Copyright
©2010 Baishideng Publishing Group Co.
World J Radiol. Jun 28, 2010; 2(6): 215-223
Published online Jun 28, 2010. doi: 10.4329/wjr.v2.i6.215
Published online Jun 28, 2010. doi: 10.4329/wjr.v2.i6.215
Table 1 Performance of CAD scheme for classification in five categories using physicians’ pattern classification n (%)
Lesion | n | Classification with CAD | ||||
HCC | Metastasis | Hemangioma | ||||
w-HCC | m-HCC | p-HCC | ||||
HCC | 74 | |||||
w-HCC | 23 | 15 (65.2) | 4 (17.4) | 4 (17.4) | 0 (0.0) | 0 (0.0) |
m-HCC | 36 | 16 (44.4) | 15 (41.7) | 5 (13.9) | 0 (0.0) | 1 (2.7) |
p-HCC | 15 | 1 (6.7) | 1 (6.7) | 12 (80.0) | 1 (6.7) | 0 (0.0) |
Metastasis | 33 | 1 (3.0) | 0 (0.0) | 1 (3.0) | 28 (84.8) | 3 (9.1) |
Hemangioma | 30 | 0 (0.0) | 0 (0.0) | 1 (3.3) | 1 (3.3) | 28 (93.3) |
Table 2 Performance of CAD scheme for classification in three categories using physicians’ subjective pattern classification n (%)
Lesion | n | Classification with CAD | ||
HCC | Metastasis | Hemangioma | ||
HCC | 74 | 73 (98.6) | 1 (1.4) | 0 (0.0) |
Metastasis | 33 | 2 (6.1) | 28 (84.8) | 3 (9.1) |
Hemangioma | 30 | 1 (3.3) | 1 (3.3) | 28 (93.3) |
Table 3 Image feature values used for CAD input data
Image feature values |
Temporal features |
Replenishment time (s) |
Peak pixel value |
Slope factor (β) |
Morphologic features |
Effective diameter of focal liver lesion |
Average size of vessel-like patterns |
Area ratio of vessel-like patterns |
Gray-level features |
Average pixel value with vessel-like patterns |
Average pixel value without vessel-like patterns |
Standard deviation of pixel value with vessel-like patterns |
Standard deviation of pixel value without vessel-like patterns |
Average pixel value ratio (focal liver lesion/adjacent liver parenchyma) |
Average pixel value ratio (central/peripheral) |
Features for hypoechoic region |
Average pixel value |
No. of hypoechoic regions |
Area ratio of hypoechoic region |
Difference in pixel value (delay-early) |
Change in pixel value (delay-early)/s |
Table 4 Performance of CAD scheme for classification in five categories using computerized scheme n (%)
Lesion | n | Classification with CAD | ||||
HCC | Metastasis | Hemangioma | ||||
w-HCC | m-HCC | p-HCC | ||||
Total | 103 | |||||
w-HCC | 24 | 19 (79.2) | 1 (4.2) | 2 (8.3) | 2 (8.3) | 0 (0.0) |
m-HCC | 28 | 5 (17.9) | 14 (50.0) | 4 (14.3) | 3 (10.7) | 2 (7.1) |
P-HCC | 9 | 1 (11.1) | 0 (0.0) | 7 (77.8) | 1 (11.1) | 0 (0.0) |
Metastasis | 26 | 2 (7.7) | 1 (3.8) | 0 (0.0) | 23 (88.5) | 0 (0.0) |
Hemangioma | 16 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (6.3) | 15 (93.8) |
- Citation: Sugimoto K, Shiraishi J, Moriyasu F, Doi K. Computer-aided diagnosis for contrast-enhanced ultrasound in the liver. World J Radiol 2010; 2(6): 215-223
- URL: https://www.wjgnet.com/1949-8470/full/v2/i6/215.htm
- DOI: https://dx.doi.org/10.4329/wjr.v2.i6.215