1
|
Palrasu M, Kakar K, Marudamuthu A, Hamida H, Thada S, Zhong Y, Staley S, Busbee PB, Li J, Garcia-Buitrago M, Nagarkatti M, Nagarkatti P. AhR Activation Transcriptionally Induces Anti-Microbial Peptide Alpha-Defensin 1 Leading to Reversal of Gut Microbiota Dysbiosis and Colitis. Gut Microbes 2025; 17:2460538. [PMID: 39894796 PMCID: PMC11792800 DOI: 10.1080/19490976.2025.2460538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025] Open
Abstract
Alpha-defensin 1 is a small antimicrobial peptide that acts as the first line of defense against pathogens. It is induced following microbial cues and inflammatory signals in neutrophils and Paneth cells in the small intestine, which suggests that it plays a role in microbial homeostasis in the gut. The gut microbial products also serve as ligands for the aryl hydrocarbon receptor (AhR), an environmental sensor. In the current study, we investigated if there is any crosstalk between AhR and alpha-defensin 1. Interestingly, we found a positive correlation between AhR and alpha-defensin 1 protein levels in ileal tissues from active Crohn's' (CD) patients and epithelial cells (IECs) from multiple models of murine colitis. In vitro downregulation of AhR led to inhibition of α-defensin 1, while activation of AhR induced α-defensin 1 in IECs. AhR directly targeted the dioxin response element 3 (DRE3) region on the α-defensin 1 promoter in IECs. AhR-mediated induction of α-defensin 1 in colitis mice reversed the gut microbial dysbiosis and alleviated colitis. Our data identify a novel signaling pathway in which AhR acts as a transcription factor for α-defensin 1, leading to regulation of homeostasis between gut microbiota, intestinal mucosa, and mucosal immunity.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Khadija Kakar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Amarnath Marudamuthu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hamida Hamida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shruthi Thada
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shanieka Staley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Monica Garcia-Buitrago
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
2
|
Li Y, Liu Q, Pan CY, Lan XY. The free fatty acid receptor 2 (FFA2): Mechanisms of action, biased signaling, and clinical prospects. Pharmacol Ther 2025; 272:108878. [PMID: 40383399 DOI: 10.1016/j.pharmthera.2025.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Free Fatty Acid Receptor 2 (FFA2), also known as GPR43, is a receptor activated by short-chain fatty acids (SCFAs) with fewer than six carbons in their aliphatic chains. This receptor is expressed in immune cells, adipose tissue, the gastrointestinal tract, and pancreatic islet cells, where it plays a crucial role in the modulation of inflammation, lipid metabolism, insulin secretion, and appetite regulation. Extensive research has been conducted to elucidate the structural attributes and physiological functions of FFA2. Furthermore, several synthetic agonists have been developed for FFA2 that can preferentially activate certain G-proteins, demonstrating potential pharmacological advantages in both in vivo and in vitro studies. Herein, we review the structure and physiological functions of FFA2 and its synthetic ligands, discussing the structural basis of FFA2's biased signaling and the potential role of biased ligands targeting this receptor in the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 710038, China
| | - Chuan-Ying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Kincade JN, Murtazina DA, Georges HM, Gonzalez-Berrios CL, Bishop JV, Engle TE, Henao-Tamayo M, Eder JM, McDonald EM, Deines DM, Wright BM, Van Campen H, Hansen TR. Postnatal Epigenetic Alterations in Calves Persistently Infected with Bovine Viral Diarrhea Virus. Viruses 2025; 17:708. [PMID: 40431719 DOI: 10.3390/v17050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally prevalent pathogen causing severe detriment to the cattle industry. Vertical infection occurring before the development of the fetal adaptive immune response, before 125 days of gestation, results in an immunotolerant, persistently infected (PI) calf. It was hypothesized that epigenetic alterations observed in the splenic tissue of PI fetuses at gestational day 245 would persist into the postnatal period. White blood cell DNA from five PI and five control heifers at 4 months of age was subjected to reduced representation bisulfite sequencing and interpreted within the context of complete blood count and flow cytometry data herein. Analysis revealed 8367 differentially methylated sites contained within genes associated with the immune and cardiac system, as well as hematopoiesis. Differences observed in the complete blood counts of PI heifers include increased monocytes, microcytic anemia, and elevated platelets with decreased mean platelet volume. Flow cytometry revealed increased classical monocytes, B cells, and CD4+/CD8B+ and CD25+/CD127- T cells, as well as decreased γδ+, CD4+, and CD4-/CD8B- T cells. Investigation of the PI methylome provides a new perspective on the mechanisms of pathologies and provides potential biomarkers for the rapid identification of PI cattle.
Collapse
Affiliation(s)
- Jessica N Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dilyara A Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Terry E Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Jordan M Eder
- Zoetis, Research Innovation Center, Fort Collins, CO 80523, USA
| | - Erin M McDonald
- Zoetis, Research Innovation Center, Fort Collins, CO 80523, USA
| | - Darcy M Deines
- Zoetis, Research Innovation Center, Fort Collins, CO 80523, USA
| | - Brie M Wright
- Zoetis, Research Innovation Center, Fort Collins, CO 80523, USA
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Xu J, Xu H, Li J, Huang W, Li Y, Guo X, Zhu M, Peng Y, Zhou Y, Nie Y. Clostridium butyricum-induced balance in colonic retinol metabolism and short-chain fatty acid levels inhibit IgA-related mucosal immunity and relieve colitis developments. Microbiol Res 2025; 298:128203. [PMID: 40319662 DOI: 10.1016/j.micres.2025.128203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/08/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Gut microbiota and their metabolites play a significant role in inflammatory bowel disease. Here, we attempted to determine the anti-inflammatory role of the probiotic Clostridium. butyricum (CB) in inflammatory bowel disease and identify the exact immune mechanism. The clinical significance of Clostridiales and CB was explored in patients with ulcerative colitis. The inflammation-suppressive role of CB was evaluated in mice with DSS-induced colitis. 16S rRNA sequencing was performed to assess changes in the gut microbiota. Altered transcription levels were detected by RNA sequencing. Flow cytometry was performed to assess the frequency of IgA responses to gut microbiota. Clostridiales and CB were depleted in ulcerative colitis. Oral gavage with CB significantly suppressed weight loss and colon shortening in the dextran sulfate sodium-induced colitis mouse model. Intestinal barrier injury was reversed and the gut microbiota was restored upon treatment with CB administration. The mucosal immune response to gut microbiota was reversed upon treatment with CB. CB conditional medium was more effective than heat-killed CB in alleviating inflammation. Mechanistically, retinol metabolism and retinoic acid levels were higher in groups treated with CB and butyrate. CB and the metabolite butyrate exerted a suppressive role on the abundance of Immunoglobulin A-coated gut microbiota by inhibiting retinoic acid synthesis. In summary, CB protects against inflammation and intestinal barrier injury by producing anti-inflammatory metabolites that can regulate the mucosal immune response to gut microbiota by increasing retinoic acid levels in the colon.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianhong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Minzheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Deng Y, Liang X, Zhao L, Zhou X, Liu J, Li Z, Chen S, Xiao G. Pogostemon cablin Acts as a Key Regulator of NF- κB Signaling and Has a Potent Therapeutic Effect on Intestinal Mucosal Inflammation. Mediators Inflamm 2025; 2025:9000672. [PMID: 40331148 PMCID: PMC12052453 DOI: 10.1155/mi/9000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
Persistent intestinal inflammation is a major contributor to various diseases, including digestive disorders, immune dysregulation, and cancer. The NF-κB signaling pathway is pivotal in the inflammatory response of intestinal cells, regulating the secretion of inflammatory factors, mediating signal transduction, and activating receptors. In colitis, NF-κB signaling and its effector molecules are excessively activated by various stimuli, leading to overexpression of inflammatory mediators and immune regulators. Colitis, an inflammation of the intestinal mucosa, underlies many intestinal diseases, with increasing incidence. Traditional treatments such as glucocorticoids and nonsteroidal antiinflammatory drugs have significant limitations and side effects. Pogostemon cablin, a traditional Chinese medicine and food, is widely used in food, spices, and pharmaceuticals. Studies have demonstrated its positive therapeutic effects on intestinal inflammation, primarily through regulation of the NF-κB signaling pathway. Moreover, P. cablin and its active components exhibit pharmacological activities such as antiapoptotic, antioxidant, and antitumor effects. This review summarizes the original research on treating intestinal mucosal inflammation via NF-κB signaling regulation using P. cablin and its active components, providing new insights for colitis treatment.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Xin Liang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Jianqin Liu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, NanChong 637100, Sichuan, China
| | - Shanshan Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| |
Collapse
|
6
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of the NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. Cell Commun Signal 2025; 23:199. [PMID: 40281523 PMCID: PMC12023470 DOI: 10.1186/s12964-025-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Gastrointestinal (GI) disease/dysfunction persists in people living with HIV (PLWH) receiving suppressive combination anti-retroviral therapy (ART) leading to epithelial barrier breakdown, microbial translocation and systemic inflammation that can drive non-AIDS associated comorbidities. Although epigenetic mechanisms are predicted to drive GI dysfunction, they remain unknown and unaddressed in HIV/SIV infection. The present study investigated genome-wide changes in DNA methylation, and gene expression exclusively in colon epithelial cells (CE) in response to simian immunodeficiency virus infection (SIV) and long-term low-dose delta-9-tetrahydrocannabinol (THC). METHODS Using reduced-representation bisulfite sequencing, we characterized DNA methylation changes in colonic epithelium (CE) of uninfected controls (n=5) and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV; n=7) or THC (THC/SIV; n=6). Intact jejunum resection segments (~5cm) were collected from sixteen ART treated SIV-infected RMs [(VEH/SIV/ART; n=8) and (THC/SIV/ART; n=8)] to confirm protein expression data identified in the colon of ART-naïve SIV-infected RMs. Transcriptomics data was used to confirm expression of differentially methylated genes. Protein expression of differentially methylated genes and their downstream targets was assessed using Immunofluorescence followed by HALO quantification. RESULTS SIV infection in ART-naïve RMs induced marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response (NLRP6, cGAS), cellular adhesion (PCDH17, CDH7) and proliferation (WIF1, SFRP1, TERT, and HAND2) in CEs. Moreover, low-dose THC reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In ART suppressed SIV-infected RMs, significant NLRP6 protein upregulation during acute infection was unaffected by long-term ART administration during chronic infection despite successful plasma and tissue viral suppression. In this group, NLRP6 protein upregulation was associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, adding ART to THC-treated SIV-infected RMs effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. CONCLUSIONS We conclude that DNA hypomethylation-assisted NLRP6 upregulation can lead to its constitutively high expression resulting in the activation of necroptosis signaling via the RIPK3/p-MLKL pathway that can eventually drive intestinal epithelial loss/death. From a clinical standpoint, low-dose phytocannabinoids in combination with ART could safely and successfully reduce/reverse persistent GI inflammatory responses via modulating DNA methylation.
Collapse
Affiliation(s)
- Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Romero
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Beverly Gondo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jade A Drawec
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA.
- Lovelace Biomedical Institute, Albuquerque, NM, 87108-5127, USA.
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
7
|
Demirtas Guner D, Bildik HN, Demir H, Cagdas D, Saltik Temizel IN, Ozgul RK, Hizarcioglu Gulsen H, Tan C, Cicek B, Ozen H, Yuce A, Tezcan I. Genetic Variants in Early-Onset Inflammatory Bowel Disease: Monogenic Causes and Clinical Implications. CHILDREN (BASEL, SWITZERLAND) 2025; 12:536. [PMID: 40426715 DOI: 10.3390/children12050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Background/Objectives: This study aims to identify genetic variants associated with early-onset inflammatory bowel disease (IBD) and to improve diagnostic and therapeutic approaches. In selected monogenic IBD cases, treatment included colchicine, interleukin-1 inhibitors, and hematopoietic stem cell transplantation. Methods: This study included patients with early-onset IBD, defined as IBD diagnosed before the age of 10, who were under follow-up at the Department of Pediatric Gastroenterology, Hacettepe University, and agreed to participate between December 2018 and April 2021. Whole-exome sequencing (WES) was performed prospectively in patients without a prior diagnosis of monogenic disease, while clinical and laboratory data were reviewed retrospectively. Identified variants were evaluated for pathogenicity using standard bioinformatics tools. Results: A total of 47 patients were enrolled, including 33 boys (70.2%) and 14 girls (29.8%). The median age at symptom onset was 36 months (IQR: 10-72), and the median age at diagnosis was 3.7 years (IQR: 1.5-7.6). Crohn's disease was diagnosed in 53.2% (n = 25), ulcerative colitis in 38.3% (n = 18), and unclassified IBD in 8.5% (n = 4). Monogenic IBD was identified in 36.2% (n = 17) of patients, including nine with Familial Mediterranean Fever and others with glycogen storage disease type 1b (n = 2), XIAP deficiency, chronic granulomatous disease, DOCK8 deficiency, IL10 receptor alpha defect, LRBA deficiency, and NFKB2 deficiency (n = 1 each). A novel SLC29A3 gene variant (c.480_481delTGinsCA, p.V161I) (transcript ID: ENST00000479577.2) was identified in 76.6% (n = 36) of patients. Conclusions: This study underscores the importance of genetic variants in early-onset IBD, particularly MEFV and the novel NFKB2. The frequent detection of the SLC29A3 variant may suggest its potential involvement in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Duygu Demirtas Guner
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Hacer Neslihan Bildik
- Department of Immunology, Institute of Child Health, Pediatric Basic Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Hulya Demir
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, 06230 Ankara, Turkey
| | - Inci Nur Saltik Temizel
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Riza Koksal Ozgul
- Department of Pediatrics and Perinatal Pathological Sciences, Institute of Child Health, Hacettepe University, 06230 Ankara, Turkey
| | - Hayriye Hizarcioglu Gulsen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Cagman Tan
- Department of Immunology, Institute of Child Health, Pediatric Basic Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Begum Cicek
- Department of Immunology, Institute of Child Health, Pediatric Basic Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Hasan Ozen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Aysel Yuce
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University, 06230 Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
8
|
Zhu S, Lv C, Wu P, Li H, Liu L, Zhao K, Zeng L, Xu K. Endothelial progenitor cells improve intestinal homeostasis after hematopoietic stem cell transplantation in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167871. [PMID: 40280201 DOI: 10.1016/j.bbadis.2025.167871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Transplant conditioning regimens disrupt the intestinal barriers, leading to delayed vascularity and impeded the regenerative process. However, our understanding of the specific mechanisms underlying the use of cellular therapy to accelerate revascularization for intestinal repair is currently limited. To address this knowledge gap, we conducted a longitudinal study to investigate the effects and potential benefits of endothelial progenitor cells (EPCs) infusion on the restoration of intestinal homeostasis in a murine model of bone marrow transplantation (BMT). Our results revealed that the EPCs infusion improved the structure status of the intestine, as demonstrated by a well-preserved crypt structure, longer villi, reduced infiltration of inflammatory cells, and increased expression of ZO-1 and MECA-32. Additionally, EPCs infusion resulted in significantly lower proportions of Tc1 and Th1 cells on day 10, as well as a delayed peak in Tc17 cells on day 20, with no differences compared with BMT group thereafter. Moreover, EPCs infusion enhanced the expression of immune regulatory molecules IL-10, IL-17, IL-18, and NLRP6 on day 15. Mechanistically, EPCs infusion up-regulated phos-ERK1/2 and down-regulated phos-p38 MAPK on day 5 (early transplantation). The richness of intestinal microbiota changed significantly, and Erysipelotrichaceae was identified as the main index to differentiate the BMT and EPC treatments, exhibiting a significant negative correlation with IL-10 and IL-18 in the EPC group. Taken together, this study highlights the protective role of EPCs in post-transplantation intestinal damage, and identifies critical immune cells, signaling pathways, and selectively enriched intestinal microbes contributing to the beneficial effects of EPCs during intestinal repair.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China.
| | - Chaoran Lv
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China
| | - Pengjie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Huiqi Li
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China
| | - Lu Liu
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China
| | - Kai Zhao
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Jiangsu 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China.
| |
Collapse
|
9
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2025; 48:501-519. [PMID: 39093342 PMCID: PMC12053372 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
10
|
Fang Z, Yang X, Shang L. Microfluidic-derived montmorillonite composite microparticles for oral codelivery of probiotic biofilm and postbiotics. SCIENCE ADVANCES 2025; 11:eadt2131. [PMID: 40106563 PMCID: PMC11922048 DOI: 10.1126/sciadv.adt2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Oral delivery of probiotics has shown promising effects in modulating the gut microbiota and treating ulcerative colitis (UC). However, the therapeutic efficacy is restricted by gastrointestinal assaults, poor mucosal adhesion, and single therapeutic modality. Here, we developed acid-resistant, gut-environment-responsive composite microparticles based on microfluidic electrospray for the oral codelivery of probiotic [Lactobacillus acidophilus (LA)] biofilm and postbiotics (indole-3-propionic acid). Montmorillonite was selected for supporting biofilm formation due to its cation-exchange capability and clearly defined biosafety. The montmorillonite-LA biofilm was effectively protected by the microparticles and markedly improved the intestinal retention. Upon oral administration, the composite microparticles notably alleviated colitis in mice, including reducing the inflammatory response, improving intestinal barrier function, and modulating the gut microbiota. Consequently, the composite microparticles show high potential for enhancing probiotic delivery efficacy and present a promising strategy for UC treatment.
Collapse
Affiliation(s)
- Zhonglin Fang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Winsor NJ, Bayer G, Singh O, Chan JK, Li LY, Lieng BY, Foerster E, Popovic A, Tsankov BK, Maughan H, Lemire P, Tam E, Streutker C, Chen L, Heaver SL, Ley RE, Parkinson J, Montenegro-Burke JR, Birchenough GMH, Philpott DJ, Girardin SE. Cross-kingdom-mediated detection of intestinal protozoa through NLRP6. Cell Host Microbe 2025; 33:388-407.e9. [PMID: 40043701 DOI: 10.1016/j.chom.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
Intestinal protists are detected by the host innate immune system through mechanisms that remain poorly understood. Here, we demonstrate that Tritrichomonas protozoa induce thickening of the colonic mucus in an NLRP6-, ASC-, and caspase-11-dependent manner, consistent with the activation of sentinel goblet cells. Mucus growth is recapitulated with cecal extracts from Tritrichomonas-infected mice but not purified protozoa, suggesting that NLRP6 may detect infection-induced microbial dysbiosis. In agreement, Tritrichomonas infection causes a shift in the microbiota with the expansion of Bacteroides and Prevotella, and untargeted metabolomics reveals a dramatic increase in several classes of metabolites, including sphingolipids. Finally, using a combination of gnotobiotic mice and ex vivo mucus analysis, we demonstrate that wild-type, but not sphingolipid-deficient, B. thetaiotaomicron is sufficient to induce NLRP6-dependent sentinel goblet cell function, with the greatest effect observed in female mice. Thus, we propose that NLRP6 is a sensor of intestinal protozoa infection through monitoring microbial sphingolipids.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy K Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Brandon Y Lieng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Boyan K Tsankov
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Paul Lemire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elaine Tam
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stacey L Heaver
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - J Rafael Montenegro-Burke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
He G, Liu P, Xuan X, Zhang M, Zhang H, Yang K, Luan Y, Yang Q, Yang J, Li Q, Zheng H, Wang P. Transcription factor ELF-1 protects against colitis by maintaining intestinal epithelium homeostasis. Commun Biol 2025; 8:395. [PMID: 40057592 PMCID: PMC11890729 DOI: 10.1038/s42003-025-07742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, and remitting disease characterized by chronic inflammation in the gastrointestinal tract. The exact etiology and pathogenesis of IBD remain elusive. Although ELF-1 has been known to be highly expressed in epithelial cells for past twenty years, little is known about its function in epithelial cells and epithelial-related IBD. Here, we demonstrated that ELF-1 deficiency in mouse lead to exacerbated DSS-induced colitis, marked by inflammation dominated by neutrophil infiltration and activation of IL-17 signaling pathways in various immune cells, including Th17, ILC3, γδT and NKT cells. Bone marrow transfer experiments confirmed ELF-1 deficiency in non-hematopoietic cells intrinsically worsened DSS-induced colitis. On one hand, ELF-1 deficiency enhanced the production of pro-inflammatory chemokines in colonic epithelial cells, leading to extensive infiltration of neutrophils and other immune cells into the colonic mucosal tissue. On the other hand, ELF-1 directly regulated the expression of the Rack1 gene in colonic epithelial tissue, which has been proved to play critical roles in maintaining intestinal homeostasis. Altogether, ELF-1 plays a protective role in colitis by maintaining intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- Gege He
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pingping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyan Xuan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongxia Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ka Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yusheng Luan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyuan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qianru Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
15
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
16
|
Li Z, He Y, Zhang J, Yang J, Cheng J, Zhang X. The changes of NLRs family members in the brain of AD mouse model and AD patients. Front Immunol 2025; 16:1555124. [PMID: 40066444 PMCID: PMC11891040 DOI: 10.3389/fimmu.2025.1555124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction Alzheimer's disease (AD), a prevalent neurodegenerative disease, is primarily characterized by progressive neuron loss and memory impairment. NOD-like receptors (NLRs) are crucial for immune regulation and maintaining cellular homeostasis. Recently, NLRs have been identified as important contributors to neuroinflammation, thus presenting a potential approach for reducing inflammation and slowing AD progression. Methods We use quantitative RT-PCR to detect levels of NLR family members in AD mouse model. Additionally, we use immunofluorescence to detect NLRP3 expressions in microglia surrounding Aβ plaques in AD mouse model and human AD patients. Results In this study, we examined the expression of NLR family members in the human AD database, and found increased levels of CIITA, NOD1, NLRC5, NLRP1, NLRP3, NLRP7, NLRP10, NLRP12, and NLRP13 in hippocampus tissue in patients with AD, along with increased levels of NOD1, NLRC5, NLRX1, NLRP3, and NLRP7 levels in frontal cortex tissue. Furthermore, through detecting their levels in AD mouse model, we found that NLRP3 levels were significantly increased. Additionally, we found that NLRP3 expressions were mainly elevated in microglia surrounding Aβ plaques in AD mouse model and human AD patients. Discussion These findings highlight the potential important role of NLRP3 in AD pathology, offering new therapeutic targets and interventions.
Collapse
Affiliation(s)
- Zehan Li
- College of Medicine, Yanbian University, Yanji, China
| | - Yanling He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingdan Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Yang
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Jinbo Cheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
17
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Suthisintong T, Changklungmoa N, Kueakhai P. Microbial effects of cold-pressed Sacha inchi oil supplementation in rats. PLoS One 2025; 20:e0319066. [PMID: 39977445 PMCID: PMC11841868 DOI: 10.1371/journal.pone.0319066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Oil supplements have various benefits for metabolism, particularly Sacha inchi oil (SI), which is rich in polyunsaturated fatty acids (PUFAs) such as ω-3 and fat-soluble vitamins. However, the impacts of oil supplements on gut health remain unclear. The aim of this study was to compare the effects of an SI supplement with those of lard oil (LO), known for its high saturated fatty acid content, and a normal diet on gut health in male Sprague Dawley rats for 12 consecutive weeks. Fecal DNA was used to assess gut microbiota diversity and species abundance, diversity, and function prediction. Colon tissue from each rat was examined for colon crypt depth and histology. Rats administered the LO supplement exhibited higher dysbiosis than those administered the SI supplement, with the LO supplement influencing the relative abundance of various bacteria at the genus level. A KEGG analysis was conducted to examine the effects on metabolic pathways, revealing that the SI supplement promoted carbohydrate metabolism while reducing immune system activity. In contrast, the LO supplement increased replication, repair, and translation activities. A histological analysis of the colon tissues showed no significant alterations in crypt depth or lesions in all groups, indicating that neither supplement induced adverse structural changes in the gut. The results of this study suggest that SI supplementation modulates the gut microbiota, thereby enhancing gut health and metabolic function.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Thitikul Suthisintong
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
18
|
Zheng H, Yu J, Gao L, Wang K, Xu Z, Zeng Z, Zheng K, Tang X, Tian X, Zhao Q, Zhao J, Wan H, Cao Z, Zhang K, Cheng J, Brosius J, Zhang H, Li W, Yan W, Shao Z, Luo F, Deng C. S1PR1-biased activation drives the resolution of endothelial dysfunction-associated inflammatory diseases by maintaining endothelial integrity. Nat Commun 2025; 16:1826. [PMID: 39979282 PMCID: PMC11842847 DOI: 10.1038/s41467-025-57124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
G protein-coupled sphingosine-1-phosphate receptor 1 (S1PR1), a drug target for inflammatory bowel disease (IBD), enables immune cells to egress from lymph nodes, but the treatment increases the risk of immunosuppression. The functional signaling pathway triggered by S1PR1 activation in endothelial cells and its therapeutic application remains unclear. Here, we showed that S1PR1 is highly expressed in endothelial cells of IBD patients and positively correlated with endothelial markers. Gi-biased agonist-SAR247799 activated S1PR1 and reversed pathology in male mouse and organoid IBD models by protecting the integrity of the endothelial barrier without affecting immune cell egress. Cryo-electron microscopy structure of S1PR1-Gi signaling complex bound to SAR247799 with a resolution of 3.47 Å revealed the recognition mode for the biased ligand. With the efficacy of SAR247799 in treating other endothelial dysfunction-associated inflammatory diseases, our study offers mechanistic insights into the Gi-biased S1PR1 agonist and represents a strategy for endothelial dysfunction-associated disease treatment.
Collapse
Affiliation(s)
- Huaping Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Luhua Gao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Xu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongwei Cao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology and University Hospital, Macau, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Zhenhua Shao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Su E, Song X, Wei L, Xue J, Cheng X, Xie S, Jiang H, Liu M. Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality. JCI Insight 2025; 10:e182398. [PMID: 39927458 PMCID: PMC11948583 DOI: 10.1172/jci.insight.182398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyue Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lili Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xuelin Cheng
- Department of Health Management Center, Zhongshan Hospital, and
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyao Xie
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ming Liu
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Health Management Center, Zhongshan Hospital, and
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
21
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025; 16:1016-1031. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
22
|
Wang J, Wang L, Lu W, Farhataziz N, Gonzalez A, Xing J, Zhang Z. TRIM29 controls enteric RNA virus-induced intestinal inflammation by targeting NLRP6 and NLRP9b signaling pathways. Mucosal Immunol 2025; 18:135-150. [PMID: 39396665 DOI: 10.1016/j.mucimm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Infections by enteric virus and intestinal inflammation are recognized as a leading cause of deadly gastroenteritis, and NLRP6 and NLRP9b signaling control these infection and inflammation. However, the regulatory mechanisms of the NLRP6 and NLRP9b signaling in enteric viral infection remain unexplored. In this study, we found that the E3 ligase TRIM29 suppressed type III interferon (IFN-λ) and interleukin-18 (IL-18) production by intestinal epithelial cells (IECs) when exposed to polyinosinic:polycytidylic acid (poly I:C) and enteric RNA viruses. Knockout of TRIM29 in IECs was efficient to restrict intestinal inflammation triggered by the enteric RNA viruses, rotavirus in suckling mice, and the encephalomyocarditis virus (EMCV) in adults. This attenuation in inflammation was attributed to the increased production of IFN-λ and IL-18 in the IECs and more recruitment of intraepithelial protective Ly6A+CCR9+CD4+ T cells in small intestines from TRIM29-deficient mice. Mechanistically, TRIM29 promoted K48-linked ubiquitination, leading to the degradation of NLRP6 and NLRP9b, resulting in decreased IFN-λ and IL-18 secretion by IECs. Our findings reveal that enteric viruses utilize TRIM29 to inhibit IFN-λ and inflammasome activation in IECs, thereby facilitating viral-induced intestinal inflammation. This indicates that targeting TRIM29 could offer a promising therapeutic strategy for alleviating gut diseases.
Collapse
Affiliation(s)
- Junying Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Ling Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Wenting Lu
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Naser Farhataziz
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Anastasia Gonzalez
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Junji Xing
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Chen L, Ye Z, Li J, Wang L, Chen Y, Yu M, Han J, Huang J, Li D, Lv Y, Xiong K, Tian D, Liao J, Seidler U, Xiao F. Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation. J Transl Med 2025; 23:55. [PMID: 39806416 PMCID: PMC11727794 DOI: 10.1186/s12967-024-05873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis. METHODS Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). The composition of the microbiota in fecal samples from IBD patients and DSS-colitis mice was characterized via Illumina MiSeq sequencing of the bacterial 16S rRNA gene V3-V4 region. Metagenomic profiling further identified metabolism-related gene signatures in stool samples from DSS-colitis mice. Histological analysis, quantitative PCR (qPCR) and Western Blotting were conducted on colonic samples from DSS-induced colitis mice to assess colonic inflammation, mucosal barrier integrity, and associated signaling pathways. The multivariate analysis of bile acids was conducted using Soft Independent Modelling of Class Analogy (SIMCA, Umetrics, Sweden). The relation between the relative abundance of specific phyla/genera and bile acid concentration was assess through Spearman's correlation analyses. Finally, lithocholic acid (LCA), the key bile acid, was administered via gavage to evaluate its effect on colonic inflammation and mucosal barrier integrity. RESULTS In patients with IBD, the composition of colonic bile acids and gut microbiota was altered. Moreover, changes in the gut microbiota further modulate the composition of bile acids in the intestine. As the gut microbiota continues to shift, the bile acid profile undergoes additional alterations. The aforementioned alterations were also observed in mice with DSS-induced colitis. The study revealed a correlation between dysbiosis of the gut microbiota and modifications in the profile of colonic bile acids, notably LCA observed in both patients with IBD and mice with DSS-induced colitis. Through multivariate analysis, LCA was identified as the key bile acid that significantly affects colonic inflammation and the integrity of mucosal barrier. Subsequent experiments confirmed that LCA supplementation effectively mitigated the inhibitory effects of gut microbiota on colitis progression in mice, primarily through the activation of the sphingosine-1-phosphate receptor 2 (S1PR2)/NF-κB p65 signaling pathway. Analysis of the microbiome and metagenomic data revealed changes in the gut microbiota, notably an increased abundance of an unclassified genus within the family Prevotellaceae in DSS-induced colitis mice. Furthermore, a positive correlation was observed between the relative abundance of Prevotellaceae and bile acid biosynthesis pathways, as well as colonic LCA level. CONCLUSIONS These findings suggest that LCA and its positively correlated gut bacteria, Prevotellaceae, are closely associated with intestinal inflammation. Targeting colonic inflammation may involve inhibiting LCA and members of the Prevotellaceae family as potential therapeutic strategies.
Collapse
Affiliation(s)
- Liping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhenghao Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijia Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jian Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongling Lv
- Meiyitian Biopharmaceutical (Wuhan) Ltd., Wuhan, China
| | - Kai Xiong
- Meiyitian Biopharmaceutical (Wuhan) Ltd., Wuhan, China
| | - De'an Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
24
|
Zhang H, Zhao T, Gu J, Tang F, Zhu L. Gut microbiota and inflammasome-mediated pyroptosis: a bibliometric analysis from 2014 to 2023. Front Microbiol 2025; 15:1413490. [PMID: 39834371 PMCID: PMC11743621 DOI: 10.3389/fmicb.2024.1413490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background The role of gut microbiota in inflammatory disease development and progression has been recognized more recently. Inflammasome-mediated pyroptosis in involved in these diseases. This complex relationship between gut microbiota and inflammasome-mediated pyroptosis provides an important field of research. Bibliometric analysis provides a comprehensive understanding of this relationship, offering valuable insights into emerging research trends. Materials and methods Leveraging data spanning from 2014 to 2023 sourced from the Web of Science Core Collection, our analysis was conducted using advanced tools such as SCImago Graphica, VOSviewer, and CiteSpace software. Visualizations were created using GraphPad Prism software. We explored the nuanced aspects of research hotspots, collaborative networks, and developing trends in this field. Results A global bibliometric analysis identified 520 relevant studies spanning 41 countries and 887 institutions. Over the past decade, publication trends have shown consistent growth, with China and the United States leading the research output. Southern Medical University and Nanjing Medical University in China emerged as leading institutions in this filed. Prominent contributors include Jia Sun, Yuan Zhang, Wei Chen, Jing Wang, and Hongtao Liu from China, alongside Eicke Latz from Germany. High-impact journals such as Frontiers in Immunology and Nature Communications have been pivotal in disseminating research in this domain. Keyword analysis highlighted a primary focus on gut microbiota, NLRP3 inflammasome, pyroptosis pathways, and inflammatory diseases, themes that persist in recent studies. Furthermore, burst keyword analysis identified "butyrate" as the sole term currently experiencing a marked increase in research interest. Conclusion Research has been deeply focused on the gut microbiota and inflammasome triggered pyroptosis in years. Over the past decade, the exploration of how gut microbiota and NLRP3 or NLRP6 inflammasome-mediated pyroptosis has been an area of interest. Future investigations in this filed may primarily revolve around understanding the correlation between butyrate and NLRP3 inflammasome induced pyroptosis in relation to conditions. However, an in-depth analysis, through studies is crucial to uncover and elucidate the complex mechanisms linking these elements.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Tian Zhao
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Juan Gu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Lei Zhu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
26
|
Pandey A, Li Z, Gautam M, Ghosh A, Man SM. Molecular mechanisms of emerging inflammasome complexes and their activation and signaling in inflammation and pyroptosis. Immunol Rev 2025; 329:e13406. [PMID: 39351983 PMCID: PMC11742652 DOI: 10.1111/imr.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1β and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Zheyi Li
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Manjul Gautam
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Aritra Ghosh
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| |
Collapse
|
27
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
28
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
29
|
Abstract
Macrophages, neutrophils, and epithelial cells are pivotal components of the host's immune response against bacterial infections. These cells employ inflammasomes to detect various microbial stimuli during infection, triggering an inflammatory response aimed at eradicating the pathogens. Among these inflammatory responses, pyroptosis, a lytic form of cell death, plays a crucial role in eliminating replicating bacteria and recruiting immune cells to combat the invading pathogen. The immunological function of pyroptosis varies across macrophages, neutrophils, and epithelial cells, aligning with their specific roles within the innate immune system. This review centers on elucidating the role of pyroptosis in resisting gram-negative bacterial infections, with a particular focus on the mechanisms at play in macrophages, neutrophils, and intestinal epithelial cells. Additionally, we underscore the cell type-specific roles of pyroptosis in vivo in these contexts during defense.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Todd J Spears
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
30
|
Sullivan JP, Jones MK. The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease. Int J Mol Sci 2024; 25:13638. [PMID: 39769399 PMCID: PMC11728145 DOI: 10.3390/ijms252413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation. Short-chain fatty acids like butyrate demonstrate anti-inflammatory properties, enhancing regulatory T cell function, gut barrier integrity, and epigenetic regulation, making them promising therapeutic targets for inflammatory bowel disease and colon cancer. Conversely, saturated fatty acids promote inflammation by disrupting gut homeostasis, triggering oxidative stress, and impairing immune regulation. Omega-3 lipids counteract these effects, reducing inflammation and supporting immune balance. Sphingolipids exhibit complex roles, modulating immune cell trafficking and inflammation. They can exert protective effects or exacerbate colitis depending on their source and context. Additionally, eicosanoids can also prevent pathology through prostaglandin defense against damage to epithelial barriers. This review underscores the importance of dietary lipids in shaping gut health and immunity and also highlights the potential use of lipids as therapeutic strategies for managing inflammatory conditions and cancer.
Collapse
Affiliation(s)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
31
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024; 30:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
32
|
Del Chierico F, Masi L, Petito V, Baldelli V, Puca P, Benvenuto R, Fidaleo M, Palucci I, Lopetuso LR, Caristo ME, Carrozza C, Giustiniani MC, Nakamichi N, Kato Y, Putignani L, Gasbarrini A, Pani G, Scaldaferri F. Solute Transporter OCTN1/Slc22a4 Affects Disease Severity and Response to Infliximab in Experimental Colitis: Role of Gut Microbiota and Immune Modulation. Inflamm Bowel Dis 2024; 30:2259-2270. [PMID: 38944815 PMCID: PMC11630256 DOI: 10.1093/ibd/izae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 07/01/2024]
Abstract
BACKGROUND Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Letizia Masi
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valentina Petito
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valerio Baldelli
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pierluigi Puca
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Benvenuto
- Department of Pathology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies Charles Darwin, Università La Sapienza, Rome, Italy
| | - Ivana Palucci
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Loris Riccardo Lopetuso
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Cinzia Carrozza
- Department of Clinical Biochemistry, Laboratory and Infectious Science, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | | | - Noritaka Nakamichi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD), Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Giovambattista Pani
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Franco Scaldaferri
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
33
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
34
|
Zhao Y, Yuan M, Sun X, Wang P, Meng X, Zhang S, Luo W, Zhang M, Gao X. The Chinese herbal prescription Kang-Gong-Yan alleviates cervicitis by modulating metabolites and gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:341-355. [PMID: 39648685 PMCID: PMC11086028 DOI: 10.1080/13880209.2024.2318791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 12/10/2024]
Abstract
CONTEXT Cervicitis is a common gynecological inflammatory disease. The Chinese herbal prescription Kang-Gong-Yan (KGY) is clinically effective against cervicitis; however, the chemical constituents and therapeutic mechanism of KGY remain elusive. OBJECTIVE To analyze the chemical constituents of KGY and explore the potential mechanism of KGY in treating cervicitis. MATERIALS AND METHODS UHPLC-Q-Exactive Plus Orbitrap MS was used to identify the active compounds of KGY; Sprague-Dawley (SD) female rats were randomly divided into the control, model, and KGY groups. Phenol mucilage (25%) was slowly injected into the vagina and cervix of the rats to establish the cervicitis model. Then, rats in the KGY groups (low dose: 1 g/kg/d; medium dose: 5 g/kg/d; high dose: 10 g/kg/d) were continuously gavaged KGY for one week. HE staining was used to observe the cervical tissues of rats; ELISA was used to detect inflammatory factors in plasma; non-targeted metabolomics was used to analyze metabolites; 16S rRNA sequencing was used to analyze intestinal microorganisms. RESULTS KGY exerted anti-cervicitis effects and decreased the levels of IL-6, IL-1β, and TNF-α. The mechanism of KGY in treating cervicitis is mainly associated with betaine, amino acid, pyrimidine, and phospholipid metabolism by regulating fifteen metabolites. Moreover, KGY reversed cervicitis-induced gut dysbiosis by mediating five bacteria. DISCUSSION AND CONCLUSIONS The Chinese herbal prescription KGY may alleviate cervicitis by modulating metabolites and gut microbiota disorders. These findings provide a scientific basis for the clinical application of KGY and a new strategy for treating cervicitis in Chinese medicine.
Collapse
Affiliation(s)
- Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaoxia Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Wei Luo
- Guizhou Huizheng Pharmaceutical Co., Ltd, Qiannan, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
35
|
Chen J, Mei MS, Yu Y, Zhao Y, Gong H, Chen W, Qiu B, Shi S, Dilixiati M, Wang S, Wang H. Elegant approach to intervention of homogalacturonan from the fruits of Ficus pumila L. in colitis: Unraveling the role of methyl esters and acetyl groups. Int J Biol Macromol 2024; 283:137793. [PMID: 39557266 DOI: 10.1016/j.ijbiomac.2024.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Oral administration of homogalacturonan (HG) has shown significant potential in anti-colitis activity, yet the therapeutic efficacy of naturally sourced HG still requires enhancement. Herein, HG from the fruits of Ficus pumila L. was modified by chemical methods and the intervention effect of modified HG with different degrees of methyl-esterification (DM) and acetylation (DA) on dextran sulfate sodium-induced colitis in mice was explored. Our results indicated that low-DM HG (DM3 and DM25) primarily mitigated colitis by reducing inflammation (TNF-α, IL-1β, IL-17, and IL-6), while high-DM HG (DM54 and DM94) primarily repaired the intestinal barrier. These effects may be attributed to the differential regulation of gut microbiota by HG with varying DM, such as Lachnospiraceae_NK4A136_group, Lactobacillus, Mucispirillum, Escherichia-Shigella, Bifidobacterium, and Bacteroides. Increased DA reduced the solubility of HG, showing limited anti-inflammatory response but unique advantages in intestinal barrier repair and microbiome regulation (Bifidobacterium, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Mucispirillum, and Escherichia-Shigella). Furthermore, various structural parameters and substitution degrees showed no significant impact on HG's regulation of oxidative stress reactions. This study emphasized the importance of substituent effect in determining HG's functional role, providing a robust foundation for the design and development of functional polysaccharides for the prevention of intestinal inflammation and other related conditions.
Collapse
Affiliation(s)
- Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ming-Shun Mei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
36
|
Liu J, Wang X, Huang L, Lin X, Yin W, Chen M. Causal relationships between gut microbiome and aplastic anemia: a Mendelian randomization analysis. Hematology 2024; 29:2399421. [PMID: 39240224 DOI: 10.1080/16078454.2024.2399421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Previous observational studies have hinted at a potential correlation between aplastic anemia (AA) and the gut microbiome. However, the precise nature of this bidirectional causal relationship remains uncertain. METHODS We conducted a bidirectional two-sample Mendelian randomization (MR) study to investigate the potential causal link between the gut microbiome and AA. Statistical analysis of the gut microbiome was based on data from an extensive meta-analysis (genome-wide association study) conducted by the MiBioGen Alliance, involving 18,340 samples. Summary statistical data for AA were obtained from the Integrative Epidemiology Unit database. Single -nucleotide polymorphisms (SNPs) were estimated and summarized using inverse variance weighted (IVW), MR Egger, and weighted median methods in the bidirectional MR analysis. Cochran's Q test, MR Egger intercept test, and sensitivity analysis were employed to assess SNP heterogeneity, horizontal pleiotropy, and stability. RESULTS The IVW analysis revealed a significant correlation between AA and 10 bacterial taxa. However, there is currently insufficient evidence to support a causal relationship between AA and the composition of gut microbiome. CONCLUSION This study suggests a causal connection between the prevalence of specific gut microbiome and AA. Further investigation into the interaction between particular bacterial communities and AA could enhance efforts in prevention, monitoring, and treatment of the condition.
Collapse
Affiliation(s)
- Juan Liu
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Xin Wang
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Liping Huang
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Xinlu Lin
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Wei Yin
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Mingliang Chen
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, People's Republic of China
| |
Collapse
|
37
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. Cell Rep 2024; 43:114891. [PMID: 39500329 PMCID: PMC11660937 DOI: 10.1016/j.celrep.2024.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 10/03/2024] [Indexed: 11/13/2024] Open
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate [βHB]) rescued EAE, whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 cell activation in vitro. Finally, we isolated an L. murinus strain that protected from EAE, which was phenocopied by a Lactobacillus metabolite enriched by βHB supplementation, indole lactate. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
Affiliation(s)
- Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel Rock
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diego Orellana
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Yan Ang
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Caroline Whitty
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessie A Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Darren Dumlao
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renuka Nayak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Andrew Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter A Crawford
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623322. [PMID: 39605466 PMCID: PMC11601347 DOI: 10.1101/2024.11.13.623322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The epigenetic mechanisms driving persistent gastrointestinal mucosal dysfunction in HIV/SIV infection is an understudied topic. Using reduced-representation bisulfite sequencing, we identified HIV/SIV infection in combination anti-retroviral therapy (cART)-naive rhesus macaques (RMs) to induce marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response ( NLRP6, cGAS ), cellular adhesion and proliferation in colonic epithelial cells (CEs). Moreover, low-dose delta-9-tetrahydrocannabinol (THC) administration reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In cART suppressed SIV-infected RMs, NLRP6 protein upregulation associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, supplementing cART with THC effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. These findings for the first time demonstrate that NLRP6 upregulation and ensuing activation of necroptosis promote HIV/SIV-induced gastrointestinal mucosal dysfunction and that epigenetic modulation using phytocannabinoids represents a feasible therapeutic modality for alleviating HIV/SIV-induced gastrointestinal inflammation and associated comorbidities.
Collapse
|
39
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
40
|
Chen X, Chen Y, Zhang Y, Zhang Y, Wang Y, Li Y, Sun Y, Meng G, Yang G, Li H. ZG16 impacts gut microbiota-associated intestinal inflammation and pulmonary mucosal function through bacterial metabolites. Int Immunopharmacol 2024; 141:112995. [PMID: 39191121 DOI: 10.1016/j.intimp.2024.112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Zymogen granule 16 (ZG16) is a secretory glycoprotein found in zymogen granules, which also plays an important role in colorectal inflammation and cancer. Herein, a ZG16 gene knock-out (ZG16-/-) mouse line was established and we found that ZG16 deletion damaged the intestinal mucosal barrier and gut microbiota, which resulted in low-level inflammation and further promoted the development of ulcerative colitis and inflammation-related colorectal cancer. Meanwhile, a metabolomics analysis on mouse feces showed that the metabolites significantly differed between ZG16-/- and WT mice, which were important mediators of host-microbiota communication and may impact the pulmonary inflammation of mice. Indeed, ZG16-/- mice showed more severe inflammation in a bronchial asthma model. Taken together, the results demonstrate that ZG16 plays a pivotal role in inhibiting inflammation and regulating immune responses in colorectum and lung of experimental animals, which may provide a better understanding of the underlying mechanism of human inflammatory diseases associated with ZG16.
Collapse
Affiliation(s)
- Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yixin Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yao Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yingjia Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yaqi Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Guangxun Meng
- The Center for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China; The Center for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, PR China.
| |
Collapse
|
41
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 PMCID: PMC11881887 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
42
|
Xiao X, Singh A, Giometto A, Brito IL. Segatella clades adopt distinct roles within a single individual's gut. NPJ Biofilms Microbiomes 2024; 10:114. [PMID: 39465298 PMCID: PMC11514259 DOI: 10.1038/s41522-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Segatella is a prevalent genus within individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on its genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to Segatella isolates either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related Segatella isolates, extending this to host-microbe interactions.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Tan J, Zhang S, Jiang Y, Li J, Yang C. Plant-based diet and risk of all-cause mortality: a systematic review and meta-analysis. Front Nutr 2024; 11:1481363. [PMID: 39507899 PMCID: PMC11537864 DOI: 10.3389/fnut.2024.1481363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective A systematic analysis was conducted to determine the relationship between a plant-based diet and all-cause mortality. Methods The PubMed, Embase and Web of Science databases were searched. Two authors selected English documents from the database. Then the other two authors extracted the data and evaluated the Newcastle-Ottawa Scale (NOS). This study adhered to the guidelines of the Preferred Reporting Project (PRISMA) and the PROSPERO Registry protocols. A mixed-effects model combined maximum adjusted estimates, with heterogeneity measured using the I2 statistic. The sensitivity analysis validated the analysis's robustness, while publication bias was assessed. Results The results of the meta-analysis of 14 articles revealed that a plant-based diet (PDI) can reduce cancer mortality (RR = 0.88, [95% CI 0.79-0.98], τ2: 0.02, I2: 84.71%), cardiovascular disease (CVD) mortality (RR = 0.81, [95% CI 0.76-0.86], τ2: 0.00, I2: 49.25%) and mortality (RR = 0.84, [95% CI 0.79-0.89], τ2: 0.01, I2: 81.99%) risk. Adherence to a healthy plant-based diet (hPDI) was negatively correlated with cancer mortality (RR = 0.91, [95% CI 0.83-0.99], τ2:0.01, I2:85.61%), CVD mortality (RR = 0.85, [95% CI 0.77-0.94], τ2: 0.02, I2: 85.13%) and mortality (RR = 0.85, [95% CI 0.80-0.90], τ2: 0.01, I2: 89.83%). An unhealthy plant-based diet (uPDI) was positively correlated with CVD mortality (RR = 1.19, [95% CI 1.07-1.32], τ2: 0.02, I2: 80.03%) and mortality (RR = 1.18, [95% CI 1.09-1.27], τ2: 0.01, I2: 89.97%) and had a certain correlation with cancer mortality (RR = 1.10, [95% CI 0.97-1.26], τ2: 0.03, I2: 93.11%). Sensitivity analysis showed no contradictory results. Conclusion The hPDI was negatively associated with all-cause mortality, and the uPDI was positively associated with all-cause mortality. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#loginpage.
Collapse
Affiliation(s)
- Junwen Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shipeng Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanjie Jiang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
45
|
Pan S, Yan H, Zhu J, Ma Y, Wang P, Liu Y, Chen Z. GYY4137, as a slow-releasing H 2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol 2024; 15:1476407. [PMID: 39508040 PMCID: PMC11539038 DOI: 10.3389/fphar.2024.1476407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Numerous studies have revealed that a long-term high-fat diet can raise intestinal deoxycholate acid concentration, which can harm intestinal mucosal barrier function in several ways. This study aims to verify the protective effect of GYY4137, as a slow-releasing H2S donor, on microbiome disturbance and the chronic injury of the intestinal mucosal barrier function caused by sodium deoxycholate. Methods Caco-2 monolayer and mouse models were treated with a relatively high concentration of sodium deoxycholate (1.0 mM and 0.2%, respectively) for longer periods (32 h and 12 weeks, respectively) to understand the effects of GYY4137 on sodium deoxycholate-induced chronic intestinal barrier dysfunction and its fundamental mechanisms. Results A relatively long period of sodium deoxycholate treatment can remarkably increase the intestinal barrier permeability, alter the distribution and expression of tight junction proteins and generate the production of pro-inflammatory cytokines (TNF-α and IL-1β) in the Caco-2 monolayers and mouse models. Moreover, it can activate the MLCK-P-MLC2 pathway in the Caco-2 monolayers, which was further confirmed using RNA sequencing. The body weight, intestinal barrier histological score, and TUNEL index of sodium deoxycholate-treated mice worsened. In addition, an induced microbiome imbalance was observed in these mice. The above variations can be reversed with the administration of GYY4137. Conclusion This study demonstrates that GYY4137 ameliorates sodium deoxycholate-induced chronic intestinal barrier injury by restricting the MLCK-P-MLC2 pathway while elevating the expression level of tight junction proteins, anti-apoptosis and maintaining the microbiome's homeostasis.
Collapse
Affiliation(s)
- Shaorong Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Zhu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yuanyuan Ma
- Animal Experiment Center, Peking University First Hospital, Peking University, Beijing, China
| | - Pengyuan Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yucun Liu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Zeyang Chen
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
46
|
Wang Q, Ren Z, Zhao J, Zheng T, Tong L, Liu J, Dai Z, Tang S. Mechanism and Application Prospects of NLRC3 Regulating cGAS-STING Pathway in Lung Cancer Immunotherapy. Int J Med Sci 2024; 21:2613-2622. [PMID: 39439455 PMCID: PMC11492878 DOI: 10.7150/ijms.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
NLRC3, a negative regulator, exhibits considerable potential in the realm of lung cancer immunotherapy by virtue of its profound impact on the immune response intensity, primarily through its regulatory effects on the cGAS-STING pathway. The inhibition of NLRC3 has been found to augment the activity of the aforementioned pathway, thereby enhancing the anti-tumor immune response. This comprehensive review endeavors to elucidate the molecular and genetic structures of NLRC3, its role within the immune system, and its interaction with the cGAS-STING pathway, with a particular emphasis on its potential applications in lung cancer immunotherapy. Existing research underscores NLRC3's capacity to mitigate excessive immune responses via the negative regulation of the cGAS-STING pathway, thus underscoring its significant regulatory role in lung cancer immunotherapy. The development of pharmaceutical interventions and gene therapy strategies targeting NLRC3 presents a promising avenue for the creation of novel therapeutic options for individuals afflicted with lung cancer. Nonetheless, the clinical application of these therapies is confronted with both technical and biological challenges. This review aims to provide a theoretical foundation for related research endeavors and delineate future research directions in this field.
Collapse
Affiliation(s)
- Qichao Wang
- Dalian Medical University, Dalian 116044, Liaoning, China
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhen Ren
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Jianing Zhao
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Tianliang Zheng
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Lifei Tong
- Department of Radiotherapy, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Jing Liu
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhaoxia Dai
- Department of Thoracic Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Shuhong Tang
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| |
Collapse
|
47
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
48
|
Yang J, Liang J, Hu N, He N, Liu B, Liu G, Qin Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer's Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther 2024; 30:e70091. [PMID: 39460538 PMCID: PMC11512114 DOI: 10.1111/cns.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, commonly linked to amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut microbiota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis. METHODS This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical trials, and animal studies. Keywords such as "gut microbiota," "Alzheimer's disease," "neuroinflammation," and "blood-brain barrier" were used. RESULTS Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related mechanisms, including neuroinflammation, blood-brain barrier integrity, and neurotransmitter regulation. These disruptions may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology. CONCLUSIONS The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression. Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Jianshe Yang
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Niyuan Hu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ningjuan He
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Guoliang Liu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ying Qin
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| |
Collapse
|
49
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
50
|
van Lingen E, Nooij S, Terveer EM, Crossette E, Prince AL, Bhattarai SK, Watson A, Galazzo G, Menon R, Szabady RL, Bucci V, Norman JM, van der Woude CJ, van der Marel S, Verspaget HW, van der Meulen-de Jong AE, Keller JJ. Faecal Microbiota Transplantation Engraftment After Budesonide or Placebo in Patients With Active Ulcerative Colitis Using Pre-selected Donors: A Randomized Pilot Study. J Crohns Colitis 2024; 18:1381-1393. [PMID: 38572716 PMCID: PMC11369067 DOI: 10.1093/ecco-jcc/jjae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/30/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Faecal microbiota transplantation [FMT] shows some efficacy in treating patients with ulcerative colitis [UC], although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS Patients ≥18 years old with mild to moderate active UC were randomly assigned to 3 weeks of budesonide [9 mg] or placebo followed by 4-weekly infusions of a donor faeces suspension. Two donors were selected based on microbiota composition, regulatory T cell induction and short-chain fatty acid production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment [p = 0.56] nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 [42%] patients achieved [partial] remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response [80% of responders, p < 0.05] but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared to be donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in UC.
Collapse
Affiliation(s)
- Emilie van Lingen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Shakti K Bhattarai
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | | | | | - Rose L Szabady
- Vedanta Biosciences, Cambridge, MA, USA
- Ferring Pharmaceuticals, San Diego, CA, USA
| | - Vanni Bucci
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander van der Marel
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josbert J Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| |
Collapse
|