1
|
Maravelia P, Yao H, Cai C, Nascimento Silva D, Fransson J, Nilsson OB, Lu YCW, Micke P, Botling J, Gatto F, Rovesti G, Carlsten M, Sallberg M, Stål P, Jorns C, Buggert M, Pasetto A. Unlocking novel T cell-based immunotherapy for hepatocellular carcinoma through neoantigen-driven T cell receptor isolation. Gut 2025:gutjnl-2024-334148. [PMID: 39832892 DOI: 10.1136/gutjnl-2024-334148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Tumour-infiltrating T cells can mediate both antitumour immunity and promote tumour progression by creating an immunosuppressive environment. This dual role is especially relevant in hepatocellular carcinoma (HCC), characterised by a unique microenvironment and limited success with current immunotherapy. OBJECTIVE We evaluated T cell responses in patients with advanced HCC by analysing tumours, liver flushes and liver-draining lymph nodes, to understand whether reactive T cell populations could be identified despite the immunosuppressive environment. DESIGN T cells isolated from clinical samples were tested for reactivity against predicted neoantigens. Single-cell RNA sequencing was employed to evaluate the transcriptomic and proteomic profiles of antigen-experienced T cells. Neoantigen-reactive T cells expressing 4-1BB were isolated and characterised through T-cell receptor (TCR)-sequencing. RESULTS Bioinformatic analysis identified 542 candidate neoantigens from seven patients. Of these, 78 neoantigens, along with 11 hotspot targets from HCC driver oncogenes, were selected for ex vivo T cell stimulation. Reactivity was confirmed in co-culture assays for 14 targets, with most reactive T cells derived from liver flushes and lymph nodes. Liver flush-derived T cells exhibited central memory and effector memory CD4+ with cytotoxic effector profiles. In contrast, tissue-resident memory CD4+ and CD8+ T cells with an exhausted profile were primarily identified in the draining lymph nodes. CONCLUSION These findings offer valuable insights into the functional profiles of neoantigen-reactive T cells within and surrounding the HCC microenvironment. T cells isolated from liver flushes and tumour-draining lymph nodes may serve as a promising source of reactive T cells and TCRs for further use in immunotherapy for HCC.
Collapse
Affiliation(s)
- Panagiota Maravelia
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Karolinska ATMP center, Karolinska Institutet, Stockholm, Sweden
| | - Haidong Yao
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Karolinska ATMP center, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniela Nascimento Silva
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Karolinska ATMP center, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Fransson
- Dept of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Yong-Chen William Lu
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Gatto
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Rovesti
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Mattias Carlsten
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Matti Sallberg
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Karolinska ATMP center, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Department of Transplantation Surgery, Karolinska University Hospital, Division of Transplantation, Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna Pasetto
- Division of Clinical Microbiology,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden
- Karolinska ATMP center, Karolinska Institutet, Stockholm, Sweden
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Institute of Clinical Medicine, University of Oslo, Norway, Oslo, Norway
| |
Collapse
|
2
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
3
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Santoro A, Assenat E, Yau T, Delord JP, Maur M, Knox J, Cattan S, Lee KH, Del Conte G, Springfeld C, Leo E, Xyrafas A, Fairchild L, Mardjuadi F, Chan SL. A phase Ib/II trial of capmatinib plus spartalizumab vs. spartalizumab alone in patients with pretreated hepatocellular carcinoma. JHEP Rep 2024; 6:101021. [PMID: 38617599 PMCID: PMC11009449 DOI: 10.1016/j.jhepr.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 04/16/2024] Open
Abstract
Background & aims This phase Ib/II trial evaluated the safety and efficacy of capmatinib in combination with spartalizumab or spartalizumab alone in patients with advanced hepatocellular carcinoma (HCC). Methods Eligible patients who had progressed or were intolerant to sorafenib received escalating doses of capmatinib 200 mg, 300 mg, and 400 mg twice a day (bid) plus spartalizumab 300 mg every 3 weeks (q3w) in the phase Ib study. Once the recommended phase II dose (RP2D) was determined, the phase II study commenced with randomised 1:1 treatment with either capmatinib + spartalizumab (n = 32) or spartalizumab alone (n = 30). Primary endpoints were safety and tolerability (phase Ib) and investigator-assessed overall response rate per RECIST v1.1 for combination vs. single-agent arms using a Bayesian logistic regression model (phase II). Results In phase Ib, the RP2D for capmatinib in combination with spartalizumab was determined to be 400 mg bid. Dose-limiting toxicity consisting of grade 3 diarrhoea was reported in one patient at the capmatinib 400 mg bid + spartalizumab 300 mg q3w dose level. The primary endpoint in the phase II study was not met. The observed overall response rate in the capmatinib + spartalizumab arm was 9.4% vs. 10% in the spartalizumab arm. The most common any-grade treatment-related adverse events (TRAEs, ≥20%) were nausea (37.5%), asthenia and vomiting (28.1% each), diarrhoea, pyrexia, and decreased appetite (25.0% each) in the combination arm; TRAEs ≥10% were pruritus (23.3%), and rash (10.0%) in the spartalizumab-alone arm. Conclusion Capmatinib at 400 mg bid plus spartalizumab 300 mg q3w was established as the RP2D, with manageable toxicities and no significant safety signals, but the combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. Impact and implications Simultaneous targeting of MET and programmed cell death protein 1 may provide synergistic clinical benefit in patients with advanced HCC. This is the first trial to report a combination of capmatinib (MET inhibitor) and spartalizumab (programmed cell death protein 1 inhibitor) as second-line treatment after sorafenib for advanced HCC. The combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. The results indicate that there is a clear need to identify a reliable predictive marker of response for HCC and to identify patients with HCC that would benefit from the combination of checkpoint inhibitor +/- targeted therapy. Clinical trial number NCT02795429.
Collapse
Affiliation(s)
- Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, Milan, Italy
| | - Eric Assenat
- Hopital Arnaud de Villeneuve Montpellier Cedex 5, Herault, France
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | | | - Michela Maur
- Oncology Unit, AOU Policlinico Modena and University Study of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Kyung-Hun Lee
- Seoul National University Hospital, Seoul, South Korea
| | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Christoph Springfeld
- Nat. Centrum f. Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Elisa Leo
- Novartis Pharma AG, Basel, Switzerland
| | | | - Lauren Fairchild
- Oncology Data Science, Novartis Institutes for BioMedical Research, Cambridge, USA
| | - Feby Mardjuadi
- Novartis Institutes for Biomedical Research Co., Ltd., Shanghai, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Kong Y, Wang Y, Yang Q, Ye S. Immunotherapy and liver cancer research trends and the 100 most cited articles: A bibliometric analysis. Technol Health Care 2024; 32:5141-5155. [PMID: 39093101 PMCID: PMC11613086 DOI: 10.3233/thc-241111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Bibliometric analysis of liver cancer research, particularly in immunotherapy, reveals crucial insights. The US leads in liver cancer mortality but ranks fifth globally. OBJECTIVE Scopus database analysis identified 2,349 papers, with the top 100 ranging from 127 to 4,959 citations. Notably, "Microenvironmental Regulation of Tumours Progression and Metastasis" in the Journal of Nature Medicine garnered the highest citations. METHODS Journals like the Journal of Hepatology, Hepatology, and Nature Reports Clinical Oncology contributed significantly. Understanding molecular mechanisms and prognostic indicators is paramount for advancing combination therapies. RESULTS For better patient outcomes, research trends in liver cancer immunotherapy point to improved treatment protocols, knowledge of the tumor microenvironment, combining therapies, predicting disease course, international cooperation, sophisticated surgical techniques, early detection, oncolytic virotherapy, and patient-centered care. CONCLUSIONS This research underscores immunotherapy's pivotal role and encourages further exploration, offering valuable insights into liver cancer treatment trends.
Collapse
Affiliation(s)
- Yang Kong
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yizhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qifan Yang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Fan Y, Long Y, Gong Y, Gao X, Zheng G, Ji H. Systemic Immunomodulatory Effects of Codonopsis pilosula Glucofructan on S180 Solid-Tumor-Bearing Mice. Int J Mol Sci 2023; 24:15598. [PMID: 37958581 PMCID: PMC10649278 DOI: 10.3390/ijms242115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The immune functions of the body are intricately intertwined with the onset and advancement of tumors, and immunotherapy mediated by bioactive compounds has exhibited initial effectiveness in overcoming chemotherapy resistance and inhibiting tumor growth. However, the comprehensive interpretation of the roles played by immunologic components in the process of combating tumors remains to be elucidated. In this study, the Codonopsis pilosula glucofructan (CPG) prepared in our previous research was employed as an immunopotentiator, and the impacts of CPG on both the humoral and cellular immunity of S180 tumor-bearing mice were investigated. Results showed that CPG administration of 100 mg/kg could effectively inhibit tumor growth in mice with an inhibitory ratio of 45.37% and significantly improve the expression of Interleukin-2 (IL-2), Interferon-γ (IFN-γ), and Tumor Necrosis Factor-α (TNF-α). Additionally, CPG clearly enhanced B-cell-mediated humoral immunity and immune-cell-mediated cellular immunity, and, finally, induced S180 cell apoptosis by arresting cells in the G0/G1 phase, which might result from the IL-17 signaling pathway. These data may help to improve comprehension surrounding the roles of humoral and cellular immunity in anti-tumor immune responses.
Collapse
Affiliation(s)
- Yuting Fan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (Y.F.); (Y.L.); (Y.G.); (X.G.)
| | - Yan Long
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (Y.F.); (Y.L.); (Y.G.); (X.G.)
| | - Youshun Gong
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (Y.F.); (Y.L.); (Y.G.); (X.G.)
| | - Xiaoji Gao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (Y.F.); (Y.L.); (Y.G.); (X.G.)
| | - Guoqiang Zheng
- Center for Functional Factors and Body Immune Regulation Research, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Haiyu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (Y.F.); (Y.L.); (Y.G.); (X.G.)
| |
Collapse
|
7
|
Rogers G, Barker S, Sharma M, Khakoo S, Utz M. Operando NMR metabolomics of a microfluidic cell culture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107405. [PMID: 36842430 DOI: 10.1016/j.jmr.2023.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In this work we demonstrate the use of microfluidic NMR for in situ culture and quantitative analysis of metabolism in hepatocellular carcinoma (HCC) cell lines. A hydrothermal heating system is used to enable continuous in situ NMR observation of HCC cell culture over a 24 h incubation period. This technique is nondestructive, non-invasive and can measure millimolar concentrations at microlitre volumes, within a few minutes and in precisely controlled culture conditions. This is sufficient to observe changes in primary energy metabolism, using around 500-3500 cells per device, and with a time resolution of 17 min. The ability to observe intracellular responses in a time-resolved manner provides a more detailed view of a biological system and how it reacts to stimuli. This capability will allow detailed metabolomic studies of cell-culture based cancer models, enabling quantification of metabolic reporgramming, the metabolic tumor microenvironment, and the metabolic interplay between cancer- and immune cells.
Collapse
Affiliation(s)
- Genevieve Rogers
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Sylwia Barker
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Salim Khakoo
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK.
| |
Collapse
|
8
|
Lu Y, Liu Y, Liang Z, Ma X, Liu L, Wen Z, Tolbatov I, Marrone A, Liu W. NHC-gold(I)-alkyne complexes induced hepatocellular carcinoma cell death through bioorthogonal activation by palladium complex in living system. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update. Cancers (Basel) 2022; 14:cancers14174201. [PMID: 36077740 PMCID: PMC9454768 DOI: 10.3390/cancers14174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors are a class of anti-cancer therapy that work by harnessing the body’s immune system to promote cancer cell death. These drugs have become standard of care for many types of cancer, including melanoma and lung cancer, after clinical trials showed they work better than traditional chemotherapy. The role of immune checkpoint inhibitors is still evolving in the treatment of cancers of the gastrointestinal tract. This article examines the literature to support the use of immune checkpoint inhibitors to treat cancers of each part of the gastrointestinal system. Abstract Gastrointestinal (GI) malignancies are a heterogenous group of cancers with varying epidemiology, histology, disease course, prognosis and treatment options. Immune checkpoint inhibitors (ICIs) have changed the landscape of modern cancer treatment, though they have demonstrated survival benefit in other solid tumors more readily than in GI malignancies. This review article presents an overview of the landscape of ICI use in GI malignancies and highlights recent updates in this rapidly evolving field.
Collapse
|
10
|
Wang Y, Ge H, Hu M, Pan C, Ye M, Yadav DK, Zheng R, Wu J, Sun K, Wang M, Tian Y, Huang J, Yao W, Li J, Zhang Q, Liang T. Histological tumor micronecrosis in resected specimens after R0 hepatectomy for hepatocellular carcinomas is a factor in determining adjuvant TACE: A retrospective propensity score-matched study. Int J Surg 2022; 105:106852. [PMID: 36030036 DOI: 10.1016/j.ijsu.2022.106852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Tumor micronecrosis is a less investigated pathological feature of hepatocellular carcinoma (HCC). This study was aimed at evaluating the value of micronecrosis for guiding adjuvant transcatheter arterial chemoembolization (TACE) in HCC management. METHODS We retrospectively reviewed the data of patients with HCC who underwent curative liver resection in our center from 2014 to 2018. The patients were divided into micronecrosis (+) and micronecrosis (-) groups. In each group, overall survival (OS) and disease-free survival (DFS) were compared between patients who underwent adjuvant TACE and those who did not. Propensity score matching (PSM) was conducted at a ratio of 1:1 to control selection bias. Univariate and multivariate analyses were performed to determine independent prognostic factors. Mass cytometry was applied to compare the immunological status of HCCs between the two groups. RESULTS A total of 897 patients were included, with 417 and 480 patients in the micronecrosis (+) and micronecrosis (-) groups, respectively. No significant difference was detected in baseline parameters after PSM. In the micronecrosis (+) group, patients who underwent adjuvant TACE had significant longer OS than did those who did not (P = 0.004). However, patients in the micronecrosis (-) group did not benefit from adjuvant TACE. Although adjuvant TACE prolonged the DFS of patients with severe micronecrosis (P = 0.034), it may adversely affect the DFS of patients without micronecrosis (P = 0.131). Multivariate analysis showed that TACE was an independent prognostic factor for patients with micronecrosis but not for those without micronecrosis. The abundance of exhausted and regulatory T cells was significantly higher in patients with micronecrosis. CONCLUSIONS For HCC patients with micronecrosis, adjuvant TACE after curative resection could improve the prognosis, while its survival benefits were limited in HCC patients without micronecrosis. TACE should be selectively performed in patients with micronecrosis, especially those with an Nscore = 2. The immunosuppressive status of HCC patients with micronecrosis may explain the effectiveness of adjuvant TACE in such scinario.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbin Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manyi Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changrong Pan
- The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, China
| | - Mao Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rujia Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Tian
- The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, China
| | - Jinyan Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyun Yao
- Department of Surgery, Changxing People's Hospital, Huzhou, China
| | - Jingsong Li
- The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, China; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
11
|
Yu G, Mu H, Fang F, Zhou H, Li H, Wu Q, Xiong Q, Cui Y. LRP1B mutation associates with increased tumor mutation burden and inferior prognosis in liver hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e29763. [PMID: 35777027 PMCID: PMC9239668 DOI: 10.1097/md.0000000000029763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is the most common primary liver cancer and the main cause of death in patients with cirrhosis. LRP1B is found to involve in a variety of cancers, but the association of LRP1B mutation with tumor mutation burden (TMB) and prognosis of LIHC is rarely studied. METHODS AND RESULTS Herein, we analyzed the somatic mutation data of 364 LIHC patients from The Cancer Genome Atlas (TCGA) and found that LRP1B showed elevated mutation rate. Calculation of the TMB in LRP1B mutant and LRP1B wild-type groups showed that LRP1B mutant group had higher TMB compared with that in LRP1B wild-type group. Then survival analysis was performed and the survival curve showed that LRP1B mutation was associated with poor survival outcome, and this association remained to be significant after adjusting for multiple confounding factors including age, gender, tumor stage, mutations of BRCA1, BRCA2, and POLE. CONCLUSION Collectively, our results revealed that LRP1B mutation was related to high TMB value and poor prognosis in LIHC, indicating that LRP1B mutation is probably helpful for the selection of immunotherapy and prognosis prediction in LIHC.
Collapse
Affiliation(s)
- Ge Yu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Han Mu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Huikai Li
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Yunlong Cui, Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, PR China (e-mail: )
| |
Collapse
|
12
|
Rallis KS, Makrakis D, Ziogas IA, Tsoulfas G. Immunotherapy for advanced hepatocellular carcinoma: From clinical trials to real-world data and future advances. World J Clin Oncol 2022; 13:448-472. [PMID: 35949435 PMCID: PMC9244967 DOI: 10.5306/wjco.v13.i6.448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality worldwide. HCC is an inflammation-associated immunogenic cancer that frequently arises in chronically inflamed livers. Advanced HCC is managed with systemic therapies; the tyrosine kinase inhibitor (TKI) sorafenib has been used in 1st-line setting since 2007. Immunotherapies have emerged as promising treatments across solid tumors including HCC for which immune checkpoint inhibitors (ICIs) are licensed in 1st- and 2nd-line treatment setting. The treatment field of advanced HCC is continuously evolving. Several clinical trials are investigating novel ICI candidates as well as new ICI regimens in combination with other therapeutic modalities including systemic agents, such as other ICIs, TKIs, and anti-angiogenics. Novel immunotherapies including adoptive cell transfer, vaccine-based approaches, and virotherapy are also being brought to the fore. Yet, despite advances, several challenges persist. Lack of real-world data on the use of immunotherapy for advanced HCC in patients outside of clinical trials constitutes a main limitation hindering the breadth of application and generalizability of data to this larger and more diverse patient cohort. Consequently, issues encountered in real-world practice include patient ineligibly for immunotherapy because of contraindications, comorbidities, or poor performance status; lack of response, efficacy, and safety data; and cost-effectiveness. Further real-world data from high-quality large prospective cohort studies of immunotherapy in patients with advanced HCC is mandated to aid evidence-based clinical decision-making. This review provides a critical and comprehensive overview of clinical trials and real-world data of immunotherapy for HCC, with a focus on ICIs, as well as novel immunotherapy strategies underway.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, United Kingdom
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
| | - Dimitrios Makrakis
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Division of Oncology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Aristotle University School of Medicine, Thessaloniki 54622, Greece
| |
Collapse
|
13
|
Hai Y, Hong Y, Yang Y. miR-1258 Enhances the Anti-Tumor Effect of Liver Cancer Natural Killer (NK) Cells by Stimulating Toll-Liker Receptor (TLR)7/8 to Promote Natural Killer (NK)-Dendritic Cell (DC) Interaction. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TLR7/8 agonists are immunomodulators for treating skin cancer or virus infections. miR-1258 can activate TLR7/8. This study aims to explore the role of TLR7/8 agonists and miR-1258 in activating liver cancer NK cells. NK cells and DC cells were treated with TLR7/8 agonists R837, ssRNA40
and miR-1258 followed by analysis of hepatocellular carcinoma (HCC) cell behaviors in vivo and in vitro. TLR7/8 agonist miR-1258 activated NKs and promoted DCs maturation. In addition, DCs also assisted NKs to function and enhance the anti-HCC immune responses. The interaction
of DCs with NK cells stimulated by TLR7/8 agonist miR-1258 can significantly inhibit tumor development and metastasis in mice HCC model. TLR7 or TLR8 agonists, especially miR-1258, promoted DCs-NKs interaction by promoting the secretion of related cytokines and cell/cell contact, which increased
anti-tumor activity of NKs and promoted DC-NK cells to inhibit the growth of HCC cells. In conclusion, miR-1258 simultaneously stimulates the expression of TLR7/8, and promotes NK-DC cells to inhibit the growth of HCC cells, providing a theoretical basis for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuedong Hai
- Department of Emergency Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yu Hong
- Department of Imaging Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yuzhu Yang
- Department of Emergency Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| |
Collapse
|
14
|
Li Z, Bu J, Zhu X, Zhou H, Ren K, Chu PK, Li L, Hu X, Ding X. Anti-tumor immunity and ferroptosis of hepatocellular carcinoma are enhanced by combined therapy of sorafenib and delivering modified GO-based PD-L1 siRNAs. BIOMATERIALS ADVANCES 2022; 136:212761. [PMID: 35929305 DOI: 10.1016/j.bioadv.2022.212761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Programmed cell death receptor ligand 1 (PD-L1)/PD-1 signaling has been exploited to design inhibitors that deliver promising clinical outcome albeit with limited efficacy. Herein, we prepare graphene oxide (GO)-PEI-PEG with low cytotoxicity and long stability and GO-PEI-PEG delivers PD-L1 siRNAs to hepatocellular carcinoma (HCC) cells by the endocytosis-lysosome pathway. The functional GO-PEI-PEG/PD-L1 siRNAs decrease PD-L1 and PD-1 abundance, increase pro-inflammation cytokine IFN-γ and TNF-α release, and improve the proliferation activity of Jurkat T cells. Since GO-PEI-PEG targets the mouse liver effectively, the intrahepatic tumors in C57BL/6 mice are treated with GO-PEI-PEG/Pd-l1 siRNAs via the tail vein, resulting in shrinkage of the HCC tumors and boosting the anti-tumor efficacy in combination with oral sorafenib. A single treatment improves the total CD3+ and cytotoxic CD8+ T cell infiltration in the HCC tumor tissues and even spleen and upregulates the expression of Perforin, Gzmb, Ifng, Il-1b and Tnfa in the tumors after the combined treatment. Both the single and combined treatments enhance reactive oxygen species (ROS) accumulation, and improved HCC ferroptosis. The results suggest that GO-PEI-PEG delivered PD-L1 siRNAs combined with oral sorafenib can activate the adaptive immunity and tumor ferroptosis and reveal an effective therapy to treat advanced HCC patients.
Collapse
Affiliation(s)
- Zhiwei Li
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiaqi Bu
- College of Chemistry, Hunan Normal University, Changsha 410081, China
| | - Xinyu Zhu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Hao Zhou
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Kaiqun Ren
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China.
| | - Xiang Hu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
15
|
Bian M, Fan R, Yang Z, Chen Y, Xu Z, Lu Y, Liu W. Pt(II)-NHC Complex Induces ROS-ERS-Related DAMP Balance to Harness Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem 2022; 65:1848-1866. [PMID: 35025488 DOI: 10.1021/acs.jmedchem.1c01248] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunogenic cell death (ICD) can engage a specific immune response and establish a long-term immunity in hepatocellular carcinoma (HCC). Herein, we design and synthesize a series of Pt(II)-N-heterocyclic carbene (Pt(II)-NHC) complexes derived from 4,5-diarylimidazole, which show strong anticancer activities in vitro. Among them, 2c displays much higher anticancer activities than cisplatin and other Pt(II)-NHC complexes, especially in HCC cancer cells. In addition, we find that 2c is a type II ICD inducer, which can successfully induce endoplasmic reticulum stress (ERS) accompanied by reactive oxygen species (ROS) generation and finally lead to the release of damage-associated molecular patterns (DAMPs) in HCC cells. Importantly, 2c shows a great anti-HCC potential in a vaccination mouse model and leads to the in vivo immune cell activation in the CCl4-induced liver injury model.
Collapse
Affiliation(s)
- Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rong Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yanan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
16
|
Lu L, Zhuang Z, Fan M, Liu B, Yang Y, Huang J, Da X, Mo J, Li Q, Lu H. Green formulation of Ag nanoparticles by Hibiscus rosa-sinensis: Introducing a navel chemotherapeutic drug for the treatment of liver cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Choucair K, Kamran S, Saeed A. Clinical Evaluation of Ramucirumab for the Treatment of Hepatocellular Carcinoma (HCC): Place in Therapy. Onco Targets Ther 2022; 14:5521-5532. [PMID: 35002257 PMCID: PMC8721285 DOI: 10.2147/ott.s268309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma remains one of the leading causes of death from cancer worldwide as most cases are diagnosed at an advanced disease stage. Ramucirumab, a human anti-VEGFR-2 monoclonal antibody, is approved as a monotherapy for the treatment of patients with hepatocellular carcinoma and α-fetoprotein levels ≥400 ng/mL previously treated with sorafenib. As most patients present with an advanced disease, patients with α-fetoprotein levels ≥400 ng/mL have an aggressive disease and a poor prognosis, making ramucirumab an important treatment option for this subgroup of patients. This article provides a comprehensive review of the clinical efficacy of ramucirumab as highlighted in the two major trials that lead to its approval. We also briefly review the agent pharmacologic properties, as well as its safety and toxicity profile, before discussing certain limitations and challenges associated with ramucirumab use. Finally, we review completed and ongoing clinical trials and focus on those involving ramucirumab-based combinations, namely with immune therapy.
Collapse
Affiliation(s)
- Khalil Choucair
- Department of Medicine, Kansas University School of Medicine, Wichita, KS, USA
| | - Syed Kamran
- Department of Medicine, Kansas University School of Medicine, Wichita, KS, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Pathak S, Sonbol MB. Second-Line Treatment Options for Hepatocellular Carcinoma: Current Landscape and Future Direction. J Hepatocell Carcinoma 2021; 8:1147-1158. [PMID: 34584898 PMCID: PMC8464222 DOI: 10.2147/jhc.s268314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a leading cause of mortality worldwide, and its incidence is rising. The last few years have witnessed a proliferation of available systemic therapeutic options, with the approval of multiple agents, including immune checkpoint inhibitors and drugs targeting vascular endothelial growth factor, such as cabozantinib, regorafenib, and ramucirumab. Most recently, the combination of atezolizumab plus bevacizumab has resulted in the longest overall survival yet known in hepatocellular carcinoma, therefore changing the preferred first-line treatment from the previous options of sorafenib and lenvatinib. The aim of this review is to summarize the available clinical data for the current second-line systemic treatment options and the future perspectives in the treatment landscape of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Surabhi Pathak
- Hematology-Oncology, King’s Daughters Medical Center, Ashland, KY, USA
| | - Mohamad Bassam Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
19
|
Zhao M, Zhang Y, Wang H, Liu P, Da J, Du Y. Efficacy and Safety of Anti-Programmed Cell Death Protein-1 Immunotherapy for Advanced Hepatocellular Carcinoma With Pulmonary Metastases: A Single-Center, Retrospective Study. Technol Cancer Res Treat 2021; 20:15330338211038114. [PMID: 34525851 PMCID: PMC8450682 DOI: 10.1177/15330338211038114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anti-programmed cell death protein-1 immunotherapy has been approved as a new treatment option for advanced hepatocellular carcinoma (HCC) based on the promising results of several studies. METHODS This retrospective study included 71 patients with advanced HCC treated with anti-programmed cell death protein-1 immunotherapy between June 1, 2017 and September 30, 2020 at the First Affiliated Hospital of Anhui Medical University. Responses to pulmonary metastases were evaluated. RESULTS The median follow-up duration was 7.73 months (95% confidence interval (CI), 4.48-10.98). Of 71 patients, the overall response rate (ORR) and disease control rate (DCR) were 32% (23/71) and 73% (52/71), respectively. The median progression-free survival (PFS) and overall survival (OS) were 4.90 (95% CI, 2.71-7.09) and 20.23 (95% CI, 6.87-33.59) months, respectively. Forty-two patients had HCC pulmonary metastases, whereas 29 did not have pulmonary metastasis. No significant differences were observed in the ORR (38% [16/42] vs. 24% [7/29], P = 0.22) and DCR (74% [31/42] vs. 72% [21/29], P = 0.90) between groups. In patients with pulmonary metastases, the median disease control duration of pulmonary lesions was significantly longer than extrapulmonary lesions (Not Reached vs. 12.37 months, P = 0.048). Pulmonary metastases were not associated with an increased incidence of adverse events (67% vs. 62%, P = 0.69). CONCLUSIONS Anti-programmed cell death protein-1 immunotherapy showed promising efficacy and safety in patients with advanced HCC, with good responses observed in pulmonary metastases. The mechanism underlying the differences in responses between pulmonary and extrapulmonary metastases requires further investigation.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yiruo Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Pingping Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jie Da
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
20
|
Feng L, Wang Y, Wang X, An S, Aizimuaji Z, Tao C, Zhang K, Cheng S, Wu J, Xiao T, Rong W. Integrated analysis of the rhesus monkey liver transcriptome during development and human primary HCC AFP-related gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:406-415. [PMID: 34484865 PMCID: PMC8403716 DOI: 10.1016/j.omtn.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Embryonic development and tumorigenesis have a certain degree of similarity. Alpha-fetoprotein (AFP), a protein related to embryonic development, is a well-known biomarker for the diagnosis and prognosis of hepatocellular carcinoma (HCC). In this study, we analyzed the differences in gene expression profiles and molecular mechanisms in human HCC tissues from patients in AFPhigh (serum AFP level ≥ 25 ng/mL) and AFPlow (serum AFP level < 25 ng/mL) groups. The results indicated that AFPhigh HCC has more malignant biological characteristics. Single-sample gene set enrichment analysis (ssGSEA) showed significantly higher levels of genes expressed in dendritic cells, neutrophils, and natural killer cells in the AFPlow group than in the AFPhigh group. Then, we defined a rhesus monkey fetal liver developmental landscape and compared it to the HCC gene expression profile. The gene signatures of AFPhigh HCC tissues were similar to those of early embryonic liver tissues. In this study, we comprehensively analyzed the rhesus monkey liver transcriptome during development and human primary HCC AFP-related gene expression profiles and clarified the function of AFP in the occurrence and development of HCC from the perspective of developmental biology, which might provide a new perspective on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xijun Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Songlin An
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zulihumaer Aizimuaji
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Jianxiong Wu, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Ting Xiao, State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Weiqi Rong, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
21
|
Ji HY, Liu C, Dai KY, Yu J, Liu AJ, Chen YF. The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors. Int Immunopharmacol 2021; 99:108008. [PMID: 34330058 DOI: 10.1016/j.intimp.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
In the present study, the low molecular weight of chitosan (CS) was prepared and its activity on thymopentin-activated mice bearing H22 solid tumors was further researched. The purity and molecular weight of CS were determined by UV and HPGPC spectra, and its immunosuppressive effects on H22 tumor-bearing mice were evaluated through determination on immune organs, cells and cytokines. Results showed that CS contained little impurities with the average molecular weight of 1.20 × 104 Da. The in vivo antitumor experiments demonstrated that CS facilitated to destroy immune organs (thymuses and spleens), suppress immune cells (lymphocytes, macrophages and NK cells) activities and reduce immune-related cytokines (TNF-α, IFN-γ, IL-2 and IL-4) expressions of H22 tumor-bearing mice even with simultaneous TP5 stimulation. Our data suggested that CS could not be applied to improve immune response in cancer-bearing patients, but might be employed for treatments on autoimmune diseases or organ transplant patients.
Collapse
Affiliation(s)
- Hai-Yu Ji
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Juan Yu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ye-Fu Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
22
|
Chen C, Lv Q, Li Y, Jin YH. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells. Molecules 2021; 26:molecules26133926. [PMID: 34199025 PMCID: PMC8271777 DOI: 10.3390/molecules26133926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Ginsenoside Rk1 and Rg5 are minor ginseng saponins that have received more attention recently because of their high oral bioavailability. Each of them can effectively inhibit the survival and proliferation of human liver cancer cells, but the underlying mechanism remains largely unknown. Network pharmacology and bioinformatics analysis demonstrated that G-Rk1 and G-Rg5 yielded 142 potential targets, and shared 44 putative targets associated with hepatocellular carcinoma. Enrichment analysis of the overlapped genes showed that G-Rk1 and G-Rg5 may induce apoptosis of liver cancer cells through inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signal pathways. Methyl thiazolyl tetrazolium (MTT) assay was used to confirm the inhibition of cell viability with G-Rk1 or G-Rg5 in highly metastatic human cancer MHCC-97H cells. We evaluated the apoptosis of MHCC-97H cells by using flow cytometry and 4′,6-diamidino-2-phenylindole (DAPI) staining. The translocation of Bax/Bak led to the depolarization of mitochondrial membrane potential and release of cytochrome c and Smac. A sequential activation of caspase-9 and caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP) were observed after that. The levels of anti-apoptotic proteins were decreased after treatment of G-Rk1 or G-Rg5 in MHCC-97H cells. Taken together, G-Rk1 and G-Rg5 promoted the endogenous apoptotic pathway in MHCC-97H cells by targeting and regulating some critical liver cancer related genes that are involved in the signal pathways associated with cell survival and proliferation.
Collapse
Affiliation(s)
| | | | - Yang Li
- Correspondence: (Y.L.); (Y.-H.J.)
| | | |
Collapse
|
23
|
Gao W, Li L, Han X, Liu S, Li C, Yu G, Zhang L, Zhang D, Liu C, Meng E, Hong S, Wang D, Guo P, Shi G. Comprehensive analysis of immune-related prognostic genes in the tumour microenvironment of hepatocellular carcinoma. BMC Cancer 2021; 21:331. [PMID: 33789609 PMCID: PMC8011181 DOI: 10.1186/s12885-021-08052-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mortality rate of hepatocellular carcinoma (HCC) remains high worldwide despite surgery and chemotherapy. Immunotherapy is a promising treatment for the rapidly expanding HCC spectrum. Therefore, it is necessary to further explore the immune-related characteristics of the tumour microenvironment (TME), which plays a vital role in tumour initiation and progression. METHODS In this research, 866 immune-related differentially expressed genes (DEGs) were identified by integrating the DEGs of samples from The Cancer Genome Atlas (TCGA)-HCC dataset and the immune-related genes from databases (InnateDB; ImmPort). Afterwards, 144 candidate prognostic genes were defined through weighted gene co-expression network analysis (WGCNA). RESULTS Seven immune-related prognostic DEGs were identified using the L1-penalized least absolute shrinkage and selection operator (LASSO) Cox proportional hazards (PH) model, and the ImmuneRiskScore model was constructed on this basis. The prognostic index of the ImmuneRiskScore model was then validated in the relevant dataset. Patients were divided into high- and low-risk groups according to the ImmuneRiskScore. Differences in the immune cell infiltration of patients with different ImmuneRiskScore values were clarified, and the correlation of immune cell infiltration with immunotherapy biomarkers was further explored. CONCLUSION The ImmuneRiskScore of HCC could be a prognostic marker and can reflect the immune characteristics of the TME. Furthermore, it provides a potential biomarker for predicting the response to immunotherapy in HCC patients.
Collapse
Affiliation(s)
- Weike Gao
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Luan Li
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Xinyin Han
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co. Ltd, Beijing, 100176, People's Republic of China
| | - Chengzhen Li
- The Second Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, No.105 Jiefang Road, Jinan, Shandong Province, 250013, People's Republic of China
| | - Guanying Yu
- The Second Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, No.105 Jiefang Road, Jinan, Shandong Province, 250013, People's Republic of China
| | - Lei Zhang
- The Second Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, No.105 Jiefang Road, Jinan, Shandong Province, 250013, People's Republic of China
| | - Dongsheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Caiyun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Erhong Meng
- ChosenMed Technology (Beijing) Co. Ltd, Beijing, 100176, People's Republic of China
| | - Shuai Hong
- ChosenMed Technology (Beijing) Co. Ltd, Beijing, 100176, People's Republic of China
| | - Dongliang Wang
- ChosenMed Technology (Beijing) Co. Ltd, Beijing, 100176, People's Republic of China
| | - Peiming Guo
- The Second Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, No.105 Jiefang Road, Jinan, Shandong Province, 250013, People's Republic of China.
| | - Guangjun Shi
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China.
| |
Collapse
|
24
|
4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep 2021; 11:6310. [PMID: 33737571 PMCID: PMC7973733 DOI: 10.1038/s41598-021-85491-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.
Collapse
|
25
|
CD8 + T Cell Responses during HCV Infection and HCC. J Clin Med 2021; 10:jcm10050991. [PMID: 33801203 PMCID: PMC7957882 DOI: 10.3390/jcm10050991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (cHCV) infection is a major global health burden and the leading cause of hepatocellular carcinoma (HCC) in the Western world. The course and outcome of HCV infection is centrally influenced by CD8+ T cell responses. Indeed, strong virus-specific CD8+ T cell responses are associated with spontaneous viral clearance while failure of these responses, e.g., caused by viral escape and T cell exhaustion, is associated with the development of chronic infection. Recently, heterogeneity within the exhausted HCV-specific CD8+ T cells has been observed with implications for immunotherapeutic approaches also for other diseases. In HCC, the presence of tumor-infiltrating and peripheral CD8+ T cell responses correlates with a favorable prognosis. Thus, tumor-associated and tumor-specific CD8+ T cells are considered suitable targets for immunotherapeutic strategies. Here, we review the current knowledge of CD8+ T cell responses in chronic HCV infection and HCC and their respective failure with the potential consequences for T cell-associated immunotherapeutic approaches.
Collapse
|
26
|
Yuan D, Chen Y, Li X, Li J, Zhao Y, Shen J, Du F, Kaboli PJ, Li M, Wu X, Ji H, Cho CH, Wen Q, Li W, Xiao Z, Chen B. Long Non-Coding RNAs: Potential Biomarkers and Targets for Hepatocellular Carcinoma Therapy and Diagnosis. Int J Biol Sci 2021; 17:220-235. [PMID: 33390845 PMCID: PMC7757045 DOI: 10.7150/ijbs.50730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Increasing studies showed that long non-coding RNAs (lncRNAs), a novel class of RNAs that are greater than 200 nucleotides in length but lack the ability to encode proteins, exert crucial roles in the occurrence and progression of HCC. LncRNAs promote the proliferation, migration, invasion, autophagy, and apoptosis of tumor cells by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can be used as biomarkers to predict the efficacy of HCC treatment strategies, such as surgery, radiotherapy, chemotherapy, and immunotherapy, and as a potential individualized tool for HCC diagnosis and treatment. In this review, we overview up-to-date findings on lncRNAs as potential biomarkers for HCC surgery, radiotherapy, chemotherapy resistance, target therapy, and immunotherapy, and discuss the potential clinical application of lncRNA as tools for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Donghong Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
27
|
Qi X, Yang M, Ma L, Sauer M, Avella D, Kaifi JT, Bryan J, Cheng K, Staveley-O'Carroll KF, Kimchi ET, Li G. Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response. J Immunother Cancer 2020; 8:jitc-2020-001038. [PMID: 33115942 PMCID: PMC7594543 DOI: 10.1136/jitc-2020-001038] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Minimally invasive radiofrequency ablation (RFA) is used as a first-line treatment option for hepatocellular cancer (HCC) with the weaknesses of incomplete ablation, tumor recurrence, and inferior outcomes. To overcome this limitation, we proposed to develop sunitinib-RFA integrated therapy with a potential of activating anti-HCC immune response. Methods Using our unique murine model, we developed a novel RFA platform with a modified human cardiac RF generator. Therapeutic efficacy of sunitinib–RFA combined treatment in HCC was tested in this platform. Tumor progression was monitored by MRI; tumor necrosis and apoptosis were detected by H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling; immune reaction was defined by flow cytometry; and signaling molecules were examined with real-time PCR (qPCR), western blot, and immunohistochemical staining. Results A significantly reduced tumor growth and extended lift span were observed in the mice receiving combined treatment with RFA and sunitinib. This combined treatment significantly increased the frequency of CD8+ T cell, memory CD8+ T cell, and dendritic cells (DCs); decreased the frequency of regulatory T cells; and activated tumor-specific antigen (TSA) immune response in tumor microenvironment. We found that RFA caused PD-1 upregulation in tumor-infiltrated T cells by boosting hepatocyte growth factor (HGF) expression, which was suppressed by sunitinib treatment. We have also demonstrated that sunitinib suppressed VEGF’s effect in enhancing PD-L1 expression in DCs and attenuated heat-sink effect. The results indicate that RFA induced tumor destruction and release of in situ TSAs which can activate a tumoricidal immune response in sunitinib-treated mice, significantly improving anti-HCC therapeutic efficacy. Conclusions Sunitinib enables RFA-released in situ TSA to ignite an effective anti-tumor immune response by suppressing HGF and VEGF signaling pathways. Sunitinib–RFA as a synergistic therapeutic approach significantly suppresses HCC growth.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
| | - Lixin Ma
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial VA Hospital, Columbia, Missouri, USA
| | - Madeline Sauer
- School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Diego Avella
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri, USA
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri, USA
| | - Jeffrey Bryan
- Department of Veterinary Oncology, University of Missouri, Columbia, Missouri, USA
| | - Kun Cheng
- Pharmacology and Pharmaceutical Sciences, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial VA Hospital, Columbia, Missouri, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial VA Hospital, Columbia, Missouri, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
28
|
Taniguchi M, Mizuno S, Yoshikawa T, Fujinami N, Sugimoto M, Kobayashi S, Takahashi S, Konishi M, Gotohda N, Nakatsura T. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis. Cancer Sci 2020; 111:2747-2759. [PMID: 32449239 PMCID: PMC7419030 DOI: 10.1111/cas.14497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
There is no established postoperative adjuvant therapy for hepatocellular carcinoma (HCC), and improvement of patient prognosis has been limited. We conducted long‐term monitoring of patients within a phase II trial that targeted a cancer antigen, glypican‐3 (GPC3), specifically expressed in HCC. We sought to determine if the GPC3 peptide vaccine was an effective adjuvant therapy by monitoring disease‐free survival and overall survival. We also tracked GPC3 immunohistochemical (IHC) staining, CTL induction, and postoperative plasma GPC3 for a patient group that was administered the vaccine (n = 35) and an unvaccinated patient group that underwent surgery only (n = 33). The 1‐y recurrence rate after surgery was reduced by approximately 15%, and the 5‐y and 8‐y survival rates were improved by approximately 10% and 30%, respectively, in the vaccinated group compared with the unvaccinated group. Patients who were positive for GPC3 IHC staining were more likely to have induced CTLs, and 60% survived beyond 5 y. Vaccine efficacy had a positive relationship with plasma concentration of GPC3; high concentrations increased the 5‐y survival rate to 75%. We thus expect GPC3 vaccination in patients with HCC, who are positive for GPC3 IHC staining and/or plasma GPC3 to induce CTL and have significantly improved long‐term prognosis.
Collapse
Affiliation(s)
- Masatake Taniguchi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Motokazu Sugimoto
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shinichiro Takahashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masaru Konishi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Recent Advances: The Imbalance of Immune Cells and Cytokines in the Pathogenesis of Hepatocellular Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10050338. [PMID: 32466214 PMCID: PMC7277978 DOI: 10.3390/diagnostics10050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recent advancement in the immunological understanding of genesis of hepatocellular carcinoma (HCC) has implicated a decline in anti-tumour immunity on the background of chronic inflammatory state of liver parenchyma. The development of HCC involves a network of immunological activity in the tumour microenvironment involving continuous interaction between tumour and stromal cells. The reduction in anti-tumour immunity is secondary to changes in various immune cells and cytokines, and the tumour microenvironment plays a critical role in modulating the process of liver fibrosis, hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), tumor invasion and metastasis. Thus, it is considered as one of primary factor behind the despicable tumour behavior and observed poor survival; along with increased risk of recurrence following treatment in HCC. The primary intent of the present review is to facilitate the understanding of the complex network of immunological interactions of various immune cells, cytokines and tumour cells associated with the development and progression of HCC.
Collapse
|
30
|
Immunological Basis of Genesis of Hepatocellular Carcinoma: Unique Challenges and Potential Opportunities through Immunomodulation. Vaccines (Basel) 2020; 8:vaccines8020247. [PMID: 32456200 PMCID: PMC7349974 DOI: 10.3390/vaccines8020247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
A majority of hepatocellular carcinoma (HCC) develops in the setting of persistent chronic inflammation as immunological mechanisms have been shown to play a vital role in the initiation, growth and progression of tumours. The index review has been intended to highlight ongoing immunological changes in the hepatic parenchyma responsible for the genesis and progression of HCC. The in-situ vaccine effect of radiofrequency (RF) is through generation tumour-associated antigens (TAAs), following necrosis and apoptosis of tumour cells, which not only re-activates the antitumour immune response but can also act in synergism with checkpoint inhibitors to generate a superlative effect with intent to treat primary cancer and distant metastasis. An improved understanding of oncogenic responses of immune cells and their integration into signaling pathways of the tumour microenvironment will help in modulating the antitumour immune response. Finally, we analyzed contemporary literature and summarised the recent advances made in the field of targeted immunotherapy involving checkpoint inhibitors along with RF application with the intent to reinstate antitumour immunity and outline future directives in very early and early stages of HCC.
Collapse
|
31
|
Craciun L, de Wind R, Demetter P, Lucidi V, Bohlok A, Michiels S, Bouazza F, Vouche M, Tancredi I, Verset G, Garaud S, Naveaux C, Galdon MG, Gallo KW, Hendlisz A, Derijckere ID, Flamen P, Larsimont D, Donckier V. Retrospective analysis of the immunogenic effects of intra-arterial locoregional therapies in hepatocellular carcinoma: a rationale for combining selective internal radiation therapy (SIRT) and immunotherapy. BMC Cancer 2020; 20:135. [PMID: 32075608 PMCID: PMC7032008 DOI: 10.1186/s12885-020-6613-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Immunotherapy represents a promising option for treatment of hepatocellular carcinoma (HCC) in cirrhotic patients but its efficacy is currently inconsistent and unpredictable. Locoregional therapies inducing immunogenic cell death, such as transarterial chemoembolization (TACE) or selective internal radiation therapy (SIRT), have the potential to act synergistically with immunotherapy. For the development of new approaches combining locoregional treatments with immunotherapy, a better understanding of the respective effects of TACE and SIRT on recruitment and activation of immune cells in HCC is needed. To address this question, we compared intra-tumor immune infiltrates in resected HCC after preoperative treatment with TACE or SIRT. Methods Data fromr patients undergoing partial hepatectomy for HCC, without preoperative treatment (SURG, n = 32), after preoperative TACE (TACE, n = 16), or preoperative SIRT (n = 12) were analyzed. Clinicopathological factors, tumor-infiltrating lymphocytes (TILs), CD4+ and CD8+ T cells, and granzyme B (GZB) expression in resected HCC, and postoperative overall and progression-free survival were compared between the three groups. Results Clinicopathological and surgical characteristics were similar in the three groups. A significant increase in TILs, CD4+ and CD8+ T cells, and GZB expression was observed in resected HCC in SIRT as compared to TACE and SURG groups. No difference in immune infiltrates was observed between TACE and SURG patients. Within the SIRT group, the dose of irradiation affected the type of immune infiltrate. A significantly higher ratio of CD3+ cells was observed in the peri-tumoral area in patients receiving < 100 Gy, whereas a higher ratio of intra-tumoral CD4+ cells was observed in patients receiving > 100 Gy. Postoperative outcomes were similar in all groups. Irrespective of the preoperative treatment, the type and extent of immune infiltrates did not influence postoperative survival. Conclusions SIRT significantly promotes recruitment/activation of intra-tumor effector-type immune cells compared to TACE or no preoperative treatment. These results suggest that SIRT is a better candidate than TACE to be combined with immunotherapy for treatment of HCC. Evaluation of the optimal doses for SIRT for producing an immunogenic effect and the type of immunotherapy to be used require further evaluation in prospective studies.
Collapse
Affiliation(s)
- Ligia Craciun
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Roland de Wind
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pieter Demetter
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium.,Pathology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Valerio Lucidi
- Abdominal Surgery, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Ali Bohlok
- Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet, 1, B-1000, Brussels, Belgium
| | - Sébastien Michiels
- Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet, 1, B-1000, Brussels, Belgium
| | - Fikri Bouazza
- Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet, 1, B-1000, Brussels, Belgium
| | - Michael Vouche
- Radiology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Ilario Tancredi
- Radiology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Gontran Verset
- Gastroenterology and Medical Oncology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Maria Gomez Galdon
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Karen Willard Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Alain Hendlisz
- Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Ivan Duran Derijckere
- Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Flamen
- Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Denis Larsimont
- Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Vincent Donckier
- Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet, 1, B-1000, Brussels, Belgium.
| |
Collapse
|
32
|
Zhu WW, Lu M, Wang XY, Zhou X, Gao C, Qin LX. The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis 2020; 7:299-307. [PMID: 32884984 PMCID: PMC7452537 DOI: 10.1016/j.gendis.2020.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis and metabolism reprogramming are two major hallmarks of cancer. In the initiation and progression of cancer, tumor cells are known to undergo fundamental metabolic changes to sustain their development and progression. In recent years, much more attentions have been drawn to their important roles in facilitating cancer metastasis through regulating the biological properties. In this review, we summarized the recent progresses in the studies of metabolism reprogramming of cancer metastasis, particularly of primary liver cancer, and highlight their potential applications.
Collapse
Affiliation(s)
- Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| |
Collapse
|
33
|
Qi X, Schepers E, Avella D, Kimchi ET, Kaifi JT, Staveley-O'Carroll KF, Li G. An Oncogenic Hepatocyte-Induced Orthotopic Mouse Model of Hepatocellular Cancer Arising in the Setting of Hepatic Inflammation and Fibrosis. J Vis Exp 2019. [PMID: 31566616 DOI: 10.3791/59368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The absence of a clinically relevant animal model addressing the typical immune characteristics of hepatocellular cancer (HCC) has significantly impeded elucidation of the underlying mechanisms and development of innovative immunotherapeutic strategies. To develop an ideal animal model recapitulating human HCC, immunocompetent male C57BL/6J mice first receive a carbon tetrachloride (CCl4) injection to induce liver fibrosis, then receive histologically-normal oncogenic hepatocytes from young male SV40 T antigen (TAg)-transgenic mice (MTD2) by intra-splenic (ISPL) inoculation. Androgen generated in recipient male mice at puberty initiates TAg expression under control of a liver-specific promoter. As a result, the transferred hepatocytes become cancer cells and form tumor masses in the setting of liver fibrosis/cirrhosis. This novel model mimics human HCC initiation and progression in the context of liver fibrosis/cirrhosis and reflects the most typical features of human HCC including immune dysfunction.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia; Molecular Microbiology and Immunology, University of Missouri-Columbia
| | - Emily Schepers
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Diego Avella
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia;
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia; Molecular Microbiology and Immunology, University of Missouri-Columbia;
| |
Collapse
|
34
|
Inefficient induction of circulating TAA-specific CD8+ T-cell responses in hepatocellular carcinoma. Oncotarget 2019; 10:5194-5206. [PMID: 31497249 PMCID: PMC6718268 DOI: 10.18632/oncotarget.27146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background & Aims: In hepatocellular carcinoma (HCC), CD8+ T-cell responses targeting tumor-associated antigens (TAA) are considered to be beneficial. However, the molecular profile of TAA-specific CD8+ T cells in HCC is not well defined due to their low frequency.
Results: In this study, we demonstrate that TAA-specific CD8+ T-cell responses are not efficiently induced in the peripheral blood of HCC patients as supported by the following observations: First, in HCC patients, frequencies of TAA-specific CD8+ T cells were not increased compared to healthy donors (HD) or patients with liver cirrhosis. Second, a remarkable proportion of TAA-specific CD8+ T cells were naïve despite the presence of antigen within the tumor tissue. Third, antigen-experienced TAA-specific CD8+ T cells lack the characteristic transcriptional regulation of exhausted CD8+ T cells, namely EomeshiTbetdim, and express inhibitory receptors only on a minor proportion of cells. This suggests restricted antigen recognition and further supports the hypothesis of inefficient induction and activation.
Methods: By applying peptide/MHCI tetramer-based enrichment, a method of high sensitivity, we now could define the heterogeneity of circulating TAA-specific CD8+ T cells targeting glypican-3, NY-ESO-1, MAGE-A1 and MAGE-A3. We focused on therapy-naïve HCC patients of which the majority underwent transarterial chemoembolization (TACE).
Conclusion: Our analysis reveals that circulating TAA-specific CD8+ T cells targeting 4 different immunodominant epitopes are not properly induced in therapy-naïve HCC patients thereby unravelling new and unexpected insights into TAA-specific CD8+ T-cell biology in HCC. This clearly highlights severe limitations of these potentially anti-tumoral T cells that may hamper their biological and clinical relevance in HCC.
Collapse
|
35
|
Seifi-Alan M, Shamsi R, Ghafouri-Fard S. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma. Immunotherapy 2019; 10:411-421. [PMID: 29473472 DOI: 10.2217/imt-2017-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide common malignancy with poor prognosis. Several studies have aimed at identification of appropriate biomarkers for early detection of this cancer. Cancer-testis antigens (CTAs) as a novel group of tumor-associated antigens have been demonstrated to be expressed in HCC samples as well as peripheral blood samples from these patients but not in the corresponding adjacent noncancerous samples. Such pattern of expression has provided them an opportunity to be used as immunotherapeutic targets. The detection of spontaneous immune responses against CTAs in HCC patients has prompted design of CTA-based immunotherapeutic protocols in these patients. The results of some clinical trials have been promising in a subset of patients.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
The Combination of Stereotactic Body Radiation Therapy and Immunotherapy in Primary Liver Tumors. JOURNAL OF ONCOLOGY 2019; 2019:4304817. [PMID: 31182960 PMCID: PMC6512065 DOI: 10.1155/2019/4304817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Treatment recommendations for primary liver malignancies, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are complex and require a multidisciplinary approach. Despite surgical options that are potentially curative, options for nonsurgical candidates include systemic therapy, radiotherapy (RT), transarterial chemoembolization (TACE), and radiofrequency ablation (RFA). Stereotactic Body Radiation Therapy (SBRT) is now in routine use for the treatment of lung cancer, and there is growing evidence supporting its use in liver tumors. SBRT has the advantage of delivering ablative radiation doses in a limited number of fractions while minimizing the risk of radiation-induced liver disease (RILD) through highly conformal treatment plans. It should be considered in a multidisciplinary setting for the management of patients with unresectable, locally advanced primary liver malignancies and limited treatment options. Recently, the combination of immunotherapy with SBRT has been proposed to improve antitumor effects through engaging the immune system. This review aims at shedding light on the novel concept of the combination strategy of immune-radiotherapy in liver tumors by exploring the evidence surrounding the use of SBRT and immunotherapy for the treatment of HCC and CCA.
Collapse
|
37
|
Kim JO, Kim CA. Abscopal Resolution of a Hepatic Metastasis in a Patient with Metastatic Cholangiocarcinoma Following Radical Stereotactic Body Radiotherapy to a Synchronous Early Stage Non-small Cell Lung Cancer. Cureus 2019; 11:e4082. [PMID: 31019860 PMCID: PMC6467432 DOI: 10.7759/cureus.4082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This case report describes the abscopal resolution of a liver metastasis in a patient with two separate primary malignancies. A 70-year-old male with an unresectable cholangiocarcinoma with an associated 5 cm liver metastasis was found during his staging investigations to have a 1.8 cm right upper lobe lung tumor. A CT-guided biopsy of the lung tumor revealed a primary adenocarcinoma of lung origin. Given the expected worse prognosis of the metastatic cholangiocarcinoma, after review of his case in provincial gastrointestinal and lung tumor boards, he was treated with eight cycles of palliative gemcitabine and cisplatin chemotherapy. Post eight cycles, the disease in the liver and the lung was stable. After completion of first line palliative systemic therapy, radical stereotactic body radiotherapy (SBRT), consisting of 48 Gy in four fractions, was delivered to the right upper lobe non-small cell lung cancer (NSCLC) primary. Three months post-completion of the SBRT, restaging CT scans were performed which revealed the intriguing spontaneous and complete resolution of his liver metastasis. These findings were confirmed on subsequent MRI imaging of his liver. As his liver metastasis was well outside of the SBRT fields, the spontaneous resolution of his liver metastasis presents clinical evidence of the abscopal effect of cholangiocarcinoma in response to SBRT to his lung tumor.
Collapse
Affiliation(s)
- Julian O Kim
- Radiation Oncology, Cancer Care Manitoba, University of Manitoba, Winnipeg, CAN
| | - Christina A Kim
- Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| |
Collapse
|
38
|
Siu EHL, Chan AWH, Chong CCN, Chan SL, Lo KW, Cheung ST. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Transl Gastroenterol Hepatol 2018; 3:89. [PMID: 30603725 DOI: 10.21037/tgh.2018.10.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The absence of potent therapeutic option accounts for the dismal prognosis of advanced hepatocellular carcinoma (HCC) with high mortality and recurrence rate. For a decade, sorafenib is the only approved systemic drug in the first-line setting and warrants as the standard-of-care for HCC in the advanced stage. Given the common failures of chemotherapies and targeted therapies in the field of HCC treatment, promising breakthroughs were eagerly needed and until recently, immunotherapies have opened a new era of anticancer treatment. The liver organ is perceived as "immunotolerant" owing to its functional role, and the hepatic immune balance is found to be deregulated during chronic liver inflammation and HCC tumorigenesis. Restoring a competent immunity by mitigation of immunosuppression signals is a contemporary approach. In this regard, novel immune checkpoint inhibitors have revolutionized cancer pharmacological treatment options with remarkable clinical outcomes in hematologic malignancy and multiple solid tumors including advanced HCC. Nivolumab, an immunotherapeutic agent to block programmed cell death protein 1 (PD-1), showed high efficacy potential for patients progressed with sorafenib and granted accelerated approval by the US Food and Drug Administration (FDA) recently. The development of this class of immunotherapeutic drug is currently based on myriad studies established on the role of T-cell mediated immunosuppression through immune checkpoints. Heterogeneous results have led to further explorations to the profile of oncogenic processes and signaling pathways associated with PD1/PD-L1 axis. Emerging evidence from preclinical studies implicate natural killer (NK) cells as a mediator to the PD-1 checkpoint signaling immunoevasion. The strategy of adopting immunomodulating ability of NK cells by immune checkpoints inhibitors is potential to additive effects in stimulating anticancer immunity. This idea is not entirely newfound but has recently gained prominence because of advances in defining phenotypic heterogeneity of NK cell populations. The physiological significance and synergistic value of NK cells await further investigation in clinical trials. In this review, an overview of the treatment paradigm shift of HCC management is presented. Current knowledge concerning immunological mechanisms of immune checkpoints attributed to T cell is further discussed and relevant ongoing clinical trials are summarized. We proposed that NK cells should be viewed as part of the network of checkpoint immunoevasion and delineate current evidence of translational clinical research in this area. It is conceivable that immune checkpoint inhibitors in combination with NK cell-based therapeutic strategies will be great promise for treatment of advanced HCC.
Collapse
Affiliation(s)
- Elaine Hon-Lam Siu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Li J, Huang S, Zhou Z, Lin W, Chen S, Chen M, Ye Y. Exosomes derived from rAAV/AFP-transfected dendritic cells elicit specific T cell-mediated immune responses against hepatocellular carcinoma. Cancer Manag Res 2018; 10:4945-4957. [PMID: 30464595 PMCID: PMC6214341 DOI: 10.2147/cmar.s178326] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Dendritic cell (DC)-derived exosomes (Dexs) have been proved to induce and enhance antigen-specific T cell responses in vivo, and previous clinical trials have shown the feasibility and safety of Dexs in multiple human cancers. However, there is little knowledge on the efficacy of Dexs against hepatocellular carcinoma (HCC) until now. Methods In this study, human peripheral blood-derived DCs were loaded with recombinant adeno-associated viral vector (rAAV)-carrying alpha-fetoprotein (AFP) gene (rAAV/AFP), and high-purity Dexs were generated. Then naive T cells were stimulated with Dexs to investigate the specific T cell-mediated immune responses against HCC. Results Our findings showed that Dexs were effective to stimulate naive T cell proliferation and induce T cell activation to become antigen-specific cytotoxic T lymphocytes (CTLs), thereby exhibiting antitumor immune responses against HCC. In addition, Dex-sensitized DC precursors seemed more effective to trigger major histocompatibility complex class I (MHC I)-restricted CTL response and allow DCs to make full use of the minor antigen peptides, thereby maximally activating specific immune responses against HCC. Conclusion It is concluded that Dexs, which combine the advantages of DCs and cell-free vectors, are promising to completely, or at least in part, replace mature DCs (mDCs) to function as cancer vaccines or natural antitumor adjuvant.
Collapse
Affiliation(s)
- Jieyu Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China, .,Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| | - Shenglan Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China,
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| | - Mingshui Chen
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China, .,Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China, .,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China,
| |
Collapse
|
40
|
Wang YE, Xu K, Yue WH, Xu QM, You BG, Zhang MY, Zhu ZC, Yang SL, Liu YL, Li KP. Hederacolchiside A1 suppresses proliferation of tumor cells by inducing apoptosis through modulating PI3K/Akt/mTOR signaling pathway. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Li G, Liu D, Kimchi ET, Kaifi JT, Qi X, Manjunath Y, Liu X, Deering T, Avella DM, Fox T, Rockey DC, Schell TD, Kester M, Staveley-O’Carroll KF. Nanoliposome C6-Ceramide Increases the Anti-tumor Immune Response and Slows Growth of Liver Tumors in Mice. Gastroenterology 2018; 154:1024-1036.e9. [PMID: 29408569 PMCID: PMC5908238 DOI: 10.1053/j.gastro.2017.10.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Ceramide, a sphingolipid metabolite, affects T-cell signaling, induces apoptosis of cancer cells, and slows tumor growth in mice. However, it has not been used as a chemotherapeutic agent because of its cell impermeability and precipitation in aqueous solution. We developed a nanoliposome-loaded C6-ceremide (LipC6) to overcome this limitation and investigated its effects in mice with liver tumors. METHODS Immune competent C57BL/6 mice received intraperitoneal injections of carbon tetrachloride and intra-splenic injections of oncogenic hepatocytes. As a result, tumors resembling human hepatocellular carcinomas developed in a fibrotic liver setting. After tumors formed, mice were given an injection of LipC6 or vehicle via tail vein every other day for 2 weeks. This was followed by administration, also via tail vein, of tumor antigen-specific (TAS) CD8+ T cells isolated from the spleens of line 416 mice, and subsequent immunization by intraperitoneal injection of tumor antigen-expressing B6/WT-19 cells. Tumor growth was monitored with magnetic resonance imaging. Tumor apoptosis, proliferation, and AKT expression were analyzed using immunohistochemistry and immunoblots. Cytokine production, phenotype, and function of TAS CD8+ T cells and tumor-associated macrophages (TAMs) were studied with flow cytometry, real-time polymerase chain reaction (PCR), and ELISA. Reactive oxygen species (ROS) in TAMs and bone marrow-derived macrophages, induced by colony stimulating factor 2 (GMCSF or CSF2) or colony stimulating factor 1 (MCSF or CSF1), were detected using a luminescent assay. RESULTS Injection of LipC6 slowed tumor growth by reducing tumor cell proliferation and phosphorylation of AKT, and increasing tumor cell apoptosis, compared with vehicle. Tumors grew more slowly in mice given the combination of LipC6 injection and TAS CD8+ T cells followed by immunization compared with mice given vehicle, LipC6, the T cells, or immunization alone. LipC6 injection also reduced numbers of TAMs and their production of ROS. LipC6 induced TAMs to differentiate into an M1 phenotype, which reduced immune suppression and increased activity of CD8+ T cells. These results were validated by experiments with bone marrow-derived macrophages induced by GMCSF or MCSF. CONCLUSIONS In mice with liver tumors, injection of LipC6 reduces the number of TAMs and the ability of TAMs to suppress the anti-tumor immune response. LipC6 also increases the anti-tumor effects of TAS CD8+ T cells. LipC6 might therefore increase the efficacy of immune therapy in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri; Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri.
| | - Dai Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri,Address requests for reprints to: Kevin F. Staveley-O’Carroll, MD, PhD, Professor, Chair of Surgery, Director of Ellis Fischel Cancer Center, One Hospital Drive, Mc501, University of Missouri-Columbia, Columbia, MO 65212. ; fax: 573-884-4585; or Guangfu Li, PhD, DVM, Assistant Professor, Department of Surgery, Molecular Microbiology and Immunology, Ellis Fischel Cancer Center, University of Missouri-Columbia, One Hospital Dr., Medical Sciences Building, M272, Columbia, MO 65212. ; fax: 573-884-4585
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Jussuf T. Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yariswamy Manjunath
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Xinjian Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Tye Deering
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Diego M. Avella
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| | - Todd Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Don C. Rockey
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Todd D. Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mark Kester
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
42
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
43
|
He X, Guo X, Zhang H, Kong X, Yang F, Zheng C. Mechanism of action and efficacy of LY2109761, a TGF-β receptor inhibitor, targeting tumor microenvironment in liver cancer after TACE. Oncotarget 2017; 9:1130-1142. [PMID: 29416682 PMCID: PMC5787425 DOI: 10.18632/oncotarget.23193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
TACE (transcatheter arterial chemoembolization) has been recognized as an effective palliative treatment option for patients with HCC, however, the medium-long term efficacy of it remains modest. LY2109761, a TGF-β receptor inhibitor, was confirmed to reduce tumor cell growth, intravasation, and metastatic dissemination of HCC cells through different molecular mechanisms. This study aims to investigate the treatment effect of combining TACE therapy with LY2109761- a TGF-β receptor I kinase inhibitor on suppressing tumor growth and metastasis in a rabbit VX2 tumor model. The molecular mechanisms underlying the biological activities of LY2109761 was also evaluated through an in vitro model. And we found that LY2109761 could inhibit cell proliferation by down-regulating the phosphorylation of Smad-2 as well as improved the therapeutic effect of TACE in a VX2 hepatocellular carcinoma model. And we further found that LY2109761 may play a modulating role in the process of T cell transformation. Hence, based on those obsevations in our research, we concluded that combing LY2109761 with TACE for the treatment of VX2 rabbit liver cancer can help inhibit tumor growth as well as increase the tumor cell necrosis after TACE.
Collapse
Affiliation(s)
- Xiaojun He
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongsen Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Kim HY, Park JW. Current immunotherapeutic strategies in hepatocellular carcinoma: recent advances and future directions. Therap Adv Gastroenterol 2017; 10:805-814. [PMID: 29051790 PMCID: PMC5638179 DOI: 10.1177/1756283x17722061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/20/2017] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and serious health problem with high mortality. Treatment for HCC remains largely unsatisfactory owing to its high recurrence rates and frequent accompanying cirrhosis. In addition, the unique immune environment of the liver promotes tolerance, which, in conjunction with immune evasion by the disease, makes HCC a less promising target for conventional immunotherapy. However, recent advances in the immunotherapy have led to novel approaches to overcome these obstacles by manipulating and enhancing tumor-specific immune responses against HCC by using various modalities, such as cancer vaccines and immune checkpoint blockade. These treatments have shown both safety and promising outcomes in patients with HCC of various etiologies and tumor stages. Furthermore, combined strategies have been assessed to achieve optimal outcomes, by using immunotherapies with or without conventional treatments. This review briefly covers the background, recent advances, current issues, and future perspectives on immunotherapy in the field of HCC treatment.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | |
Collapse
|
45
|
Combination of sorafenib and TACE inhibits portal vein invasion for intermediate stage HCC: a single center retrospective controlled study. Oncotarget 2017; 8:79012-79022. [PMID: 29108283 PMCID: PMC5668016 DOI: 10.18632/oncotarget.20745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
Purpose This study aims to investigate the effect of sorafenib plus Transarterial Chemoembolization (TACE) treatment on inhibiting portal vein invasion in patients with intermediate stage HCC. Materials and Methods The consecutive medical records of patients with HCC were retrospectively analyzed from October 2009 to February 2015. The propensity score matching method was applied into group matching. The Kaplan-Meier method and the Log-Rank Test was used to estimate the median survival time, median time to progression and median time to portal vein invasion. Factors associated with survival benefits were identified by univariate and multivariate Cox-regression model analyses. Results Of 97 patients enrolled, 19 patients received TACE-sorafenib treatment and 78 patients received TACE treatment. During the follow-up period of 15 months, the median time to portal vein invasion was 14.2 months vs 8.77 months, respectively (p=0.073). And the analysis of the cox's proportional hazard model revealed that patients treated with TACE treatment alone would run greater risk of portal vein invasion compared with TACE-sorafenib treatment (hr=7.49, p=0.021). Early administration of sorafenib was associated with lower risk of portal vein invasion (p=0.021) according to the univariate analysis. Adverse events (AEs) identified in the combined group were mostly classified as Grades 1 and 2, and skin-related reactions and fatigue were the most common. Conclusions Sorafenib may could inhibit portal vein invasion of hepatoma carcinoma cells. Early administration of sorafenib may bring more survival benefits.
Collapse
|
46
|
Sahin B. Enlighting the Shadow for Advanced Hepatocellular Carcinoma: Immunotherapy with Immune Checkpoint Inhibitors. J Gastrointest Cancer 2017; 48:288-290. [PMID: 28836129 DOI: 10.1007/s12029-017-9996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma has still been one of the cancer with increasing incidence and highest mortality rate in the world. Although many new promising developments have been defined in hepatocarcinogenesis, with a short survival the treatment of patients with advanced hepatocellular carcinoma is an emerging issue. On the recent decade, only one anti-angiogenic agent sorafenib improved overall survival with costing a hardly manageable toxicity. Novel immunotherapeutic agents, especially immune checkpoint inhibitors are on the edge of more effective but less toxic treatments for these patients. In this article the activity of immune checkpoint inhibitors, anti-CTLA-4 and anti-PD1 antibodies for the treatment of patients with advanced hepatocellular cancer will be reviewed.
Collapse
Affiliation(s)
- Berksoy Sahin
- Medical Oncology Department, Cukurova University, Balcali, 01330, Adana, Turkey.
| |
Collapse
|
47
|
Han Z, Yang D, Trivett A, Oppenheim JJ. Therapeutic vaccine to cure large mouse hepatocellular carcinomas. Oncotarget 2017; 8:52061-52071. [PMID: 28881713 PMCID: PMC5581012 DOI: 10.18632/oncotarget.19367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. Here we report the development of a therapeutic vaccination regimen (shortened as ‘TheraVac’) consisting of intratumoral delivery of high-mobility group nucleosome-binding protein 1 (HMGN1), R848/resiquimod, and one of the checkpoint inhibitors (e.g. anti-CTLA4, anti-PD-L1, or low dose of Cytoxan). C57BL/6 mice harboring large (approximately 1 cm in diameter) established subcutaneous Hepa1-6 hepatomas were cured by intratumoral injections of TheraVac and became tumor-free long-term survivors. Importantly, the resultant tumor-free mice were resistant to re-challenge with Hepa1-6 hepatoma, not B16 melanoma, demonstrating the acquisition of hepatoma-specific immunity in the absence of any administered tumor antigen. Mechanistic studies showed that upon treatment with TheraVac, Hepa1-6-bearing mice generated increased Hepa1-6-specific CTLs in the draining lymph nodes and showed greatly upregulated expression of CXCL9, CXCL10, and IFN-γ and elevated infiltration of T lymphocytes in tumor tissues. Treatment of large Hepa1-6 hepatomas on one mouse flank also eliminated smaller (approximately 0.5 cm in diameter) hepatomas implanted on the other flank. Thus, TheraVac has potential as a curative immunotherapeutic regimen for the treatment of human HCC.
Collapse
Affiliation(s)
- Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Anna Trivett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
48
|
Zhang Q, Yuan XF, Lu Y, Li ZZ, Bao SQ, Zhang XL, Yang YY, Fan DM, Zhang YZ, Wu CX, Guo HX, Zhang YJ, Ye Z, Xiong DS. Surface expression of anti-CD3scfv stimulates locoregional immunotherapy against hepatocellular carcinoma depending on the E1A-engineered human umbilical cord mesenchymal stem cells. Int J Cancer 2017. [PMID: 28643325 DOI: 10.1002/ijc.30846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor antigens is at the core of cancer immunotherapy, however, the ideal antigen selection is difficult especially in poorly immunogenic tumors. In this study, we designed a strategy to modify hepatocellular carcinoma (HCC) cells by surface expressing anti-CD3scfv within the tumor site strictly, which depended on the E1A-engineered human umbilical cord mesenchymal stem cells (HUMSC.E1A) delivery system. Subsequently, membrane-bound anti-CD3scfv actived the lymphocytes which lysed HCC cells bypassing the expression of antigens or MHC restriction. First, we constructed the anti-CD3scfv gene driven by human α-fetoprotein (AFP) promoter into an adenoviral vector and the E1A gene into the lentiviral vector. Our results showed that anti-CD3scfv could specifically express on the surface of HCC cells and activate the lymphocytes to kill target cells effectively in vitro. HUMSC infected by AdCD3scfv followed by LentiR.E1A could support the adenoviral replication and packaging in vitro 36 h after LentiR.E1A infection. Using a subcutaneous HepG2 xenograft model, we confirmed that AdCD3scfv and LentiR.E1A co-transfected HUMSC could migrate selectively to the tumor site and produce considerable adenoviruses. The new generated AdCD3scfv infected and modified tumor cells successfully. Mice injected with the MSC.E1A.AdCD3scfv and lymphocytes significantly inhibited the tumor growth compared with control groups. Furthermore, 5-fluorouracil (5-FU) could sensitize adenovirus infection at low MOI resulting in improved lymphocytes cytotoxicity in vitro and in vivo. In summary, this study provides a promising strategy for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiang-Fei Yuan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, 300100, China
| | - Yang Lu
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhen-Zhen Li
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shi-Qi Bao
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiao-Long Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuan-Yuan Yang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Dong-Mei Fan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi-Zhi Zhang
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, China
| | - Chen-Xuan Wu
- the Third Central Hospital of Tianjin Medical University, Tianjin, 300170, China
| | - Hong-Xing Guo
- the Third Central Hospital of Tianjin Medical University, Tianjin, 300170, China
| | - Yan-Jun Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhou Ye
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, China
| | - Dong-Sheng Xiong
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| |
Collapse
|
49
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389:2492-2502. [PMID: 28434648 PMCID: PMC7539326 DOI: 10.1016/s0140-6736(17)31046-2] [Citation(s) in RCA: 3214] [Impact Index Per Article: 401.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND For patients with advanced hepatocellular carcinoma, sorafenib is the only approved drug worldwide, and outcomes remain poor. We aimed to assess the safety and efficacy of nivolumab, a programmed cell death protein-1 (PD-1) immune checkpoint inhibitor, in patients with advanced hepatocellular carcinoma with or without chronic viral hepatitis. METHODS We did a phase 1/2, open-label, non-comparative, dose escalation and expansion trial (CheckMate 040) of nivolumab in adults (≥18 years) with histologically confirmed advanced hepatocellular carcinoma with or without hepatitis C or B (HCV or HBV) infection. Previous sorafenib treatment was allowed. A dose-escalation phase was conducted at seven hospitals or academic centres in four countries or territories (USA, Spain, Hong Kong, and Singapore) and a dose-expansion phase was conducted at an additional 39 sites in 11 countries (Canada, UK, Germany, Italy, Japan, South Korea, Taiwan). At screening, eligible patients had Child-Pugh scores of 7 or less (Child-Pugh A or B7) for the dose-escalation phase and 6 or less (Child-Pugh A) for the dose-expansion phase, and an Eastern Cooperative Oncology Group performance status of 1 or less. Patients with HBV infection had to be receiving effective antiviral therapy (viral load <100 IU/mL); antiviral therapy was not required for patients with HCV infection. We excluded patients previously treated with an agent targeting T-cell costimulation or checkpoint pathways. Patients received intravenous nivolumab 0·1-10 mg/kg every 2 weeks in the dose-escalation phase (3+3 design). Nivolumab 3 mg/kg was given every 2 weeks in the dose-expansion phase to patients in four cohorts: sorafenib untreated or intolerant without viral hepatitis, sorafenib progressor without viral hepatitis, HCV infected, and HBV infected. Primary endpoints were safety and tolerability for the escalation phase and objective response rate (Response Evaluation Criteria In Solid Tumors version 1.1) for the expansion phase. This study is registered with ClinicalTrials.gov, number NCT01658878. FINDINGS Between Nov 26, 2012, and Aug 8, 2016, 262 eligible patients were treated (48 patients in the dose-escalation phase and 214 in the dose-expansion phase). 202 (77%) of 262 patients have completed treatment and follow-up is ongoing. During dose escalation, nivolumab showed a manageable safety profile, including acceptable tolerability. In this phase, 46 (96%) of 48 patients discontinued treatment, 42 (88%) due to disease progression. Incidence of treatment-related adverse events did not seem to be associated with dose and no maximum tolerated dose was reached. 12 (25%) of 48 patients had grade 3/4 treatment-related adverse events. Three (6%) patients had treatment-related serious adverse events (pemphigoid, adrenal insufficiency, liver disorder). 30 (63%) of 48 patients in the dose-escalation phase died (not determined to be related to nivolumab therapy). Nivolumab 3 mg/kg was chosen for dose expansion. The objective response rate was 20% (95% CI 15-26) in patients treated with nivolumab 3 mg/kg in the dose-expansion phase and 15% (95% CI 6-28) in the dose-escalation phase. INTERPRETATION Nivolumab had a manageable safety profile and no new signals were observed in patients with advanced hepatocellular carcinoma. Durable objective responses show the potential of nivolumab for treatment of advanced hepatocellular carcinoma. FUNDING Bristol-Myers Squibb.
Collapse
Affiliation(s)
| | - Bruno Sangro
- Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Thomas Yau
- University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | - Chiun Hsu
- National Taiwan University Hospital, Taipei, Taiwan
| | - Tae-You Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Jörg Trojan
- Goethe University Hospital and Cancer Center, Frankfurt, Germany
| | | | | | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Winnie Yeo
- Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Akhil Chopra
- Johns Hopkins Singapore International Medical Centre, Singapore
| | | | | | - Lixin Lang
- Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Hao Tang
- Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Ignacio Melero
- Biomedical Research Network in Oncology (CIBERONC), Pamplona, Spain; Center for Applied Medical Research (CIMA), Pamplona, Spain
| |
Collapse
|
50
|
Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389. [PMID: 28434648 PMCID: PMC7539326 DOI: 10.1016/s0140-6736%2817%2931046-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND For patients with advanced hepatocellular carcinoma, sorafenib is the only approved drug worldwide, and outcomes remain poor. We aimed to assess the safety and efficacy of nivolumab, a programmed cell death protein-1 (PD-1) immune checkpoint inhibitor, in patients with advanced hepatocellular carcinoma with or without chronic viral hepatitis. METHODS We did a phase 1/2, open-label, non-comparative, dose escalation and expansion trial (CheckMate 040) of nivolumab in adults (≥18 years) with histologically confirmed advanced hepatocellular carcinoma with or without hepatitis C or B (HCV or HBV) infection. Previous sorafenib treatment was allowed. A dose-escalation phase was conducted at seven hospitals or academic centres in four countries or territories (USA, Spain, Hong Kong, and Singapore) and a dose-expansion phase was conducted at an additional 39 sites in 11 countries (Canada, UK, Germany, Italy, Japan, South Korea, Taiwan). At screening, eligible patients had Child-Pugh scores of 7 or less (Child-Pugh A or B7) for the dose-escalation phase and 6 or less (Child-Pugh A) for the dose-expansion phase, and an Eastern Cooperative Oncology Group performance status of 1 or less. Patients with HBV infection had to be receiving effective antiviral therapy (viral load <100 IU/mL); antiviral therapy was not required for patients with HCV infection. We excluded patients previously treated with an agent targeting T-cell costimulation or checkpoint pathways. Patients received intravenous nivolumab 0·1-10 mg/kg every 2 weeks in the dose-escalation phase (3+3 design). Nivolumab 3 mg/kg was given every 2 weeks in the dose-expansion phase to patients in four cohorts: sorafenib untreated or intolerant without viral hepatitis, sorafenib progressor without viral hepatitis, HCV infected, and HBV infected. Primary endpoints were safety and tolerability for the escalation phase and objective response rate (Response Evaluation Criteria In Solid Tumors version 1.1) for the expansion phase. This study is registered with ClinicalTrials.gov, number NCT01658878. FINDINGS Between Nov 26, 2012, and Aug 8, 2016, 262 eligible patients were treated (48 patients in the dose-escalation phase and 214 in the dose-expansion phase). 202 (77%) of 262 patients have completed treatment and follow-up is ongoing. During dose escalation, nivolumab showed a manageable safety profile, including acceptable tolerability. In this phase, 46 (96%) of 48 patients discontinued treatment, 42 (88%) due to disease progression. Incidence of treatment-related adverse events did not seem to be associated with dose and no maximum tolerated dose was reached. 12 (25%) of 48 patients had grade 3/4 treatment-related adverse events. Three (6%) patients had treatment-related serious adverse events (pemphigoid, adrenal insufficiency, liver disorder). 30 (63%) of 48 patients in the dose-escalation phase died (not determined to be related to nivolumab therapy). Nivolumab 3 mg/kg was chosen for dose expansion. The objective response rate was 20% (95% CI 15-26) in patients treated with nivolumab 3 mg/kg in the dose-expansion phase and 15% (95% CI 6-28) in the dose-escalation phase. INTERPRETATION Nivolumab had a manageable safety profile and no new signals were observed in patients with advanced hepatocellular carcinoma. Durable objective responses show the potential of nivolumab for treatment of advanced hepatocellular carcinoma. FUNDING Bristol-Myers Squibb.
Collapse
|