Copyright
©The Author(s) 2023.
World J Radiol. Dec 28, 2023; 15(12): 359-369
Published online Dec 28, 2023. doi: 10.4329/wjr.v15.i12.359
Published online Dec 28, 2023. doi: 10.4329/wjr.v15.i12.359
Table 1 Clinical and protocol details of training and test cases
Training cases (n = 58) | Test cases (n = 20) | |
AJCC stage | ||
Stage 1 | 0 | 5 |
Stage 2 | 15 | 5 |
Stage 3 | 14 | 7 |
Stage 4 | 29 | 3 |
T stage | ||
T1 | 0 | 2 |
T2 | 0 | 4 |
T3 | 21 | 13 |
T4 | 37 | 1 |
Location | ||
Right | 39 | 17 |
Transverse | 3 | 2 |
Left | 16 | 1 |
CT slice thickness (mm) | ||
7 | 0 | 1 |
5 | 29 | 17 |
3-4 | 25 | 0 |
2 or less | 4 | 2 |
Contrast | ||
IV+PO | 27 | 18 |
IV | 22 | 1 |
PO | 4 | 1 |
None | 5 | 0 |
Table 2 Sensitivity and false positives/case for ensemble technique
Single voter | 2 voter | 3 voter | |
Sensitivity | 0.8 | 0.6 | 0.3 |
False positives/case | 21.95 | 7.55 | 3.7 |
Table 3 Dice coefficient distribution for ensemble technique
Percentage of cases | Estimated dice coefficient | |||
0 | 0-0.25 | 0.25-0.5 | > 0.5 | |
Single voter | 20 | 5 | 60 | 15 |
2 voter | 40 | 35 | 20 | 5 |
3 voter | 70 | 15 | 10 | 5 |
Table 4 Amount of time needed to annotate the tumor
Lesion size | Annotation time based on technique (Min:Sec ± min) | ||||
Manual (n = 3 each) | AI-single voter (n = 3 each) | AI-2-voter (n = 3 each) | Skip-1 (n = 3 each) | Skip-2 (n = 3 each) | |
Large | 22:09 ± 0.18 | 21:00 ± 0.23 | 20:29 ± 0.22 | 8:58 ± 1.22 | 5:34 ± 1.19 |
Medium | 15:06 ± 0.4 | 10:37 ± 0.25 | 9:13 ± 0.15 | 4:58 ± 2.57 | 1:14 ± 1.38 |
Small | 5:54 ± 0.07 | 6:26 ± 0.03 | 5:44 ± 0.02 | 2:23 ± 0.14 | 1:24 ± 0.28 |
- Citation: Grudza M, Salinel B, Zeien S, Murphy M, Adkins J, Jensen CT, Bay C, Kodibagkar V, Koo P, Dragovich T, Choti MA, Kundranda M, Syeda-Mahmood T, Wang HZ, Chang J. Methods for improving colorectal cancer annotation efficiency for artificial intelligence-observer training. World J Radiol 2023; 15(12): 359-369
- URL: https://www.wjgnet.com/1949-8470/full/v15/i12/359.htm
- DOI: https://dx.doi.org/10.4329/wjr.v15.i12.359