1
|
Weissman BN, Palestro CJ, Fox MG, Bell AM, Blankenbaker DG, Frick MA, Jawetz ST, Kuo PH, Said N, Stensby JD, Subhas N, Tynus KM, Walker EA, Kransdorf MJ. ACR Appropriateness Criteria® Imaging After Total Hip Arthroplasty. J Am Coll Radiol 2023; 20:S413-S432. [PMID: 38040462 DOI: 10.1016/j.jacr.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
This article reviews evidence for performing various imaging studies in patients with total hip prostheses. Routine follow-up is generally performed with radiography. Radiographs are also usually the initial imaging modality for patients with symptoms related to the prosthesis. Following acute injury with pain, noncontrast CT may add information to radiographic examination regarding the presence and location of a fracture, component stability, and bone stock. Image-guided joint aspiration, noncontrast MRI, and white blood cell scan and sulfur colloid scan of the hip, are usually appropriate studies for patients suspected of having periprosthetic infection. For evaluation of component loosening, wear, and/or osteolysis, noncontrast CT or MRI are usually appropriate studies. Noncontrast MRI is usually appropriate for identifying adverse reaction to metal debris related to metal-on-metal articulations. For assessing patients after hip arthroplasty, who have trochanteric pain and nondiagnostic radiographs, ultrasound, or MRI are usually appropriate studies. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | | | | | - Angela M Bell
- Rush University Medical Center, Chicago, Illinois; American College of Physicians
| | - Donna G Blankenbaker
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Phillip H Kuo
- University of Arizona, Tucson, Arizona; Commission on Nuclear Medicine and Molecular Imaging
| | - Nicholas Said
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Katherine M Tynus
- Northwestern Memorial Hospital, Chicago, Illinois; American College of Physicians
| | - Eric A Walker
- Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
2
|
Brittberg M. Knee osteochondritis dissecans-treatment technical aspects. J Orthop 2022; 34:104-110. [PMID: 36060730 PMCID: PMC9428728 DOI: 10.1016/j.jor.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose and objective Current treatments of different stages of knee osteochondritis Dissecans (OCD) are depending on the age of the patients and the stability of the diseased osteochondral area. The purpose of this paper was to summarize the treatment alternatives in order to simplify the choice for the treating surgeon. Background and principle results Osteochondritis dissecans (OCD) of the knee is an idiopathic and local osteochondral abnormality that affects mainly children and adolescents with risk of loosening of osteochondral fragments. A good clinical result can be expected when the physes are still open, when the osteochondritis is small and when the osteochondritis can be assessed as stable by MRI. Unstable OCD lesions most often need to be treated operatively by different fixation methods and when the osteochondral cannot be refixated, different local chondral and osteochondral repairs are available to fill up the defect area to congruity. Summary and major conclusions The final choice of which treatment to use is depending on fragment viability and forms. Viable fragments are refixated while poor quality fragments are removed followed by a local biological osteochondral repair. Such osteochondral resurfacing may be single bone marrow stimulation with or without scaffold augmentation or different cell seeded grafts.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Varberg Hospital, S-43237, Varberg, Sweden
| |
Collapse
|
3
|
Raynor WY, Borja AJ, Hancin EC, Werner TJ, Alavi A, Revheim ME. Novel Musculoskeletal and Orthopedic Applications of 18F-Sodium Fluoride PET. PET Clin 2021; 16:295-311. [PMID: 33589389 DOI: 10.1016/j.cpet.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PET imaging with 18F-sodium fluoride (NaF), combined with computed tomography or magnetic resonance, is a sensitive method of assessing bone turnover. Although NaF-PET is gaining popularity in detecting prostate cancer metastases to bone marrow, osseous changes represent secondary effects of cancer cell growth. PET tracers more appropriate for assessing prostate cancer metastases directly portray malignant activity and include 18F-fluciclovine and prostatic specific membrane antigen ligands. Recent studies investigating NaF-PET suggest utility in the assessment of benign musculoskeletal disorders. Emerging applications in assessing traumatic injuries, joint disease, back pain, orthopedic complications, and metabolic bone disease are discussed.
Collapse
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway.
| |
Collapse
|
4
|
Ullmark G, Sörensen J, Nilsson O, Maripuu E. Bone mineralisation adjacent to cemented and uncemented acetabular cups: analysis by [18F]-fluoride-PET in a randomised clinical trial. Hip Int 2020; 30:745-751. [PMID: 32686502 DOI: 10.1177/1120700019861274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE We present a randomised clinical trial using F-PET/CT to analyse new bone metabolic mineralisation adjacent to acetabular cups following total hip arthoplasty (THA). PATIENTS AND METHODS THA was performed on 26 patients (26 cases) with hip OA. Patients with hip osteoarthritis (OA) were randomly assigned to operations with cemented or uncemented acetabular components. The contralateral, healthy acetabulum was used as referent for normal bone metabolism. The patients were analysed with radiography, clinical scoring, and F-PET/CT preoperatively, and at 6 weeks and 6 months postoperatively. RESULTS No major complications were recorded, and clinical results were good in all patients. Radiography showed all cups to be stable. The bone-forming activity, as measured by F-PET/CT, was quantified as standardised uptake values (SUV). The mean SUV was 4.6 (6 weeks) and 3.5 (6 months) around the uncemented cups, and 4.8 and 4.0, respectively, for the cemented cups. Normal healthy bone metabolism in the referent was 2.8 and 2.7 SUV at 6 weeks and 6 months, respectively. P < 0.01 for the cemented group at 6 weeks and 6 months, for the uncemented group only at 6 weeks. INTERPRETATION An acetabulum affected by OA has elevated SUV activity. Both cemented and uncemented cups had elevated bone metabolic activity at 6 weeks. The raised activity was interpreted as an effect from bone mineralisation secondary to surgical trauma and healing, and to the OA. At 6 months, activity was more normalised for the uncemented group than for the cemented, suggesting healing may terminate faster in the uncemented group. Postoperative bone metabolic activity can be analysed in detail by F-PET/CT.ClinicalTrials.gov Identifier: NCT01623687.
Collapse
Affiliation(s)
- Gösta Ullmark
- ¹Department of Orthopaedics, Gävle Hospital, Gävle, Sweden.,Centre for Research and Development, Uppsala University, Sweden
| | - Jens Sörensen
- Department of Nuclear Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Olle Nilsson
- Department of Orthopaedics, Uppsala University Hospital, Sweden
| | - Enn Maripuu
- Department of Nuclear Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Ullmark G. Occult Hip Prosthetic Loosening Diagnosed by [18F] Fluoride-PET/CT. Arthroplast Today 2020; 6:548-551. [PMID: 32775585 PMCID: PMC7397393 DOI: 10.1016/j.artd.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022] Open
Abstract
Background Positron emission tomography using the [18F] fluoride metabolite combined with computerized tomography (F-PET/CT) can be used to analyze the metabolic status of the periprosthetic bone after surgery for total hip arthroplasty. Methods To obtain normal PET referent values, 44 patients with 5 models of well-functioning hip prosthetic components were analyzed by F-PET/CT, radiography, and clinical score. Another group of patients having painful total hip arthroplasty, but whose radiography showed no conclusive signs of loosening, was analyzed by F-PET/CT scans before revision surgery. Results Preoperative median F-PET scores of the bone metabolic activity were 6.65 (3.3-9.0) for the painful stem group and 1.85 (1.2-3.9) (P < .01) for the referent group having the same stem model. At revision surgery, the stems in the painful group were assessed to be loose. At 2-year follow-up, the revised patients were all pain free. Conclusion F-PET/CT may be a new diagnostic tool for assessing occult loose stems that are not seen by radiography.
Collapse
Affiliation(s)
- Gösta Ullmark
- Department of Orthopaedics, Gävle Hospital and Centre for Research & Development, Uppsala University, County Council of Gävleborg, Sweden
| |
Collapse
|
6
|
Jeuken RM, Roth AK, Peters MJM, Welting TJM, van Rhijn LW, Koenen J, Peters RJRW, Thies JC, Emans PJ. In vitro and in vivo study on the osseointegration of BCP-coated versus uncoated nondegradable thermoplastic polyurethane focal knee resurfacing implants. J Biomed Mater Res B Appl Biomater 2020; 108:3370-3382. [PMID: 32614486 PMCID: PMC7586808 DOI: 10.1002/jbm.b.34672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alex K Roth
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marloes J M Peters
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jac Koenen
- DSM Biomedical BV, Geleen, The Netherlands
| | | | | | - Pieter J Emans
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Influence of Hydroxyapatite Coating for the Prevention of Bone Mineral Density Loss and Bone Metabolism after Total Hip Arthroplasty: Assessment Using 18F-Fluoride Positron Emission Tomography and Dual-Energy X-Ray Absorptiometry by Randomized Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4154290. [PMID: 32185203 PMCID: PMC7060431 DOI: 10.1155/2020/4154290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022]
Abstract
Background Hydroxyapatite- (HA-) coated implants tend to achieve good osteoinductivity and stable clinical results; however, the influence of the coating on the prevention of bone mineral density (BMD) loss around the implant is unclear. The purpose of this randomized controlled trial was to evaluate the effectiveness of HA-coated implants for preventing BMD loss and to determine the status of bone remodeling after total hip arthroplasty (THA), making comparisons with non-HA-coated implants. Methods A total of 52 patients who underwent primary THA were randomly allocated to HA and non-HA groups. BMD was measured by dual-energy X-ray absorptiometry (DEXA) at 1 week postoperation to form a baseline measurement, and then 24 weeks and 48 weeks after surgery. The relative change in BMD was evaluated for regions of interest (ROIs) based on the Gruen zone classifications. 18F-fluoride positron emission tomography (PET) was performed at 24 weeks postsurgery, and the maximum standardized uptake values (SUVmax) were evaluated in the proximal (HA-coated) and distal (non-HA-coated) areas in both groups. Results There were significant differences in BMD loss in ROIs 3 and 6 (p = 0.03), while no significant difference was observed in ROI 7 at either 24 or 48 weeks postsurgery. There was no significant correlation between PET uptake and BMD (24 or 48 weeks) in either group. Conclusion The influence of a HA coating in terms of BMD preservation is limited. No significant correlation was found between BMD and SUVmax measured by PET, either with or without the use of a HA coating.
Collapse
|
8
|
Ullmark G, Sörensen J, Maripuu E, Nilsson O. Fingerprint pattern of bone mineralisation on cemented and uncemented femoral stems: analysis by [18F]-fluoride-PET in a randomised clinical trial. Hip Int 2019; 29:609-617. [PMID: 30520317 DOI: 10.1177/1120700018815404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE We present a randomised clinical study using 18F-fluoride positron emission tomography/computed tomography (F-PET/CT) to analyse the osteoblastic part of bone metabolism (new bone mineralisation) in periprosthetic bone adjacent to femoral stems following total hip arthoplasty (THA) surgery. Patients with hip osteoarthritis were randomly assigned to THA surgery with cemented or uncemented femoral components. PATIENTS AND METHODS THA was performed on 26 patients (26 cases) with hip osteoarthritis. The patients received either an uncemented HA-coated femoral stem or a cemented one. The contralateral healthy femur was used as referent for normal bone metabolism. The patients were analysed with clinical score, radiography and F-PET/CT preoperatively, and postoperatively at 6 weeks and 6 months. After 2 years, clinical score and radiography was analysed again. We used the Polar Map system for analysing and presenting the PET results in 13 regions of interest adjacent to the whole stem. RESULTS The clinical results were good in all patients; there were no major complications. Radiographically, all stems were stable. PET analyses after 6 weeks showed that bone mineralising activity was significantly higher around the uncemented stems, both compared to the cemented group and to the contralateral healthy reference femur group. The cemented group also had elevated activity but only at a barely significant level. INTERPRETATION Mineralising activity analysed with F-PET/CT was significantly higher for the uncemented group and also decreased at a slower rate. F-PET/CT is a useful new tool for analysing secondary stabilisation of femoral stems after THA. The study was registered at ClinicalTrials.gov (identifier NCT01623687).
Collapse
Affiliation(s)
- Gösta Ullmark
- Department of Orthopaedics, Gävle Hospital, Gävle, Sweden.,Centre for Research and Development, Uppsala University, Sweden
| | - Jens Sörensen
- Department of Nuclear Medicine, Uppsala University Hospital, Sweden
| | - Enn Maripuu
- Department of Nuclear Medicine, Uppsala University Hospital, Sweden
| | - Olle Nilsson
- Depaetment of Orthopaedics, Uppsala University Hospital, Sweden
| |
Collapse
|
9
|
Mathavan N, Koopman J, Raina DB, Turkiewicz A, Tägil M, Isaksson H. 18F-fluoride as a prognostic indicator of bone regeneration. Acta Biomater 2019; 90:403-411. [PMID: 30965143 DOI: 10.1016/j.actbio.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023]
Abstract
Positron emission tomography (PET) is a form of nuclear imaging, which quantitatively assesses the metabolic activity through the uptake of radioactive tracers. 18F-fluoride is a positron-emitting isotope with high affinity for bone. Despite its potential as a non-invasive measure of bone metabolism, quantitative 18F-fluoride PET has only been used sparsely in orthopaedic applications. It has been speculated that 18F-fluoride PET characterizes cellular activity of bone forming cells in the early stages of the regenerative process and therefore precedes the mineralization detected by conventional computed tomography (CT). Our aim was thus to combine in vivo PET and CT to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. On the basis of the RMSE and R2 metrics of linear regression models it was conceivable for bone volumes to be predicted up to three weeks in advance in a rodent model (RMSE: 14 mm3-18 mm3, R2: 0.79-0.82). Moreover, the data suggested that 18F-fluoride positron-emitting activity had the potential to separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications. Based on this data, we conclude that 18F-fluoride positron-emitting activity is strongly correlated to bone formation and could potentially predict the volume of bone regenerated at fracture sites. The volume of bone regenerated at a fracture site can be interpreted as a measure of the healing response and 18F-fluoride should be further investigated as a predictive diagnostic tool to identify if bone fractures will heal successfully or result in delayed healing or non-union. STATEMENT OF SIGNIFICANCE: We aimed to combine in vivo PET and CT imaging to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. Our data suggest that 18F-fluoride positron-emitting activity can separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications including as a predictive diagnostic tool to identify if fractures will heal successfully or result in delayed healing or non-union.
Collapse
Affiliation(s)
- Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Janine Koopman
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Deepak Bushan Raina
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Aleksandra Turkiewicz
- Lund OsteoArthritis Division - Clinical Epidemiology Unit, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Bernhardsson M, Sandberg O, Ressner M, Koziorowski J, Malmquist J, Aspenberg P. Shining dead bone-cause for cautious interpretation of [ 18F]NaF PET scans. Acta Orthop 2018; 89:124-127. [PMID: 28914114 PMCID: PMC5810820 DOI: 10.1080/17453674.2017.1372097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - [18F]Fluoride ([18F]NaF) PET scan is frequently used for estimation of bone healing rate and extent in cases of bone allografting and fracture healing. Some authors claim that [18F]NaF uptake is a measure of osteoblastic activity, calcium metabolism, or bone turnover. Based on the known affinity of fluoride to hydroxyapatite, we challenged this view. Methods - 10 male rats received crushed, frozen allogeneic cortical bone fragments in a pouch in the abdominal wall on the right side, and hydroxyapatite granules on left side. [18F]NaF was injected intravenously after 7 days. 60 minutes later, the rats were killed and [18F]NaF uptake was visualized in a PET/CT scanner. Specimens were retrieved for micro CT and histology. Results - MicroCT and histology showed no signs of new bone at the implant sites. Still, the implants showed a very high [18F]NaF uptake, on a par with the most actively growing and remodeling sites around the knee joint. Interpretation - [18F]NaF binds with high affinity to dead bone and calcium phosphate materials. Hence, an [18F]NaF PET/CT scan does not allow for sound conclusions about new bone ingrowth into bone allograft, healing activity in long bone shaft fractures with necrotic fragments, or remodeling around calcium phosphate coated prostheses.
Collapse
Affiliation(s)
- Magnus Bernhardsson
- Orthopaedics, Department of Clinical and Experimental Medicine and Department of Medical and Health Sciences, Linköping University, Linköping,Correspondence:
| | - Olof Sandberg
- Orthopaedics, Department of Clinical and Experimental Medicine and Department of Medical and Health Sciences, Linköping University, Linköping
| | - Marcus Ressner
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping
| | - Jacek Koziorowski
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jonas Malmquist
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Aspenberg
- Orthopaedics, Department of Clinical and Experimental Medicine and Department of Medical and Health Sciences, Linköping University, Linköping
| |
Collapse
|
11
|
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater Sci Eng 2017; 3:1245-1261. [DOI: 10.1021/acsbiomaterials.6b00604] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Civantos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Noricum S.L., San Sebastián
de los Reyes, Av. Fuente Nueva, 14, 28703 Madrid, Spain
| | - Carlos Elvira
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ander Abarrategi
- Haematopoietic
Stem Cell Laboratory, The Francis Crick Institute, 1 Midland
Road, NW1 1AT London, U.K
| |
Collapse
|
12
|
Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, Werner TJ, Høilund-Carlsen PF, Baker JF, Alavi A. Evolving Role of Molecular Imaging with (18)F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism. Curr Osteoporos Rep 2016; 14:115-25. [PMID: 27301549 DOI: 10.1007/s11914-016-0312-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
(18)F-sodium fluoride (NaF) as an imaging tracer portrays calcium metabolic activity either in the osseous structures or in soft tissue. Currently, clinical use of NaF-PET is confined to detecting metastasis to the bone, but this approach reveals indirect evidence for disease activity and will have limited use in the future in favor of more direct approaches that visualize cancer cells in the read marrow where they reside. This has proven to be the case with FDG-PET imaging in most cancers. However, a variety of studies support the application of NaF-PET to assess benign osseous diseases. In particular, bone turnover can be measured from NaF uptake to diagnose osteoporosis. Several studies have evaluated the efficacy of bisphosphonates and their lasting effects as treatment for osteoporosis using bone turnover measured by NaF-PET. Additionally, NaF uptake in vessels tracks calcification in the plaques at the molecular level, which is relevant to coronary artery disease. Also, NaF-PET imaging of diseased joints is able to project disease progression in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Further studies suggest potential use of NaF-PET in domains such as back pain, osteosarcoma, stress-related fracture, and bisphosphonate-induced osteonecrosis of the jaw. The critical role of NaF-PET in disease detection and characterization of many musculoskeletal disorders has been clearly demonstrated in the literature, and these methods will become more widespread in the future. The data from PET imaging are quantitative in nature, and as such, it adds a major dimension to assessing disease activity.
Collapse
Affiliation(s)
- William Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sina Houshmand
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Saeid Gholami
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sahra Emamzadehfard
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Björn Alexander Blomberg
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | | - Joshua F Baker
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Clarke A, Pulikottil-Jacob R, Grove A, Freeman K, Mistry H, Tsertsvadze A, Connock M, Court R, Kandala NB, Costa M, Suri G, Metcalfe D, Crowther M, Morrow S, Johnson S, Sutcliffe P. Total hip replacement and surface replacement for the treatment of pain and disability resulting from end-stage arthritis of the hip (review of technology appraisal guidance 2 and 44): systematic review and economic evaluation. Health Technol Assess 2015; 19:1-668, vii-viii. [PMID: 25634033 DOI: 10.3310/hta19100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Total hip replacement (THR) involves the replacement of a damaged hip joint with an artificial hip prosthesis. Resurfacing arthroplasty (RS) involves replacement of the joint surface of the femoral head with a metal surface covering. OBJECTIVES To undertake clinical effectiveness and cost-effectiveness analysis of different types of THR and RS for the treatment of pain and disability in people with end-stage arthritis of the hip, in particular to compare the clinical effectiveness and cost-effectiveness of (1) different types of primary THR and RS for people in whom both procedures are suitable and (2) different types of primary THR for people who are not suitable for hip RS. DATA SOURCES Electronic databases including MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials and UK Clinical Research Network (UKCRN) Portfolio Database were searched in December 2012, with searches limited to publications from 2008 and sample sizes of ≥ 100 participants. Reference lists and websites of manufacturers and professional organisations were also screened. REVIEW METHODS Systematic reviews of the literature were undertaken to appraise the clinical effectiveness and cost-effectiveness of different types of THR and RS for people with end-stage arthritis of the hip. Included randomised controlled trials (RCTs) and systematic reviews were data extracted and risk of bias and methodological quality were independently assessed by two reviewers using the Cochrane Collaboration risk of bias tool and the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A Markov multistate model was developed for the economic evaluation of the technologies. Sensitivity analyses stratified by sex and controlled for age were carried out to assess the robustness of the results. RESULTS A total of 2469 records were screened of which 37 were included, representing 16 RCTs and eight systematic reviews. The mean post-THR Harris Hip Score measured at different follow-up times (from 6 months to 10 years) did not differ between THR groups, including between cross-linked polyethylene and traditional polyethylene cup liners (pooled mean difference 2.29, 95% confidence interval -0.88 to 5.45). Five systematic reviews reported evidence on different types of THR (cemented vs. cementless cup fixation and implant articulation materials) but these reviews were inconclusive. Eleven cost-effectiveness studies were included; four provided relevant cost and utility data for the model. Thirty registry studies were included, with no studies reporting better implant survival for RS than for all types of THR. For all analyses, mean costs for RS were higher than those for THR and mean quality-adjusted life-years (QALYs) were lower. The incremental cost-effectiveness ratio for RS was dominated by THR, that is, THR was cheaper and more effective than RS (for a lifetime horizon in the base-case analysis, the incremental cost of RS was £11,284 and the incremental QALYs were -0.0879). For all age and sex groups RS remained clearly dominated by THR. Cost-effectiveness acceptability curves showed that, for all patients, THR was almost 100% cost-effective at any willingness-to-pay level. There were age and sex differences in the populations with different types of THR and variations in revision rates (from 1.6% to 3.5% at 9 years). For the base-case analysis, for all age and sex groups and a lifetime horizon, mean costs for category E (cemented components with a polyethylene-on-ceramic articulation) were slightly lower and mean QALYs for category E were slightly higher than those for all other THR categories in both deterministic and probabilistic analyses. Hence, category E dominated the other four categories. Sensitivity analysis using an age- and sex-adjusted log-normal model demonstrated that, over a lifetime horizon and at a willingness-to-pay threshold of £20,000 per QALY, categories A and E were equally likely (50%) to be cost-effective. LIMITATIONS A large proportion of the included studies were inconclusive because of poor reporting, missing data, inconsistent results and/or great uncertainty in the treatment effect estimates. This warrants cautious interpretation of the findings. The evidence on complications was scarce, which may be because of the absence or rarity of these events or because of under-reporting. The poor reporting meant that it was not possible to explore contextual factors that might have influenced study results and also reduced the applicability of the findings to routine clinical practice in the UK. The scope of the review was limited to evidence published in English in 2008 or later, which could be interpreted as a weakness; however, systematic reviews would provide summary evidence for studies published before 2008. CONCLUSIONS Compared with THR, revision rates for RS were higher, mean costs for RS were higher and mean QALYs gained were lower; RS was dominated by THR. Similar results were obtained in the deterministic and probabilistic analyses and for all age and sex groups THR was almost 100% cost-effective at any willingness-to-pay level. Revision rates for all types of THR were low. Category A THR (cemented components with a polyethylene-on-metal articulation) was more cost-effective for older age groups. However, across all age-sex groups combined, the mean cost for category E THR (cemented components with a polyethylene-on-ceramic articulation) was slightly lower and the mean QALYs gained were slightly higher. Category E therefore dominated the other four categories. Certain types of THR appeared to confer some benefit, including larger femoral head sizes, use of a cemented cup, use of a cross-linked polyethylene cup liner and a ceramic-on-ceramic as opposed to a metal-on-polyethylene articulation. Further RCTs with long-term follow-up are needed. STUDY REGISTRATION This study is registered as PROSPERO CRD42013003924. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Aileen Clarke
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Amy Grove
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Karoline Freeman
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hema Mistry
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Martin Connock
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rachel Court
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Matthew Costa
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Gaurav Suri
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - David Metcalfe
- Warwick Orthopaedics, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Michael Crowther
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Sarah Morrow
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Samantha Johnson
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul Sutcliffe
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Palestro CJ. Nuclear medicine and the failed joint replacement: Past, present, and future. World J Radiol 2014; 6:446-458. [PMID: 25071885 PMCID: PMC4109096 DOI: 10.4329/wjr.v6.i7.446] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography(SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements.
Collapse
|
15
|
New Application of 18F-Fluoride PET for the Detection of Bone Remodeling in Early-Stage Osteoarthritis of the Hip. Clin Nucl Med 2013; 38:e379-83. [DOI: 10.1097/rlu.0b013e31828d30c0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ullmark G, Nilsson O, Maripuu E, Sörensen J. Analysis of bone mineralization on uncemented femoral stems by [18F]-fluoride-PET: a randomized clinical study of 16 hips in 8 patients. Acta Orthop 2013; 84:138-44. [PMID: 23506163 PMCID: PMC3639333 DOI: 10.3109/17453674.2013.786632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE We present the first study using fluoride-positron emission CT (F-PET/CT) to analyze mineralization of bone in the femur adjacent to uncemented stems following total hip arthroplasty (THA). We studied patients who were operated bilaterally for osteoarthritis with 2 different stems during the same surgical session. PATIENTS AND METHODS THA was performed bilaterally during the same surgical session in 8 patients with bilateral osteoarthritis of the hip. An SL-PLUS stem was inserted in one hip and a BetaCone stem was inserted in the contralateral hip, with randomization of side and sequence. A second group of 12 individuals with a normal healthy hip was used as reference for normal bone metabolism. Clinical and radiographic evaluation was performed preoperatively, postoperatively, and at 2 years. We used [18F]-fluoride-PET/CT to analyze bone mineralization adjacent to the stems 1 week, 4 months, and 12 months after surgery. We modified the Polar Map system to fit the upper femur for analysis and presentation of the PET results from 12 regions of interest adjacent to the whole stem. RESULTS The clinical results were good at 2 years. By radiography, all stems were stable. At PET analyses 1 week after surgery, the activity was higher for the SL-PLUS group than for the BetaCone group. The activity was statistically significantly higher for both stems than the reference values at 4 months, and was most pronounced in the upper femur. At one year, the activity had declined more for the BC group than for the SL group. INTERPRETATION The bone mineralization activity varied between different regions for the same stem and between different time periods for each group. F-PET/CT is a novel and valuable tool for analysis of bone mineralization patterns around uncemented femoral stems in detail. The combination of PET/CT analysis and the modified Polar Map system may provide a useful tool for future studies of metabolic bone responses to prosthetic implants.
Collapse
Affiliation(s)
- Gösta Ullmark
- Department of Orthopedics, Gävle Hospital and Centre for Research and Development, Uppsala University/County Council of Gävleborg
| | | | - Enn Maripuu
- PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|