1
|
Ma K, Li F, Su B, Liu L, Xiang S, Zhou S, Luo J, Xiong W, Bian Z, Yan J, Liu G, Cai S, Zhou T, Liang X, Li F, Tan C, Wang L. Low-protein diet supplemented with isomalto-oligosaccharide reduces diarrhea rate of weaned piglets by regulating intestinal function. J Food Sci 2025; 90:e70200. [PMID: 40205823 DOI: 10.1111/1750-3841.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Excess protein in infant formula can harm the health of infants. Isomalto-oligosaccharide (IMO), a prebiotic, can be incorporated into infant formula. This study employed weaned piglets as a model to establish varying protein levels, investigating the impact of IMO in low-protein diets on the intestinal health. A total of 192 weaned piglets were randomly assigned to four groups, with each group containing six pens of eight piglets each. The control group was fed a diet containing 19% crude protein (CP), while the other three experimental groups were supplemented with 0.2% IMO, with CP levels of 19%, 18%, and 17%, respectively. The experiment lasted 28 days, with one piglet from each pen slaughtered at the end. There were no differences in growth performance among the groups. Nonetheless, the diarrhea rate in an 18% protein diet supplemented with IMO (18CP + IMO group) was reduced during d1-21 and 1-28 (p < 0.05). The diarrhea rate and the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF) showed a quadratic correlation (p < 0.05). Meanwhile, 18CP + IMO group showed that the ATTD of dry matter and ADF increased (p < 0.05); the crypt depth of the jejunum decreased (p < 0.05), while the expression of intestinal barrier (ZO-1) and intestinal development (CDX2) related genes increased (p < 0.05); the abundance of beneficial bacteria (Bifidobacterium) increased (p = 0.06). Compared with 19CP group, the other three groups had lower contents of indole and skatole (p < 0.05). Our results showed that supplementing an 18% CP diet with 0.2% IMO decreased diarrhea incidence in weaned piglets, enhanced nutrient digestibility, intestinal barrier and microbiota, and reduced harmful metabolite production.
Collapse
Affiliation(s)
- Kaidi Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fuyong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shizhe Xiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shijian Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinxi Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenyu Xiong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhaowei Bian
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanbao Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shenghuang Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tong Zhou
- Guangzhou Pucheng Biological Technology Co., Guangzhou, China
| | - Xide Liang
- Baolingbao Biology Co., Ltd, Dezhou, China
| | - Facai Li
- Baolingbao Biology Co., Ltd, Dezhou, China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Kim S, Ndwandwe C, Devotta H, Kareem L, Yao L, O'Mahony L. Role of the microbiome in regulation of the immune system. Allergol Int 2025; 74:187-196. [PMID: 39955207 DOI: 10.1016/j.alit.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
Immune health and metabolic functions are intimately connected via diet and the microbiota. Immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important mucosal and systemic ramifications. Microbial fermentation of dietary components in vivo generates thousands of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory or hyper-reactive processes and promote effector immune responses that quickly eliminate pathogens, such as SARS-CoV-2. Potent tolerance mechanisms should ensure that these immune cells do not over-react to non-pathogenic factors (e.g. food proteins), while maintaining the ability to respond to infectious challenges in a robust, effective and well controlled manner. In this review we examine the factors and mechanisms that shape microbiota composition and interactions with the host immune system, their associations with immune mediated disorders and strategies for intervention.
Collapse
Affiliation(s)
- Songhui Kim
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cebile Ndwandwe
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah Devotta
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lamiah Kareem
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lu Yao
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Lee Y, Yoon Y, Choi KH. Correlation of periodontitis with hepatic and intestinal inflammation and glycemic control, and effects of bioconverted Artemisia herba-alba by Lactiplantibacillus plantarum SMFM2016-RK. J Oral Microbiol 2025; 17:2473246. [PMID: 40099142 PMCID: PMC11912291 DOI: 10.1080/20002297.2025.2473246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/20/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Periodontitis has been linked to systemic inflammation, however research on its role in causing systemic diseases remains limited. Recent studies explore probiotics for microbiome modulation and enhancing natural compound bioavailability. This study investigated periodontitis-related systemic disease mechanisms, and evaluated the mitigation effects of bioconversion product using Lactiplantibacillus plantarum SMFM2016-RK and Artemisia herba-alba extracts. Four types of bioconverted milk [BM1 (L. plantarum SMFM2016-RK), BM2 (BM1 + A. herba-alba ethanol extract), BM3 (BM1 + A. herba-alba hot-water extract), and BM4 (BM1+ both A. herba-alba extracts)] were studied in a periodontitis-induced rat model. Rats were divided into six groups: normal control, skim milk with ligature, and four BM groups with ligature. Periodontitis induction elevated trabecular resorption (0.325 ± 0.057 mm³) and histopathological symptoms. Serum ALT (55.6 ± 6.6 U/L), glucose (261.7 ± 64.3 mg/dL), insulin (1.90 ± 0.87 ng/mL), inflammation in the liver and colon, and gluconeogenesis-related enzyme expression increased. Periodontitis-induced rats showed gut dysbiosis, with decreased Lactobacillaceae level and increased Oscillospiraceae level. BM3 administration significantly reduced the serum glucose (190.9 ± 27.8 mg/dL), ALT (40.5 ± 5.0 U/L), inflammation, and gluconeogenesis-related enzymes, while increasing tight junction proteins expression and phylum Actinobacteria levels in the gut microbiome. The findings highlight the systemic impact of periodontitis on inflammation, glycemic control, and gut microbiome balance. BM3 effectively alleviated these effects suggesting therapeutic potential.
Collapse
Affiliation(s)
- Yewon Lee
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Korea
| |
Collapse
|
4
|
Huang L, Zhang Z, Zhang F, Zhang W, Meng X, Jian T, Ding X, Chen J. Amelioration of metabolic syndrome in high-fat diet-fed mice by total sesquiterpene lactones of chicory via modulation of intestinal flora and bile acid excretion. Food Funct 2025; 16:1830-1846. [PMID: 39930909 DOI: 10.1039/d4fo05633g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chicory (Cichorium intybus L.) is a commonly used vegetable in Europe and is also regarded as a plant for both medicinal and edible uses in China. Chicory exhibits a substantial abundance of sesquiterpene lactone compounds within its composition. The prevalence of metabolic syndrome (MetS) is increasing and has become a global public health issue threatening the well-being of the general population. Recent studies have identified plant secondary metabolites as potential substances for treating MetS. Sesquiterpene lactones, a type of secondary metabolite with diverse biological activities, have been reported to exhibit anti-inflammatory effects, reduce lipid accumulation, and normalize blood glucose levels. However, the therapeutic effects of chicory sesquiterpene lactones on MetS remain to be explored, and little is known about sesquiterpene lactones' effects on intestinal flora and bile acids (BAs). Therefore, the effects of total sesquiterpene lactones (TSLs) from chicory on metabolic disorders, intestinal flora, and BAs were investigated in this study. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, followed by administration of TSLs, total chicory extract (TCE), and pioglitazone (Pio) for another 8 weeks. TSL, TCE, and Pio interventions reduced body weight gain, hepatic lipid accumulation, and lipogenesis in HFD-fed mice and attenuated plasma biochemical parameters. Among them, TSLs exhibited more significant effects, prompting further analysis of their impact on intestinal flora and bile acid metabolism. TSL intervention influenced the composition and structure of intestinal flora and BAs. TSL intervention impacted the composition and structure of the intestinal flora, characterized by a decrease in the abundances of Allobaculum, unidentified_Coriobacteriaceae, and Odoribacter, while the abundances of Prevotella, unidentified_Erysipelotrichaceae and Akkermansia were increased. Additionally, the levels of BAs TCDCA, GDCA, UDCA, 12-ketoLCA, 7-ketoLCA, and 6,7-diketoLCA were reduced. The research results indicated that TSLs from chicory may serve as potential agents for regulating metabolic abnormalities associated with MetS, as their effects can influence intestinal flora and BAs. The conclusions of this study are expected to open new research trajectories in the field of food science and nutrition, providing a solid scientific basis and innovative intervention approaches for the development of strategies targeting MetS prevention and management.
Collapse
Affiliation(s)
- Lushi Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengqi Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weichen Zhang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
5
|
Wang Y, Liu J. Interplay between creeping fat and gut microbiota: A brand-new perspective on fecal microbiota transplantation in Crohn's disease. World J Gastroenterol 2025; 31:100024. [PMID: 39811513 PMCID: PMC11684198 DOI: 10.3748/wjg.v31.i2.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD. While numerous studies have indicated that dysbiosis of the gut microbiota is a critical factor in the development of CD, the functional implications of translocated microbiota within the MAT of CD patients remain ambiguous. This manuscript commentary discusses a recent basic research conducted by Wu et al. In their study, intestinal bacteria from individuals were transplanted into CD model mice, revealing that fecal microbiota transplantation (FMT) from healthy donors alleviated CD symptoms, whereas FMT from CD patients exacerbated these symptoms. Importantly, FMT was found to affect intestinal permeability, barrier function, and the levels of proinflammatory factors and adipokines. Collectively, these findings suggest that targeting MAT and CrF may hold therapeutic potential for patients with CD. However, the study did not evaluate the composition of the intestinal microbiota of the donors or the subsequent alterations in the gut microbiota. Overall, the gut microbiota plays a crucial role in the histopathology of CD, and thus, targeting MAT and CrF may represent a promising avenue for treatment in this patient population.
Collapse
Affiliation(s)
- Ying Wang
- Department of Life Sciences and Medicine, South District of Endoscopic Center, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jie Liu
- Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
6
|
Pusa T, Rousu J. Stable biomarker discovery in multi-omics data via canonical correlation analysis. PLoS One 2024; 19:e0309921. [PMID: 39250478 PMCID: PMC11383239 DOI: 10.1371/journal.pone.0309921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Multi-omics analysis offers a promising avenue to a better understanding of complex biological phenomena. In particular, untangling the pathophysiology of multifactorial health conditions such as the inflammatory bowel disease (IBD) could benefit from simultaneous consideration of several omics levels. However, taking full advantage of multi-omics data requires the adoption of suitable new tools. Multi-view learning, a machine learning technique that natively joins together heterogeneous data, is a natural source for such methods. Here we present a new approach to variable selection in unsupervised multi-view learning by applying stability selection to canonical correlation analysis (CCA). We apply our method, StabilityCCA, to simulated and real multi-omics data, and demonstrate its ability to find relevant variables and improve the stability of variable selection. In a case study on an IBD microbiome data set, we link together metagenomics and metabolomics, revealing a connection between their joint structure and the disease, and identifying potential biomarkers. Our results showcase the usefulness of multi-view learning in multi-omics analysis and demonstrate StabilityCCA as a powerful tool for biomarker discovery.
Collapse
Affiliation(s)
- Taneli Pusa
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Juho Rousu
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
7
|
Feng H, Zhang K, Zhang J, Wang X, Guo Z, Wang L, Chen F, Han S, Li J. The alleviating effect of Phillygenin on the regulation of respiratory microbiota and its metabolites in IBV-infected broilers by inhibiting the TLR7/MyD88/NF-κB axis. FASEB J 2024; 38:e23882. [PMID: 39143727 DOI: 10.1096/fj.202400168rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phillygenin (PHI) is an active ingredient derived from the leaf of Forsythia suspensa that has been found to alleviate inflammation and peroxidation response. Avian infectious bronchitis (IB) is a major threat to poultry industry viral respiratory tract disease that infected with infectious bronchitis virus (IBV). This study investigated the protection of PHI to CEK cell and broiler's tracheal injury triggered by avian infectious bronchitis virus (IBV). The results showed that IBV infection did not cause serious clinical symptoms and slowing-body weight in PHI-treated broilers. The expression of virus loads, pro-inflammation factors (IL-6, TNF-α, and IL-1β) in CEK cell, and tracheas were decreased compared to the IBV group, exhibiting its potent anti-inflammation. Mechanistically, the study demonstrated that the inhibition of TLR7/MyD88/NF-κB pathway was mainly involved in the protection effect of PHI to inflammation injury. Interestingly, a higher abundance of Firmicutes and Lactobacillus in respiratory tract was observed in PHI-treated broilers than in the IBV group. Significant differences were observed between the IBV group and PHI-treated group in the Ferroptosis, Tryptophan metabolism, and Glutathione metabolism pathways. PHI exhibited potent protection effect on IBV infection and alleviated inflammation injury, mainly through inhibiting TLR7/MyD88/NF-κB pathway. The study encourages further development of PHI, paving the way to its clinical use as a new candidate drug to relieve IBV-induced respiratory symptoms.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhiting Guo
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Fubing Chen
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Songwei Han
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Labib MM, Alqahtani AM, Abo Nahas HH, Aldossari RM, Almiman BF, Ayman Alnumaani S, El-Nablaway M, Al-Olayan E, Alsunbul M, Saied EM. Novel Insights into the Antimicrobial and Antibiofilm Activity of Pyrroloquinoline Quinone (PQQ); In Vitro, In Silico, and Shotgun Proteomic Studies. Biomolecules 2024; 14:1018. [PMID: 39199405 PMCID: PMC11352295 DOI: 10.3390/biom14081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.
Collapse
Affiliation(s)
- Mai M. Labib
- Department of Bioinformatics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Cairo 12619, Egypt;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Bandar Fahad Almiman
- Biology Department, College of Science, Al-Baha University, Al Bahah 65779, Saudi Arabia;
| | - Sarah Ayman Alnumaani
- Department of Medical Microbiology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
9
|
Mulder D, Jakobi B, Shi Y, Mulders P, Kist JD, Collard RM, Vrijsen JN, van Eijndhoven P, Tendolkar I, Bloemendaal M, Arias Vasquez A. Gut microbiota composition links to variation in functional domains across psychiatric disorders. Brain Behav Immun 2024; 120:275-287. [PMID: 38815661 DOI: 10.1016/j.bbi.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Changes in microbial composition are observed in various psychiatric disorders, but their specificity to certain symptoms or processes remains unclear. This study explores the associations between the gut microbiota composition and the Research Domain Criteria (RDoC) domains of functioning, representing symptom domains, specifically focusing on stress-related and neurodevelopmental disorders in patients with and without psychiatric comorbidity. METHODS The gut microbiota was analyzed in 369 participants, comprising 272 individuals diagnosed with a mood disorder, anxiety disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, and/or substance use disorder, as well as 97 psychiatrically unaffected individuals. The RDoC domains were estimated using principal component analysis (PCA) with oblique rotation on a range of psychiatric, psychological, and personality measures. Associations between the gut microbiota and the functional domains were assessed using multiple linear regression and permanova, adjusted for age, sex, diet, smoking, medication use and comorbidity status. RESULTS Four functional domains, aligning with RDoC's negative valence, social processes, cognitive systems, and arousal/regulatory systems domains, were identified. Significant associations were found between these domains and eight microbial genera, including associations of negative valence with the abundance of the genera Sellimonas, CHKCI001, Clostridium sensu stricto 1, Oscillibacter, and Flavonifractor; social processes with Sellimonas; cognitive systems with Sporobacter and Hungatella; and arousal/regulatory systems with Ruminococcus torques (all pFDR < 0.05). CONCLUSION Our findings demonstrate associations between the gut microbiota and the domains of functioning across patients and unaffected individuals, potentially mediated by immune-related processes. These results open avenues for microbiota-focused personalized interventions, considering psychiatric comorbidity. However, further research is warranted to establish causality and elucidate mechanistic pathways.
Collapse
Affiliation(s)
- Danique Mulder
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Babette Jakobi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Yingjie Shi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Josina D Kist
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rose M Collard
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Janna N Vrijsen
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Pro Persona Mental Health Care, Depression Expertise Center, Nijmegen, the Netherlands
| | - Phillip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Li X, Xu B, Yang H, Zhu Z. Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study. Genes (Basel) 2024; 15:729. [PMID: 38927665 PMCID: PMC11203100 DOI: 10.3390/genes15060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.
Collapse
Affiliation(s)
- Xiuzhi Li
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Bingchen Xu
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Han Yang
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Zhihua Zhu
- State Key Laboratory of Oncology in South China, Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
11
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
12
|
Zhang L, Agrawal M, Ng SC, Jess T. Early-life exposures and the microbiome: implications for IBD prevention. Gut 2024; 73:541-549. [PMID: 38123972 PMCID: PMC11150004 DOI: 10.1136/gutjnl-2023-330002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The early-life period is one of microbiome establishment and immune maturation. Early-life exposures are increasingly being recognised to play an important role in IBD risk. The composition of functions of the gut microbiome in the prenatal, perinatal, and postnatal period may be crucial towards development of health or disease, including IBD, later in life. We herein present a comprehensive summary of the interplay between early-life factors and microbiome perturbations, and their association with risk of IBD. In addition, we provide an overview of host and external factors in early life that are known to impact gut microbiome maturation and exposures implicated in IBD risk. Considering the emerging concept of IBD prevention, we propose strategies to minimise maternal and offspring exposure to potentially harmful variables and recommend protective measures during pregnancy and the postpartum period. This holistic view of early-life factors and microbiome signatures among mothers and their offspring will help frame our current understanding of their importance towards IBD pathogenesis and frame the roadmap for preventive strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, New York, USA
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
13
|
Feng H, Zhang J, Wang X, Guo Z, Wang L, Zhang K, Li J. Baicalin Protects Broilers against Avian Coronavirus Infection via Regulating Respiratory Tract Microbiota and Amino Acid Metabolism. Int J Mol Sci 2024; 25:2109. [PMID: 38396786 PMCID: PMC10888704 DOI: 10.3390/ijms25042109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| |
Collapse
|
14
|
K I, Y M, A N, D S, G G, R S, D G, V SN, O S, M F, S R, S O, J MG, A M. Cognitive behavioral and mindfulness with daily exercise intervention is associated with changes in intestinal microbial taxa and systemic inflammation in patients with Crohn's disease. Gut Microbes 2024; 16:2337269. [PMID: 38591914 PMCID: PMC11005811 DOI: 10.1080/19490976.2024.2337269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease associated with psychological distress and intestinal microbial changes. Here, we examined whether a 3-month period of Cognitive Behavioral and Mindfulness with Daily Exercise (COBMINDEX) intervention, which improves the wellbeing and inflammatory state of CD patients, may also affect their gut microbiome. Gut microbiota, circulating inflammatory markers and hormones were analyzed in 24 CD patients before (T1) and after 3 months of COBMINDEX (T2), and in 25 age- and sex-matched wait-list control patients at the corresponding time-points. Microbiota analysis examined relative taxonomical abundance, alpha and beta diversity, and microbiome correlations with inflammatory and psychological parameters. At T1, CD patients exhibited a characteristic microbial profile mainly constituted of Proteobacteria (17.71%), Firmicutes (65.56%), Actinobacteria (8.46%) and Bacteroidetes (6.24%). Baseline bacterial abundances showed significant correlations with psychological markers of distress and with IFNγ . Following COBMINDEX, no significant changes in alpha and beta diversity were observed between both study groups, though a trend change in beta diversity was noted. Significant changes occurred in the abundance of phyla, families and genera only among the COBMINDEX group. Furthermore, abundance of phyla, families and genera that were altered following COBMNIDEX, significantly correlated with levels of cytokines and psychological parameters. Our results demonstrated that a short-term intervention of COBMINDEX was associated with changes in microbial indices, some of which are linked to psychological manifestations and systemic inflammation in CD patients. Psychological interventions to reduce chronic stress, such as COBMINDEX, appear to be beneficial in mitigating the pathobiology of CD patients, and may thus provide a useful adjunct to pharmacological therapy.
Collapse
Affiliation(s)
- Ilan K
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute of Biotechnology in the Negev, School of Brain Sciences and Cognition, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Motro Y
- MAGICAL Group, Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel
| | - Nemirovsky A
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute of Biotechnology in the Negev, School of Brain Sciences and Cognition, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Schwartz D
- Department of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Goren G
- Spitzer Department of Social Work, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sergienko R
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Greenberg D
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Slonim-Nevo V
- Spitzer Department of Social Work, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sarid O
- Spitzer Department of Social Work, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Friger M
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Regev S
- Spitzer Department of Social Work, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Odes S
- Department of Gastroenterology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moran-Gilad J
- MAGICAL Group, Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel
| | - Monsonego A
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute of Biotechnology in the Negev, School of Brain Sciences and Cognition, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Zou L, Yu X, Cai K, Xu B, Chen C, Xiao G. Angiotensin-converting enzyme inhibitory peptide IVGFPAYGH protects against liver injury in mice fed a high‑sodium diet by inhibiting the RAS and remodeling gut microbial communities. Int J Biol Macromol 2024; 256:128265. [PMID: 37984577 DOI: 10.1016/j.ijbiomac.2023.128265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Consuming a high‑sodium diet carries serious health risks and significantly influences the activation state of the renin-angiotensin system (RAS). This study evaluates the protective effect of angiotensin-converting enzyme (ACE) inhibitory peptide IVGFPAYGH on a high‑sodium diet-induced liver injury. IVGFPAYGH supplementation increased the activities of liver antioxidase and decreased the levels of liver inflammatory factor in mice fed a high‑sodium diet (8 % NaCl). IVGFPAYGH supplementation also reduced liver fatty acid synthesis and promoted fatty acid oxidation, increased the expression of low-density lipoprotein receptor, and improved liver dyslipidemia. Furthermore, IVGFPAYGH supplementation inhibited the activation of the liver RAS via inhibiting ACE activity and reducing angiotensin II levels in mice fed a high‑sodium diet. Moreover, IVGFPAYGH supplementation could alter the gut microbiota composition toward a normal gut microbiota composition and increase the abundance of the Lactobacillus genus. IVGFPAYGH supplementation also increased the expression levels of small intestinal tight junction protein and cecum short-chain fatty acids. Thus, IVGFPAYGH supplementation may maintain intestinal homeostasis and improve high‑sodium diet-induced liver injury by altering the gut microbiota composition and inhibiting the RAS. IVGFPAYGH is a promising functional ingredient for protecting liver damage caused by a high‑sodium diet.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Kezhou Cai
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| |
Collapse
|
16
|
Ye X, Zhang M, Zhang N, Wei H, Wang B. Gut-brain axis interacts with immunomodulation in inflammatory bowel disease. Biochem Pharmacol 2024; 219:115949. [PMID: 38036192 DOI: 10.1016/j.bcp.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The brain and the gastrointestinal (GI) tract are important sensory organs in the body and the two-way interaction that exists between them regulates key physiological and homeostatic functions. A growing body of research suggests that this bidirectional communication influences the development and progression of functional GI disorders and plays an important role in the treatment of central nervous system (CNS) disorders. Inflammatory bowel disease (IBD) is a classic intestinal disorder with a high prevalence but still unclear pathogenesis that has been widely discussed in recent years. However, in the studies available to date, we find that many authors have chosen to discuss the influence of the brain on intestinal disorders from the top down, starting with physical and psychological disorders. Coming very naturally, based on these substantial research evidence, we focus on exploring the links between bidirectional communication in the gut-brain axis and IBD, and highlight the role of the gut microbiota, vagus nerve (VN), receptors and immune cells involved in regulating IBD through the gut-brain axis in this review.
Collapse
Affiliation(s)
- Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| |
Collapse
|
17
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
18
|
Aljabbari A, Kihara S, Rades T, Boyd BJ. The biomolecular gastrointestinal corona in oral drug delivery. J Control Release 2023; 363:536-549. [PMID: 37776905 DOI: 10.1016/j.jconrel.2023.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The formation of a biomolecular corona on exogenous particles in plasma is well studied and is known to dictate the biodistribution and cellular interactions of nanomedicine formulations. In contrast, while the oral route is the most favorable administration method for pharmaceuticals, little is known about the formation and composition of the corona formed by biomolecules on particles within the gastrointestinal tract. This work reviews the current literature understanding of (1) the formation of drug particles after oral administration, (2) the formation of a biomolecular corona within the gastrointestinal tract ("the gastrointestinal corona"), and (3) the possible implications of the formation of a gastrointestinal corona on the interactions of drug particles with their biological environment. In doing so, this work aims to establish the significance of the formation of a gastrointestinal corona in oral drug delivery to ultimately arrive at new avenues to control the behavior of orally administered pharmaceuticals.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Lin X, Xiao HM, Liu HM, Lv WQ, Greenbaum J, Gong R, Zhang Q, Chen YC, Peng C, Xu XJ, Pan DY, Chen Z, Li ZF, Zhou R, Wang XF, Lu JM, Ao ZX, Song YQ, Zhang YH, Su KJ, Meng XH, Ge CL, Lv FY, Luo Z, Shi XM, Zhao Q, Guo BY, Yi NJ, Shen H, Papasian CJ, Shen J, Deng HW. Gut microbiota impacts bone via Bacteroides vulgatus-valeric acid-related pathways. Nat Commun 2023; 14:6853. [PMID: 37891329 PMCID: PMC10611739 DOI: 10.1038/s41467-023-42005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Although the gut microbiota has been reported to influence osteoporosis risk, the individual species involved, and underlying mechanisms, remain largely unknown. We performed integrative analyses in a Chinese cohort of peri-/post-menopausal women with metagenomics/targeted metabolomics/whole-genome sequencing to identify novel microbiome-related biomarkers for bone health. Bacteroides vulgatus was found to be negatively associated with bone mineral density (BMD), which was validated in US white people. Serum valeric acid (VA), a microbiota derived metabolite, was positively associated with BMD and causally downregulated by B. vulgatus. Ovariectomized mice fed B. vulgatus demonstrated increased bone resorption and poorer bone micro-structure, while those fed VA demonstrated reduced bone resorption and better bone micro-structure. VA suppressed RELA protein production (pro-inflammatory), and enhanced IL10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells and enhanced maturation of osteoblasts in vitro. The findings suggest that B. vulgatus and VA may represent promising targets for osteoporosis prevention/treatment.
Collapse
Affiliation(s)
- Xu Lin
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Hong-Mei Xiao
- Center of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, China.
| | - Hui-Min Liu
- Center of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, China
| | - Wan-Qiang Lv
- Center of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Qiang Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Xue-Juan Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Dao-Yan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zhi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zhang-Fang Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Jun-Min Lu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zeng-Xin Ao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Yu-Qian Song
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Yin-Hua Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xiang-He Meng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chang-Li Ge
- LC-Bio Technologies (Hangzhou) CO., LTD., Hangzhou, 310018, Zhejiang Province, China
| | - Feng-Ye Lv
- LC-Bio Technologies (Hangzhou) CO., LTD., Hangzhou, 310018, Zhejiang Province, China
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xing-Ming Shi
- Departments of Neuroscience & Regenerative Medicine and Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, 30914, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bo-Yi Guo
- Department of Biostatistics, University of Alabama at Birmingham, Alabama, 35294, USA
| | - Neng-Jun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Alabama, 35294, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Christopher J Papasian
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Jie Shen
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
20
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
21
|
Muhammad R, Klomkliew P, Chanchaem P, Sawaswong V, Kaikaew T, Payungporn S, Malaivijitnond S. Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Sci Rep 2023; 13:14950. [PMID: 37696929 PMCID: PMC10495367 DOI: 10.1038/s41598-023-42220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.
Collapse
Affiliation(s)
- Raza Muhammad
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titiporn Kaikaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand.
| |
Collapse
|
22
|
Boatman S, Seraphine C, Staley C, Jahansouz C, Kavalukas S. Different Primary Locations of Crohn's Disease Are Associated with Unique Microbiome Profiles. J Gastrointest Surg 2023; 27:1727-1729. [PMID: 37069459 DOI: 10.1007/s11605-023-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Affiliation(s)
- Sonja Boatman
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Caden Seraphine
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | | | - Cyrus Jahansouz
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sandy Kavalukas
- Department of Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
23
|
Conesa C, Bellés A, Grasa L, Sánchez L. The Role of Lactoferrin in Intestinal Health. Pharmaceutics 2023; 15:1569. [PMID: 37376017 DOI: 10.3390/pharmaceutics15061569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.
Collapse
Affiliation(s)
- Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
24
|
Sawaswong V, Chanchaem P, Kemthong T, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity. Sci Rep 2023; 13:5842. [PMID: 37037869 PMCID: PMC10085984 DOI: 10.1038/s41598-023-33163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
25
|
Wang C, Wang L, Chen Q, Guo X, Zhang L, Liao X, Huang Y, Lu L, Luo X. Dietary trace mineral pattern influences gut microbiota and intestinal health of broilers. J Anim Sci 2023; 101:skad240. [PMID: 37439267 PMCID: PMC10370895 DOI: 10.1093/jas/skad240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023] Open
Abstract
Dietary trace minerals can impact gut flora, which can further affect intestinal health. However, the dietary balance pattern of trace minerals for the intestinal health of broilers needs to be explored. The present study was conducted to investigate the effect of the dietary pattern of Cu, Fe, Mn, Zn, and Se on the intestinal morphology, microbiota, short-chain fatty acid concentrations, antioxidant status, and the expression of tight junction proteins in broilers. A total of 240 1-d-old Arbor Acres male broilers were randomly assigned to one of five treatments with six replicate cages of eight birds per cage for each treatment. The birds were fed the corn-soybean meal basal diet supplemented with five combination patterns of trace minerals for 42 d. The dietary treatments were as follows: the inorganic sources were added to the diet based on the recommendations of the current National Research Council (NRC, T1) and Ministry of Agriculture of P.R. China (MAP) (T2) for broiler chicks, respectively; the inorganic sources were added to the diet at the levels based on our previous results of inorganic trace mineral requirements for broilers (T3); the organic sources were added to the diet at the levels considering the bioavailabilities of organic trace minerals for broilers described in our previous studies (T4); and the organic sources were added to the diet based on the recommendations of the current MAP for broiler chicks (T5). The results showed that broilers from T1 had lower (P < 0.05) crypt depth (CD), and a higher (P < 0.05) villus height: CD in duodenum on day 21 and lower CD (P < 0.05) in jejunum on day 42 than those from T3 and T4. Broilers from T1, T3, and T5 had a higher (P < 0.05) Shannon index in cecum on day 21 than those from T4. Broilers from T1 had a higher (P < 0.05) abundance of Lactobacillus in ileum on day 21 than those from T2 and T3. Broilers from T1, T2, and T5 had a higher (P < 0.05) valeric acid concentrations in cecum on day 42 than those from T3 and T4. In addition, Birds from T2 had higher (P < 0.05) Claudin-1 mRNA levels in jejunum on day 42 than those from T3 and T4. And birds from T3, T4, and T5 had a higher (P < 0.05) Occludin protein expression levels in duodenum on day 42 than those from T2. These results indicate that dietary pattern of Cu, Fe, Mn, Zn, and Se influenced gut flora and intestinal health of broilers, and the appropriate pattern of Cu, Fe, Mn, Zn, and Se in the diet for intestinal health of broilers would be Cu 12 mg, Fe 229 mg, Mn 81 mg, Zn 78 mg, and Se 0.24 mg/kg (1 to 21 d of age), and Cu 11 mg, Fe 193 mg, Mn 80 mg, Zn 73 mg, and Se 0.22 mg/kg (22 to 42 d of age), when the trace minerals as inorganic sources were added to diets according to the recommendations of the current NRC.
Collapse
Affiliation(s)
- Chuanlong Wang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Liangzhi Wang
- College of Animal and Veterinary Science Southwest Minzu University, Chengdu 610041, China
| | - Qingyi Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Xiaofeng Guo
- Laizhou Animal Disease Prevention and Control Center, Laizhou 261400, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanling Huang
- College of Animal and Veterinary Science Southwest Minzu University, Chengdu 610041, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
26
|
Kovanda L, Park J, Park S, Kim K, Li X, Liu Y. Dietary butyrate and valerate glycerides impact diarrhea severity and immune response of weaned piglets under ETEC F4-ETEC F18 coinfection conditions. J Anim Sci 2023; 101:skad401. [PMID: 38044688 PMCID: PMC10721436 DOI: 10.1093/jas/skad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5 × 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (P = 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (P < 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (P = 0.061) to have lower neutrophils and had significantly (P < 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Jungjae Park
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Loayza JJ, Kang S, Schooth L, Teh JJ, de Klerk A, Noon EK, Zhang J, Hu J, Hamilton AL, Wilson-O’Brien A, Trakman GL, Lin W, Ching J, Or L, Sung J, Yu J, Ng S, Kamm M, Morrison M. Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn's disease. The ENIGMA study. Gut Microbes 2023; 15:2172670. [PMID: 36852457 PMCID: PMC9980662 DOI: 10.1080/19490976.2023.2172670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Food additives have been linked to the pro-inflammatory microbial dysbiosis associated with Crohn's disease (CD) but the underlying ecological dynamics are unknown. Here, we examine how selection of food additives affects the growth of multiple strains of a key beneficial bacterium (Faecalibacterium prausnitzii), axenic clinical isolates of proinflammatory bacteria from CD patients (Proteus, Morganella, and Klebsiella spp.), and the consortia of mucosa-associated microbiota recovered from multiple Crohn's disease patients. Bacterial growth of the axenic isolates was evaluated using a habitat-simulating medium supplemented with either sodium sulfite, aluminum silicate, carrageenan, carboxymethylcellulose, polysorbate 80, saccharin, sucralose, or aspartame, intended to approximate concentrations found in food. The microbial consortia recovered from post-operative CD patient mucosal biopsy samples were challenged with either carboxymethylcellulose and/or polysorbate 80, and the bacterial communities compared to unchallenged consortia by 16S rRNA gene amplicon profiling. Growth of all F. prausnitzii strains was arrested when either sodium sulfite or polysorbate 80 was added to cultures at baseline or mid-exponential phase of growth, and the inhibitory effects on the Gram-negative bacteria by sodium sulfite were conditional on oxygen availability. The effects from polysorbate 80, saccharin, carrageenan, and/or carboxymethylcellulose on these bacteria were strain-specific. In addition to their direct effects on bacterial growth, polysorbate 80 and/or carboxymethylcellulose can drive profound changes in the CD mucosa-associated microbiota via niche expansion of Proteus and/or Veillonellaceae - both implicated in early Crohn's disease recurrence. These studies on the interaction of food additives with the enteric microbiota provide a basis for dietary management in Crohn's disease.
Collapse
Affiliation(s)
- J.J. Jimenez Loayza
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - S. Kang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - L. Schooth
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - J. J. Teh
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - A. de Klerk
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - E. K. Noon
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - J. Zhang
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - J. Hu
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - A. L. Hamilton
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - A. Wilson-O’Brien
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - G. L. Trakman
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - W. Lin
- Microbiota I-Center (Magic), Hong Kong, China
| | - J. Ching
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - L. Or
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - J.J.Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - J. Yu
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - S.C. Ng
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - M.A. Kamm
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - M. Morrison
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Yeast Products Mediated Ruminal Subenvironmental Microbiota, and Abnormal Metabolites and Digestive Enzymes Regulated Rumen Fermentation Function in Sheep. Animals (Basel) 2022; 12:ani12223221. [PMID: 36428448 PMCID: PMC9686794 DOI: 10.3390/ani12223221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Yeast products (YP) are commonly used as rumen regulators, but their mechanisms of action are still unclear. Based on our previous studies, we questioned whether yeast products would have an impact on rumen solid-associated (SA) and liquid-associated (LA) microorganisms and alter rumen fermentation patterns. Thirty 3-month-old male sheep weighing 19.27 ± 0.45 kg were selected and randomized into three groups for 60 days: (1) basal diet group (CON group), (2) basal diet add 20 g YP per day (low YP, LYP group) and (3) basal diet add 40 g YP per day (high YP, HYP group). The results demonstrated that the addition of YP increased rumen cellulase activity, butyrate and total volatile fatty acid (TVFA) concentrations (p < 0.05), while it decreased rumen amylase activity and abnormal metabolites, such as lactate, lipopolysaccharides (LPS) and histamine (HIS) (p < 0.05). Metagenomic analysis of rumen microorganisms in three groups revealed that YP mainly influenced the microbial profiles of the SA system. YP increased the relative abundance of R. flavefaciens and decreased methanogens in the SA system (p < 0.05). With the addition of YP, the abundance of only a few lactate-producing bacteria increased in the SA system, including Streptococcus and Lactobacillus (p < 0.05). However, almost all lactate-utilizing bacteria increased in the LA system, including Megasphaera, Selenomonas, Fusobacterium and Veillonella (p < 0.05). In addition, YP increased the abundance of certain GHs family members, including GH43 and GH98 (p < 0.05), but decreased the abundance of some KEGG metabolic pathways involved in starch and sucrose metabolism, biosynthesis of antibiotics and purine metabolism, among others. In conclusion, the addition of YP to high-concentrate diets can change the abundance of major functional microbiota in the rumen, especially in the solid fraction, which in turn affects rumen fermentation patterns and improves rumen digestibility.
Collapse
|
29
|
Buffet-Bataillon S, Bouguen G, Fleury F, Cattoir V, Le Cunff Y. Gut microbiota analysis for prediction of clinical relapse in Crohn's disease. Sci Rep 2022; 12:19929. [PMID: 36402792 PMCID: PMC9675750 DOI: 10.1038/s41598-022-23757-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
The role of intestinal bacterial microbiota has been described as key in the pathophysiology of Crohn's disease (CD). CD is characterized by frequent relapses after periods of remission which are not entirely understood. In this paper, we investigate whether the heterogeneity in microbiota profiles in CD patients could be a suitable predictor for these relapses. This prospective observational study involved 259 CD patients, in which 41 provided an additional total of 62 consecutive fecal samples, with an average interval of 25 weeks in between each of these samples. Fecal microbiota was analyzed by massive genomic sequencing through 16 S rRNA amplicon sampling. We found that our 259 CD patients could be split into three distinct subgroups of microbiota (G1, G2, G3). From G1 to G3, we noticed a progressive decrease in alpha diversity (p ≤ 0.0001) but no change in the fecal calprotectin (FC) level. Focusing on the 103 consecutive samples from 41 CD patients, we showed that the patients microbiota profiles were remarkably stable over time and associated with increasing symptom severity. Investigating further this microbiota/severity association revealed that the first signs of aggravation are (1) a loss of the main anti-inflammatory Short-Chain Fatty Acids (SCFAs) Roseburia, Eubacterium, Subdoligranumum, Ruminococcus (P < 0.05), (2) an increase in pro-inflammatory pathogens Proteus, Finegoldia (P < 0.05) while (3) an increase of other minor SCFA producers such as Ezakiella, Anaerococcus, Megasphaera, Anaeroglobus, Fenollaria (P < 0.05). Further aggravation of clinical signs is significantly linked to the subsequent loss of these minor SCFAs species and to an increase in other proinflammatory Proteobacteria such as Klebsiella, Pseudomonas, Salmonella, Acinetobacter, Hafnia and proinflammatory Firmicutes such as Staphylococcus, Enterococcus, Streptococcus. (P < 0.05). To our knowledge, this is the first study (1) specifically identifying subgroups of microbiota profiles in CD patients, (2) relating these groups to the evolution of symptoms over time and (3) showing a two-step process in CD symptoms' worsening. This paves the way towards a better understanding of patient-to-patient heterogeneity, as well as providing early warning signals of future aggravation of the symptoms and eventually adapting empirically treatments.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- grid.410368.80000 0001 2191 9284INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Guillaume Bouguen
- grid.410368.80000 0001 2191 9284CIC 1414, INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - François Fleury
- grid.410368.80000 0001 2191 9284INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Vincent Cattoir
- grid.410368.80000 0001 2191 9284U1230, INSERM, CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Yann Le Cunff
- grid.410368.80000 0001 2191 9284Dyliss - Dynamics, Logics and Inference for biological Systems and Sequences, Inria Rennes – Bretagne Atlantique, Université Rennes 1, Rennes, France
| |
Collapse
|
30
|
Cabana-Puig X, Mu Q, Lu R, Swartwout B, Abdelhamid L, Zhu J, Prakash M, Cecere TE, Wang Z, Callaway S, Sun S, Reilly CM, Ahmed S, Luo XM. Lactobacillus spp. act in synergy to attenuate splenomegaly and lymphadenopathy in lupus-prone MRL/ lpr mice. Front Immunol 2022; 13:923754. [PMID: 35967418 PMCID: PMC9368192 DOI: 10.3389/fimmu.2022.923754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Commensal bacteria and the immune system have a close and strong relationship that maintains a balance to control inflammation. Alterations of the microbiota, known as dysbiosis, can direct reactivity to self-antigens not only in the intestinal mucosa but also at the systemic level. Our laboratory previously reported gut dysbiosis, particularly lower abundance of bacteria in the family Lactobacillaceae, in lupus-prone MRL/lpr mice, a model of systemic autoimmunity. Restoring the microbiota with a mix of 5 different Lactobacillus species (spp.), L. reuteri, L. oris, L. johnsonii, L. gasseri and L. rhamnosus, attenuated lupus-liked clinical signs, including splenomegaly and lymphadenopathy. However, our understanding of the mechanism was limited. In this study, we first investigated the effects of individual species. Surprisingly, none of the species individually recapitulated the benefits of the mix. Instead, Lactobacillus spp. acted synergistically to attenuate splenomegaly and renal lymphadenopathy through secreted factors and a CX3CR1-dependent mechanism. Interestingly, oral administration of MRS broth exerted the same benefits likely through increasing the relative abundance of endogenous Lactobacillus spp. Mechanistically, we found increased percentages of FOXP3-negative type 1 regulatory T cells with administration of the mix in both spleen and mesenteric lymph nodes. In addition, oral gavage of Lactobacillus spp. decreased the percentage of central memory T cells while increasing that of effector memory T cells in the lymphoid organs. Furthermore, a decreased percentage of double negative T cells was observed in the spleen with the mix. These results suggest that Lactobacillus spp. might act on T cells to attenuate splenomegaly and lymphadenopathy. Together, this study advances our understanding of how Lactobacillus spp. attenuate lupus in MRL/lpr mice. The synergistic action of these bacteria suggests that multiple probiotic bacteria in combination may dampen systemic autoimmunity and benefit lupus patients.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sabrina Callaway
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
31
|
Tavakoli P, Vollmer-Conna U, Hadzi-Pavlovic D, Vázquez-Campos X, Grimm MC. The Interplay Between Use of Biological Therapies, Psychological State, and the Microbiome in IBD. Front Med (Lausanne) 2022; 9:788992. [PMID: 35928295 PMCID: PMC9345200 DOI: 10.3389/fmed.2022.788992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study examines longitudinal bio-psychological dynamics and their interplay in IBD patients undergoing conventional and biological therapies. Methods Fifty IBD participants (24 UC, 26 CD) in clinical remission were followed for 12 months. Complete longitudinal datasets, biological samples, validated scores of psychological status were collected monthly for analysis of association. Microbiome analysis was performed to identify microbial dynamics and signatures. Patients were grouped on disease phenotype (CD, UC) and mode of treatment (biological therapies, non-biological treatment). General linear models, mixed models, cluster analysis, and analyses of variance were used to examine the longitudinal trends of the variables and their associations over time. Results were corrected for multiple testing. Results Results substantiated different interactions between biological therapy and longitudinal trends of inflammatory biomarkers in remission CD and UC patients as well as significant differences between CD and UC patients in their psychological measures during clinical remission, with UC patients having inferior condition compared to CD. A significant reduction in microbial diversity in CD patients compared to UC was identified. Results characterized considerable differences in longitudinal microbial profile between those taking and not taking biological treatment in UC patients, but not in CD patients. Conclusion A different trajectory of interdependence was identified between psychological state, sleep, and microbial dynamics with mode of treatment when compared between CD and UC patients. Further studies should investigate the causal relationships between bio-psychological factors for improved treatment purposes.
Collapse
Affiliation(s)
- Paris Tavakoli
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Paris Tavakoli
| | - Ute Vollmer-Conna
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Dusan Hadzi-Pavlovic
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Michael Carl Grimm
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Grenda T, Grenda A, Domaradzki P, Krawczyk P, Kwiatek K. Probiotic Potential of Clostridium spp.-Advantages and Doubts. Curr Issues Mol Biol 2022; 44:3118-3130. [PMID: 35877439 PMCID: PMC9315758 DOI: 10.3390/cimb44070215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal biopsies, and luminal content have shown that the three main groups of strict extremophile anaerobes present in the intestines are Clostridium cluster IV (also known as the Clostridium leptum group), Clostridium cluster XIVa (also known as the Clostridium coccoides group) and Bacteroides. In addition to the mentioned clusters, some C. butyricum strains are also considered beneficial for human health. Moreover, this bacterium has been widely used as a probiotic in Asia (particularly in Japan, Korea, and China). The mentioned commensal Clostridia are involved in the regulation and maintenance of all intestinal functions. In the literature, the development processes of new therapies are described based on commensal Clostridia activity. In addition, some Clostridia are associated with pathogenic processes. Some C. butyricum strains detected in stool samples are involved in botulism cases and have also been implicated in severe diseases such as infant botulism and necrotizing enterocolitis in preterm neonates. The aim of this study is to review reports on the possibility of using Clostridium strains as probiotics, consider their positive impact on human health, and identify the risks associated with the expression of their pathogenic properties.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-81-889-3191
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Piotr Domaradzki
- Department of Commodity Science and Animal Raw Materials Processing, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
| |
Collapse
|
33
|
Sha Y, Wu H, Guo Y, Liu X, Mo Y, Yang Q, Wei S, Long K, Lu D, Xia Y, Zheng W, Su Z, Wei X. Effects of iodoacetic acid drinking water disinfection byproduct on the gut microbiota and its metabolism in rats. J Environ Sci (China) 2022; 117:91-104. [PMID: 35725093 DOI: 10.1016/j.jes.2022.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Collapse
Affiliation(s)
- Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
34
|
Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, Emran TB, Fatimawali, Idroes R, Tallei TE, Ahmed M, Cavalu S. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:903570. [PMID: 35795187 PMCID: PMC9251340 DOI: 10.3389/fcimb.2022.903570] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.
Collapse
|
35
|
Abstract
Inflammatory bowel diseases (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC), are lifelong and incurable chronic inflammatory diseases affecting 6.8 million people worldwide. By 2030, the prevalence of IBD is estimated to reach 1% of the population in Western countries, and thus there is an urgent need to develop effective therapies to reduce the burden of this disease. Microbiome dysbiosis is at the heart of the IBD pathophysiology, and current research and development efforts for IBD treatments have been focused on gut microbiome regulation. Diet can shape the intestinal microbiome. Diet is also preferred over medication, is safe, and has been proven to be an effective strategy for the management of IBD. Therefore, although often overlooked, dietary interventions targeting the microbiome represent ideal treatments for IBD. Here, I summarize the latest research on diet as a treatment for IBD from infancy to adulthood, compile evidence of the mechanisms of action behind diet as treatment, and, lastly, provide insights into future research focusing on culturally tailored diets for ethnic minority groups with increased incidence of IBD yet underrepresented in nutrition research.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Olendzki B, Bucci V, Cawley C, Maserati R, McManus M, Olednzki E, Madziar C, Chiang D, Ward DV, Pellish R, Foley C, Bhattarai S, McCormick BA, Maldonado-Contreras A. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14:2046244. [PMID: 35311458 PMCID: PMC8942410 DOI: 10.1080/19490976.2022.2046244] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
Collapse
Affiliation(s)
- Barbara Olendzki
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rene Maserati
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Margaret McManus
- Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Effie Olednzki
- Center for Applied Nutrition, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Camilla Madziar
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David Chiang
- Department of Medicine,University of Massachusetts Medical SchoolWorcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall Pellish
- UMass Memorial Medical Center University Campus, Department of Gastroenterology
| | - Christine Foley
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics, 368 Plantation Street, Albert Sherman Center, Office AS.81045, Worcester, Massachusetts, 01605, Worcester, Massachusetts, USA
| |
Collapse
|
37
|
Wang Y, Wu G, Zhao L, Wang W. Nutritional Modulation of Gut Microbiota Alleviates Severe Gastrointestinal Symptoms in a Patient with Post-Acute COVID-19 Syndrome. mBio 2022; 13:e0380121. [PMID: 35254129 PMCID: PMC9040862 DOI: 10.1128/mbio.03801-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
With the increase in total coronavirus disease 2019 (COVID-19) infection cases, post-acute COVID-19 syndrome, defined as experiencing ongoing health problems 4 or more weeks after the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a new arising public health concern. As part of post-acute COVID-19 syndrome, gastrointestinal symptoms might be associated with dysbiosis of the gut microbiota, which has the potential to become a target for intervention. In this study, a patient with post-acute COVID-19 syndrome with long-lasting severe gastrointestinal symptoms was provided 2-month expanded access to a high-fiber formula with investigational new drug (IND) status developed to alleviate COVID-19-related symptoms by modulating the gut microbiota. Symptoms including severe "loss of appetite," palpitation, and anxiety were significantly alleviated by the end of the intervention. The medication dosage for controlling nausea decreased during the intervention. The serum lipid profile, insulin level, and leptin level were improved compared to the baseline values. Significant structural changes of the patient's gut microbiota and reduced microbial fermentation activity in the small intestine were found during the intervention. Eighteen amplicon sequence variants (ASVs) of the V4 region of the 16S rRNA gene significantly responded to this nutritional intervention. Six out of the 18 ASVs were also found to be negatively correlated with symptom severity/medication dosage. Five of the six ASVs (ASV0AKS_Oscillibacter, ASV009F_Anaerofustis, ASV02YT_Blautia, ASV07LA_Blautia, and ASV0AM6_Eubacterium hallii) were potential short-chain fatty acid (SCFA)-producing bacteria, which might be associated with the alleviation of symptoms. Our study indicates the feasibility of alleviating gastrointestinal symptoms in patients with post-acute COVID-19 syndrome by way of nutritional modulation of their gut microbiota. IMPORTANCE It has become evident that the care of patients with COVID-19 does not end at the time of negative SARS-CoV-2 detection, as the number of patients with post-acute COVID-19 syndrome increases with an ever-increasing total infected patient population. This case report shows the possibility of alleviating the gastrointestinal symptoms of post-acute COVID-19 syndrome via microbiota-targeted nutritional intervention. As a promising strategy, it might not only improve the quality of life of patients but also reduce the burden to the public health system when the end of the COVID-19 pandemic is not in sight.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Weizheng Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
38
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
39
|
Barberio B, Facchin S, Patuzzi I, Ford AC, Massimi D, Valle G, Sattin E, Simionati B, Bertazzo E, Zingone F, Savarino EV. A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 2022; 14:2028366. [PMID: 35129058 PMCID: PMC8820804 DOI: 10.1080/19490976.2022.2028366] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated disease in which the gut microbiota plays a central role, and may determine prognosis and disease progression. We aimed to assess whether a specific microbiota profile, as measured by a machine learning approach, can be associated with disease severity in patients with UC. In this prospective pilot study, consecutive patients with active or inactive UC and healthy controls (HCs) were enrolled. Stool samples were collected for fecal microbiota assessment analysis by 16S rRNA gene sequencing approach. A machine learning approach was used to predict the groups' separation. Thirty-six HCs and forty-six patients with UC (20 active and 26 inactive) were enrolled. Alpha diversity was significantly different between the three groups (Shannon index: p-values: active UC vs HCs = 0.0005; active UC vs inactive UC = 0.0273; HCs vs inactive UC = 0.0260). In particular, patients with active UC showed the lowest values, followed by patients with inactive UC, and HCs. At species level, we found high levels of Bifidobacterium adolescentis and Haemophilus parainfluenzae in inactive UC and active UC, respectively. A specific microbiota profile was found for each group and was confirmed with sparse partial least squares discriminant analysis, a machine learning-supervised approach. The latter allowed us to observe a perfect class prediction and group separation using the complete information (full Operational Taxonomic Unit table), with a minimal loss in performance when using only 5% of features. A machine learning approach to 16S rRNA data identifies a bacterial signature characterizing different degrees of disease activity in UC. Follow-up studies will clarify whether such microbiota profiling are useful for diagnosis and management.
Collapse
Affiliation(s)
- Brigida Barberio
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sonia Facchin
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Ilaria Patuzzi
- Research & Development Division, University of Padova, Padova, Italy
| | - Alexander C. Ford
- Leeds Gastroenterology Institute, St. James’s University Hospital, Leeds, UK,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Davide Massimi
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giorgio Valle
- Department of Biology and Cribi Biotechnology Centre, University of Padova, Padova, Italy
| | | | - Barbara Simionati
- Research & Development Division, University of Padova, Padova, Italy
| | - Elena Bertazzo
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Fabiana Zingone
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy,CONTACT Edoardo Vincenzo Savarino Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
40
|
Metagenomic analysis of intestinal microbiota in wild rats living in urban and rural habitats. Folia Microbiol (Praha) 2022; 67:469-477. [PMID: 35102501 DOI: 10.1007/s12223-022-00951-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Mammals have a symbiotic relationship with various microorganisms called microbiota throughout their lives. These microorganisms are known to affect the host's physiology, health, and even mental balance. The development of the gut microbiota is regulated by a complex interaction between host and environmental factors, including diet and lifestyle. Herein, it is aimed to elucidate the differences in the gut microbiota of rats living in urban and rural habitats. The taxonomic changes in the gut microbiota of wild rats belonging to Rattus rattus species caught from urban and rural areas of Western Anatolian (Bilecik province) were examined comparatively by 16S rRNA next-generation sequencing technique. Laboratory rats were used as reference animals. The alpha diversities were found lower in the rural rats with respect to the urban rats, whereas the highest alpha diversity was calculated for laboratory rats. The lower Firmicutes to Bacteroidetes ratios (F/B ratio) were accounted for both rural and laboratory rats compared with urban rats. The Proteobacteria to Actinobacteria ratio (P/A ratio) was lower for rural rats, but higher for laboratory rats, compared with urban rats. The heatmap analyses of taxonomic units in the microbiota of each group demonstrated distinct patterns at the species and genus levels. The study provided metagenomic data on the gut microbiota of rats residing in urban and rural habitats, offering a different perspective on future environmental biomonitoring studies.
Collapse
|
41
|
Wang M, Zhou B, Cong W, Zhang M, Li Z, Li Y, Liang S, Chen K, Yang D, Wu Z. Amelioration of AOM/DSS-Induced Murine Colitis-Associated Cancer by Evodiamine Intervention is Primarily Associated with Gut Microbiota-Metabolism-Inflammatory Signaling Axis. Front Pharmacol 2022; 12:797605. [PMID: 35002731 PMCID: PMC8740177 DOI: 10.3389/fphar.2021.797605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Evodiamine (EVO), an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth.、Evodia rutaecarpa (Juss.) Benth. Var. bodinieri (Dode) Huang or Evodia rutaecarpa (Juss.) Benth. Var. officinalis (Dode) Huang, has anti-inflammatory and anti-tumor activities. Our previous study found that EVO attenuates colitis by regulating gut microbiota and metabolites. However, little is known about its effect on colitis-associated cancer (CAC). In this study, the protective effects of EVO on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and tumor mice were observed, and the underlying potential mechanism was clarified. The results suggested that EVO ameliorated AOM/DSS-induced colitis by inhibiting the intestinal inflammation and improving mucosal barrier function. And EVO significantly reduced the number and size of AOM/DSS-induced colorectal tumors along with promoted apoptosis and inhibited proliferation of epithelial cell. Moreover, EVO promoted the enrichment of SCFAs-producing bacteria and reduced the levels of the pro-inflammatory bacteria, which contributes to the changes of microbiota metabolism, especially tryptophan metabolism. Furthermore, inflammatory response (like Wnt signaling pathway、Hippo signaling pathway and IL-17 signaling pathway) were effectively alleviated by EVO. Our study demonstrated that the protective therapeutic action of EVO on CAC is to inhibit the development of intestinal inflammation-cancer by regulating gut microbiota metabolites and signaling pathways of colon intestinal epithelial, which may represent a novel agent for colon cancer prevention via manipulation of gut microbiota.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Biqiang Zhou
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weihong Cong
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Zhang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwen Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Yan Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Shaoyu Liang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
42
|
He Q, Zhang Y, Ma D, Zhang W, Zhang H. Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways. Eur J Nutr 2022; 61:2003-2014. [PMID: 34984487 DOI: 10.1007/s00394-021-02764-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Obesity is a major risk factor for various metabolic diseases, including metabolic syndrome and type-2 diabetes. Glucose transporter 1 (GLUT1) impairment has been proposed as a mechanism of fat accumulation and glucose tolerance. Our aims were to determine the role of intestinal epithelial glut1 activity in obesity and the mechanism of anti-obesity effect of Lactobacillus casei Zhang (LCZ) intervention in the absence of gut villi-specific glut1 expression. METHODS This study compared the body weight, intestinal microbiota perturbations, fat mass accumulation, and glucose tolerance (by oral glucose tolerance test) between high-fat diet fed villi-specific glut1 knockout (KO) mice and control mice (glut1 flox/flox) with/without LCZ intervention. The intestinal microbiota was evaluated by metagenomic sequencing. RESULTS Our results showed that villi-specific glut1 KO mice had more fat deposition at the premetaphase stage, impaired glucose tolerance, and obvious alterations in gut microbiota compared to control mice. Probiotic administration significantly lowered the body weight, the weights of mesenteric and perirenal white adipose tissues (WAT), and mediated gut microbiota modulation in both types of KO and control mice. The species Barnesiella intestinihominis and Faecalibaculum rodentium might contribute to fasting fat mass accumulation associated with gut-specific glut1 inactivation, while the probiotic-mediated anti-obesity effect was linked to members of the Bacteroides genera, Odoribacter genera and Alistipes finegoldii. CONCLUSION Our study demonstrated that abrogating gut epithelial GLUT1 activity affected the gut microbiota, fat mass accumulation, and glucose tolerance; and LCZ administration reduced fat mass accumulation and central obesity.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
43
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
44
|
Liu R, Peng C, Jing D, Xiao Y, Zhu W, Zhao S, Zhang J, Chen X, Li J. Biomarkers of Gut Microbiota in Chronic Spontaneous Urticaria and Symptomatic Dermographism. Front Cell Infect Microbiol 2021; 11:703126. [PMID: 34858864 PMCID: PMC8630658 DOI: 10.3389/fcimb.2021.703126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background Chronic urticaria (CU) is a chronic inflammatory skin disease associated with Th2 immune response. The two most common subtypes of CU, i.e., chronic spontaneous urticaria and symptomatic dermographism (CSD), often coexist. However, the pathogenesis of CSD is still unclear. Gut microbiota plays an important role in immune-related inflammatory diseases. The purpose of this study was to explore the correlation between gut microbiota and CSD. Methods A case-control study was conducted on CSD patients as well as gender- and age-matched normal controls (NCs). The 16S ribosomal DNA sequencing of fecal samples was used to detect the gut microbiota of all subjects. QPCR was used to further verify the species with differences between the two groups. Results The alpha diversity of gut microbiota decreased in CSD patients, accompanied by significant changes of the structure of gut microbiota. Subdoligranulum and Ruminococcus bromii decreased significantly in CSD patients and had a potential diagnostic value for CSD according to receiver operating characteristic curve (ROC) analysis. Enterobacteriaceae and Klebsiella were found to be positively correlated with the duration of CSD, while Clostridium disporicum was positively correlated with the dermatology life quality index (DLQI). Conclusions The gut microbiota of CSD patients is imbalanced. Subdoligranulum and Ruminococcus bromii are the gut microbiota biomarkers in CSD.
Collapse
Affiliation(s)
- Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, The First People's Hospital of Yancheng, Yancheng, China.,Department of Dermatology, The Fourth Affiliated Hospital of Nantong University, Nantong, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yangjian Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
45
|
Zhao X, Zhou R, Li H, Fan Y, Sun Y, Hu X, Zhang S. The Effects of Moderate Alcohol Consumption on Circulating Metabolites and Gut Microbiota in Patients With Coronary Artery Disease. Front Cardiovasc Med 2021; 8:767692. [PMID: 34796220 PMCID: PMC8593214 DOI: 10.3389/fcvm.2021.767692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Epidemiological studies confirmed that moderate alcohol consumption was associated with a reduced risk of adverse cardiovascular events. It is increasingly recognized that the composition of gut microbiota and metabolites is involved in modulating the cardiovascular health of the host. However, the association of moderate alcohol consumption with serum metabolites and gut microbiome and its impact on coronary artery disease (CAD) is not fully investigated. Method: Serum untargeted metabolomics analysis and fecal 16S rRNA sequencing were performed on 72 male patients with CAD having various alcohol consumption (36 non-drinkers, 18 moderate drinkers, and 18 heavy drinkers) and 17 matched healthy controls. MetaboAnalyst and PICRUSt2 were utilized to analyze the possible involved metabolic pathways. Multi-omics analysis was achieved by Spearman correlation to reveal the interactions of alcohol consumption with gut microbiome and serum metabolites in patients with CAD. Results: We noted distinct differences between patients with CAD, with varying levels of alcohol consumption and healthy controls in aspects of serum metabolome and the gut microbiome. Moderate alcohol consumption significantly changed the lipidomic profiles, including reductions of sphingolipids and glycerophospholipids in moderate drinkers with CAD when compared with non and heavy drinkers with CAD. Moreover, we also found the reduction of microbial-derived metabolites in moderate drinkers with CAD, such as 2-phenylacetamide and mevalonic acid. To be noted, the gut microbiota of moderate drinkers with CAD tended to resemble that of healthy controls. Compared with non-drinkers, the relative abundance of genus Paraprevotella, Lysinibacillus was significantly elevated in moderate drinkers with CAD, while the genus Bifidobacterium, Megasphaera, and Streptococcus were significantly reduced in moderate drinkers with CAD. Multi-omics analysis revealed that specific metabolites and microbes associated with moderate alcohol consumption were correlated with the severity of CAD. Conclusions: Our study revealed that the impact of moderate alcohol consumption on serum metabolites and gut microbiota in patients with CAD seemed to be separated from that of heavy and non-alcohol consumption. Moderate drinking tended to have more positive effects on metabolic profiles and commensal flora, which may explain its beneficial effects on cardiovascular health. Overall, our study provides a novel insight into the effects of moderate alcohol consumption in patients with CAD.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ruilin Zhou
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hanyu Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yue Fan
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yueshen Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaomin Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Filip R. An Update on the Role of Extracellular Vesicles in the Pathogenesis of Necrotizing Enterocolitis and Inflammatory Bowel Diseases. Cells 2021; 10:cells10113202. [PMID: 34831425 PMCID: PMC8622309 DOI: 10.3390/cells10113202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Some of the most fundamental influences of microorganisms inhabiting the human intestinal tract are exerted during infant development and impact the maturation of intestinal mucosa and gut immune system. The impact of bacteria on the host gut immune system is partially mediated via released extracellular vesicles (EVs). The heterogeneity in EV content, size, and bacterial species origin can have an impact on intestinal cells, resulting in inflammation and an immune response, or facilitate pathogen entry into the gut wall. In mammals, maintaining the integrity of the gut barrier might also be an evolutionary function of maternal milk EVs. Recently, the usage of EVs has been explored as a novel therapeutic approach in several pathological conditions, including necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). In this review, we attempt to summarize the current knowledge of EV biology, followed by a discussion of the role that EVs play in gut maturation and the pathogenesis of NEC and IBD.
Collapse
Affiliation(s)
- Rafał Filip
- Department of Gastroenterology with IBD, Unit of Clinical Hospital 2 in Rzeszow, Lwowska 60, 35-310 Rzeszow, Poland;
- Faculty of Medicine, University of Rzeszow, Aleja Majora Wacława Kopisto 2a, 35-210 Rzeszow, Poland
| |
Collapse
|
47
|
Chen Y, Cui W, Li X, Yang H. Interaction Between Commensal Bacteria, Immune Response and the Intestinal Barrier in Inflammatory Bowel Disease. Front Immunol 2021; 12:761981. [PMID: 34858414 PMCID: PMC8632219 DOI: 10.3389/fimmu.2021.761981] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
In inflammatory bowel disease (IBD), intestinal mucosa cell and intestinal epithelial cell are severely damaged, and then their susceptibility to bacteria increases, so many commensal bacteria become pathogenic. The pathogenic commensal bacteria can stimulate a series of compensatory immune responses in the intestine. However, the immune response prevents the intestinal tract from restoring homeostasis, which in turn produces an indispensable inflammatory response. On the contrary, in IBD, the fierce inflammatory response contributes to the development of IBD. However, the effect of commensal bacteria on inflammation in IBD has not been clearly studied. Therefore, we further summarize the changes brought about by the changes of commensal bacteria to the inflammation of the intestines and their mutual influence. This article reviews the protective mechanism of commensal bacteria in healthy people and the mechanism of commensal bacteria and immune response to the destruction of the intestinal barrier when IBD occurs. The treatment and prevention of IBD are also briefly summarized.
Collapse
Affiliation(s)
| | | | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
48
|
Kitahara M, Shigeno Y, Shime M, Matsumoto Y, Nakamura S, Motooka D, Fukuoka S, Nishikawa H, Benno Y. Vescimonas gen. nov., Vescimonas coprocola sp. nov., Vescimonas fastidiosa sp. nov., Pusillimonas gen. nov. and Pusillimonas faecalis sp. nov. isolated from human faeces. Int J Syst Evol Microbiol 2021; 71. [PMID: 34726590 DOI: 10.1099/ijsem.0.005066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Six strains of Gram-stain-negative, obligately anaerobic, non-spore-forming, non-motile rods were isolated from human faeces. Based on phylogenetic characteristics, the six isolates were included in the family Ruminococcaceae, and divided into three groups. The six isolates showed 16S rRNA gene sequence similarity values lower than 96.2 % to the closely related species, Oscillibacter ruminantium GH1T, Oscillibacter valericigenes Sjm18-20T and Dysosmobacter welbiomis J115T. Coherently with the 16S rRNA gene sequence results, the in silico DNA-DNA hybridization and average nucleotide identity values clearly indicated that strains MM35T, MM50T and MM59T belong to different species from the closely related three species. Based on phenotypic features and phylogenetic positions, three novel species, Vescimonas coprocola gen. nov., sp. nov., Vescimonas fastidiosa gen. nov., sp. nov. and Pusillimonas faecalis gen. nov., sp. nov. are proposed. The type strain of V. coprocola is strain MM50T (=JCM 34012T=DSM 111893T). The type strain of V. fastidiosa is strain MM35T (=JCM 34016T=DSM 111899T). The type strain of P. faecalis is strain MM59T (=JCM 34011T=DSM 111669T). The DNA G+C contents estimated according to the whole genomes of strains MM35T, MM50T and MM59T were 56.4, 58.2 and 55.2 mol%, respectively.
Collapse
Affiliation(s)
- Maki Kitahara
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Yuko Shigeno
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Mari Shime
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Yuki Matsumoto
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Fukuoka
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Chiba, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimi Benno
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| |
Collapse
|
49
|
Zhao J, Yan T, Wang Y, Yang Y, Geng W, Wang J, Jia L, Wang Y. Lactobacillus plantarum
BC299 can alleviate dextran sulphate sodium‐induced colitis by regulating immune response and modulating gut microbiota. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Ting Yan
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yaqi Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yanrui Yang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Weitao Geng
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Jinju Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Longgang Jia
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yanping Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| |
Collapse
|
50
|
Liu Y, Wang SL, Zhang JF, Zhang W, Zhou S, Li W. DMFMDA: Prediction of Microbe-Disease Associations Based on Deep Matrix Factorization Using Bayesian Personalized Ranking. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1763-1772. [PMID: 32816678 DOI: 10.1109/tcbb.2020.3018138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying the microbe-disease associations is conducive to understanding the pathogenesis of disease from the perspective of microbe. In this paper, we propose a deep matrix factorization prediction model (DMFMDA) based on deep neural network. First, the disease one-hot encoding is fed into neural network, which is transformed into a low-dimensional dense vector in implicit semantic space via embedding layer, and so is microbe. Then, matrix factorization is realized by neural network with embedding layer. Furthermore, our model synthesizes the non-linear modeling advantages of multi-layer perceptron based on the linear modeling advantages of matrix factorization. Finally, different from other methods using square error loss function, Bayesian Personalized Ranking optimizes the model from a ranking perspective to obtain the optimal model parameters, which makes full use of the unobserved data. Experiments show that DMFMDA reaches average AUCs of 0.9091 and 0.9103 in the framework of 5-fold cross validation and Leave-one-out cross validation, which is superior to three the-state-of-art methods. In case studies, 10, 9 and 9 out of top-10 candidate microbes are verified by recently published literature for asthma, inflammatory bowel disease and colon cancer, respectively. In conclusion, DMFMDA is successful application of deep learning in the prediction of microbe-disease association.
Collapse
|