1
|
Qi S, Li J, Gu X, Zhang Y, Zhou W, Wang F, Wang W. Impacts of ageing on the efficacy of CAR-T cell therapy. Ageing Res Rev 2025; 107:102715. [PMID: 40058461 DOI: 10.1016/j.arr.2025.102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Chimeric antigen receptor T cells recognizing CD19 (19CAR-T) cell therapy has achieved robust clinical efficacy when treating some hematological malignancies, but which patient subgroups benefit mostly remains elusive. Here we summarized the data of 541 patients from 30 clinical trials who underwent 19 CAR-T therapy and analyzed the different clinical responses between young (<44 years), middle-aged (45-59 years) and elderly (>60 years) patients and found that the young patients showed a higher level of complete response (CR) rate. Therefore, we then summarize the advances of studies focusing on the effects of age on anti-tumor efficacy of CAR-T therapy and analyze the reasons for the low CR rate after CAR-T cell therapy in elderly patients with tumors, aiming to provide hints for oncologists to select the most suitable candidate for this cancer immunotherapy.
Collapse
Affiliation(s)
- Shimao Qi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Jiaqian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Xinyu Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Li F, Xian D, Yang K. Mendelian randomization and mediation analysis reveal the role of immune cell subsets in the causal pathways between blood cell perturbation responses and rheumatoid arthritis. Clin Rheumatol 2025; 44:1537-1548. [PMID: 40072781 DOI: 10.1007/s10067-025-07387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by complex immune interactions. Elucidating the causal relationships between blood cell perturbations, immune cell subsets, and RA can provide valuable insights into its pathogenesis. METHODS This study employed bidirectional two-sample Mendelian Randomization (MR) to explore the causal effects of blood cell perturbations on RA risk, with a focus on immune cell mediation. Genetic data from large-scale Genome-Wide Association Studies (GWAS) were utilized to select instrumental variables (IVs) for exposure, mediator, and outcome. Inverse Variance Weighted (IVW) analysis was applied, supplemented by sensitivity tests. Mediation analysis was conducted to assess the indirect effects mediated by immune cells. RESULTS Significant causal associations were identified between perturbations in reticulocytes, monocytes, and lymphocytes and specific immune cell subsets, including CD3 + CD39 + regulatory T cells (Tregs) and CD45RA + terminally differentiated CD8 + T cells (CD45RA + TD CD8 + cells). Erythropoiesis perturbation was associated with a reduced RA risk, while perturbations in monocytes and lymphocytes were found to facilitate RA progression through immune-mediated mechanisms. CONCLUSION This study underscores the pivotal role of immune cell subsets in mediating the effects of blood cell perturbations on RA development. These findings suggest that targeting immune cell-mediated pathways, particularly those involving Tregs and CD8 + T cells, can provide new therapeutic strategies for RA management. Key Points • Causal Relationships: Mendelian randomization (MR) analysis identified significant causal relationships between specific blood cell disturbances (e.g., reticulocytes, monocytes, and lymphocytes) and rheumatoid arthritis (RA). • Role of Immune Cells: CD3 + CD39 + regulatory T cells (Tregs) and CD45RA + Terminally Differentiated CD8 + T cells (CD45RA + TD CD8 + cells) mediate the association between blood cell disturbances and RA. • Protective Role of Reticulocytes: Reticulocyte disturbances under potassium chloride (KCl) conditions are negatively associated with RA, potentially protecting joints from inflammatory damage by reducing oxidative stress. • Protective Role of Non-Classical Monocytes: Baseline disturbances in monocyte median side scatter are negatively associated with RA, suggesting non-classical monocytes may reduce RA-related inflammation. • Positive Association of Lymphocyte Disturbances with RA: Lymphocyte side scatter standard deviation under colchicine disturbances shows a significant positive association with RA, indicating abnormal T cell activation may exacerbate RA progression.AQ.
Collapse
Affiliation(s)
- Feng Li
- Spinal Orthopedics Department I, Neijiang Hospital of Traditional Chinese Medicine, Neijiang City, Sichuan Province, China
| | - Dehai Xian
- Laboratory of Human Anatomy, School of Basic Medicine Anatomy , Southwest Medical University, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| | - Kaiwen Yang
- Laboratory of Human Anatomy, School of Basic Medicine Anatomy , Southwest Medical University, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
3
|
Deliyanti D, Suphapimol V, Joglekar A, Jayasimhan A, Wilkinson-Berka JL. Immunotherapy with low-dose IL-2 attenuates vascular injury in mice with diabetic and neovascular retinopathy by restoring the balance between Foxp3 + Tregs and CD8 + T cells. Diabetologia 2025:10.1007/s00125-025-06412-8. [PMID: 40133487 DOI: 10.1007/s00125-025-06412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 03/27/2025]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy features damage to the retinal microvasculature that causes vessels to leak and proliferate and can lead to vision loss and blindness. Inflammation contributes to the development of diabetic retinopathy, but little is known about the role of the adaptive immune system, including the benefits of augmenting the Forkhead box protein P3 (Foxp3) regulatory T cell (Treg) compartment. We aimed to determine whether treatment with low-dose IL-2 expands and activates Tregs and reduces CD8+ T cells in the retina, and attenuates retinal inflammation and vasculopathy in murine models of diabetic retinopathy and neovascular retinopathy. METHODS Mouse models of streptozocin-induced diabetes and oxygen-induced retinopathy (OIR) were administered low-dose IL-2 (25,000 U) or vehicle (sterile water) by i.p. injection. Reporter mice expressing Foxp3 as a red fluorescent protein (RFP) conjugate or CD8 as a green fluorescent protein (GFP) conjugate were used to evaluate Foxp3+ Tregs and CD8+ T cells, respectively, in blood, lymphoid organs and retina using flow cytometry or confocal microscopy. Vasculopathy and the expression of angiogenic and inflammatory factors were assessed in the retina. RESULTS Low-dose IL-2 significantly expanded CD4+CD25+Foxp3+ Tregs in the blood and spleen of mouse models of OIR and diabetes (1.4- to 1.9-fold increase, p<0.01). This expansion enhanced Treg functionality, increasing the expression of cytotoxic T-lymphocyte-associated protein4 (CTLA4), programmed cell death protein1 (PD1) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), and increased the ratio of Tregs to CD8+ T cells. This was accompanied in the retina by a twofold increase in Foxp3+ Tregs (diabetes: 3.01 ± 0.41 vs 5.90 ± 1.25 cells per field, p<0.001; OIR: 4.41 ± 1.48 vs 10.05 ± 2.91 cells per field, p<0.001) and a reduction in CD8+ T cells (diabetes: 4.65 ± 0.58 vs 3.00 ± 0.81 cells per field, p<0.01; OIR: 5.51 ± 1.33 vs 3.17 ± 1.14 cells per field, p<0.01). Low-dose IL-2 reduced the levels of the potent inflammatory factors intercellular adhesion protein1 and TNF and the chemokine IFNγ-inducible protein10 (IP-10) in the retina. Importantly, low-dose IL-2 treatment effectively attenuated retinal vasculopathy, with marked reductions in acellular capillaries (diabetes: 0.48-fold decrease, p<0.001), neovascularisation (OIR: 0.68-fold decrease, p<0.01) and vascular leakage, and expression of vascular endothelial growth factor. CONCLUSIONS/INTERPRETATION This study highlights the therapeutic potential of low-dose IL-2 to reduce retinal inflammation and severe vascular injury by boosting Tregs and reducing CD8+ T cells and inflammatory factors.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Amit Joglekar
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Abhirup Jayasimhan
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Bose S, Do V, Testini C, Jadhav SS, Sailliet N, Kho AT, Komatsu M, Boneschansker L, Kong SW, Wedel J, Briscoe DM. Immunomodulation by allograft endothelial cells. FRONTIERS IN TRANSPLANTATION 2025; 4:1518772. [PMID: 39967861 PMCID: PMC11832486 DOI: 10.3389/frtra.2025.1518772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
It is increasingly appreciated that the expression of immunoregulatory molecules within tumors have potential to shape a microenvironment that promotes local immunoevasion and immunoregulation. However, little is known about tissue-intrinsic immunomodulatory mechanisms following transplantation. We propose that differences in the phenotype of microvascular endothelial cells impact the alloantigenicity of the graft and its potential to promote immunoregulation following transplantation. We focus this review on the concept that graft-dependent immunoregulation may evolve post-transplantation, and that it is dependent on the phenotype of select subsets of intragraft endothelial cells. We also discuss evidence that long-term graft survival is critically dependent on adaptive interactions among immune cells and endothelial cells within the transplanted tissue microenvironment.
Collapse
Affiliation(s)
- Sayantan Bose
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vicki Do
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
| | - Chiara Testini
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Suchita S. Jadhav
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicolas Sailliet
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Alvin T. Kho
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Masaki Komatsu
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Leo Boneschansker
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sek Won Kong
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Johannes Wedel
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - David M. Briscoe
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Buckner JH. Antigen-specific immunotherapies for autoimmune disease. Nat Rev Rheumatol 2025; 21:88-97. [PMID: 39681709 DOI: 10.1038/s41584-024-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Antigen-specific therapies have a long history in the treatment of allergy but have not been successful in autoimmunity. However, in the past 20 years, advances in the definition of the self-antigens that promote autoimmunity and the growing understanding of the mechanisms that maintain tolerance in health but fail in autoimmunity have led to antigen-specific approaches being considered for the treatment of autoimmune diseases. The core goal of each antigen-specific treatment approach is to remove the immune response that promotes autoimmunity whilst sparing protective responses. Approaches to antigen-specific therapy range from targeted deletion of autoreactive lymphocytes to tolerization of autoreactive T cells and active inhibition of autoimmune responses. Technologies such as vaccines, nanoparticles, cell-based therapies and gene editing are being harnessed to achieve these goals. Remaining challenges include the selection of the best antigen to target, modality and timing of administration of these therapies and the disease in which the therapies are used; overcoming these challenges will be vital to move antigen-specific therapies forward. Once established, antigen-specific therapy has the potential to be applied broadly in the area of autoimmunity.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
6
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
7
|
Vijayakumar A, Vasudevan S, John S, Ozbun MA, Bartee E, Palanisamy V. Navigating a complex dance: the interplay between RNA-binding proteins and T cells in oral epithelial plasticity. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00054. [PMID: 39816132 PMCID: PMC11731067 DOI: 10.1097/in9.0000000000000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
The oral epithelium, a dynamic interface constantly facing environmental challenges, relies on intricate molecular pathways to maintain its homeostasis. This comprehensive review delves into the nuanced interplay between T-lymphocytic cells (T cells) and RNA-binding proteins (RBPs) within the oral epithelium, elucidating their roles in orchestrating immune responses and influencing tissue plasticity. By synthesizing current knowledge, we aim to unravel the molecular intricacies that govern this interplay, with a focus on potential therapeutic implications for oral health and diseases. Understanding the regulatory networks shaped by T cells and RBPs in the oral epithelial microenvironment holds promise for innovative strategies in managing conditions associated with epithelial dysfunction.
Collapse
Affiliation(s)
- Anitha Vijayakumar
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sekar Vasudevan
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Samu John
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Michelle A. Ozbun
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eric Bartee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Viswanathan Palanisamy
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
8
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2025; 62:518-532. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Son SE, Im DS. GPR55 antagonist CID16020046 suppresses DNCB-induced atopic dermatitis-like symptoms by suppressing Th1/Th2/Th17 populations in mice. Eur J Pharmacol 2024; 985:177088. [PMID: 39486767 DOI: 10.1016/j.ejphar.2024.177088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
G protein-coupled receptor 55 (GPR55) is a lipid-sensing receptor that plays a role as an immune mediator and is primarily upregulated during immune cell activation. There is a lack of knowledge about the role of GPR55 in allergic inflammatory diseases such as atopic dermatitis. The purpose of this study was to investigate the role of GPR55 through the use of its antagonist, CID16020046, in an atopic dermatitis mouse model. It was found that BALB/c mice develop lesions similar to those associated with atopic dermatitis following sensitization and repeated exposure to 1-chloro-2,4-dinitrobenzene (DNCB). It was found that CID16020046 (1 mg/kg, i. p.) alleviated the atopic dermatitis-like symptoms as well as immune dysregulation caused by DNCB. Based on histopathological analysis, CID16020046 reduced ear thickening and mast cell counts in the dermis. CID16020046 decreased DNCB-induced increases in serum IgE levels, as measured using enzyme-linked immunosorbent assays. A significant reduction in lymph node hypertrophy was also observed with CID16020046 as well as significant reductions in CD4+ T helper 1 (Th1), Th2, and Th17 cells in the lymph nodes. As a result of the administration of CID16020046, cytokines of Th1 (IFN-γ), Th2 (IL-4 and IL-13), and Th17 (IL-17 A) types were also reduced in the skin and lymph nodes. In conclusion, blocking GPR55 alleviates DNCB-induced atopic dermatitis-like symptoms, suggesting that GPR55 is a potential therapeutic target for allergic inflammatory diseases via immunoregulation.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
11
|
Miao W, Jain V, Han M, Jin YJ, Beasley GM, Starczysnowski DT, Gregory SG, Zhang JY. Inhibition of UBE2N in regulatory T-cells boosts immunity against cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619436. [PMID: 39484562 PMCID: PMC11526935 DOI: 10.1101/2024.10.22.619436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulatory T (Treg) cells prevent autoimmunity and facilitate cancer immune evasion. Depletion of Tregs is a promising cancer therapy, but risks of autoimmune reactions hamper its clinical translation. Here, we demonstrate that temporally induced deletion of Ube2n in Tregs (Ube2n Treg-KO ) of adult mice results in a robust expansion and activation of cytotoxic CD8 + T-cells in response to cancer cell challenges, producing a long-lasting survival benefit without autoimmune complications. The anti-tumor effect persists following adoptive T-cell transfer to T-cell-deficient Rag1-knockout mice. Single-cell transcriptomic analysis revealed that UBE2N deletion shifted immunosuppressive Tregs to effector-like T-cells. This shift is characterized by the downregulation of c-Myc target genes, resembling that observed in tumor-infiltrating Tregs of melanoma patients. Further analyses confirm that UBE2N maintains c-Myc protein stability via suppression of K48-Ubiquitin-mediated proteasomal degradation. Taken together, our studies uncover a hitherto unexplored and potentially druggable UBE2N/c-Myc signaling axis to eradicate Treg-enabled cancer immune escape.
Collapse
|
12
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
14
|
Zhou J, Wang H, Xu Y, Liu Z. Dissecting the causal role of immunophenotypes in primary sclerosing cholangitis risk: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38626. [PMID: 38941430 PMCID: PMC11466166 DOI: 10.1097/md.0000000000038626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
Primary sclerosing cholangitis (PSC), a chronic cholestatic liver condition, is frequently associated with inflammatory bowel disease. Specific immune cells have been implicated in PSC pathogenesis with the emergence of the "microbiota" and "gut lymphocyte homing" hypotheses, albeit their identities remain controversial. The first genome-wide association analysis leveraged nonoverlapping data from 3757 Europeans to evaluate 731 immunophenotypes. A genome-wide association analysis comprising 2871 cases and 12,019 controls yielded summary statistics for PSC. An inverse-variance weighted (IVW) analysis was performed to identify immunophenotypes causally related to PSC, and the results were validated using weighted mode, MR-Egger, and weighted median methods. Comprehensive sensitivity analyses were performed to verify the robustness, heterogeneity, and horizontal pleiotropy of the results. IVW analysis revealed 26 immune traits exhibiting causal associations with PSC. CD3 on HLA-DR+ CD4+ (IVW odds ratio [OR]: 0.904; 95% confidence interval [CI]: 0.828-0.986, P = .023) and CD3 on secreting Treg (IVW OR: 0.893; 95% CI: 0.823-0.969, P = .007) were negatively associated with PSC susceptibility and demonstrated high consistency across the 3 validation methods. Moreover, 7 other immune traits, including CD39+ resting Treg absolute cell (IVW OR = 1.083, 95% CI: 1.013-1.157, P = .019), CD39+ secreting Treg absolute cell (IVW OR = 1.063, 95% CI: 1.012-1.118, P = .015), CD3 on naive CD8br (IVW OR = 0.907, 95% CI: 0.835-0.986, P = .022), CD3 on CD39+ activated Treg (IVW OR = 0.927, 95% CI: 0.864-0.994, P = .034), CD28 on resting Treg (IVW OR = 0.724, 95% CI: 0.630-0.833, P = 5.95E-06), and CD39 on CD39+ CD4+ (IVW OR = 1.055, 95% CI: 1.001-1.112, P = .044) exhibited consistent results in the Weighted Median and Weighted Mode validation methods. Moreover, no significant heterogeneity or horizontal pleiotropy was observed across the single nucleotide polymorphisms. The leave-one-out results revealed that sequentially eliminating each single nucleotide polymorphism had no significant influence on model effect estimates or qualitative inference. This study evaluated potential causal links between 731 immune traits and PSC susceptibility. Twenty-six immune traits were identified using the IVW method. Verification across multiple methods revealed 9 immune traits with a plausible causal connection to PSC. These findings may uncover mechanistic pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yixin Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Zhilin Liu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| |
Collapse
|
15
|
Li V, Binder MD, Purcell AW, Kilpatrick TJ. Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis. J Neuroimmunol 2024; 390:578347. [PMID: 38663308 DOI: 10.1016/j.jneuroim.2024.578347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
16
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
17
|
Uenishi GI, Repic M, Yam JY, Landuyt A, Saikumar-Lakshmi P, Guo T, Zarin P, Sassone-Corsi M, Chicoine A, Kellogg H, Hunt M, Drow T, Tewari R, Cook PJ, Yang SJ, Cerosaletti K, Schweinoch D, Guiastrennec B, James E, Patel C, Chen TF, Buckner JH, Rawlings DJ, Wickham TJ, Mueller KT. GNTI-122: an autologous antigen-specific engineered Treg cell therapy for type 1 diabetes. JCI Insight 2024; 9:e171844. [PMID: 38516892 PMCID: PMC11063937 DOI: 10.1172/jci.insight.171844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving β cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingxi Guo
- GentiBio Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | - Martina Hunt
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ritika Tewari
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter J. Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Eddie James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Department of Medicine
- Department of Immunology, and
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Immunology, and
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
18
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
19
|
Lashen A, Al-Kawaz A, Jeyapalan JN, Alqahtani S, Shoqafi A, Algethami M, Toss M, Green AR, Mongan NP, Sharma S, Akbari MR, Rakha EA, Madhusudan S. Immune infiltration, aggressive pathology, and poor survival outcomes in RECQL helicase deficient breast cancers. Neoplasia 2024; 47:100957. [PMID: 38134458 PMCID: PMC10777014 DOI: 10.1016/j.neo.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
RECQL is essential for genomic stability. Here, we evaluated RECQL in 449 pure ductal carcinomas in situ (DCIS), 152 DCIS components of mixed DCIS/invasive breast cancer (IBC) tumors, 157 IBC components of mixed DCIS/IBC and 50 normal epithelial terminal ductal lobular units (TDLUs). In 726 IBCs, CD8+, FOXP3+, IL17+, PDL1+, PD1+ T-cell infiltration (TILs) were investigated in RECQL deficient and proficient cancers. Tumor mutation burden (TMB) was evaluated in five RECQL germ-line mutation carriers with IBC by genome sequencing. Compared with normal epithelial cells, a striking reduction in nuclear RECQL in DCIS was evident with aggressive pathology and poor survival. In RECQL deficient IBCs, CD8+, FOXP3+, IL17+ or PDL1+ TILs were linked with aggressive pathology and shorter survival. In germline RECQL mutation carriers, increased TMB was observed in 4/5 tumors. We conclude that RECQL loss is an early event in breast cancer and promote immune cell infiltration.
Collapse
Affiliation(s)
- Ayat Lashen
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Abdulbaqi Al-Kawaz
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Jennie N Jeyapalan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Shatha Alqahtani
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto. Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
20
|
Ghahramanipour Z, Alipour S, Masoumi J, Rostamlou A, Hatami-Sadr A, Heris JA, Naseri B, Jafarlou M, Baradaran B. Regulation of Dendritic Cell Functions by Vitamins as Promising Therapeutic Strategy for Immune System Disorders. Adv Biol (Weinh) 2023; 7:e2300142. [PMID: 37423961 DOI: 10.1002/adbi.202300142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/11/2023]
Abstract
A functional immune system is crucial for a healthy life, protecting from infections, tumors, or autoimmune disorders; these are accomplished by the interaction between various immune cells. Nourishment, particularly micronutrients, are very important components in the immune system balance, therefore this review emphasizes the vitamins (D, E, A, C) and Dendritic cells' subsets due to vitamins' roles in immune processes, especially on dendritic cells' functions, maturation, and cytokine production. Current studies reveal significant benefits related to vitamins, including vitamin E, which can contribute to the control of dendritic cells' function and maturation. Furthermore, vitamin D plays an immunoregulatory and anti-inflammatory role in the immune system. Metabolite of vitamin A which is called retinoic acid leads to T cells' differentiation to T helper 1 or T helper 17, so low levels of this vitamin exacerbate the menace of infectious diseases, and vitamin C has anti-oxidant effects on dendritic cells and modulate their activation and differentiation program. Additionally, the correlation between the amount of vitamin and the occurrence or progression of allergic diseases and autoimmunity disorders is discussed according to the results of previous studies.
Collapse
Affiliation(s)
- Zahra Ghahramanipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, 35040, Turkey
| | | | - Javad Ahmadian Heris
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| |
Collapse
|
21
|
Gurczynski SJ, Lipinski JH, Strauss J, Alam S, Huffnagle GB, Ranjan P, Kennedy LH, Moore BB, O’Dwyer DN. Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis. JCI Insight 2023; 9:e164572. [PMID: 38015634 PMCID: PMC10911107 DOI: 10.1172/jci.insight.164572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is poorly understood. Here, we determine the impact of gut microbiota on pulmonary fibrosis in substrains of C57BL/6 mice derived from different vendors (C57BL/6J and C57BL/6NCrl). We used germ-free models, fecal microbiota transplantation, and cohousing to transmit gut microbiota. Metagenomic studies of feces established keystone species between substrains. Pulmonary fibrosis was microbiota dependent in C57BL/6 mice. Gut microbiota were distinct by β diversity and α diversity. Mortality and lung fibrosis were attenuated in C57BL/6NCrl mice. Elevated CD4+IL-10+ T cells and lower IL-6 occurred in C57BL/6NCrl mice. Horizontal transmission of microbiota by cohousing attenuated mortality in C57BL/6J mice and promoted a transcriptionally altered pulmonary immunity. Temporal changes in lung and gut microbiota demonstrated that gut microbiota contributed largely to immunological phenotype. Key regulatory gut microbiota contributed to lung fibrosis, generating rationale for human studies.
Collapse
Affiliation(s)
| | - Jay H. Lipinski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joshua Strauss
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shafiul Alam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology and Immunology and
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucy H. Kennedy
- Unit for Laboratory and Animal Medicine, Office of Research, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology and
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Lin Y, Song Y, Zhang Y, Shi M, Hou A, Han S. NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells. Biomed Pharmacother 2023; 165:115167. [PMID: 37454598 DOI: 10.1016/j.biopha.2023.115167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) was first identified as a transcriptional regulator of activated T cells. The NFAT family is involved in the development of tumors. Furthermore, recent evidence reveals that NFAT proteins regulate the development of inflammatory and immune responses. New discoveries have also been made about the mechanisms by which NFAT regulates cancer progression through cancer stem cells (CSC). Here, we discuss the role of the NFAT family in the immune system and various cancer types.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
23
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
24
|
Obarorakpor N, Patel D, Boyarov R, Amarsaikhan N, Cepeda JR, Eastes D, Robertson S, Johnson T, Yang K, Tang Q, Zhang L. Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front Immunol 2023; 14:1207108. [PMID: 37593744 PMCID: PMC10428008 DOI: 10.3389/fimmu.2023.1207108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction In spontaneous type 1 diabetes (T1D) non-obese diabetic (NOD) mice, the insulin B chain peptide 9-23 (B:9-23) can bind to the MHC class II molecule (IAg7) in register 3 (R3), creating a bimolecular IAg7/InsulinB:9-23 register 3 conformational epitope (InsB:R3). Previously, we showed that the InsB:R3-specific chimeric antigen receptor (CAR), constructed using an InsB:R3-monoclonal antibody, could guide CAR-expressing CD8 T cells to migrate to the islets and pancreatic lymph nodes. Regulatory T cells (Tregs) specific for an islet antigen can broadly suppress various pathogenic immune cells in the islets and effectively halt the progression of islet destruction. Therefore, we hypothesized that InsB:R3 specific Tregs would suppress autoimmune reactivity in islets and efficiently protect against T1D. Methods To test our hypothesis, we produced InsB:R3-Tregs and tested their disease-protective effects in spontaneous T1D NOD.CD28-/- mice. Results InsB:R3-CAR expressing Tregs secrete IL-10 dominated cytokines upon engagement with InsB:R3 antigens. A single infusion of InsB:R3 Tregs delayed the onset of T1D in 95% of treated mice, with 35% maintaining euglycemia for two healthy lifespans, readily home to the relevant target whereas control Tregs did not. Our data demonstrate that Tregs specific for MHC class II: Insulin peptide epitope (MHCII/Insulin) protect mice against T1D more efficiently than polyclonal Tregs lacking islet antigen specificity, suggesting that the MHC II/insulin-specific Treg approach is a promising immune therapy for safely preventing T1D.
Collapse
Affiliation(s)
- Nyerhovwo Obarorakpor
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deep Patel
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Reni Boyarov
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Nansalmaa Amarsaikhan
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Doreen Eastes
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Sylvia Robertson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Travis Johnson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Experimental and Developmental Therapeutics, School of Medicine, Indiana University, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kai Yang
- Herman B Wells Center for Pediatric Research and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, United States
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
26
|
Tang Q. Regulatory T cells aid stem-cell therapy for Parkinson's disease. Nature 2023:10.1038/d41586-023-02177-5. [PMID: 37438628 DOI: 10.1038/d41586-023-02177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
|
27
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
28
|
Fiyouzi T, Pelaez-Prestel HF, Reyes-Manzanas R, Lafuente EM, Reche PA. Enhancing Regulatory T Cells to Treat Inflammatory and Autoimmune Diseases. Int J Mol Sci 2023; 24:ijms24097797. [PMID: 37175505 PMCID: PMC10177847 DOI: 10.3390/ijms24097797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents. Thereby, there is a great interest in developing medical interventions against these diseases based on enhancing Treg cell function and numbers. Here, we give an overview of Treg cell ontogeny and function, paying particular attention to mucosal Tregs. We review some notable approaches to enhance immunomodulation by Tregs with therapeutic purposes including adoptive Treg cell transfer therapy and discuss relevant clinical trials for inflammatory bowel disease. We next introduce ways to expand mucosal Tregs in vivo using microbiota and dietary products that have been the focus of clinical trials in various autoimmune and chronic-inflammatory diseases.
Collapse
Affiliation(s)
- Tara Fiyouzi
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Hector F Pelaez-Prestel
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Raquel Reyes-Manzanas
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Esther M Lafuente
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Pedro A Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review addresses recent progress in our understanding of the role of regulatory T (Treg) cells in enforcing immune tolerance and tissue homeostasis in the lung at steady state and in directing the immune response in asthmatic lung inflammation. RECENT FINDINGS Regulatory T cells regulate the innate and adaptive immune responses at steady state to enforce immune tolerance in lung tissues at steady state and their control of the allergic inflammatory responses induced by allergens. This regulatory function can break down in the context of chronic asthmatic airway inflammation such that the lung tissue Treg cells become skewed towards a pathogenic phenotype that aggravates and perpetuates disease. Subversion of lung tissue Treg cell function involves their upregulation of Notch4 expression, which in turn acts to amplify T helper type 2 and type 17 and innate lymphoid cell type 2 responses in the airways. SUMMARY A dual role for Treg cells has emerged both as immune regulators but also a potential disease effectors in asthma, with implications for disease therapy.
Collapse
Affiliation(s)
- Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, Technical University Dresden, Germany
| | - Talal A Chatila
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| |
Collapse
|
30
|
Gonçalves‐Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Andrade MVM, Vieira MS, de Fátima Souza de Oliveira F, Carobin NV, Li G, de Paula Sabino A, Nobre V, da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023; 168:684-696. [PMID: 36349514 PMCID: PMC9877711 DOI: 10.1111/imm.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.
Collapse
Affiliation(s)
- Marcela Helena Gonçalves‐Pereira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Luciana Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Cecilia Gómez Ravetti
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Frizera Vassallo
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marcus Vinicius Melo de Andrade
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mariana Sousa Vieira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | - Natália Virtude Carobin
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Guangzhao Li
- Department of MicrobiologyImmunology and Tropical Medicine, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Vandack Nobre
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
31
|
Ma R, Su H, Jiao K, Liu J. Role of Th17 cells, Treg cells, and Th17/Treg imbalance in immune homeostasis disorders in patients with chronic obstructive pulmonary disease. Immun Inflamm Dis 2023; 11:e784. [PMID: 36840492 PMCID: PMC9950879 DOI: 10.1002/iid3.784] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, following strokes and cardiovascular diseases. Chronic lung inflammation is believed to play a role in the development of COPD. In addition, accumulating evidence shows that the immune system plays a crucial role in the pathogenesis of COPD. Significant advancements have been made in research on the pathogenesis of immune diseases and chronic inflammation in recent years, and T helper 17 (Th17) cells and regulatory T (Treg) cells have been found to play a crucial role in the autoimmune response. Th17 cells are a proinflammatory subpopulation that causes autoimmune disease and tissue damage. Treg cells, on the other hand, have a negative effect but can contribute to the occurrence of the same disease when their antagonism fails. This review mainly summarizes the biological characteristics of Th17 cells and Treg cells, their roles in chronic inflammatory diseases of COPD, and the role of the Th17/Treg ratio in the onset, development, and outcome of inflammatory disorders, as well as recent advancements in immunomodulatory treatment targeting Th17/Treg cells in COPD.
Collapse
Affiliation(s)
- Ru Ma
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Hongling Su
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Keping Jiao
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Jian Liu
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
| |
Collapse
|
32
|
Immunotherapy as a Treatment for Stroke: Utilizing Regulatory T Cells. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
33
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
34
|
So L, Obata-Ninomiya K, Hu A, Muir VS, Takamori A, Song J, Buckner JH, Savan R, Ziegler SF. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis. J Exp Med 2023; 220:213791. [PMID: 36598533 PMCID: PMC9827529 DOI: 10.1084/jem.20221676] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teffs). However, molecular mechanisms that enforce Treg-mediated suppression in CD4 Teff are unclear. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teffs prior to cell division. We analyzed genome-wide changes in the transcriptome and translatome of activated CD4 Teffs. We show that mRNAs encoding for the protein synthesis machinery are regulated at the level of translation in activated CD4 Teffs by Tregs. Tregs suppressed global protein synthesis of CD4 Teffs by specifically inhibiting mRNAs of the translation machinery at the level of mTORC1-mediated translation control through concerted action of immunosuppressive cytokines IL-10 and TGFβ. Lastly, we found that the therapeutic targeting of protein synthesis with the RNA helicase eIF4A inhibitor rocaglamide A can alleviate inflammatory CD4 Teff activation caused by acute Treg depletion in vivo. These data show that peripheral tolerance is enforced by Tregs through mRNA translational control in CD4 Teffs.
Collapse
Affiliation(s)
- Lomon So
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA,Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alex Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Virginia S. Muir
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ayako Takamori
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jing Song
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jane H. Buckner
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA,Correspondence to Ram Savan:
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA,Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA,Steven F. Ziegler:
| |
Collapse
|
35
|
Skartsis N, Muller YD, Ferreira LMR. Regulatory T cell homeostasis: Requisite signals and implications for clinical development of biologics. Clin Immunol 2023; 246:109201. [PMID: 36470337 PMCID: PMC12066019 DOI: 10.1016/j.clim.2022.109201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Novel biologics are currently being tested in clinical trials for the treatment of autoimmune diseases and the prevention of transplant allograft rejection. Their premise is to deliver highly efficient immunosuppression while minimizing side-effects, as they specifically target inflammatory mediators involved in the dysregulation of the immune system. However, the pleiotropism of soluble mediators and cell-to-cell interactions with potential to exert both proinflammatory and regulatory influences on the outcome of the immune response can lead to unpredictable results. Predicting responses to biologic drugs requires mechanistic understanding of the cell type-specific effect of immune mediators. Elucidation of the central role of regulatory T cells (Treg), a small subset of T cells dedicated to immune homeostasis, in preventing the development of auto- and allo-immunity has provided a deeper understanding of the signaling pathways that govern immune tolerance. This review focuses on the requisite signals that promote Treg homeostasis and discusses the anticipated outcomes of biologics targeting these signals. Our goal is to inform and facilitate the design of cell-specific biologics that thwart T effector cells (Teff) while promoting Treg function for the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.
| | - Yannick D Muller
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Leonardo M R Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
36
|
Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation 2023; 107:86-97. [PMID: 36210500 DOI: 10.1097/tp.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplant rejection remains a challenge especially in the field of vascularized composite allotransplantation (VCA). To blunt the alloreactive immune response' stable levels of maintenance immunosupression are required. However' the need for lifelong immunosuppression poses the risk of severe side effects, such as increased risk of infection, metabolic complications, and malignancies. To balance therapeutic efficacy and medication side effects, immunotolerance promoting immune cells (especially regulatory T cells [Treg]) have become of great scientific interest. This approach leverages immune system mechanisms that usually ensure immunotolerance toward self-antigens and prevent autoimmunopathies. Treg can be bioengineered to express a chimeric antigen receptor or a T-cell receptor. Such bioengineered Treg can target specific antigens and thereby reduce unwanted off-target effects. Treg have demonstrated beneficial clinical effects in solid organ transplantation and promising in vivo data in VCAs. In this review, we summarize the functional, phenotypic, and immunometabolic characteristics of Treg and outline recent advancements and current developments regarding Treg in the field of VCA and solid organ transplantation.
Collapse
|
37
|
Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - Advances and challenges. Hum Vaccin Immunother 2022; 18:2035117. [PMID: 35240914 PMCID: PMC9009914 DOI: 10.1080/21645515.2022.2035117] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases are caused when immune cells act against self-protein. This biological self-non-self-discrimination phenomenon is controlled by a distinct group of lymphocytes known as regulatory T cells (Tregs), which are key inflammatory response regulators and play a pivotal role in immune tolerance and homeostasis. Treg-mediated robust immunosuppression provides self-tolerance and protection against autoimmune diseases. However, once this system fails to operate or poorly operate, it leads to an extreme situation where immune system reacts against self-antigens and destroys host organs, thus causing autoimmune diseases. Tregs can target both innate and adaptive immunity via modulating multiple immune cells such as neutrophils, monocytes, antigen-presenting cells, B cells, and T cells. This review highlights the Treg-mediated immunosuppression, role of several markers and their interplay during Treg development and differentiation, and advances in therapeutic aspects of Treg cells to reduce severity of autoimmunity-related conditions along with emphasizing limitations and challenges of their usages.
Collapse
Affiliation(s)
- Tapas Kumar Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
38
|
Maślanka T. Effect of IL-27, Teriflunomide and Retinoic Acid and Their Combinations on CD4 + T Regulatory T Cells-An In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238471. [PMID: 36500570 PMCID: PMC9739213 DOI: 10.3390/molecules27238471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
39
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
41
|
Yang SJ, Singh AK, Drow T, Tappen T, Honaker Y, Barahmand-Pour-Whitman F, Linsley PS, Cerosaletti K, Mauk K, Xiang Y, Smith J, Mortensen E, Cook PJ, Sommer K, Khan I, Liggitt D, Rawlings DJ, Buckner JH. Pancreatic islet-specific engineered T regs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci Transl Med 2022; 14:eabn1716. [PMID: 36197963 DOI: 10.1126/scitranslmed.abn1716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.
Collapse
Affiliation(s)
- Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Akhilesh K Singh
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Tori Tappen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Fariba Barahmand-Pour-Whitman
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Kelsey Mauk
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Yufei Xiang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Jessica Smith
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Emma Mortensen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter J Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Iram Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.,Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.,Department of Immunology, University of Washington, Seattle, WA 98101, USA.,Department of Medicine, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
42
|
Li W, Li R, Wang Y, Zhang Y, Tomar MS, Dai S. Calcitonin gene-related peptide is a potential autoantigen for CD4 T cells in type 1 diabetes. Front Immunol 2022; 13:951281. [PMID: 36189304 PMCID: PMC9523785 DOI: 10.3389/fimmu.2022.951281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide with critical roles in the development of peripheral sensitization and pain. One of the CGRP family peptides, islet amyloid polypeptide (IAPP), is an important autoantigen in type 1 diabetes. Due to the high structural and chemical similarity between CGRP and IAPP, we expected that the CGRP peptide could be recognized by IAPP-specific CD4 T cells. However, there was no cross-reactivity between the CGRP peptide and the diabetogenic IAPP-reactive T cells. A set of CGRP-specific CD4 T cells was isolated from non-obese diabetic (NOD) mice. The T-cell receptor (TCR) variable regions of both α and β chains were highly skewed towards TRAV13 and TRBV13, respectively. The clonal expansion of T cells suggested that the presence of activated T cells responded to CGRP stimulation. None of the CGRP-specific CD4 T cells were able to be activated by the IAPP peptide. This established that CGRP-reactive CD4 T cells are a unique type of autoantigen-specific T cells in NOD mice. Using IAg7-CGRP tetramers, we found that CGRP-specific T cells were present in the pancreas of both prediabetic and diabetic NOD mice. The percentages of CGRP-reactive T cells in the pancreas of NOD mice were correlated to the diabetic progression. We showed that the human CGRP peptide presented by IAg7 elicited strong CGRP-specific T-cell responses. These findings suggested that CGRP is a potential autoantigen for CD4 T cells in NOD mice and probably in humans. The CGRP-specific CD4 T cells could be a unique marker for type 1 diabetes. Given the ubiquity of CGRP in nervous systems, it could potentially play an important role in diabetic neuropathy.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Munendra S. Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
43
|
Dai H, Pena A, Bauer L, Williams A, Watkins SC, Camirand G. Treg suppression of immunity within inflamed allogeneic grafts. JCI Insight 2022; 7:160579. [PMID: 35881490 PMCID: PMC9462475 DOI: 10.1172/jci.insight.160579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory CD4+Foxp3+ T cells (Treg) restrain inflammation and immunity. However, the mechanisms underlying Treg suppressor function in inflamed non-lymphoid tissues remain largely unexplored. Here, we restricted immune responses to non-lymphoid tissues and used intravital microscopy to visualize Treg suppression of rejection by effector T cells (Teff) within inflamed allogeneic islet transplants. Despite their elevated motility, Treg preferentially contact antigen-presenting cells (APCs) over Teff. Interestingly, Treg specifically target APCs that are extensively and simultaneously contacted by Teff. In turn, Treg decrease MHC-II expression on APCs and hinder Teff function. Lastly, we demonstrate that Treg suppressor function within inflamed allografts requires ecto-nucleotidase CD73 activity, which generates the anti-inflammatory adenosine. Consequently, CD73-/- Treg exhibit reduced contacts with APCs within inflamed allografts compared to wt Treg, but not in spleen. Overall, our findings demonstrate that Treg suppress immunity within inflamed grafts through CD73 activity and suggest that Treg-APC direct contacts are central to this process.
Collapse
Affiliation(s)
- Hehua Dai
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute- University of Pittsburgh, Pittsburgh, United States of America
| | - Andressa Pena
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Lynne Bauer
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Amanda Williams
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Geoffrey Camirand
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
44
|
Brown ME, Peters LD, Hanbali SR, Arnoletti JM, Sachs LK, Nguyen KQ, Carpenter EB, Seay HR, Fuhrman CA, Posgai AL, Shapiro MR, Brusko TM. Human CD4 +CD25 +CD226 - Tregs Demonstrate Increased Purity, Lineage Stability, and Suppressive Capacity Versus CD4 +CD25 +CD127 lo/- Tregs for Adoptive Cell Therapy. Front Immunol 2022; 13:873560. [PMID: 35693814 PMCID: PMC9178079 DOI: 10.3389/fimmu.2022.873560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023] Open
Abstract
Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-β1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Seif R. Hanbali
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Lindsey K. Sachs
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Kayla Q. Nguyen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Emma B. Carpenter
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- ROSALIND, Inc., San Diego, CA, United States
| | - Christopher A. Fuhrman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- NanoString Technologies, Inc., Seattle, WA, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
45
|
Distinct CD8 T Cell Populations with Differential Exhaustion Profiles Associate with Secondary Complications in Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1254-1269. [PMID: 35589883 PMCID: PMC9537220 DOI: 10.1007/s10875-022-01291-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Purpose Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency, with heterogeneous clinical presentation. Our goal was to analyze CD8 T cell homeostasis in patients with infection only CVID, compared to those additionally affected by dysregulatory and autoimmune phenomena. Methods We used flow and mass cytometry evaluation of peripheral blood of 40 patients with CVID and 17 healthy donors. Results CD8 T cells are skewed in patients with CVID, with loss of naïve and increase of effector memory stages, expansion of cell clusters with high functional exhaustion scores, and a highly activated population of cells with immunoregulatory features, producing IL-10. These findings correlate to clinically widely used B cell-based EURO classification. Features of exhaustion, including loss of CD127 and CD28, and expression of TIGIT and PD-1 in CD8 T cells are strongly associated with interstitial lung disease and autoimmune cytopenias, whereas CD8 T cell activation with elevated HLA-DR and CD38 expression predict non-infectious diarrhea. Conclusion We demonstrate features of advanced differentiation, exhaustion, activation, and immunoregulatory capabilities within CD8 T cells of CVID patients. Assessment of CD8 T cell phenotype may allow risk assessment of CVID patients and provide new insights into CVID pathogenesis, including a better understanding of mechanisms underlying T cell exhaustion and regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01291-9.
Collapse
|
46
|
Abstract
The transforming growth factor-β (TGF-β) family includes cytokines controlling cell behavior, differentiation and homeostasis of various tissues including components of the immune system. Despite well recognized importance of TGF-β in controlling T cell functions, the immunomodulatory roles of many other members of the TGF-β cytokine family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone Morphogenic Protein Receptor 1α (BMPR1α) is upregulated by activated effector and Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell types. BMPR1α inhibits generation of proinflammatory Th17 cells and sustains peripheral Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell plasticity and transition between Treg and Th cells. BMPR1α deficiency in in vitro induced and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a (p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1α may represent regulatory modules shaping epigenetic landscape and controlling proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP receptors and their crosstalk with receptors for TGF-β will contribute to our understanding of peripheral immunoregulation.
Collapse
Affiliation(s)
- Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
47
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
48
|
Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q. IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Front Immunol 2022; 12:783282. [PMID: 35003100 PMCID: PMC8732758 DOI: 10.3389/fimmu.2021.783282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yani Peng
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Yannick D Muller
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
49
|
Fang J, Yu L, Zhuang LG, Pei XY, Wang Q, Jin GX. The changes in peripheral blood Th17 and Treg ratios in Hashimoto's thyroiditis are accompanied by differential PD-1/PD-L1 expression. Front Endocrinol (Lausanne) 2022; 13:959477. [PMID: 36093111 PMCID: PMC9454193 DOI: 10.3389/fendo.2022.959477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the percentages of T helper 17 cells (Th17s) and T regulatory cells (Tregs) in autoimmune Hashimoto's thyroiditis (HT), and the expression of the checkpoint molecules programmed death receptor 1/programmed death ligand 1 (PD-1/PD-L1) on these cells. METHODS This is a case-control study involving 53 initially diagnosed HT patients (HT group) and 21 normal controls (NC group). The peripheral blood mononuclear cells from the individuals of the two groups were isolated and restimulated ex vivo; the percentage of Th17s, Tregs, PD-1+ Th17s, PD-L1+ Th17s, PD-1+ Tregs, and PD-L1+ Tregs was assessed by flow cytometric analysis. RESULTS (1) The percentage of Th17s in the peripheral blood of the HT group was significantly higher than that of the NC group [(6.38 ± 1.32)% versus (3.12 ± 0.66)%; t = 14.110, P < 0.001], while the percentage of peripheral blood Tregs was significantly lower [(3.82 ± 1.48)% versus (5.61 ± 1.60)%; t = -4.599, P < 0.001]. (2) HT patients' Th17s expressed PD-1 at a significantly lower frequency than their counterparts in the NC [(6.46 ± 2.77)% versus (18.51 ± 3.96)%; t = -14.842, P < 0.001], while no difference was observed for PD-L1 between the two groups. (3) In contrast, both PD-1 and PD-L1 were expressed at significantly higher frequency on HT patients' Tregs than on NC [respectively: (17.01 ± 3.04)% versus (10.23 ± 2.77)%; t = 8.850, P < 0.001 for PD-1; (16.60 ± 9.58)% versus (11.36 ± 10.14)%; t = 2.089, P < 0.005, for PD-L1]. CONCLUSION (1) The increased percentage of Th17s and decreased percentage of PD-1+ Th17s in the HT group suggest that a loss of control on Th17 activity through the checkpoint inhibitory axis PD-1/PD-L1 may participate in disease pathogenesis. (2) While the decreased percentage of Tregs in HT patients may explain a lack of regulatory functions able to prevent the autoimmune destruction of the thyroid, the significance of the increased frequency of Tregs expressing PD-1 and PD-L1, previously reported to boost Tregs differentiation, remains to be established. Elucidating this apparent contradiction may reveal important mechanisms underlying HT pathogenesis.
Collapse
|
50
|
Huang J, Pearson JA, Wong FS, Wen L, Zhou Z. Innate immunity in latent autoimmune diabetes in adults. Diabetes Metab Res Rev 2022; 38:e3480. [PMID: 34156143 PMCID: PMC8813511 DOI: 10.1002/dmrr.3480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Latent autoimmune diabetes in adults (LADA) is an autoimmune disease that shares some genetic, immunological and clinical features with both type 1 diabetes and type 2 diabetes. Immune cells including CD4+ T cells, CD8+ T cells, B cells, macrophages and dendritic cells (DCs) have been detected in the pancreas of patients with LADA and a rat model of LADA. Therefore, similar to type 1 diabetes, the pathogenesis of LADA may be caused by interactions between islet β-cells and innate and adaptive immune cells. However, the role of the immunity in the initiation and progression of LADA remains largely unknown. In this review, we have summarized the potential roles of innate immunity and immune-modulators in LADA development. Furthermore, we have examined the evidence and discussed potential innate immunological reasons for the slower development of LADA compared with type 1 diabetes. More in-depth mechanistic studies are needed to fully elucidate the roles of innate immune-associated genes, molecules and cells in their contributions to LADA pathogenesis. Undertaking these studies will greatly enhance the development of new strategies and optimization of current strategies for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - F. Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|