Copyright
©The Author(s) 2026.
World J Radiol. Jan 28, 2026; 18(1): 115503
Published online Jan 28, 2026. doi: 10.4329/wjr.v18.i1.115503
Published online Jan 28, 2026. doi: 10.4329/wjr.v18.i1.115503
Table 1 Demographic characteristics of hepatoblastoma patients receiving surgical resection in the training and testing cohorts, n (%)
| Variable | All subjects (n = 106) | Training set (n = 74) | Testing set (n = 32) | P value |
| Age, median (IQR) | 2.1 (0.6) | 2.1 (0.6) | 2.0 (0.6) | 0.397 |
| Gender | 0.478 | |||
| Male | 84 (79.2) | 60 (81.1) | 24 (75.0) | |
| Female | 22 (20.8) | 14 (18.9) | 8 (25.0) | |
| Histological subtype | 0.938 | |||
| Mixed epithelial/mesenchymal | 58 (54.7) | 41 (55.4) | 17 (53.1) | |
| Fetal | 44 (41.5) | 30 (40.5) | 14 (43.8) | |
| Epithelial mixed | 4 (3.8) | 3 (4.1) | 1 (3.1) | |
| PRETEXT stage | 0.275 | |||
| I | 3 (2.8) | 1 (1.4) | 2 (6.3) | |
| II | 52 (49.1) | 35 (47.3) | 17 (53.1) | |
| III | 51 (48.1) | 38 (51.4) | 13 (40.6) | |
| Maximum tumor size, median (IQR), cm | 5.1 (4.0) | 5.1 (3.1) | 5.5 (4.4) | 0.964 |
| Multifocality | 0.870 | |||
| Absent | 65 (61.3) | 45 (60.8) | 20 (62.5) | |
| Present | 41 (38.7) | 29 (39.2) | 12 (37.5) | |
| Local lymph node involvement | 0.904 | |||
| Absent | 103 (97.2) | 72 (97.3) | 31 (96.9) | |
| Present | 3 (2.8) | 2 (2.7) | 1 (3.1) | |
| Serum AFP concentration | 0.419 | |||
| ≤ 1000 ng/mL | 50 (47.2) | 33 (44.6) | 17 (53.1) | |
| > 1000 ng/mL | 56 (52.8) | 41 (55.4) | 15 (46.9) | |
| DLBR score1, median (IQR) | 0.002 (0.049) | 0.002 (0.050) | 0.002 (0.058) | 0.625 |
Table 2 Predication performance of clinical variables, deep learning-based radiomics score, and integrated nomogram models for prognostication of event-free survival in the training and testing cohorts of hepatoblastoma patients receiving surgical resection
| Models | Training set | Testing set | ||||||
| C-index (95%CI) | IBS (95%CI) | HR (95%CI) | P value | C-index (95%CI) | IBS (95%CI) | HR (95%CI) | P value | |
| Clinical variables | ||||||||
| Age | 0.443 (0.435-0.450) | 0.066 (0.054-0.077) | 1.145 (0.546-2.402) | 0.720 | 0.435 (0.426-0.443) | 0.040 (0.028-0.052) | 1.087 (0.468-2.527) | 0.846 |
| Gender | 0.517 (0.510-0.524) | 0.002 (-0.018-0.023) | 1.178 (0.558-2.486) | 0.668 | 0.500 (0.493-0.508) | 0.003 (-0.000-0.007) | 1.033 (0.423-2.523) | 0.944 |
| Histological subtype | 0.545 (0.535-0.556) | -0.020 (-0.040 to -0.001) | 1.672 (0.390-7.165) | 0.377 | 0.569 (0.556-0.583) | -0.103 (-0.168 to -0.038) | 0.784 (0.104-5.911) | 0.549 |
| PRETEXT stage | 0.633 (0.624-0.642) | -0.963 (-1.063 to -0.863) | 2.610 (1.318-5.167) | 0.006 | 0.650 (0.639-0.660) | -1.368 (-1.490 to -1.246) | 2.578 (1.181-5.629) | 0.017 |
| Maximum tumor size | 0.576 (0.561-0.590) | -0.289 (-0.316 to -0.262) | 1.108 (0.975-1.259) | 0.116 | 0.622 (0.608-0.636) | -0.898 (-0.962 to -0.833) | 1.186 (1.015-1.386) | 0.031 |
| Multifocality | 0.632 (0.625-0.640) | -0.746 (-0.820 to -0.671) | 1.621 (0.862-3.047) | 0.134 | 0.603 (0.592-0.614) | -0.383 (-0.436 to -0.331) | 1.309 (0.639-2.680) | 0.462 |
| Local lymph node involvement | 0.508 (0.506-0.511) | -0.036 (-0.047 to -0.024) | 1.289 (0.175-9.490) | 0.803 | 0.511 (0.508-0.514) | -0.091 (-0.109 to -0.073) | 1.630 (0.220-12.091) | 0.633 |
| Serum AFP concentration | 0.620 (0.611-0.629) | -0.827 (-0.912 to -0.741) | 2.873 (1.397-5.910) | 0.004 | 0.647 (0.636-0.657) | -1.412 (-1.540 to -1.284) | 3.194 (1.370-7.446) | 0.007 |
| DLBR score | 0.610 (0.599-0.620) | 0.246 (0.042-0.449) | 0.000 (0.000-0.002) | < 0.001 | 0.642 (0.633-0.652) | 0.378 (0.162-0.593) | 0.000 (0.000-0.004) | < 0.001 |
| Clinical modela | 0.633 (0.624-0.643) | -0.923 (-1.022 to -0.825) | / | / | 0.653 (0.643-0.664) | -1.384 (-1.508 to -1.261) | / | / |
| Integrated nomogram1 | 0.669 (0.661-0.677) | -0.634 (-0.894 to -0.375) | / | / | 0.696 (0.688-0.704) | -0.760 (-1.017 to -0.503) | / | / |
Table 3 Time-dependent area under the receiver operating characteristic curve value of clinical variables, deep learning-based radiomics score, and integrated nomogram models for prognostication of event-free survival in the training and testing cohorts of hepatoblastoma patients receiving surgical resection
| Models | Training set | Testing set | ||||
| 1-year AUC (95%CI) | 3-year AUC (95%CI) | 5-year AUC (95%CI) | 1-year AUC (95%CI) | 3-year AUC (95%CI) | 5-year AUC (95%CI) | |
| Clinical variables | ||||||
| PRETEXT stage | 0.615 (0.496-0.733) | 0.631 (0.526-0.736) | 0.625 (0.522-0.729) | 0.653 (0.523-0.784) | 0.649 (0.530-0.768) | 0.639 (0.521-0.756) |
| Serum AFP concentration | 0.586 (0.465-0.708) | 0.632 (0.528-0.736) | 0.624 (0.521-0.728) | 0.635 (0.503-0.766) | 0.663 (0.549-0.777) | 0.650 (0.536-0.765) |
| DLBR score | 0.539 (0.406-0.672) | 0.589 (0.471-0.707) | 0.609 (0.493-0.724) | 0.588 (0.430-0.746) | 0.615 (0.480-0.750) | 0.641 (0.509-0.772) |
| Clinical model | 0.607 (0.484-0.730) | 0.637 (0.533-0.742) | 0.631 (0.528-0.734) | 0.650 (0.516-0.783) | 0.660 (0.544-0.777) | 0.649 (0.533-0.765) |
| Integrated nomogram | 0.606 (0.471-0.742) | 0.654 (0.537-0.771) | 0.660 (0.544-0.775) | 0.661 (0.509-0.814) | 0.678 (0.548-0.808) | 0.685 (0.556-0.813) |
Table 4 Kaplan-Meier analysis of deep learning-based radiomics score stratified by significant clinical variables for prognostication of event-free survival in the training and testing cohorts of hepatoblastoma patients receiving surgical resection
| Variable | DLBR score group | Training dataset | Testing dataset | ||||
| Mean survival time, month | 95%CI, month | Log-rank test | Mean survival time, month | 95%CI, month | Log-rank test | ||
| DLBR score | < 0.001 | < 0.001 | |||||
| Low score | / | 104.83 | 93.85-115.81 | 106.73 | 94.27-119.19 | ||
| High score | / | 71.58 | 58.61-84.55 | 61.74 | 46.55-76.92 | ||
| PRETEXT stage | < 0.001 | < 0.001 | |||||
| I + II | Low score | 107.21 | 96.65-117.78 | 0.005 | 111.95 | 102.30-121.61 | < 0.001 |
| High score | 84.64 | 65.49-103.79 | 73.50 | 50.16-96.84 | |||
| III | Low score | 93.30 | 71.48-115.12 | 0.012 | 93.63 | 69.51-117.74 | 0.003 |
| High score | 63.11 | 46.49-79.74 | 53.88 | 34.40-73.37 | |||
| Serum AFP concentration | < 0.001 | < 0.001 | |||||
| ≤ 1000 ng/mL | Low score | 106.58 | 95.37-117.79 | 0.021 | 111.95 | 102.30-121.61 | 0.001 |
| High score | 87.12 | 66.36-107.89 | 73.58 | 47.39-99.78 | |||
| > 1000 ng/mL | Low score | 96.10 | 76.09-116.12 | 0.005 | 93.63 | 69.51-117.74 | 0.003 |
| High score | 63.58 | 47.69-79.46 | 55.32 | 36.93-73.71 | |||
- Citation: Yang YH, Li Y. Magnetic resonance imaging-based deep-learning radiomics score for survival prediction and risk stratification in pediatric hepatoblastoma receiving surgical resection. World J Radiol 2026; 18(1): 115503
- URL: https://www.wjgnet.com/1949-8470/full/v18/i1/115503.htm
- DOI: https://dx.doi.org/10.4329/wjr.v18.i1.115503
