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50019 Sesto Fiorentino, Italy; (M.P.); (G.B.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| |
Collapse
|
21
|
Chuaypen N, Jinato T, Avihingsanon A, Nookaew I, Tanaka Y, Tangkijvanich P. Long-term benefit of DAAs on gut dysbiosis and microbial translocation in HCV-infected patients with and without HIV coinfection. Sci Rep 2023; 13:14413. [PMID: 37660163 PMCID: PMC10475021 DOI: 10.1038/s41598-023-41664-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Long-term effect of Direct-acting antivirals (DAAs) on gut microbiota, short-chain fatty acids (SCFAs) and microbial translocation in patients with hepatitis C virus (HCV) infection who achieve sustained virological response (SVR) were limited. A longitudinal study of 50 patients with HCV monoinfection and 19 patients with HCV/HIV coinfection received DAAs were conducted. Fecal specimens collected at baseline and at week 72 after treatment completion (FUw72) were analyzed for 16S rRNA sequencing and the butyryl-CoA:acetateCoA transferase (BCoAT) gene expression using real-time PCR. Plasma lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) were quantified by ELISA assays. SVR rates in mono- and coinfected patients were comparable (94% vs. 100%). The improvement of gut dysbiosis and microbial translocation was found in responders but was not in non-responders. Among responders, significant restoration of alpha-diversity, BCoAT and LBP were observed in HCV patients with low-grade fibrosis (F0-F1), while HCV/HIV patients exhibited partial improvement at FUw72. I-FABP did not decline significantly in responders. Treatment induced microbiota changes with increasing abundance of SCFAs-producing bacteria, including Blautia, Fusicatenibacter, Subdoligranulum and Bifidobacterium. In conclusion, long-term effect of DAAs impacted the restoration of gut dysbiosis and microbial translocation. However, early initiation of DAAs required for an alteration of gut microbiota, enhanced SCFAs-producing bacteria, and could reduce HCV-related complications.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thananya Jinato
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Doctor of Philosophy Program in Medical Sciences, Graduate Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yasuhito Tanaka
- Division of Integrated Medical and Pharmaceutical Sciences, Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Pisit Tangkijvanich
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
22
|
Shive CL, Kowal CM, Desotelle AF, Nguyen Y, Carbone S, Kostadinova L, Davitkov P, O’Mara M, Reihs A, Siddiqui H, Wilson BM, Anthony DD. Endotoxemia Associated with Liver Disease Correlates with Systemic Inflammation and T Cell Exhaustion in Hepatitis C Virus Infection. Cells 2023; 12:2034. [PMID: 37626844 PMCID: PMC10453378 DOI: 10.3390/cells12162034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Both acute and chronic hepatitis C virus (HCV) infections are characterized by inflammation. HCV and reduced liver blood filtration contribute to inflammation; however, the mechanisms of systemic immune activation and dysfunction as a result of HCV infection are not clear. We measured circulating inflammatory mediators (IL-6, IP10, sCD163, sCD14), indices of endotoxemia (EndoCab, LBP, FABP), and T cell markers of exhaustion and senescence (PD-1, TIGIT, CD57, KLRG-1) in HCV-infected participants, and followed a small cohort after direct-acting anti-viral therapy. IL-6, IP10, Endocab, LBP, and FABP were elevated in HCV participants, as were T cell co-expression of exhaustion and senescence markers. We found positive associations between IL-6, IP10, EndoCab, LBP, and co-expression of T cell markers of exhaustion and senescence. We also found numerous associations between reduced liver function, as measured by plasma albumin levels, and T cell exhaustion/senescence, inflammation, and endotoxemia. We found positive associations between liver stiffness (TE score) and plasma levels of IL-6, IP10, and LBP. Lastly, plasma IP10 and the proportion of CD8 T cells co-expressing PD-1 and CD57 decreased after initiation of direct-acting anti-viral therapy. Although associations do not prove causality, our results support the model that translocation of microbial products, resulting from decreased liver blood filtration, during HCV infection drives chronic inflammation that results in T cell exhaustion/senescence and contributes to systemic immune dysfunction.
Collapse
Affiliation(s)
- Carey L. Shive
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Pathology Department, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corinne M. Kowal
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra F. Desotelle
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Ynez Nguyen
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Sarah Carbone
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Lenche Kostadinova
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Perica Davitkov
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Megan O’Mara
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra Reihs
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Hinnah Siddiqui
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Brigid M. Wilson
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donald D. Anthony
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Petrick JL, Florio AA, Zen J, Wang Y, Gewirtz AT, Pfeiffer RM, Loftus S, Inglefield J, Koshiol J, Yang B, Yu K, Hildesheim A, Chen CJ, Yang HI, Lee MH, McGlynn KA. Biomarkers of gut barrier dysfunction and risk of hepatocellular carcinoma in the REVEAL-HBV and REVEAL-HCV cohort studies. Int J Cancer 2023; 153:44-53. [PMID: 36878686 PMCID: PMC10548479 DOI: 10.1002/ijc.34492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023]
Abstract
Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.
Collapse
Affiliation(s)
| | - Andrea A. Florio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jane Zen
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Loftus
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Baiyu Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
24
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
25
|
Singh KP, Pallett LJ, Singh H, Chen A, Otano I, Duriez M, Rombouts K, Pinzani M, Crane M, Fusai G, Avihingsanon A, Lewin SR, Maini MK. Pro-fibrogenic role of alarmin high mobility group box 1 in HIV-hepatitis B virus coinfection. AIDS 2023; 37:401-411. [PMID: 36384811 DOI: 10.1097/qad.0000000000003435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Liver disease is accelerated in people with HIV (PWH) with hepatitis B virus (HBV) coinfection. We hypothesized that liver fibrosis in HIV-HBV is triggered by increased hepatocyte apoptosis, microbial translocation and/or HIV/HBV viral products. DESIGN Sera from PWH with HBV coinfection versus from those with HBV only or putative mediators were used to examine the pathogenesis of liver disease in HIV-HBV. METHODS We applied sera from PWH and HBV coinfection versus HBV alone, or putative mediators (including HMGB1), to primary human hepatic stellate cells (hHSC) and examined pro-fibrogenic changes at the single cell level using flow cytometry. High mobility group box 1 (HMGB1) levels in the applied sera were assessed according to donor fibrosis stage. RESULTS Quantitative flow cytometric assessment of pro-fibrogenic and inflammatory changes at the single cell level revealed an enhanced capacity for sera from PWH with HBV coinfection to activate hHSC. This effect was recapitulated by lipopolysaccharide, HIV-gp120, hepatocyte conditioned-media and the alarmin HMGB1. Induction of hepatocyte cell death increased their pro-fibrogenic potential, an effect blocked by HMGB1 antagonist glycyrrhizic acid. Consistent with a role for this alarmin, HMGB1 levels were elevated in sera from PWH and hepatitis B coinfection compared to HBV alone and higher in those with HIV-HBV with liver fibrosis compared to those without. CONCLUSIONS Sera from PWH and HBV coinfection have an enhanced capacity to activate primary hHSC. We identified an increase in circulating HMGB1 which, in addition to HIV-gp120 and translocated microbial products, drove pro-fibrogenic changes in hHSC, as mechanisms contributing to accelerated liver disease in HIV-HBV.
Collapse
Affiliation(s)
- Kasha P Singh
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London, UK
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London, UK
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Antony Chen
- Division of Infection and Immunity, University College London, London, UK
| | - Itziar Otano
- Division of Infection and Immunity, University College London, London, UK
| | - Marion Duriez
- Division of Infection and Immunity, University College London, London, UK
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Megan Crane
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London, UK
| | | | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
26
|
Huang PY, Chen CH, Tsai MJ, Yao CC, Wang HM, Kuo YH, Chang KC, Hung CH, Chuah SK, Tsai MC. Effects of direct anti-viral agents on the gut microbiota in patients with chronic hepatitis C. J Formos Med Assoc 2023; 122:157-163. [PMID: 36155707 DOI: 10.1016/j.jfma.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND/PURPOSE Gut microbiology is associated with liver disease due to gut-liver circulation via the gut microbial-liver axis. There is a paucity of data regarding the effects of treatment to cure hepatitis C virus (HCV) infection on the gut microbiota. The aim of this study was to evaluate the fecal microbiota before and after treatment with direct antiviral agents (DAA) in patients with HCV infection. METHODS This prospective study was conducted at Kaohsiung Chung-Gung Memorial Hospital, Taiwan, between December 2019 and November 2020. We recruited patients with chronic hepatitis C (CHC) receiving DAA treatment. Fecal samples were collected twice: at baseline (before DAA treatment; CHC group) and 24 weeks after the end of treatment (EOT; SVR24 group), and once from healthy controls at baseline (control group). The taxonomic composition of the gut microbiota was determined using 16 S ribosomal RNA gene sequencing of stool samples. RESULTS A total of 60 patients with CHC and 60 healthy controls matched by age and gender were enrolled. All patients achieved a sustained virologic response (SVR). Alpha diversity was not significantly difference between any groups. Analysis of similarities (ANOSIM) revealed minor differences in the microbial community structure between the control group and CHC group (R = 0.0146, P = 0.098) and less significant differences between the CHC group and SVR24 group (R = -0.0139; P = 0.94). Three phyla and eight genera were differentially abundant between the control group and CHC group. CONCLUSION Individuals with CHC do not exhibit significant gut microbiota alterations and eradication of HCV by DAA is not associated with significant modification of the gut microbiota.
Collapse
Affiliation(s)
- Pao-Yuan Huang
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mu-Jung Tsai
- Kaohsiung Municipal Kaohsiung Senior High School, Kaohsiung 807, Taiwan
| | - Chih-Chien Yao
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hsin-Ming Wang
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yuan-Hung Kuo
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuo-Chin Chang
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Hung Hung
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Seng-Kee Chuah
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chao Tsai
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
27
|
Shi K, Zhang Q, Zhang Y, Bi Y, Zeng X, Wang X. Association between probiotic therapy and the risk of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis. Front Cell Infect Microbiol 2023; 12:1104399. [PMID: 36710968 PMCID: PMC9880196 DOI: 10.3389/fcimb.2022.1104399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Probiotics may offer cancer-prevention benefits, based on experimental investigation results. This study aimed to determine the potential association between probiotics and hepatocellular carcinoma (HCC) in patients with hepatitis B-related cirrhosis (HBC) receiving antiviral therapy. Design This retrospective study included 1267 patients with HBC treated with entecavir or tenofovir between January 2013 and December 2017. The risk of developing HCC was compared between two cohorts of 449 probiotic users (taking a cumulative defined daily doses [cDDD] of ≥ 28) and 818 non-probiotic users (< 28 cDDD). To eliminate the bias caused by confounding factors, propensity score matching (PSM) was used. Results On multivariate regression analysis, probiotic consumption was an independent protective factor for HCC occurrence. After PSM, the incidence of HCC was significantly lower in the probiotic users than that in the nonusers (adjusted hazard ratio [aHR]: 0.70, 95% confidence interval: 0.59-0.83, P < 0.001). The aHRs for probiotics with 28-89, 90-180, and >180 cDDD were 0.58, 0.28, and 0.12, respectively, indicating a dose-response pattern. In 28-89, 90-180, and >180 cDDD, the 3-year cumulative incidence of HCC was 8.7%, 4.7%, and 3.0%, respectively. A multivariate stratified analysis confirmed that the administration of probiotics could help patients. Conclusion Adjuvant probiotic therapy may reduce the risk of HCC in patients receiving antiviral medication for HBC. However, further clinical research is required to confirm these findings.
Collapse
|
28
|
Yang J, He Q, Lu F, Chen K, Ni Z, Wang H, Zhou C, Zhang Y, Chen B, Bo Z, Li J, Yu H, Wang Y, Chen G. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes 2023; 15:2201159. [PMID: 37089022 PMCID: PMC10128432 DOI: 10.1080/19490976.2023.2201159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Oral, gut, and tumor microbiota have been implicated as important regulators in the carcinogenesis and progression of gastrointestinal malignancies. However, few studies focused on the existence and association of resident microbes within different body regions. Herein, we aim to reveal the durability of the oral-gut-tumor microbiome and its diagnostic performance in hepatocellular carcinoma (HCC). Our study included two cohorts: a retrospective discovery cohort of 364 HBV-HCC patients and 160 controls with oral or fecal samples, a prospective validation cohort of 91 cases, and 124 controls for matching samples, as well as 48 HBV, and 39 HBV-cirrhosis patients for gut microbial patterns examined by 16S rRNA gene sequencing. With the random forest analysis, 10 oral and 9 gut genera that could distinguish HCC from controls in the retrospective cohort were validated among the prospective matching participants, with area under the curve (AUC) values of 0.7971 and 0.8084, respectively. When influential taxa were merged, the AUC of the consistent classifier increased to 0.9405. The performance continued to improve to 0.9811 when combined with serum levels of alpha-fetoprotein (AFP). Specifically, microbial biomarkers represented by Streptococcus displayed a constantly increasing trend during the disease transition. Furthermore, the presence of several dominant microbiota species was confirmed in hepatic tumor and non-tumor tissues with fluorescence in situ hybridization (FISH) and 5 R 16S rRNA gene sequencing. Overall, our findings based on the oral-gut-tumor microbiota provide a reliable approach for the early detection of HCC.
Collapse
Affiliation(s)
- Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZhiHao Ni
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Haoyue Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Chen Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaosheng Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University; Chashan High Education Zone, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Fleischer LT, Ballester L, Dutt M, Howarth K, Poznick L, Darge K, Furth SL, Hartung EA. Evaluation of galectin-3 and intestinal fatty acid binding protein as serum biomarkers in autosomal recessive polycystic kidney disease. J Nephrol 2023; 36:133-145. [PMID: 35980535 PMCID: PMC11904866 DOI: 10.1007/s40620-022-01416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) causes fibrocystic kidney disease, congenital hepatic fibrosis, and portal hypertension. Serum galectin-3 (Gal-3) and intestinal fatty acid binding protein (I-FABP) are potential biomarkers of kidney fibrosis and portal hypertension, respectively. We examined whether serum Gal-3 associates with kidney disease severity and serum I-FABP associates with liver disease severity in ARPKD. METHODS Cross-sectional study of 29 participants with ARPKD (0.2-21 years old) and presence of native kidneys (Gal-3 analyses, n = 18) and/or native livers (I-FABP analyses, n = 21). Serum Gal-3 and I-FABP were analyzed using enzyme linked immunosorbent assay. Kidney disease severity variables included estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume (htTKV). Liver disease severity was characterized using ultrasound elastography to measure liver fibrosis, and spleen length and platelet count as markers of portal hypertension. Simple and multivariable linear regression examined associations between Gal-3 and kidney disease severity (adjusted for liver disease severity) and between I-FABP and liver disease severity (adjusted for eGFR). RESULTS Serum Gal-3 was negatively associated with eGFR; 1 standard deviation (SD) lower eGFR was associated with 0.795 SD higher Gal-3 level (95% CI - 1.116, - 0.473; p < 0.001). This association remained significant when adjusted for liver disease severity. Serum Gal-3 was not associated with htTKV in adjusted analyses. Overall I-FABP levels were elevated, but there were no linear associations between I-FABP and liver disease severity in unadjusted or adjusted models. CONCLUSIONS Serum Gal-3 is associated with eGFR in ARPKD, suggesting its value as a possible novel biomarker of kidney disease severity. We found no associations between serum I-FABP and ARPKD liver disease severity despite overall elevated I-FABP levels.
Collapse
Affiliation(s)
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohini Dutt
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Poznick
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
31
|
Wernly S, Wernly B, Semmler G, Völkerer A, Rezar R, Semmler L, Stickel F, Aigner E, Niederseer D, Datz C. Non-alcoholic fatty liver disease is not independently associated with Helicobacter pylori in a central European screening cohort. Minerva Med 2022; 113:936-949. [PMID: 35384436 DOI: 10.23736/s0026-4806.22.07928-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The association between Helicobacter pylori (Hp) infection and non-alcoholic fatty liver disease (NAFLD) is subject of a contentious debate. Data mainly stem from Asian cohorts whereas European data are scarce. We, therefore, investigated an Austrian colorectal cancer screening cohort for an association between Hp and NAFLD. METHODS In total, 5338 consecutive participants undergoing screening colonoscopy at a single center in Austria were evaluated in this cross-sectional study. The primary risk factor was being Hp negative or positive. The primary endpoint was the presence of NAFLD defined by ultrasound (NAFLD; primary endpoint). Uni- and multivariable logistic regression models were fitted to obtain odds ratios (OR) and 95% confidence intervals (95%CI). Finally, this association was analyzed in a subgroup of 1128 patients in whom NAFLD was diagnosed by transient elastography (TE, secondary endpoint). RESULTS NAFLD prevalence defined by ultrasound did not differ between Hp positive (48%) and negative patients (45%, P=0.097). Accordingly, in uni- (OR 1.12 95% CI 0.98-1.29; P=0.098) and multivariable analysis adjusting for different risk factors (aOR 0.96 95%CI 0.82-1.13; P=0.601) no independent association was found. On subgroup analysis, NAFLD diagnosed by TE was more prevalent in the Hp positive compared to the Hp negative group (49% vs. 38%, P=0.004) and these patients also had higher steatosis grades. However, after adjustment for risk factors, no independent association between Hp positivity and NAFLD diagnosed by TE (aOR 1.26 95%CI 0.89-1.78; P=0.194) was confirmed. CONCLUSIONS In this Central European cohort, Hp-positivity was not associated with the diagnosis of NAFLD. Although Hp positive patients seem to be more likely to have a concomitant NAFLD diagnosis, this association might rather relate to a cardiometabolic risk phenotype than causality.
Collapse
Affiliation(s)
- Sarah Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria.,Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria.,Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Georg Semmler
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria.,Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Völkerer
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University Heart Center Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria -
| |
Collapse
|
32
|
The Impacts of Iron Overload and Ferroptosis on Intestinal Mucosal Homeostasis and Inflammation. Int J Mol Sci 2022; 23:ijms232214195. [PMID: 36430673 PMCID: PMC9697168 DOI: 10.3390/ijms232214195] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal homeostasis is maintained through the interplay of the intestinal mucosa, local and systemic immune factors, and the microbial content of the gut. Iron is a trace mineral in most organisms, including humans, which is essential for growth, systemic metabolism and immune response. Paradoxically, excessive iron intake and/or high iron status can be detrimental to iron metabolism in the intestine and lead to iron overload and ferroptosis-programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes, which contributes to several intestinal diseases. In this review, we comprehensively review recent findings on the impacts of iron overload and ferroptosis on intestinal mucosal homeostasis and inflammation and then present the progress of iron overload and ferroptosis-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide a new understanding of intestinal disease pathogenesis and facilitate advanced preventive and therapeutic strategies for intestinal dysfunction and diseases.
Collapse
|
33
|
Kramvis A, Chang KM, Dandri M, Farci P, Glebe D, Hu J, Janssen HLA, Lau DTY, Penicaud C, Pollicino T, Testoni B, Van Bömmel F, Andrisani O, Beumont-Mauviel M, Block TM, Chan HLY, Cloherty GA, Delaney WE, Geretti AM, Gehring A, Jackson K, Lenz O, Maini MK, Miller V, Protzer U, Yang JC, Yuen MF, Zoulim F, Revill PA. A roadmap for serum biomarkers for hepatitis B virus: current status and future outlook. Nat Rev Gastroenterol Hepatol 2022; 19:727-745. [PMID: 35859026 PMCID: PMC9298709 DOI: 10.1038/s41575-022-00649-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Hamburg, Germany
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Philadelphia, PA, USA
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Canada
| | - Daryl T Y Lau
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Capucine Penicaud
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Teresa Pollicino
- Laboratory of Molecular Hepatology, Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Florian Van Bömmel
- Department of Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Henry L Y Chan
- Chinese University of Hong Kong, Shatin, Hong Kong
- Union Hospital, Shatin, Hong Kong
| | | | | | - Anna Maria Geretti
- Roche Pharma Research & Early Development, Basel, Switzerland
- Department of Infectious Diseases, Fondazione PTV, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Veronica Miller
- Forum for Collaborative Research, University of California Berkeley School of Public Health, Washington DC Campus, Washington, DC, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | | | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
34
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
35
|
Tan CH, Chang MC, Tsai WF, Chuang WL, Huang JF, Lin ZY, Dai CY, Yeh ML, Li CT, Yu RL. Different profiles of neurocognitive impairment in patients with hepatitis B and C virus infections. Sci Rep 2022; 12:10625. [PMID: 35739162 PMCID: PMC9226189 DOI: 10.1038/s41598-022-14736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
The direct impact of chronic hepatitis B and hepatitis C on neurocognition remains elusive due to the frequent comorbidities, and the domains of the neurocognitive functions affected have rarely been investigated comprehensively. We cross-sectionally assessed the neurocognitive functions of the individuals with chronic hepatitis B, chronic hepatitis C, treated chronic hepatitis C with a sustained virologic response, and their healthy control counterparts. Laboratory examinations were used to investigate the impact of inflammation on neurocognition, exclude the medical conditions that could interfere with neurocognition assessment, and assess liver function and fibrotic severity of the liver of the participants. This study found the detrimental impact of chronic hepatitis B on language and executive functions. In contrast, individuals with chronic hepatitis C showed deficits in executive functions, psychomotor speed, memory, and attention. Successful elimination of hepatitis C resulted in improved liver function, but not neuropsychological test performance. Moreover, erythrocyte sedimentation rate level was found to mediate the deficits in the attention of individuals with chronic hepatitis C. These results demonstrate the neurocognitive deficits and the difference in the profiles of neurocognitive deficits in individuals with chronic hepatitis B and chronic hepatitis C. Our study also provided results suggesting the mediation by systemic inflammation on the attention deficit in individuals with chronic hepatitis C.
Collapse
Affiliation(s)
- Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chia Chang
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fang Tsai
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ting Li
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rwei-Ling Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
36
|
Toma L, Dodot M, Zgura A, Bacalbasa N, Silaghi A, Simu R, Isac T, Mercan-Stanciu A. Calprotectin in viral systemic infections-COVID-19 versus hepatitis C virus. Clin Exp Med 2022; 22:311-317. [PMID: 34254197 PMCID: PMC8274470 DOI: 10.1007/s10238-021-00743-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
This study aims to evaluate differences in serum and fecal calprotectin in patients with HCV chronic hepatitis and COVID-19 infection and compare them to a control group. This observational study was performed between April 2020 and October 2020 in a single Internal Medicine center. We determined serum and fecal calprotectin, as well as levels of transaminases, C-reactive protein, ferritin, in 25 patients with COVID-19 infection, 30 patients with active HCV chronic infection and 38 patients with cured HCV infection. Serum levels of ALT, AST, C-reactive protein and ferritin were significantly higher in patients with COVID-19 infection (mean values of 127 IU/mL, 135 IU/mL, 123 mg/L and 1034 ng/mL, respectively) than in patients with active HCV infection (mean values of 68 IU/mL, 51 IU/mL, 17 mg/L and 528 ng/mL, respectively) or in patients with cured HCV infection (37 IU/mL, 29 IU/mL, 3.4 mg/L and 274 ng/mL, respectively). Also, serum and fecal calprotectin had increased concentrations in patients with COVID-19 (7.3 µg/mL and 394 µg/mg) versus patients with active hepatitis (2.4 µg/mL and 217 µg/mg) and patients with cured hepatitis (1.2 µg/mL and 38 µg/mg). Values were significantly higher in patients with digestive symptoms related to COVID-19. Serum and fecal calprotectin can be used as inflammatory markers in patients with active viral infections. In COVID-19, calprotectin concentrations can be correlated to the severity of disease, particularly in patients with digestive symptoms.
Collapse
Affiliation(s)
- Letitia Toma
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania.
| | - Mihai Dodot
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca Zgura
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Bacalbasa
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Silaghi
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Simu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Teodora Isac
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Adriana Mercan-Stanciu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
37
|
Nathella PK, Moideen K, Viswanathan V, Sivakumar S, Ahamed SF, Ponnuraja C, Hissar S, Kornfeld H, Babu S. Heightened microbial translocation is a prognostic biomarker of recurrent tuberculosis. Clin Infect Dis 2022; 75:1820-1826. [PMID: 35352112 PMCID: PMC9662171 DOI: 10.1093/cid/ciac236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microbial translocation is a known characteristic of pulmonary tuberculosis (PTB). Whether microbial translocation is also a biomarker of recurrence in PTB is not known. METHODS We examined the presence of microbial translocation in a cohort of newly diagnosed, sputum smear and culture positive individuals with drug-sensitive PTB. Participants were followed up for a year following the end of anti-tuberculosis treatment. They were classified as cases (in the event of recurrence, n=30) and compared to age and gender matched controls (in the event of successful, recurrence free cure; n=51). Plasma samples were used to measure the circulating microbial translocation markers. All the enrolled study participants were treatment naïve, HIV negative and with or without diabetes mellitus. RESULTS Baseline levels of lipopolysaccharide (LPS) (p=0.0002), sCD14 (p=0.0191) and LPS-binding protein (LBP) (p<0.0001) were significantly higher in recurrence than controls and were associated with increased risk for recurrence, while Intestinal fatty acid binding protein (I-FABP) and Endocab showed no association. ROC curve analysis demonstrated the utility of these individual microbial markers in discriminating recurrence from cure with high sensitivity, specificity and AUC. CONCLUSION Recurrence following microbiological cure in PTB is characterized by heightened baseline microbial translocation. These markers can be used as a rapid prognostic tool for predicting recurrence in PTB.
Collapse
Affiliation(s)
| | - Kadar Moideen
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India
| | | | | | | | - C Ponnuraja
- National Institute for Research in Tuberculosis, Chennai, India
| | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institute for Research in Tuberculosis, Chennai, India.,LPD, NIAID, NIH, MD, USA
| |
Collapse
|
38
|
The Intestinal Barrier and Its Dysfunction in Patients with Metabolic Diseases and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020662. [PMID: 35054847 PMCID: PMC8775587 DOI: 10.3390/ijms23020662] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease worldwide, mirroring the epidemics of obesity and metabolic syndrome. As there are still no licensed medications for treating the disease, there is an ongoing effort to elucidate the pathophysiology and to discover new treatment pathways. An increasing body of evidence has demonstrated a crosstalk between the gut and the liver, which plays a crucial role in the development and progression of liver disease. Among other intestinal factors, gut permeability represents an interesting factor at the interface of the gut–liver axis. In this narrative review, we summarise the evidence from human studies showing the association between increased gut permeability and NAFLD, as well as with type-2 diabetes and obesity. We also discuss the manipulation of the gut permeability as a potential therapeutical target in patients with NAFLD.
Collapse
|
39
|
Huang TY, Yang SS, Liao CL, Lin MH, Lin HH, Lin JC, Chen PJ, Shih YL, Chang WK, Hsieh TY. SPAK Deficiency Attenuates Chemotherapy-Induced Intestinal Mucositis. Front Oncol 2021; 11:733555. [PMID: 34888232 PMCID: PMC8649624 DOI: 10.3389/fonc.2021.733555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Ste20-related protein proline/alanine-rich kinase (SPAK) affects cell proliferation, differentiation, and transformation, and sodium and chloride transport in the gut. However, its role in gut injury pathogenesis is unclear. Objective We determined the role of SPAK in chemotherapy-induced intestinal mucositis using in vivo and in vitro models. Methods Using SPAK-knockout (KO) mice, we evaluated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU) by assessing body weight loss, histological changes in the intestinal mucosa, length of villi in the small intestine, pro-inflammatory cytokine levels, proliferative indices, and apoptotic indices. We also evaluated changes in gut permeability and tight junction-associated protein expression. Changes in cell permeability, proliferation, and apoptosis were assessed in SPAK siRNA-transfected 5FU-treated IEC-6 cells. Results 5-FU-treated SPAK-KO mice exhibited milder intestinal mucositis, reduced pro-inflammatory cytokine expression, increased villus length, good maintenance of proliferative indices of villus cells, decreased apoptotic index of enterocytes, reduced gut permeability, and restoration of tight junction protein expression (vs. 5-FU-treated wild-type mice). Under in vitro conditions, siRNA-mediated SPAK-knockdown in IEC-6 cells decreased cell permeability and maintained homeostasis following 5-FU treatment. Conclusion SPAK deficiency attenuated chemotherapy-induced intestinal mucositis by modulating gut permeability and tight junction-associated protein expression and maintaining gut homeostasis in murine small intestinal tissues following gut injury. The expression of SPAK may influence the pathogenesis of chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taiwan Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of BioMedical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Jen Chen
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Virseda-Berdices A, Brochado-Kith O, Díez C, Hontañon V, Berenguer J, González-García J, Rojo D, Fernández-Rodríguez A, Ibañez-Samaniego L, Llop-Herrera E, Olveira A, Perez-Latorre L, Barbas C, Rava M, Resino S, Jiménez-Sousa MA. Blood microbiome is associated with changes in portal hypertension after successful direct-acting antiviral therapy in patients with HCV-related cirrhosis. J Antimicrob Chemother 2021; 77:719-726. [PMID: 34888660 DOI: 10.1093/jac/dkab444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with a significant decrease in hepatic venous pressure gradient (HVPG) have a considerable reduction of liver complications and higher survival after HCV eradication. OBJECTIVES To evaluate the association between the baseline blood microbiome and the changes in HVPG after successful direct-acting antiviral (DAA) therapy in patients with HCV-related cirrhosis. METHODS We performed a prospective study in 32 cirrhotic patients (21 HIV positive) with clinically significant portal hypertension (HVPG ≥10 mmHg). Patients were assessed at baseline and 48 weeks after HCV treatment completion. The clinical endpoint was a decrease in HVPG of ≥20% or HVPG <12 mmHg at the end of follow-up. Bacterial 16S ribosomal DNA was sequenced using MiSeq Illumina technology, inflammatory plasma biomarkers were investigated using ProcartaPlex immunoassays and the metabolome was investigated using GC-MS. RESULTS During the follow-up, 47% of patients reached the clinical endpoint. At baseline, those patients had a higher relative abundance of Corynebacteriales and Diplorickettsiales order, Diplorickettsiaceae family, Corynebacterium and Aquicella genus and Undibacterium parvum species organisms and a lower relative abundance of Oceanospirillales and Rhodospirillales order, Halomonadaceae family and Massilia genus organisms compared with those who did not achieve the clinical endpoint according to the LEfSe algorithm. Corynebacteriales and Massilia were consistently found within the 10 bacterial taxa with the highest differential abundance between groups. Additionally, the relative abundance of the Corynebacteriales order was inversely correlated with IFN-γ, IL-17A and TNF-α levels and the Massilia genus with glycerol and lauric acid. CONCLUSIONS Baseline-specific bacterial taxa are related to an HVPG decrease in patients with HCV-related cirrhosis after successful DAA therapy.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Ibañez-Samaniego
- Servicio de Aparato Digestivo, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Elba Llop-Herrera
- Departamento de Gastroenterología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - Antonio Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain
| | - Leire Perez-Latorre
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marta Rava
- Unidad de la Cohorte de la Red de Investigación en Sida (CoRIS), Centro Nacional de Epidemiologia (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
41
|
Wang Y, Dan K, Xue X, Yang X, Feng X, Yang Q, Yang J, Chen B. Translocating lipopolysaccharide correlates with the severity of enterovirus A71-induced HFMD by promoting pro-inflammation and viral IRES activity. Gut Pathog 2021; 13:69. [PMID: 34809671 PMCID: PMC8607650 DOI: 10.1186/s13099-021-00465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The increase of inflammation-inducing enterobacteria was recently observed in severe hand, foot, and mouth disease (HFMD) caused by Enterovirus A71 (EV-A71). This study aimed to verify the occurrence of bacterial translocation (BT) and further explore the contributory role of BT to severity of EV-A71-mediated HFMD cases. METHODS Serum specimens from 65 mild and 65 severe EV-A71-associated HFMD cases and 65 healthy children were collected. EV-A71 VP1 in serum, inflammatory mediators including C-reactive protein, IL-1β, IL-6, interferon-γ and tumor necrosis factor-α, BT related biomarkers including Claudin-3, intestinal fatty acid binding protein, lipopolysaccharide (LPS), soluble CD14 (sCD14) and endotoxin core antibody were measured by ELISA. Bacterial DNA (BactDNA) fragments were quantified by quantified PCR (qPCR). Rhabdomyosarcoma (RD) or SH-SY5Y cells, infected with LPS-pre-incubated EV-A71 or transfected with plasmid containing viral 2Apro or mRNA containing viral internal ribosomal entry site (IRES), were post-treated with or without LPS in vitro. EV-A71 RNA and viral or cellular proteins were determined by qPCR and western blot, respectively. RESULTS Compared to mild HFMD patients, remarkably higher inflammatory mediators as well as BT-related biomarkers except BactDNA were observed in severe HFMD cases (all P < 0.05). In severe HFMD group, circulating concentrations of LPS and sCD14 showed statistical correlations with inflammation indices (all P < 0.05), serum levels of EV-A71 VP1 were found to be positively correlated with serum LPS (r = 0.341, P = 0.005) and serum sCD14 (r = 0.458, P < 0.001). In vitro, EV-A71 attachment and internalization were only slightly promoted by LPS pre-incubation; however, EV-A71 proliferation and viral 2Apro-mediated IRES activity were significantly accelerated by LPS post-treatment. CONCLUSIONS Our results collectively indicate that gut-derived translocating LPS contributes to the severity of EV-A71-induced HFMD by driving inflammatory response and viral proliferation via viral 2Apro-mediated IRES.
Collapse
Affiliation(s)
- Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Kena Dan
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoling Xue
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiongbo Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Xujiao Feng
- Department of Infectious Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Qingqing Yang
- Department of Infectious Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Jing Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China.
| | - Bangtao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China.
| |
Collapse
|
42
|
Neag MA, Mitre AO, Catinean A, Buzoianu AD. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World J Gastroenterol 2021; 27:7446-7461. [PMID: 34887642 PMCID: PMC8613744 DOI: 10.3748/wjg.v27.i43.7446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a chronic damaging effect on the liver and its functions. Chronic liver disease can lead to even more severe and life-threatening conditions, such as liver cirrhosis and hepatocellular carcinoma. Recent years have uncovered an important interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B and C infections often cause alterations in the gut microbiota by lowering the levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota ability to boost the immune response. Treatments aimed at restoring the gut microbiota balance may provide a valuable addition to current practice therapies and may help limit the chronic changes observed in the liver of hepatitis B and C patients. This review aims to summarize the current knowledge on the anato-functional axis between the gut and liver and to highlight the influence that hepatitis B and C viruses have on the microbiota balance, as well as the influence of treatments aimed at restoring the gut microbiota on infected livers and disease progression.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400012, Romania
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400006, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| |
Collapse
|
43
|
Wang K, Zhang Z, Mo ZS, Yang XH, Lin BL, Peng L, Xu Y, Lei CY, Zhuang XD, Lu L, Yang RF, Chen T, Gao ZL. Gut microbiota as prognosis markers for patients with HBV-related acute-on-chronic liver failure. Gut Microbes 2021; 13:1-15. [PMID: 34006193 PMCID: PMC8143260 DOI: 10.1080/19490976.2021.1921925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota in the hepatitis B virus related acute-on-chronic liver failure (HBV-ACLF) is poorly defined. We aim to uncover the characteristics of the gut microbiota in HBV-ACLF and in other HBV associated pathologies. We analyzed the gut microbiome in patients with HBV-ACLF or other HBV associated pathologies and healthy individuals by 16S rRNA sequencing and metagenomic sequencing of fecal samples. 212 patients with HBV-ACLF, 252 with chronic hepatitis B (CHB), 162 with HBV-associated cirrhosis (HBV-LC) and 877 healthy individuals were recruited for the study. CHB and HBV-LC patients are grouped as HBV-Other. We discovered striking differences in the microbiome diversity between the HBV-ACLF, HBV-Other and healthy groups using 16S rRNA sequencing. The ratio of cocci to bacilli was significantly elevated in the HBV-ACLF group compared with healthy group. Further analysis within the HBV-ACLF group identified 52 genera showing distinct richness within the group where Enterococcus was enriched in the progression group whilst Faecalibacterium was enriched in the regression group. Metagenomic sequencing validated these findings and further uncovered an enrichment of Lactobacillus casei paracasei in progression group, while Alistipes senegalensis, Faecalibacterium prausnitzii and Parabacteroides merdae dominated the regression group. Importantly, our analysis revealed that there was a rapid increase of Enterococcus faecium during the progression of HBV-ACLF. The gut microbiota displayed distinct composition at different phases of HBV-ACLF. High abundance of Enterococcus is associated with progression while that of Faecalibacterium is associated with regression of HBV-ACLF. Therefore, the microbiota features hold promising potential as prognostic markers for HBV-ACLF.
Collapse
Affiliation(s)
- Ke Wang
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhao Zhang
- Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou, Guangdong, China
| | - Zhi-Shuo Mo
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiao-Hua Yang
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Bing-Liang Lin
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yang Xu
- Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou, Guangdong, China
| | - Chun-Yan Lei
- Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou, Guangdong, China
| | - Xiao-Dong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Rui-Fu Yang State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Chen
- Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou, Guangdong, China,Tao Chen Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou, Guangdong, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China,CONTACT Zhi-Liang Gao Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Yokose T, Takeuchi M, Obara H, Shinoda M, Kawakubo H, Kitago M, Yagi H, Abe Y, Yamada Y, Matsubara K, Oshima G, Hori S, Fujimura T, Takemura R, Ishii R, Kuroda T, Kitagawa Y. Diagnostic Utility of Presepsin in Infections After Liver Transplantation: A Preliminary Study. Ann Transplant 2021; 26:e933774. [PMID: 34795199 PMCID: PMC8609769 DOI: 10.12659/aot.933774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Infectious complications after solid organ transplantation can be fatal, and early diagnosis and intervention are important. To the best of our knowledge, no study has examined the diagnostic utility of presepsin, a known accurate biomarker, for infectious complications after liver transplantation. This study aimed to evaluate the utility of presepsin for detecting infection and perioperative kinetics of presepsin after liver transplantation. MATERIAL AND METHODS This single-institutional prospective, observational study included 13 patients who underwent living-donor or deceased-donor liver transplantation. Perioperative serum presepsin level was measured 6 times within a week to evaluate its association with infectious complications and compare it with procalcitonin and C-reactive protein levels and leukocyte count. Postoperatively, patients were followed up for 15 days for infectious complications. RESULTS Five of the 13 patients developed infectious complications after liver transplantation. The median time for infection diagnosis was 9 postoperative days (25th-75th percentile, 7-10). Presepsin levels on 5 and 7 postoperative days were significantly higher in patients with infection than in those without (P=0.019 and P=0.011, respectively). In receiver operating characteristic analysis, area under the curve values of presepsin on 5 and 7 postoperative days (0.881 and 0.905, respectively) were higher than those of other biomarkers. The optimal cut-off value of presepsin was 1361 pg/mL on postoperative day 5 and 1375 pg/mL on postoperative day 7. CONCLUSIONS Although this study included a small number of patients, presepsin levels on postoperative days 5 and 7 may be useful indicators for infectious complications after liver transplantation.
Collapse
Affiliation(s)
- Takahiro Yokose
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Masashi Takeuchi
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Masahiro Shinoda
- Digestive Diseases Center, Mita Hospital, International University of Health and Welfare, Tokyo, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Yohei Yamada
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Go Oshima
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Takumi Fujimura
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Ryo Takemura
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Ryota Ishii
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| |
Collapse
|
45
|
Townsend EC, Zhang GY, Ali R, Surana P, Firke M, Moon MS, Han MAT, Gewirtz M, Haddad JA, Kleiner DE, Koh C, Heller T. Microbial Translocation in the Context of Hepatitis B Infection and Hepatitis D Infection. Open Forum Infect Dis 2021; 8:ofaa496. [PMID: 35559125 PMCID: PMC9088508 DOI: 10.1093/ofid/ofaa496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2023] Open
Abstract
Background Increased microbial translocation (MT) into the systemic circulation is associated with liver disease progression. Microbial translocation has yet to be completely defined in chronic hepatitis B virus (HBV) and chronic hepatitis delta virus (HDV). Methods Our aim was to characterize MT and associated immune response in chronic HBV and HDV at various stages of disease. Serum from 53 HBV, 43 HDV, and 36 healthy control (HC) subjects was obtained. Subjects were categorized by aspartate aminotransferase-to-platelet ratio index into mild (<0.5), moderate, and severe (>1.0) disease. Cytokines, microbial products, and microbial deoxyribonucleic acid (DNA) levels were assessed in a single treatment-naive time point for each patient. Next-generation sequencing identified bacterial species present within patient sera. Results The HBV and HDV subjects display higher serum concentrations of Gram-negative (G-) bacterial lipopolysaccharide and fungal beta-glucan compared with HC (all P < .01). Gram-positive (G+) bacterial peptidoglycan is higher in HBV compared to HDV and HC (both P < .0001). Within both disease cohorts, peptidoglycan correlates with interleukin (IL)-1b, IL-8, IL-12p70, and IL-13 (all Spearman's rho >0.45; P < .05). Next-generation sequencing from 7 subjects with detectable serum bacterial DNA revealed changes in abundance of bacterial taxa and a higher proportion of Gram-positive genera in severe disease. Greater G+/G- taxa ratio is associated with higher cytokine levels and disease markers. Conclusions The HBV and HDV patients display increased translocation of bacterial and fungal products into serum. An increased proportion of Gram-positive genera is associated with disease progression. Correlations of peptidoglycan with antimicrobial cytokines suggest that particular microbial classes may contribute to systemic inflammation and possibly disease progression.
Collapse
Affiliation(s)
- Elizabeth C Townsend
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Grace Y Zhang
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Rabab Ali
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Pallavi Surana
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Marian Firke
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Mi Sun Moon
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Ma Ai Thanda Han
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Meital Gewirtz
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - James A Haddad
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Christopher Koh
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| | - Theo Heller
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Chuaypen N, Jinato T, Avihingsanon A, Chirapongsathorn S, Cheevadhanarak S, Nookaew I, Tanaka Y, Tangkijvanich P. Improvement of Gut Diversity and Composition After Direct-Acting Antivirals in Hepatitis C Virus-Infected Patients With or Without Human Immunodeficiency Virus Coinfection. J Infect Dis 2021; 224:1410-1421. [PMID: 33598686 PMCID: PMC8557699 DOI: 10.1093/infdis/jiab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The influence of direct-acting antivirals (DAAs) on the composition of gut microbiota in hepatitis C virus (HCV)-infected patients with or without human immunodeficiency virus (HIV) is unclear. METHODS We enrolled 62 patients with HCV monoinfection and 24 patients with HCV/HIV coinfection receiving elbasvir-grazoprevir from a clinical trial. Fecal specimens collected before treatment and 12 weeks after treatment were analyzed using amplicon-based 16S ribosomal RNA sequencing. RESULTS Sustained virological response rates in the monoinfection and coinfection groups were similar (98.4% vs 95.8%). Pretreatment bacterial communities in the patient groups were less diverse and distinct from those of healthy controls. Compared with HCV-monoinfected patients, HCV/HIV-coinfected individuals showed comparable microbial alpha diversity but decreased Firmicutes-Bacteroidetes ratios. The improvement of microbial dysbiosis was observed in responders achieving sustained virological response across fibrosis stages but was not found in nonresponders. Responders with a low degree of fibrosis exhibited a recovery in alpha diversity to levels comparable to those in healthy controls. Reciprocal alterations of increased beneficial bacteria and reduced pathogenic bacteria were also observed in responders. CONCLUSIONS This study indicates a short-term effect of direct-acting antivirals in restoration of microbial dysbiosis. The favorable changes in gut microbiota profiles after viral eradication might contribute toward the reduction of HCV-related complications among infected individuals.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Sakkarin Chirapongsathorn
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, College of Medicine, Royal Thai Army, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
47
|
He Y, Cai W, Chen J, Hu F, Li F, Lin W, Li Y, Chen X, Tang X, Li L. Persistent chronic immune activation in HIV/HBV-coinfected patients after antiretroviral therapy. J Viral Hepat 2021; 28:1355-1361. [PMID: 34185938 DOI: 10.1111/jvh.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
We studied the characteristics of immune activation and investigated the underlying mechanisms in patients with human immunodeficiency virus-1/hepatitis B virus (HIV/HBV) coinfection after receiving HBV-active antiretroviral therapy. Forty patients with HIV/HBV coinfection, 38 patients with HIV monoinfection and 20 healthy controls were enrolled. CD4+ count, HIV load, HBV load, markers of immune activation and regulatory T-cell (Treg cell) frequency were assessed and compared between HIV-monoinfected and HIV/HBV-coinfected patients at week 0 (baseline), 12, 24, 36 and 48 after the onset of HBV-active antiretroviral therapy. Before antiretroviral therapy, frequencies of CD4+ HLADR+ CD38+ , CD8+ HLADR+ CD38+ , and Treg cells, and sCD163 and sCD14 levels were significantly higher in both HIV/HBV-coinfected patients and HIV-monoinfected patients, compared with healthy controls. Frequencies of CD4+ HLADR+ CD38+ and CD8+ HLADR+ CD38+ cells decreased following antiretroviral therapy in both groups. sCD163 levels did not change significantly in both groups and no significant difference was observed between the two groups at each time point during the 48-week antiretroviral therapy. In week 24, levels of sCD14 and frequencies of Treg cells appeared significantly higher in HIV/HBV-coinfected patients than in HIV-monoinfected patients, in which sCD14 levels and Treg cell frequencies declined to those in healthy controls. The Treg cell frequency was consistent with that of sCD14 levels in HIV/HBV-coinfected patients. Coinfection with HBV significantly increases sCD14 levels in HIV-infected patients during HBV-active antiretroviral therapy, which may potentially contribute to liver inflammation.
Collapse
Affiliation(s)
- Yaozu He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingliang Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiyin Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yonghong Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiejie Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 2021; 13:54. [PMID: 34517895 PMCID: PMC8439029 DOI: 10.1186/s13099-021-00448-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Innovative research highlighted the probable connection between autism spectrum disorder (ASD) and gut microbiota as many autistic individuals have gastrointestinal problems as co-morbidities. This review emphasizes the role of altered gut microbiota observed frequently in autistic patients, and the mechanisms through which such alterations may trigger leaky gut. Main body Different bacterial metabolite levels in the blood and urine of autistic children, such as short-chain fatty acids, lipopolysaccharides, beta-cresol, and bacterial toxins, were reviewed. Moreover, the importance of selected proteins, among which are calprotectin, zonulin, and lysozyme, were discussed as biomarkers for the early detection of leaky gut as an etiological mechanism of ASD through the less integrative gut–blood–brain barriers. Disrupted gut–blood–brain barriers can explain the leakage of bacterial metabolites in these patients. Conclusion Although the cause-to-effect relationship between ASD and altered gut microbiota is not yet well understood, this review shows that with the consumption of specific diets, definite probiotics may represent a noninvasive tool to reestablish healthy gut microbiota and stimulate gut health. The diagnostic and therapeutic value of intestinal proteins and bacterial-derived compounds as new possible biomarkers, as well as potential therapeutic targets, are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00448-y.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Naima Zayed
- Therapuetic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadine M S Moubayed
- Botany and Microbiology Department, College of Science, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - May N Al-Muammar
- Department of Community Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
49
|
Fuster D, Garcia-Calvo X, Farré O, Zuluaga P, Bolao F, Leis A, Hernández-Rubio A, Rivas I, Muga R. Markers of Monocyte Activation, Inflammation, and Microbial Translocation Are Associated with Liver Fibrosis in Alcohol Use Disorder. J Clin Med 2021; 10:3496. [PMID: 34441792 PMCID: PMC8396829 DOI: 10.3390/jcm10163496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The association between markers of inflammation (interleukin (IL)-6 and IL-10), monocyte activation (sCD163 and sCD14), and microbial translocation (lipopolysaccharide (LPS) and LPS binding protein) and liver fibrosis in patients with alcohol use disorder (AUD) and no overt liver disease is not well established. METHODS We studied patients admitted for treatment of AUD at two hospitals in Barcelona. Advanced liver fibrosis (ALF) was defined as FIB-4 > 3.25. RESULTS A total of 353 participants (76.3% male) were included and 94 (26.5%) had ALF. In adjusted correlation analyses, sCD163, sCD14, IL-6, IL-10, and LPS binding protein levels directly correlated with FIB-4 values (adjusted correlation coefficients 0.214, 0.452, 0.317, 0.204, and 0.171, respectively). However, LPS levels were inversely associated with FIB-4 (-0.283). All plasma marker levels in the highest quartile, except LPS, were associated with ALF (sCD163, sCD14, IL-6, IL-10, and LPS binding protein: adjusted odds ratio (aOR) 11.49 (95% confidence interval 6.42-20.56), 1.87 (1.11-3.16), 2.99 (1.79-5.01), 1.84 (1.11-3.16), and 2.13 (1.30-3.50), respectively). Conversely, LPS levels in the lowest quartile were associated with ALF (aOR 2.58 (1.48-4.58), p < 0.01). CONCLUSION In AUD patients, plasma levels of the markers of inflammation, monocyte activation, and microbial translocation are associated with ALF.
Collapse
Affiliation(s)
- Daniel Fuster
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Xavier Garcia-Calvo
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Oriol Farré
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
| | - Paola Zuluaga
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ferran Bolao
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Alba Leis
- Department of Biochemistry, Hospital Universitari Germans Trias i Pujol de Badalona, 08916 Badalona, Barcelona, Spain;
| | - Anna Hernández-Rubio
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Inmaculada Rivas
- Mental Health and Addiction Service, Badalona Serveis Assistencials-BSA, 08911 Badalona, Barcelona, Spain;
| | - Robert Muga
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
50
|
Roohani S, Tacke F. Liver Injury and the Macrophage Issue: Molecular and Mechanistic Facts and Their Clinical Relevance. Int J Mol Sci 2021; 22:ijms22147249. [PMID: 34298870 PMCID: PMC8306699 DOI: 10.3390/ijms22147249] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The liver is an essential immunological organ due to its gatekeeper position to bypassing antigens from the intestinal blood flow and microbial products from the intestinal commensals. The tissue-resident liver macrophages, termed Kupffer cells, represent key phagocytes that closely interact with local parenchymal, interstitial and other immunological cells in the liver to maintain homeostasis and tolerance against harmless antigens. Upon liver injury, the pool of hepatic macrophages expands dramatically by infiltrating bone marrow-/monocyte-derived macrophages. The interplay of the injured microenvironment and altered macrophage pool skews the subsequent course of liver injuries. It may range from complete recovery to chronic inflammation, fibrosis, cirrhosis and eventually hepatocellular cancer. This review summarizes current knowledge on the classification and role of hepatic macrophages in the healthy and injured liver.
Collapse
|