Copyright
©2014 Baishideng Publishing Group Co.
World J Radiol. Apr 28, 2014; 6(4): 72-81
Published online Apr 28, 2014. doi: 10.4329/wjr.v6.i4.72
Published online Apr 28, 2014. doi: 10.4329/wjr.v6.i4.72
Table 1 Validation results of the clinical decision support systems based on chemical shift imaging data
| Ref. | Voxel assignment | Accuracy |
| De Edelenyi et al[27] | Low-grade gliomas | 92.9% |
| High-grade gliomas | 79.16% | |
| Metastasis | 60% | |
| Meningiomas | 100% | |
| Necrosis | 100% | |
| Healthy tissue | 100% | |
| Cerebrospinal fluid | 100% | |
| Simonetti et al[29] | Healthy tissue | 100% |
| Cerospinal fluid | 97% | |
| Glioma grade II | 83% | |
| Glioma grade III | 88% | |
| Glioma grade IV | 100% | |
| Luts et al[32] | Glioma II | 66.6% |
| Glioma II/III | 100% | |
| Glioma IV | 100% | |
| Meningioma | 100% | |
| McKnight et al[28] | Low grade gliomas vs grade III | 89% |
| Li et al[34] | Glioblastoma multiforme | 100% |
| Glioma II | 100% |
Table 2 Validation results of the clinical decision support systems based on single voxel data
| Ref. | CDSS | Differentiation problem | Accuracy | Supportive raw files | |||||
| Short TE | Long TE | Short + Long TE | |||||||
| Pérez-Ruiz et al[38] | INTERRET | Low grade meningiomas vs low grade glial tumors | 94a | 89b | 89c | 83b | 84c | 89c | |
| Pseudotumoural diseasedvs tumorsevs normal brain | 86c | 81c | 92c | ||||||
| García-Gómez et al[41] | eTUMOUR | Low grade glioma vs high grade tumor | 92 | 84 | 92 | 1.5 Tesla MRS data of Philips (sdat/spar) GE up to 9X (SAGE Pxxxx with an shf or sdf/shf) siemens scanners (numaris 4) jMRUI[58] text file | |||
| Meningioma vs glioma/Met | 92 | 78 | 94 | ||||||
| Low men vs glioma/Met vs low grade glioma | 87 | 75 | 90 | ||||||
| Sáez et al[44] | HealthAgents | Aggressive tumor vs meningioma vs low grade glial | 94 | - | |||||
| Meningioma vs metastasis | 91 | - | |||||||
| High grade tumor vs low grade tumor | 87 | 68 (ch) | |||||||
| Affected tissue vs non affected tissue | 99 | - | |||||||
| Tumor vs non tumor | 97 | - | |||||||
| Aggressive tumor vs non aggressive tumor | 81 | 72 (ch) | |||||||
| Glioma vs embryonal tumor | - | 72 (ch) | |||||||
| Glioblastoma vs low grade glioma | 84 | - | |||||||
| Glioblastoma vs meningioma | 91 | - | |||||||
| Meningioma vs low grade glioma | 92 | - | |||||||
| Metastasis vs low grade glioma | 85 | - | |||||||
| Vicente et al[46] | CURIAM BT | Aggressive tumor vs non aggressive tumor | 85 | 87 (ch) | 1.5 or 3 Tesla MRS data of different manufactures (Siemens, GE, Philips) by means of jMRUI[58] and jDMS[36] | ||||
| Pilocytic astrocytoma/ependymoma grade II vs medulloblastoma | 88 (ch) | 85 (ch) | 89 (ch) | ||||||
| Pilocytic astrocytoma vs medulloblastoma | 92 (ch) | 94 (ch) | 95 (ch) | ||||||
| Pilocytic astrocytoma vs ependymoma grade II vs medulloblastoma | 76 (ch) | 69 (ch) | 92 (ch) | ||||||
- Citation: Tsolaki E, Kousi E, Svolos P, Kapsalaki E, Theodorou K, Kappas C, Tsougos I. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques. World J Radiol 2014; 6(4): 72-81
- URL: https://www.wjgnet.com/1949-8470/full/v6/i4/72.htm
- DOI: https://dx.doi.org/10.4329/wjr.v6.i4.72
