1
|
Bozward AG, Davies SP, Morris SM, Kayani K, Oo YH. Cellular interactions in self-directed immune-mediated liver diseases. J Hepatol 2025; 82:1110-1124. [PMID: 39793614 DOI: 10.1016/j.jhep.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The lymphocyte population must traverse a complex path throughout their journey to the liver. The signals which these cells must detect, including cytokines, chemokines and other soluble factors, steer their course towards further crosstalk with other hepatic immune cells, hepatocytes and biliary epithelial cells. A series of specific chemokine receptors and adhesion molecules drive not only the recruitment, migration, and retention of these cells within the liver, but also their localisation. Perturbation of these interactions and failure of self-recognition drive the development of several autoimmune liver diseases. We also describe check point-induced liver injury. Immune cell internalisation into hepatocytes (emperipolesis) in autoimmune hepatitis and into biliary epithelial cells (intra-epithelial lymphocyte) in primary biliary cholangitis are typical features in autoimmune liver diseases. Finally, we describe emerging immune-based therapies, including regulatory T cell, anti-cytokine and anti-chemokine therapies, cytokine supplementation (e.g. interleukin-2), as well as co-inhibitory molecule manipulation, including T-cell engagers, and discuss their potential application in the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK.
| | - Scott P Davies
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Sean M Morris
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Kayani Kayani
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK; Liver Transplant and Hepatobiliary Department, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
2
|
Hong Z, Zhao Y, Pahlavan S, Wang X, Han S, Wang X, Wang K. iPSC modification strategies to induce immune tolerance. LIFE MEDICINE 2025; 4:lnaf016. [PMID: 40376110 PMCID: PMC12076409 DOI: 10.1093/lifemedi/lnaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise in regenerative medicine. However, immune rejections remain one of the major obstacles to stem cell therapy. Though conventional immunosuppressants are available in clinics, the side effects prevent the wide application of hPSCs derivatives, compromising both survival rate and quality of life. In recent years, a myriad of strategies aimed at inducing immune tolerance specifically by engineering stem cells has been introduced to society. One strategy involves human leukocyte antigen (HLA) deletion through gene editing, affording allografts the capability to evade the host immune system. Another strategy involves immune cloak, which is the focus of this review, with emphasis on the overexpression of immune checkpoints and the blocking of immune cytotoxic pathways. Nevertheless, co-transplantation with mesenchymal stem cells (MSCs) and enhanced MSCs confers immune privilege to engraftments. This review summarizes recent studies on the intricacies of immune tolerance induction by engineering stem cells. In addition, we endeavor to deliberate upon the safety and limitations associated with this promising and potential therapeutic modality.
Collapse
Affiliation(s)
- Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Xue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
4
|
Lysandrou M, Kefala D, Vinnakota JM, Savvopoulos N, Zeiser R, Spyridonidis A. Regulatory T cell therapy for Graft-versus-Host Disease. Bone Marrow Transplant 2025:10.1038/s41409-025-02553-x. [PMID: 40240498 DOI: 10.1038/s41409-025-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Graft-versus-Host Disease (GvHD) is the main cause of morbidity and mortality of allogeneic hematopoietic cell transplantation (allo-HCT). Conventional immunosuppressive pharmacotherapy remains the backbone of GvHD prevention and treatment with suboptimal outcomes especially for patients with refractory disease. Adoptive immunotherapy with regulatory T-cells (Treg) stands as an alternative approach that aims to restore immune tolerance and circumvent prolonged immunosuppression albeit preserving the beneficial Graft-versus-Leukaemia (GvL) effect. In this review, we summarise recent knowledge on Treg biology, clinical applications of various Tregs subtypes in the setting of GvHD and future endeavours of the field.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Robert Zeiser
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece.
| |
Collapse
|
5
|
Stüve P, Godoy GJ, Ferreyra FN, Hellriegel F, Boukhallouk F, Kao YS, More TH, Matthies AM, Akimova T, Abraham WR, Kaever V, Schmitz I, Hiller K, Lochner M, Salomon BL, Beier UH, Rehli M, Sparwasser T, Berod L. ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance. Mol Metab 2025; 94:102111. [PMID: 39929287 PMCID: PMC11893314 DOI: 10.1016/j.molmet.2025.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs). METHODS We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases. RESULTS Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acetylation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models. CONCLUSIONS We identified ACC1 as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Gloria J Godoy
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fernando N Ferreyra
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Hellriegel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Yu-San Kao
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Tushar H More
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Anne-Marie Matthies
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolf-Rainer Abraham
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany; Department of Chemical Microbiology, HZI, Braunschweig 38124, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, MHH, Hannover 30625, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Institute of Medical Microbiology and Hospital Epidemiology, MHH, Hannover 30625, Germany
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris 75013, France
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
| | - Luciana Berod
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Wiewiórska-Krata N, Foroncewicz B, Mucha K, Zagożdżon R. Cell therapies for immune-mediated disorders. Front Med (Lausanne) 2025; 12:1550527. [PMID: 40206475 PMCID: PMC11980423 DOI: 10.3389/fmed.2025.1550527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Immune-mediated disorders are a broad range of diseases, arising as consequence of immune defects, exaggerated/misguided immune response or a mixture of both conditions. Their frequency is on a rise in the developed societies and they pose a significant challenge for diagnosis and treatment. Traditional pharmacological, monoclonal antibody-based or polyclonal antibody replacement-based therapies aiming at modulation of the immune responses give very often dissatisfactory results and/or are burdened with unacceptable adverse effects. In recent years, a new group of treatment modalities has emerged, utilizing cells as living drugs, especially with the use of the up-to-date genetic engineering. These modern cellular therapies are designed to offer a high potential for more targeted, safe, durable, and personalized treatment options. This work briefly reviews the latest advances in the treatment of immune-mediated disorders, mainly those related to exaggeration of the immune response, with such cellular therapies as hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), regulatory T cells (Tregs), chimeric antigen receptor (CAR) T cells and others. We highlight the main features of these therapies as new treatment options for taming the dysregulated immune system. Undoubtfully, in near future such therapies can provide lasting remissions in a range of immune-mediated disorders with reduced treatment burden and improved quality of life for the patients.
Collapse
Affiliation(s)
- Natalia Wiewiórska-Krata
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Foroncewicz
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Fisher MS, Sennikov SV. T-regulatory cells for the treatment of autoimmune diseases. Front Immunol 2025; 16:1511671. [PMID: 39967659 PMCID: PMC11832489 DOI: 10.3389/fimmu.2025.1511671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Autoimmune diseases result from imbalances in the immune system and disturbances in the mechanisms of immune tolerance. T-regulatory cells (Treg) are key factors in the formation of immune tolerance. Tregs modulate immune responses and repair processes, controlling the innate and adaptive immune system. The use of Tregs in the treatment of autoimmune diseases began with the manipulation of endogenous Tregs using immunomodulatory drugs. Then, a method of adoptive transfer of Tregs grown in vitro was developed. Adoptive transfer of Tregs includes polyclonal Tregs with non-specific effects and antigen-specific Tregs in the form of CAR-Treg and TCR-Treg. This review discusses non-specific and antigen-specific approaches to the use of Tregs, their advantages, disadvantages, gaps in development, and future prospects.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
Van den Bos J, Janssens I, Vermeulen M, Dams A, De Reu H, Peeters S, Faghel C, Ouaamari YE, Wens I, Cools N. The Efficiency of Brain-Derived Neurotrophic Factor Secretion by mRNA-Electroporated Regulatory T Cells Is Highly Impacted by Their Activation Status. Eur J Immunol 2025; 55:e202451005. [PMID: 39703060 PMCID: PMC11830389 DOI: 10.1002/eji.202451005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA+ Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF). Kinetics of BDNF expression and secretion were explored. Treg activation state was assessed by checking the expression of activation markers CD69, CD71, and CD137. Our findings show that only activated Tregs secrete BDNF post-genetic engineering, even though both activated and resting Tregs express BDNF intracellularly. Notably, the mTOR pathway and CD137 are implicated in the regulation of protein secretion in activated Tregs, indicating a complex interplay of signalling pathways. This study contributes to understanding the mechanisms governing protein expression and secretion in engineered Tregs, offering insights for optimizing cell-based therapies and advancing immune regulation strategies.
Collapse
Affiliation(s)
- Jasper Van den Bos
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Ibo Janssens
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Morgane Vermeulen
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Amber Dams
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Hans De Reu
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Flow Cytometry and Sorting Core Facility (FACSUA)University of AntwerpAntwerpBelgium
| | - Stefanie Peeters
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Carole Faghel
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Yousra El Ouaamari
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Inez Wens
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Nathalie Cools
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Flow Cytometry and Sorting Core Facility (FACSUA)University of AntwerpAntwerpBelgium
| |
Collapse
|
9
|
Rodger B, Clough J, Vasconcelos J, Canavan JB, Macallan D, Prevost AT, Lord GM, Irving P. Protocol for a first-in-human feasibility study of T regulatory cells (TR004) for inflammatory bowel disease using (ex vivo) Treg expansion (TRIBUTE). BMJ Open 2025; 15:e092733. [PMID: 39855667 PMCID: PMC11759877 DOI: 10.1136/bmjopen-2024-092733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Crohn's disease (CD) is a chronic, immune-mediated inflammatory bowel disease (IBD), presenting with symptoms of abdominal pain and bleeding from the gastrointestinal tract. There is no known cure. In vitro-expanded 'thymus-derived' regulatory T cells (tTreg) have shown promise in preclinical models of IBD, leading to interest in their use as a potential therapy in CD. We present a study protocol for a first-in-human study of Tregs for IBD using ex vivo Treg expansion. This study will explore the preliminary safety and tolerability of a single dose of Treg immunotherapy and will inform the design of a subsequent larger trial. METHODS AND ANALYSIS Four patients will be recruited from gastroenterology clinics at Guy's and St Thomas' NHS Foundation Trust. Eligible participants are those who are at least 18 years old, have a diagnosis of active moderate to severe CD and have failed to respond to or tolerate at least two prior lines of standard medication. Participants receive a single dose of autologous ex vivo-expanded Tregs and will be followed up to week 21 to collect safety and exploratory efficacy data. Additional safety monitoring will occur at 1 and 2 years post-dose. The primary endpoint is defined as the occurrence of dose-limiting toxicity occurring within 5 weeks post-infusion. ETHICS AND DISSEMINATION The study protocol and related documents have been approved by a NHS Research Ethics Committee, the Health Research Authority and the Medicines and Healthcare products Regulatory Agency for Clinical Trial Authorisation. It is intended that the results of the trial will be presented at international conferences and will be submitted for publication in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER NCT03185000.
Collapse
Affiliation(s)
- Beverley Rodger
- King's College London Faculty of Life Sciences and Medicine, London, UK
| | - Jennifer Clough
- King's College London Faculty of Life Sciences and Medicine, London, UK
| | - Joana Vasconcelos
- Dept of Primary Care and Public Health Sciences, King's College London, London, UK
| | - James B Canavan
- King's College London Faculty of Life Sciences and Medicine, London, UK
| | - D Macallan
- Department of Genitourinary Medicine, St. George's Healthcare NHS Trust, London, UK
| | - A Toby Prevost
- Cicely Saunders Institute, King's College London, London, UK
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, London, UK
| | - Peter Irving
- King's College London Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
10
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Papadaki GF, Li Y, Monos DS, Bhoj VG. Cars pick up another passenger: Organ transplantation. Hum Immunol 2025; 86:111180. [PMID: 39591915 DOI: 10.1016/j.humimm.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
With over 30,000 patients having received CAR T cells as a treatment for malignancy, our experience in oncology has facilitated numerous efforts to adapt the CAR therapeutic platform for diseases and conditions beyond cancer. Recognition of their efficacy, where traditional small molecule or biologic therapies fail, has spurred multiple efforts leveraging CAR T cells for immune modulation in the setting of organ/tissue transplantation. In the present review, we discuss CAR T cell approaches that are currently under development, to target both humoral and cellular alloimmunity. These include CAR T platforms repurposed from oncology and autoimmune diseases, as well as ones designed specifically to target alloimmunity in transplant. We also present important challenges and application considerations that will need to be addressed before we can expect successful clinical translation. Finally, we highlight a few of the exciting advances currently in development that are likely to pave a smoother path to translating CAR T cell therapies into transplant patients.
Collapse
MESH Headings
- Humans
- Organ Transplantation
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Animals
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Georgia F Papadaki
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Li
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri S Monos
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vijay G Bhoj
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Elliott J, Koldej R, Khot A, Ritchie D. Graft-Versus-Host Disease Mouse Models: A Clinical-Translational Perspective. Methods Mol Biol 2025; 2907:1-56. [PMID: 40100591 DOI: 10.1007/978-1-0716-4430-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A variety of graft-versus-host disease (GVHD) models have been developed in mice for the purpose of allowing laboratory investigation of the pathobiology, prevention, and treatment of GVHD in humans. While such models are crucial in advancing our knowledge in this field, there are some key limitations that need to be considered when translating laboratory discoveries into the clinical context. This chapter will discuss current clinical practices in transplantation and GVHD and the relative strengths and weaknesses of mouse models that attempt to replicate these states.
Collapse
Affiliation(s)
- Jessica Elliott
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amit Khot
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Han JW, Park SH. Advancing immunosuppression in liver transplantation: the role of regulatory T cells in immune modulation and graft tolerance. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:257-272. [PMID: 39696994 PMCID: PMC11732766 DOI: 10.4285/ctr.24.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Prolonged immunosuppressive therapy in liver transplantation (LT) is associated with significant adverse effects, such as nephrotoxicity, metabolic complications, and heightened risk of infection or malignancy. Regulatory T cells (Tregs) represent a promising target for inducing immune tolerance in LT, with the potential to reduce or eliminate the need for life-long immunosuppression. This review summarizes current knowledge on the roles of Tregs in LT, highlighting their mechanisms and the impact of various immunosuppressive agents on Treg stability and function. The liver's distinct immunological microenvironment, characterized by tolerogenic antigen-presenting cells and high levels of interleukin (IL)-10 and transforming growth factor-β, positions this organ as an ideal setting for Treg-mediated tolerance. We discuss Treg dynamics in LT, their association with rejection risk, and their utility as biomarkers of transplant outcomes. Emerging strategies, including the use of low-dose calcineurin inhibitors with mammalian target of rapamycin inhibitors, adoptive Treg therapy, and low-dose IL-2, aim to enhance Treg function while providing sufficient immunosuppression. Thus, the future of LT involves precision medicine approaches that integrate Treg monitoring with tailored immunosuppressive protocols to optimize long-term outcomes for LT recipients.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
14
|
Pashkina E, Blinova E, Bykova M, Aktanova A, Denisova V. Cell Therapy as a Way to Increase the Effectiveness of Hematopoietic Stem Cell Transplantation. Cells 2024; 13:2056. [PMID: 39768148 PMCID: PMC11675046 DOI: 10.3390/cells13242056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a standard method for treating a number of pathologies, primarily blood diseases. Timely restoration of the immune system after HSCT is a critical factor associated with the development of complications such as relapses or secondary tumors and various infections, as well as the graft-versus-host reaction in allogeneic transplantation, which ultimately affects the survival of patients. Introduction into the recipient's body of immune system cells that are incapable of sensitization by recipient antigens during the period of immune reconstitution can increase the rate of restoration of the immune system, as well as reduce the risk of complications. This review presents the results of studies on cell therapy with various cell subpopulations of both bone marrow and mesenchymal origin during HSCT.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Vera Denisova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| |
Collapse
|
15
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Inés SM, Celia MO, Lasarte JJ, Teresa L. Optimizing protocols for human regulatory T isolation, expansion, and characterization. Methods Cell Biol 2024; 191:59-77. [PMID: 39824564 DOI: 10.1016/bs.mcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Sánchez-Moreno Inés
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Martín-Otal Celia
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Juan José Lasarte
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lozano Teresa
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
| |
Collapse
|
17
|
Najaf Khosravi H, Razi S, Rezaei N. The role of interleukin-2 in graft-versus-host disease pathogenesis, prevention and therapy. Cytokine 2024; 183:156723. [PMID: 39173281 DOI: 10.1016/j.cyto.2024.156723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Graft-versus-host disease (GVHD) is a significant complication following allogeneic hematopoietic cell transplantation (allo-HCT), posing substantial risks to patient survival. In the late follow-up phase of transplanted patients, GVHD is also a major cause of morbidity and disability, mostly due to low response to first-line steroids and the lack of effective standard therapies in the second line. This review provides a description of GVHD pathogenesis, with a focus on the central role of Interleukin-2 (IL-2). IL-2 is one of the critical mediators in the complex pathogenesis of GVHD, contributing to the intricate balance between regulatory T cells (Tregs) and effector T cells (Teffs). Due to this pivotal role, several studies investigate the potential of IL-2 as a therapeutic option for GVHD management. We discuss the outcomes of low-dose IL-2 therapies and their impact on Treg proliferation and steroid dependency reduction. Additionally, the effects of combining IL-2 with other treatments, such as extracorporeal photopheresis (ECP) and Treg-enriched lymphocyte infusions, are highlighted. Novel approaches, including modified IL-2 complexes and IL-2 receptor blockade, are explored for their potential in selectively enhancing Treg function and limiting Teff activation. The evolving understanding of IL-2's pivotal role in immune regulation presents promising prospects for applying treatment and prevention strategies for GVHD.
Collapse
Affiliation(s)
- Hila Najaf Khosravi
- Royan Institute for Stem Cell Biology and Technology, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
18
|
Yu J, Yang Y, Gu Z, Shi M, La Cava A, Liu A. CAR immunotherapy in autoimmune diseases: promises and challenges. Front Immunol 2024; 15:1461102. [PMID: 39411714 PMCID: PMC11473342 DOI: 10.3389/fimmu.2024.1461102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, the use of chimeric antigen receptor (CAR)-T cells has emerged as a promising immunotherapy in multiple diseases. CAR-T cells are T cells genetically modified to express a surface receptor, known as CAR, for the targeting of cognate antigens on specific cells. The effectiveness of CAR-T cell therapy in hematologic malignancies including leukemia, myeloma, and non-Hodgkin's lymphoma has led to consider its use as a potential avenue of treatment for autoimmune diseases. However, broadening the use of CAR-T cell therapy to a large spectrum of autoimmune conditions is challenging particularly because of the possible development of side effects including cytokine release syndrome and neurotoxicity. The design of CAR therapy that include additional immune cells such as double-negative T cells, γδ T cells, T regulatory cells and natural killer cells has shown promising results in preclinical studies and clinical trials in oncology, suggesting a similar potential utility in the treatment of autoimmune diseases. This review examines the mechanisms, efficacy, and safety of CAR approaches with a focus on their use in autoimmune diseases including systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, multiple sclerosis, myasthenia gravis, lupus nephritis and other autoimmune diseases. Advantages and disadvantages as compared to CAR-T cell therapy will also be discussed.
Collapse
Affiliation(s)
- Jingjing Yu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanjing Gu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Medicina Molecolare e Biotecnologie Mediche, Federico II University, Naples, Italy
| | - Aijing Liu
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Huang CH, Chen WY, Chen RF, Ramachandran S, Liu KF, Kuo YR. Cell therapies and its derivatives as immunomodulators in vascularized composite allotransplantation. Asian J Surg 2024; 47:4251-4259. [PMID: 38704267 DOI: 10.1016/j.asjsur.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wei Yu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Savitha Ramachandran
- Department of Plastic and Reconstructive Surgery, Singapore General Hospital, Singapore.
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
21
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
22
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Hassan RR, Mikhail MW, Badr AM, Hassan ME, Abdel-Wahhab MA. Impact of sub chronic administration of deltamethrin on autoimmune activity in rat. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106008. [PMID: 39084774 DOI: 10.1016/j.pestbp.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024]
Abstract
Deltamethrin (DLM) is a newer kind of insecticide that is used on pets, livestock, and crops, as well as to combat malaria vectors and household pests. It belongs to the synthetic pyrethroid group and is being promoted as an alternative to organophosphate chemicals due to its persistent and destructive effects. The current study aimed to evaluate the impact of sub-chronic oral exposure to DLM on autoimmune activity in rats. Three groups of male albino rats (15 rats/group) including the control group, the ethanol-treated group (1 ml/rat), and the DLM-treated group (5 mg/kg b.w). Samples of blood were taken from all groups at 4-, 8- and 12-week intervals for the determination of hematological, cytokines, and immunological parameters. T lymphocyte subsets and Treg lymphocytes were determined in serum using flow cytometric acquisition. The results revealed that DLM significantly increased TNF-α, IL-33, IL-6, IL-17, IgG, IgM, WBCs, differential count, and platelets while decreasing Hb concentration and RBCs. Additionally, DLM decreased the number of T-cell subsets (CD3, CD4, CD5, and CD8) and Treg lymphocytes. All of these impacts became more severe over time. It is possible to conclude that the sub-chronic oral exposure to DLM disturbed autoimmune activity through the disturbances in immunological indices, CDs subset Treg lymphocytes.
Collapse
Affiliation(s)
- Rasha R Hassan
- Immunology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Micheal W Mikhail
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Abeer M Badr
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
24
|
Alhosseini MN, Ebadi P, Karimi MH, Migliorati G, Cari L, Nocentini G, Heidari M, Soleimanian S. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: A review of the strengths and limitations. Transpl Immunol 2024; 85:102069. [PMID: 38844002 DOI: 10.1016/j.trim.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
In the last decade, cell therapies have revolutionized the treatment of some diseases, earning the definition of being the "third pillar" of therapeutics. In particular, the infusion of regulatory T cells (Tregs) is explored for the prevention and control of autoimmune reactions and acute/chronic allograft rejection. Such an approach represents a promising new treatment for autoimmune diseases to recover an immunotolerance against autoantigens, and to prevent an immune response to alloantigens. The efficacy of the in vitro expanded polyclonal and antigen-specific Treg infusion in the treatment of a large number of autoimmune diseases has been extensively demonstrated in mouse models. Similarly, experimental work documented the efficacy of Treg infusions to prevent acute and chronic allograft rejections. The Treg therapy has shown encouraging results in the control of type 1 diabetes (T1D) as well as Crohn's disease, systemic lupus erythematosus, autoimmune hepatitis and delaying graft rejection in clinical trials. However, the best method for Treg expansion and the advantages and pitfalls with the different types of Tregs are not fully understood in terms of how these therapeutic treatments can be applied in the clinical setting. This review provides an up-to-date overview of Treg infusion-based treatments in autoimmune diseases and allograft transplantation, the current technical challenges, and the highlights and disadvantages of this therapeutic approaches."
Collapse
Affiliation(s)
| | - Padideh Ebadi
- Islamic Azad University, Department of Biochemistry, Kazerun, Iran
| | | | - Graziella Migliorati
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Luigi Cari
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Giuseppe Nocentini
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Ekwe AP, Au R, Zhang P, McEnroe BA, Tan ML, Saldan A, Henden AS, Hutchins CJ, Henderson A, Mudie K, Kerr K, Fuery M, Kennedy GA, Hill GR, Tey SK. Clinical grade multiparametric cell sorting and gene-marking of regulatory T cells. Cytotherapy 2024; 26:719-728. [PMID: 38530690 DOI: 10.1016/j.jcyt.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
Collapse
Affiliation(s)
- Adaeze Precious Ekwe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Raymond Au
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Benjamin A McEnroe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mei Ling Tan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alda Saldan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S Henden
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Cheryl J Hutchins
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ashleigh Henderson
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kari Mudie
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Keri Kerr
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Madonna Fuery
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Glen A Kennedy
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Siok-Keen Tey
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
26
|
Shi L, Lim JY, Kam LC. Improving regulatory T cell production through mechanosensing. J Biomed Mater Res A 2024; 112:1138-1148. [PMID: 38450935 PMCID: PMC11065567 DOI: 10.1002/jbm.a.37702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Induced Tregs (iTregs) have great promise in adoptive immunotherapy for treatment of autoimmune diseases. This report investigates the impacts of substrate stiffness on human Treg induction, providing a powerful yet simple approach to improving production of these cells. Conventional CD4+ human T cells were activated on materials of different elastic modulus and cultured under suppressive conditions. Enhanced Treg induction was observed on softer materials as early as 3 days following activation and persisted for multiple weeks. Substrate stiffness also affected epigenetic modification of Treg specific genes and Treg suppressive capacity. Tregs induced on substrates of an optimal stiffness balance quantity and suppressive quality.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
27
|
Oya Y, Tanaka Y, Nakazawa T, Matsumura R, Glass DD, Nakajima H, Shevach EM. Polyclonally Derived Alloantigen-Specific T Regulatory Cells Exhibit Target-Specific Suppression and Capture MHC Class II from Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1891-1903. [PMID: 38683146 DOI: 10.4049/jimmunol.2300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Foxp3+ T regulatory (Treg) cells prevent allograft rejection and graft-versus-host disease. Although polyclonal Tregs have been used both in animal models and in humans, the fine specificity of their suppressive function is poorly defined. We have generated mouse recipient-derived alloantigen-specific Tregs in vitro and explored the fine specificity of their suppressive function and their mechanism of action in vitro and in vivo. In vitro, when alloantigen and peptide Ag were both presented on the same dendritic cell, both responses were suppressed by iTregs specific either for the alloantigen or for the peptide Ag. In vivo, iTreg suppression was limited to the cognate Ag, and no bystander suppression was observed when both allo-antigen and peptide Ag were present on the same dendritic cell. In vitro, alloantigen-specific Tregs captured cognate MHC but failed to capture noncognate MHC. Our results demonstrate that a polyclonal population of iTregs generated from naive T cells can mediate highly specific function in vivo and support the view that Treg therapy, even with unselected polyclonal populations, is likely to be target antigen-specific and that bystander responses to self-antigens or to infectious agents are unlikely.
Collapse
Affiliation(s)
- Yoshihiro Oya
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Yasuyo Tanaka
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Takuya Nakazawa
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University Hospital, Chiba City, Chiba, Japan
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Yano H, Koga K, Sato T, Shinohara T, Iriguchi S, Matsuda A, Nakazono K, Shioiri M, Miyake Y, Kassai Y, Kiyoi H, Kaneko S. Human iPSC-derived CD4 + Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model. Cell Stem Cell 2024; 31:795-802.e6. [PMID: 38848686 DOI: 10.1016/j.stem.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
CD4+ T cells induced from human iPSCs (iCD4+ T cells) offer a therapeutic opportunity for overcoming immune pathologies arising from hematopoietic stem cell transplantation. However, most iCD4+ T cells are conventional helper T cells, which secrete inflammatory cytokines. We induced high-level expression of FOXP3, a master transcription factor of regulatory T cells, in iCD4+ T cells. Human iPSC-derived, FOXP3-induced CD4+ T (iCD4+ Treg-like) cells did not secrete inflammatory cytokines upon activation. Moreover, they showed demethylation of the Treg-specific demethylation region, suggesting successful conversion to immunosuppressive iCD4+ Treg-like cells. We further assessed these iCD4+ Treg-like cells for CAR-mediated immunosuppressive ability. HLA-A2 CAR-transduced iCD4+ Treg-like cells inhibited CD8+ cytotoxic T cell (CTL) division in a mixed lymphocyte reaction assay with A2+ allogeneic CTLs and suppressed xenogeneic graft-versus-host disease (GVHD) in NSG mice treated with A2+ human PBMCs. In most cases, these cells suppressed the xenogeneic GvHD progression as much as natural CD25+CD127- Tregs did.
Collapse
Affiliation(s)
- Hisashi Yano
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Koga
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Takayuki Sato
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Tokuyuki Shinohara
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Atsushi Matsuda
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Kazuki Nakazono
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Maki Shioiri
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Yasuyuki Miyake
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Hitoshi Kiyoi
- Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
29
|
Pacini CP, Soares MVD, Lacerda JF. The impact of regulatory T cells on the graft-versus-leukemia effect. Front Immunol 2024; 15:1339318. [PMID: 38711496 PMCID: PMC11070504 DOI: 10.3389/fimmu.2024.1339318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.
Collapse
Affiliation(s)
- Carolina P. Pacini
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. D. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Lacerda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, ULS Santa Maria, Lisbon, Portugal
| |
Collapse
|
30
|
Baeten P, Hamad I, Hoeks C, Hiltensperger M, Van Wijmeersch B, Popescu V, Aly L, Somers V, Korn T, Kleinewietfeld M, Hellings N, Broux B. Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs. JCI Insight 2024; 9:e167457. [PMID: 38386413 PMCID: PMC11128200 DOI: 10.1172/jci.insight.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.
Collapse
Affiliation(s)
- Paulien Baeten
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Cindy Hoeks
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Veronica Popescu
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Lilian Aly
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Veerle Somers
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thomas Korn
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Kleinewietfeld
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
31
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
32
|
Ajith A, Merimi M, Arki MK, Hossein-khannazer N, Najar M, Vosough M, Sokal EM, Najimi M. Immune regulation and therapeutic application of T regulatory cells in liver diseases. Front Immunol 2024; 15:1371089. [PMID: 38571964 PMCID: PMC10987744 DOI: 10.3389/fimmu.2024.1371089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.
Collapse
Affiliation(s)
- Ananya Ajith
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Makram Merimi
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Etienne Marc Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
33
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
34
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
36
|
Eskandari SK, Daccache A, Azzi JR. Chimeric antigen receptor T reg therapy in transplantation. Trends Immunol 2024; 45:48-61. [PMID: 38123369 DOI: 10.1016/j.it.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Andrea Daccache
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Bioscience Education and Research (UFR Biosciences), Claude Bernard University Lyon 1, Lyon, France
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
38
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
39
|
Chen CY, Vander Kooi A, Cavedon A, Cai X, Hoggatt J, Martini PG, Miao CH. Induction of long-term tolerance to a specific antigen using anti-CD3 lipid nanoparticles following gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102043. [PMID: 37920545 PMCID: PMC10618827 DOI: 10.1016/j.omtn.2023.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Development of factor VIII (FVIII) inhibitors is a serious complication in the treatment of hemophilia A (HemA) patients. In clinical trials, anti-CD3 antibody therapy effectively modulates the immune response of allograft rejection or autoimmune diseases without eliciting major adverse effects. In this study, we delivered mRNA-encapsulated lipid nanoparticles (LNPs) encoding therapeutic anti-CD3 antibody (αCD3 LNPs) to overcome the anti-FVIII immune responses in HemA mice. It was found that αCD3 LNPs encoding the single-chain antibodies (Fc-scFv) can efficiently deplete CD3+ and CD4+ effector T cells, whereas αCD3 LNPs encoding double-chain antibodies cannot. Concomitantly, mice treated with αCD3 (Fc-scFv) LNPs showed an increase in the CD4+CD25+Foxp3+ regulatory T cell percentages, which modulated the anti-FVIII immune responses. All T cells returned to normal levels within 2 months. HemA mice treated with αCD3 LNPs prior to hydrodynamic injection of liver-specific FVIII plasmids achieved persistent FVIII gene expression without formation of FVIII inhibitors. Furthermore, transgene expression was increased and persistent following secondary plasmid challenge, indicating induction of long-term tolerance to FVIII. Moreover, the treated mice maintained their immune competence against other antigens. In conclusion, our study established a potential new strategy to induce long-term antigen-specific tolerance using an αCD3 LNP formulation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Xiaohe Cai
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Carol H. Miao
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Ni D, Tan J, Robert R, Taitz J, Ge A, Potier-Villette C, Reyes JGA, Spiteri A, Wishart C, Mackay C, Piccio L, King NJC, Macia L. GPR109A expressed on medullary thymic epithelial cells affects thymic Treg development. Eur J Immunol 2023; 53:e2350521. [PMID: 37595951 DOI: 10.1002/eji.202350521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a-/- mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a-/- mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a-/- mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.
Collapse
Affiliation(s)
- Duan Ni
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anjie Ge
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alanna Spiteri
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Wishart
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Charles Mackay
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura Piccio
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Catalán-Serra I, Ricanek P, Grimstad T. "Out of the box" new therapeutic strategies for Crohn´s disease: moving beyond biologics. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:614-634. [PMID: 35748460 DOI: 10.17235/reed.2022.9010/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New treatment options beyond immunosuppression have emerged in recent years for patients with Crohn´s disease (CD), a chronic systemic condition affecting primarily the gut with great impact in the quality of life. The cause of CD is largely unknown, and a curative treatment is not yet available. In addition, despite the growing therapeutic armamentarium in recent years almost half of the patients don´t achieve a sustained response over time. Thus, new therapeutic strategies are urgently needed. In this review, we discuss the current state of promising new "out of the box" possibilities to control chronic inflammation beyond current pharmacological treatments, including: exclusive enteral nutrition, specific diets, cell therapies using T regs, hyperbaric oxygen, fecal microbiota transplantation, phage therapy, helminths, cannabis and vagal nerve stimulation. The exploration of original and novel therapeutic modalities is key to address their potential as main or complementary treatments in selected CD populations in order to increase efficacy, minimize side effects and improve quality of life of patients.
Collapse
|
43
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
45
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
46
|
Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E, Hardtke-Wolenski M. Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer's Disease. Cells 2023; 12:2115. [PMID: 37626926 PMCID: PMC10453937 DOI: 10.3390/cells12162115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that remains uncured. Its pathogenesis is characterized by the formation of β-amyloid (Aβ) plaques. The use of antigen-specific regulatory T cells (Tregs) through adoptive transfer has shown promise for the treatment of many inflammatory diseases, although the effectiveness of polyspecific Tregs is limited. Obtaining a sufficient number of antigen-specific Tregs from patients remains challenging. AIMS AND METHODS To address this problem, we used an antibody-like single-chain variable fragment from a phage library and subsequently generated a chimeric antigen receptor (CAR) targeting β-amyloid. RESULTS The β-amyloid-specific CARs obtained were stimulated by both recombinant and membrane-bound Aβ isolated from the murine brain. The generated CAR-Tregs showed a normal Treg phenotype, were antigen-specific activatable, and had suppressive capacity. CONCLUSION This study highlights the potential of CAR technology to generate antigen-specific Tregs and presents novel approaches for developing functional CARs.
Collapse
Affiliation(s)
- Valerie Saetzler
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Tobias Riet
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrea Schienke
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Pierre Henschel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Kiara Freitag
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Alexander Haake
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Frank L. Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
47
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
48
|
Jovisic M, Mambetsariev N, Singer BD, Morales-Nebreda L. Differential roles of regulatory T cells in acute respiratory infections. J Clin Invest 2023; 133:e170505. [PMID: 37463441 PMCID: PMC10348770 DOI: 10.1172/jci170505] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.
Collapse
Affiliation(s)
- Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
- Department of Biochemistry and Molecular Genetics, and
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| |
Collapse
|
49
|
Cesario S, Genovesi V, Salani F, Vasile E, Fornaro L, Vivaldi C, Masi G. Evolving Landscape in Liver Transplantation for Hepatocellular Carcinoma: From Stage Migration to Immunotherapy Revolution. Life (Basel) 2023; 13:1562. [PMID: 37511937 PMCID: PMC10382048 DOI: 10.3390/life13071562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Liver transplantation (LT) represents the primary curative option for HCC. Despite the extension of transplantation criteria and conversion with down-staging loco-regional treatments, transplantation is not always possible. The introduction of new standards of care in advanced HCC including a combination of immune checkpoint inhibitor-based therapies led to an improvement in response rates and could represent a promising strategy for down-staging the tumor burden. In this review, we identify reports and series, comprising a total of 43 patients who received immune checkpoint inhibitors as bridging or down-staging therapies prior to LT. Overall, treated patients registered an objective response rate of 21%, and 14 patients were reduced within the Milan criteria. Graft rejection was reported in seven patients, resulting in the death of four patients; in the remaining cases, LT was performed safely after immunotherapy. Further investigations are required to define the duration of immune checkpoint inhibitors, their minimum washout period and the LT long-term safety of this strategy. Some randomized clinical trials including immunotherapy combinations, loco-regional treatment and/or tyrosine kinase inhibitors are ongoing and will likely determine the appropriateness of immune checkpoint inhibitors' administration before LT.
Collapse
Affiliation(s)
- Silvia Cesario
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Virginia Genovesi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Francesca Salani
- Institute of Interdisciplinary Research "Health Science", Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124 Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
50
|
Műzes G, Sipos F. CAR-Based Therapy for Autoimmune Diseases: A Novel Powerful Option. Cells 2023; 12:1534. [PMID: 37296654 PMCID: PMC10252902 DOI: 10.3390/cells12111534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The pervasive application of chimeric antigen receptor (CAR)-based cellular therapies in the treatment of oncological diseases has long been recognized. However, CAR T cells can target and eliminate autoreactive cells in autoimmune and immune-mediated diseases. By doing so, they can contribute to an effective and relatively long-lasting remission. In turn, CAR Treg interventions may have a highly effective and durable immunomodulatory effect via a direct or bystander effect, which may have a positive impact on the course and prognosis of autoimmune diseases. CAR-based cellular techniques have a complex theoretical foundation and are difficult to implement in practice, but they have a remarkable capacity to suppress the destructive functions of the immune system. This article provides an overview of the numerous CAR-based therapeutic options developed for the treatment of immune-mediated and autoimmune diseases. We believe that well-designed, rigorously tested cellular therapies could provide a promising new personalized treatment strategy for a significant number of patients with immune-mediated disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|