1
|
Xiao F, Hu J, Xu M, Wang D, Shen X, Zhang H, Miao J, Cai H, Wang J, Liu Y, Xiao S, Zhu L. Animal Models for Human-Pathogenic Coronavirus and Animal Coronavirus Research. Viruses 2025; 17:100. [PMID: 39861889 PMCID: PMC11768759 DOI: 10.3390/v17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection. These approaches include using viral delivery methods to induce the expression of viral receptors in mouse tissues and employing gene-editing techniques to create genetically modified mice. This has led to the successful establishment of infection models for multiple coronaviruses, significantly advancing related research. In contrast, livestock and pets that can be infected by animal coronaviruses provide valuable insights when used as infection models, enabling the collection of accurate clinical data through the analysis of post-infection pathological features. However, despite the potential insights, there is a paucity of research data pertaining to these infection models. In this review, we provide a detailed overview of recent progress in the development of animal models for coronaviruses that cause diseases in both humans and animals and suggest ways in which animal models can be adapted to further enhance their value in research.
Collapse
Affiliation(s)
- Fenglian Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Traditional Chinese Medicine and Health School, Nanfang College, Guangzhou 510970, China
| | - Jincheng Hu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Minsheng Xu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Di Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Xiaoyan Shen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Hua Zhang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jie Miao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Haodong Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Yaqing Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Longchao Zhu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Perlaza CL, Cruz Mosquera FE, Moreno Reyes SP, Tovar Salazar SM, Cruz Rojas AF, España Serna JD, Liscano Y. Sociodemographic, Clinical, and Ventilatory Factors Influencing COVID-19 Mortality in the ICU of a Hospital in Colombia. Healthcare (Basel) 2024; 12:2294. [PMID: 39595491 PMCID: PMC11593780 DOI: 10.3390/healthcare12222294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The COVID-19 pandemic posed significant challenges to healthcare systems worldwide, and mortality rates were driven by a complex interaction of patient-specific factors, one of the most important being those related to the scheduling of invasive mechanical ventilation. This study examined the sociodemographic, clinical, and ventilatory factors associated with mortality in COVID-19 patients admitted to the ICU of a hospital in Colombia. METHODS A retrospective cohort study was conducted, involving 116 patients over the age of 18 who were admitted to the ICU with a confirmed diagnosis of COVID-19 between March 2020 and May 2021. Data were collected from the patients' medical records. Statistical analysis was performed using SPSS version 24®. Odds ratios (OR) and 95% confidence intervals were calculated to identify factors associated with COVID-19 mortality, followed by adjustment through binary logistic regression. RESULTS It was found that 65.5% of the patients were male, with a mean age of 64 ± 14 years, and the overall mortality rate was 49%. Factors significantly associated with higher mortality included male sex (OR: 6.9, 95% CI: 1.5-31.7), low oxygen saturation on admission (OR: 7.6, 95% CI: 1.1-55), and PEEP settings at 96 h (OR: 8, 95% CI: 1.4-45). Mortality was not influenced by socioeconomic status or health system affiliation. CONCLUSIONS This study identified male sex, age over 65 years, PEEP greater than 10 cmH2O at 96 h of mechanical ventilation, and low oxygen saturation as significant factors associated with higher mortality in COVID-19 patients, while no significant associations were found with socioeconomic status or health system affiliation. These findings highlight the importance of focusing on clinical management and ventilatory strategies in reducing mortality, particularly for high-risk groups, rather than relying on socioeconomic factors as predictors of outcomes.
Collapse
Affiliation(s)
- Claudia Lorena Perlaza
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (S.P.M.R.); (S.M.T.S.); (A.F.C.R.); (J.D.E.S.); (Y.L.)
| | - Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (S.P.M.R.); (S.M.T.S.); (A.F.C.R.); (J.D.E.S.); (Y.L.)
| | | | | | | | | | | |
Collapse
|
3
|
Iwata A, Chelvanambi S, Asano T, Whelan M, Nakamura Y, Aikawa E, Sasaki Y, Aikawa M. Gene expression profiles of precursor cells identify compounds that reduce NRP1 surface expression in macrophages: Implication for drug repositioning for COVID-19. Front Cardiovasc Med 2024; 11:1438396. [PMID: 39512370 PMCID: PMC11541348 DOI: 10.3389/fcvm.2024.1438396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is transitioning from a pandemic to an endemic phase through recurring mutations. Initial efforts focused on developing strategies to mitigate infection of lung epithelial cells which are the primary targets of the SARS-CoV-2 virus using the affinity of the spike protein to human ACE2 receptor. SARS-CoV-2, however, infects additional cell types present in the lung such as macrophages through the alternate entry receptor Neuropilin 1 (NRP1). Developing novel therapeutic strategies to prevent SARS-CoV-2 infection of cells crucial for immunosurveillance could thus be integral to treat post-acute sequelae of COVID-19 (PASC). Since traditional drug development process takes a long time, it is imperative to establish new strategies that can be rapidly deployed to combat the dynamic nature of COVID-19 evolution and to contribute to prevention of future pandemics. We obtained the gene expression profiles of THP-1 monocytes from L1000-based Connectivity Map using CLUE, cloud- based software platform for the analysis of perturbational datasets to identify compounds that could reduce the expression level of NRP1. Out of 33,590 compounds, we analyzed the profiles of 45 compounds for their ability to reduce NRP1 expression. We selected the top five small molecule inhibitors predicted to decrease the expression of NRP1 for validation studies. All five selected compounds showed low cytotoxicity at tested doses and their ability to reduce NRP1 surface expression was evaluated in THP-1 monocytes, THP-1-derived macrophage like cells and human peripheral blood mononuclear cell (PBMC)-derived primary macrophages. Five compounds with the largest predicted reduction of NRP1 expression decreased macrophage NRP1 surface expression measured using flow cytometry and fluorescent microscopy assays in both cell line and primary macrophages. Using our computational approach, we identified 45 compounds that could potentially decrease NRP1 surface expression in macrophages based on their effect on THP-1 monocytes. Validation studies showed that such an approach can help to identify compounds for drug repositioning in target cells that are absent in the L1000 database. Our proposed approach can be applicable for the rapid compound exploration to combat novel cell types that SARS-CoV-2 targets for infection and could provide molecular bases for the development of new drugs.
Collapse
Affiliation(s)
- Akira Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Takaharu Asano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary Whelan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuto Nakamura
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yusuke Sasaki
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Sababathy M, Ramanathan G, Ganesan S, Sababathy S, Yasmin A, Ramasamy R, Foo J, Looi Q, Nur-Fazila S. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Braz J Med Biol Res 2024; 57:e13219. [PMID: 39417447 PMCID: PMC11484355 DOI: 10.1590/1414-431x2024e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
Collapse
Affiliation(s)
- M. Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - G. Ramanathan
- Faculty of Computer Science and Information Technology, University Malaya, Kuala Lumpur, Malaysia
| | - S. Ganesan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - S. Sababathy
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi, Kuala Lumpur, Malaysia
| | - A.R. Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - J.B. Foo
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Q.H. Looi
- My Cytohealth Sdn. Bhd., Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - S.H. Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Jagtap P, Meena VK, Sambhare S, Basu A, Abraham P, Cherian S. Exploring Niclosamide as a Multi-target Drug Against SARS-CoV-2: Molecular Dynamics Simulation Studies on Host and Viral Proteins. Mol Biotechnol 2024:10.1007/s12033-024-01296-2. [PMID: 39373955 DOI: 10.1007/s12033-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Niclosamide has emerged as a promising repurposed drug against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro studies suggested that niclosamide inhibits the host transmembrane protein 16F (hTMEM16F), crucial for lipid scramblase activity, which consequently reduces syncytia formation that aids viral spread. Based on other in vitro reports, niclosamide may also target viral proteases such as papain-like protease (PLpro) and main protease (Mpro), essential for viral replication and maturation. However, the precise interactions by which niclosamide interacts with these multiple targets remain largely unclear. Docking and molecular dynamics (MD) simulation studies were undertaken based on a homology model of the hTMEM16F and available crystal structures of SARS-CoV-2 PLpro and Mpro. Niclosamide was observed to bind stably throughout a 400 ns MD simulation at the extracellular exit gate of the hTMEM16F tunnel, forming crucial interactions with residues spanning the TM1-TM2 loop (Gln350), TM3 (Phe481), and TM5-TM6 loop (Lys573, Glu594, and Asp596). Among the SARS-CoV-2 proteases, niclosamide was found to interact effectively with conserved active site residues of PLpro (Tyr268), exhibiting better stability in comparison to the control inhibitor, GRL0617. In conclusion, our in silico analyses support niclosamide as a multi-targeted drug inhibiting viral and host proteins involved in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Prachi Jagtap
- Bioinformatics & Data Management Group, ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Virendra Kumar Meena
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Susmit Sambhare
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Atanu Basu
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Priya Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Sarah Cherian
- Bioinformatics & Data Management Group, ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India.
| |
Collapse
|
6
|
Padmanabhan P, Roberts LH, Chancellor MB, Peters KM, Zwaans BMM. Prospective follow-up of overactive bladder symptoms in patients with prior SARS-CoV-2 infection. Neurourol Urodyn 2024; 43:1514-1522. [PMID: 38828830 DOI: 10.1002/nau.25509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE SARS-CoV-2 infection can result in genitourinary symptoms, such as frequency, urgency, nocturia, and pain/pressure. In this study, we followed the progression of overactive bladder (OAB) symptoms in patients that reported new or worsening OAB symptoms after coronavirus disease-19 (COVID-19) diagnosis. MATERIALS AND METHODS Individuals from a COVID-19 serology study were invited to participate in a follow-up study. Respondents were divided into three groups based on prior COVID-19 testing. Patients scored symptoms retrospectively before the pandemic, at study onset, and prospectively during 12-month follow-up. Genitourinary symptoms were assessed using international consultation on incontinence questionaire for OAB (ICIQ-OAB). Change in ICIQ-OAB scores from baseline were calculated. The minimal important difference of one on ICIQ-OAB is considered a significant change. RESULTS 26.0% of participants previously had positive COVID polymerase chain reaction (PCR) test (PCR+), 5.6% a positive serology test only (Ser+), and 65.5% were COVID naïve (COVID-). 23.8% of participants reported a significant increase in ICIQ-OAB score at study onset compared to prepandemic. ICIQ-OAB scores were similar at prepandemic but significantly higher at study start (p < 0.001) in PCR+ group. During follow-up, change in ICIQ-OAB scores from baseline remained unchanged for COVID- group, but gradually reduced for PCR+, reaching similar levels as COVID- group by 12 months. By 12 months, 71.4% of PCR+, 42.9% of Ser+, and 68.8% of COVID- participants still reported significant increase in ICIQ-OAB scores. CONCLUSIONS Most COVID-19 patients experienced return of symptoms to baseline, indicative of the potential resolution of COVID-associated cystitis. A subset of cases did not, raising questions about the underlying factors contributing to this outcome. Additional research is needed to assess long COVID on urological health.
Collapse
Affiliation(s)
- Priya Padmanabhan
- Department of Urology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Urology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Ly Hoang Roberts
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael B Chancellor
- Department of Urology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Urology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Kenneth M Peters
- Department of Urology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Urology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Bernadette M M Zwaans
- Department of Urology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Urology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
7
|
Shrwani KJ, Mahallawi WH, Mohana AI, Algaissi A, Dhayhi N, Sharwani NJ, Gadour E, Aldossari SM, Asiri H, Kameli N, Asiri AY, Asiri AM, Sherwani AJ, Cunliffe N, Zhang Q. Mucosal immunity in upper and lower respiratory tract to MERS-CoV. Front Immunol 2024; 15:1358885. [PMID: 39281686 PMCID: PMC11392799 DOI: 10.3389/fimmu.2024.1358885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV can cause severe respiratory tract disease and multiorgan failure. Therefore, therapeutic vaccines are urgently needed. This intensive review explores the human immune responses and their immunological mechanisms during MERS-CoV infection in the mucosa of the upper and lower respiratory tracts (URT and LRT, respectively). Objective The aim of this study is to provide a valuable, informative, and critical summary of the protective immune mechanisms against MERS-CoV infection in the URT/LRT for the purpose of preventing and controlling MERS-CoV disease and designing effective therapeutic vaccines. Methods In this review, we focus on the immune potential of the respiratory tract following MERS-CoV infection. We searched PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar using the following terms: "MERS-CoV", "B cells", "T cells", "cytokines", "chemokines", "cytotoxic", and "upper and lower respiratory tracts". Results We found and included 152 studies in this review. We report that the cellular innate immune response, including macrophages, dendritic cells, and natural killer cells, produces antiviral substances such as interferons and interleukins to prevent the virus from spreading. In the adaptive and humoral immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and plasma cells protect against MERS-CoV infection in URT and LRT. Conclusion The human nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) could successfully limit the spread of several respiratory pathogens. However, in the case of MERS-CoV infection, limited research has been conducted in humans with regard to immunopathogenesis and mucosal immune responses due to the lack of relevant tissues. A better understanding of the immune mechanisms of the URT and LRT is vital for the design and development of effective MERS-CoV vaccines.
Collapse
Affiliation(s)
- Khalid J Shrwani
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Public Health Authority, Saudi Center for Disease Prevention and Control (SCDC), Jazan, Saudi Arabia
| | - Waleed H Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdulrhman I Mohana
- Department of Antimicrobial Resistance, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Endemic Infectious Diseases Research Unit, Health Sciences Research Center, Jazan University, Jazan, Saudi Arabia
| | - Nabil Dhayhi
- Department of Pediatrics, King Fahad Central Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nouf J Sharwani
- Department of Surgery, Mohammed bin Nasser Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa, Saudi Arabia
- Department of Medicine, Faculty of Medicine, Zamzam University College, Khartoum, Sudan
| | - Saeed M Aldossari
- Medical Laboratory Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Asiri
- Medical Laboratory Department, Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ayad Y Asiri
- Intensive Care Unit Department, Al Inma Medical Group, Al Hayat National Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah M Asiri
- Preventive Medicine Assistant Deputyship, Ministry of Health, Riyadh, Saudi Arabia
| | - Alaa J Sherwani
- Department of Pediatrics, Abu-Arish General Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qibo Zhang
- Academic and Research Departments, Section of Immunology, School of Biosciences, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
8
|
El-Assaad AM, Hamieh T. SARS-CoV-2: Prediction of critical ionic amino acid mutations. Comput Biol Med 2024; 178:108688. [PMID: 38870723 DOI: 10.1016/j.compbiomed.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that caused coronavirus disease 2019 (COVID-19), has been studied thoroughly, and several variants are revealed across the world with their corresponding mutations. Studies and vaccines development focus on the genetic mutations of the S protein due to its vital role in allowing the virus attach and fuse with the membrane of a host cell. In this perspective, we study the effects of all ionic amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 within the SARS-CoV-2:CC12.1 complex model. Binding free energy calculations between SARS-CoV-2 and antibody CC12.1 are based on the Analysis of Electrostatic Similarities of Proteins (AESOP) framework, where the electrostatic potentials are calculated using Adaptive Poisson-Boltzmann Solver (APBS). The atomic radii and charges that feed into the APBS calculations are calculated using the PDB2PQR software. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants worldwide. We find each of the following mutations: K378A, R408A, K424A, R454A, R457A, K458A, and K462A, to play significant roles in the binding to Antibody CC12.1, since they are turned into strong inhibitors on both chains of the S1 protein, whereas the mutations D405A, D420A, and D427A, show to play important roles in this binding, as they are turned into mild inhibitors on both chains of the S1 protein.
Collapse
Affiliation(s)
- Atlal M El-Assaad
- Department of Electrical Engineering & Computer Science, University of Toledo (UT), Toledo OH 43606, USA; Department of Computer Science, Lebanese International University (LIU), Bekaa, Lebanon.
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
9
|
Alatawi A, Gumel AB. Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6425-6470. [PMID: 39176403 DOI: 10.3934/mbe.2024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV coronavirus (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {\mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {\mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.
Collapse
Affiliation(s)
- Adel Alatawi
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abba B Gumel
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
10
|
Cao C, Mehmood A, Li D. Molecular dynamic simulation reveals spider antimicrobial peptide Latarcin-1 and human eosinophil cationic protein as peptide inhibitors of SARS-CoV-2 variants. J Biomol Struct Dyn 2024; 42:5858-5868. [PMID: 37938133 DOI: 10.1080/07391102.2023.2274514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/17/2023] [Indexed: 11/09/2023]
Abstract
COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cheng Cao
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, P.R. China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Daixi Li
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
11
|
Siddiq A, D’lamanda VG, Anggi MD, Rakhmilla LE, Pramatirta AY, Pusianawati D, Lismayanti L, Widjajakusuma A, Nugrahani AD, Santoso DPJ. Characteristics of COVID-19 comorbidities and severity profiles among pregnant women from a single-center cross-sectional study. Medicine (Baltimore) 2024; 103:e38636. [PMID: 38905361 PMCID: PMC11191956 DOI: 10.1097/md.0000000000038636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
The study aimed to determine the characteristics of comorbidities, association between comorbidities and coronavirus disease 2019 (COVID-19), as well as characteristics of COVID-19 severity among pregnant women at a tertiary hospital in Bandung. We conducted a cross-sectional study by taking secondary data between January 2020 and December 2021 involving 278 pregnant women aged 16 to 45 years that confirmedly diagnosed with COVID-19 via RT-PCR. We collected information from the medical record on severity and comorbidities. The admission C-reactive protein (CRP) profiles were compared between the severe and nonsevere COVID-19 patients. This study employed bivariate analysis, t test, and multivariate analysis with logistic regression models. Of the 278 data included in this study, 120 cases had comorbidities. Most patients were asymptomatic (82%). Obesity was the most common comorbid proportion. Only hypertension as comorbid showed a significant association with symptomatic or asymptomatic COVID-19 (<0.05). Pregnant women with hypertension were 6 times more likely to show symptoms than those without hypertension (OR = 6.092; 95% CI 3.103-11.962). Pregnant women with comorbidities were at higher risk of cesarean sections and stillbirth. The CRP levels which were found to have statistically significant association with COVID-19 severity (<0.05). The domination of asymptomatic COVID-19 in pregnant women was found in this study. Hypertension comorbid has a significant association with COVID-19 symptoms. Maternal and neonatal outcomes appear to be influenced by maternal comorbidities. Moreover, the CRP levels were found to be significant risk factors for COVID-19 severity in pregnant women that might have association with comorbidities.
Collapse
Affiliation(s)
- Amillia Siddiq
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Vischila Geray D’lamanda
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Muhamad Dwi Anggi
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Lulu Eva Rakhmilla
- Department of Public Health (Epidemiology), Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Akhmad Yogi Pramatirta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Dini Pusianawati
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Leni Lismayanti
- Department of Clinical Pathology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Anggraini Widjajakusuma
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Annisa Dewi Nugrahani
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Dhanny Primantara Johari Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| |
Collapse
|
12
|
Arbey Velarde C, Hurtado U, Cardona A, Ortiz C, Betancur I. Genomic epidemiology of SARS-CoV-2 δ sublineages of the second wave of 2021 in Antioquia, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:54-66. [PMID: 38648352 PMCID: PMC11189595 DOI: 10.7705/biomedica.6862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024]
Abstract
Introduction. During the development of the SARS-CoV-2 pandemic in Antioquia, we experienced epidemiological peaks related to the α, ɣ, β, ƛ, and δ variants. δ had the highest incidence and prevalence. This lineage is of concern due to its clinical manifestations and epidemiological characteristics. A total of 253 δ sublineages have been reported in the PANGOLIN database. The sublineage identification through genomic analysis has made it possible to trace their evolution and propagation. Objective. To characterize the genetic diversity of the different SARS-CoV-2 δ sublineages in Antioquia and to describe its prevalence. Materials and methods. We collected sociodemographic information from 2,675 samples, and obtained 1,115 genomes from the GISAID database between July 12th, 2021, and January 18th, 2022. From the analyzed genomes, 515 were selected because of their high coverage values (>90%) to perform phylogenetic analysis and to infer allele frequencies of mutations of interest. Results. We characterized 24 sublineages. The most prevalent was AY.25. Mutations of interest as L452R, P681R, and P681H were identified in this sublineage, comprising a frequency close to 0.99. Conclusions. This study identified that the AY.25 sublineage has a transmission advantage compared to the other δ sublineages. This attribute may be related to the presence of the L452R and P681R mutations associated in other studies with higher evasion of the immune system and less efficacy of drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Cristian Arbey Velarde
- Laboratorio Departamental de Salud Pública de Antioquia, Secretaría Seccional de Salud y Protección Social de Antioquia, Medellín, ColombiaSecretaría Seccional de Salud y Protección Social de AntioquiaSecretaría Seccional de Salud y Protección Social de AntioquiaMedellínMedellín
| | - Uriel Hurtado
- Corporación para Investigaciones Biológicas, Medellín, ColombiaCorporación para Investigaciones BiológicasCorporación para Investigaciones BiológicasMedellínMedellín
| | - Andrés Cardona
- Laboratorio Genómico One Health, Universidad Nacional, Medellín, ColombiaUniversidad NacionalUniversidad NacionalMedellínMedellín
| | - Celeny Ortiz
- Dirección de Salud Colectiva, Secretaria de Salud de Antioquia, Secretaría Seccional de Salud de Antioquia, Medellín, ColombiaSecretaría Seccional de Salud de AntioquiaSecretaría Seccional de Salud de AntioquiaMedellínMedellín
| | - Idabely Betancur
- Laboratorio Departamental de Salud Pública de Antioquia, Secretaría Seccional de Salud y Protección Social de Antioquia, Medellín, ColombiaSecretaría Seccional de Salud y Protección Social de AntioquiaSecretaría Seccional de Salud y Protección Social de AntioquiaMedellínMedellín
| |
Collapse
|
13
|
Jahanshahi F, Jazayeri SB, Eraghi MM, Reis LO, Hamidikia M, Amiri S, Aghamir SMK. A narrative review on adverse drug reactions of COVID-19 treatments on the kidney. Open Med (Wars) 2024; 19:20230867. [PMID: 38584847 PMCID: PMC10996932 DOI: 10.1515/med-2023-0867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/01/2022] [Accepted: 11/18/2023] [Indexed: 04/09/2024] Open
Abstract
Studies showed that the respiratory is not the only system affected by coronavirus 2, while cardiovascular, digestive, and nervous systems, as well as essential organs such as the kidneys, can be affected by this virus. In this review, we have studied the epidemiology, clinical, and laboratory findings on COVID-19 infection renal involvement, mortality, physiopathology, remaining renal sequels after recovery, underlying renal disease, and renal injury due to its treatment. Also, protective measures for kidney injury are explained in three levels. Evidence of viral particles and genome in the urine and renal tubular cells and signs of damage such as microangiopathy, hypercoagulopathy, and fibrosis are found in COVID-19 patients. The result of this study showed, in hospitalized COVID-19 patients, that the rate of acute kidney injury (AKI) was up to 46%, with a mortality ranging from 11 to 96%. A considerable proportion of patients with AKI would remain on renal replacement therapy. Proteinuria and hematuria are observed in 87 and 75% patients, and increased Cr and glomerular filtration rate (GFR) <60 ml/min per 1.73 m2 are observed in 29.6 and 35.3% of the patients, respectively. Remedsivir is considered to have adverse effects on GFR. COVID-19 patients need special attention to prevent AKI. Those with underlying chronic kidney disease or AKI need proper and explicit evaluation and treatment to improve their prognosis and decrease mortality, which should not be limited to the hospitalization period.
Collapse
Affiliation(s)
- Fatemeh Jahanshahi
- Research Committee Member, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Sina Hospital, Tehran, Iran
| | - Seyed Behnam Jazayeri
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mirahmadi Eraghi
- Urology Research Center, Tehran University of Medical Sciences, Sina Hospital, Tehran, Iran
- School of Medicine, Qeshm International Branch, Islamic Azad University, Qeshm, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| | - Mahtab Hamidikia
- Research Committee Member, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Rasool Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Maliha ST, Fatemi R, Araf Y. COVID-19 and the brain: understanding the pathogenesis and consequences of neurological damage. Mol Biol Rep 2024; 51:318. [PMID: 38386201 DOI: 10.1007/s11033-024-09279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
SARS-CoV-2 has been known remarkably since December 2019 as a strain of pathogenic coronavirus. Starting from the earlier stages of the COVID-19 pandemic until now, we have witnessed many cases of neurological damage caused by SARS-CoV-2. There are many studies and research conducted on COVID-19-positive-patients that have found brain-related abnormalities with clear neurological symptoms, ranging from simple headaches to life-threatening strokes. For treating neurological damage, knowing the actual pathway or mechanism of causing brain damage via SARS-CoV-2 is very important. For this reason, we have tried to explain the possible pathways of brain damage due to SARS-CoV-2 with mechanisms and illustrations. The SARS-CoV-2 virus enters the human body by binding to specific ACE2 receptors in the targeted cells, which are present in the glial cells and CNS neurons of the human brain. It is found that direct and indirect infections with SARS-CoV-2 in the brain result in endothelial cell death, which alters the BBB tight junctions. These probable alterations can be the reason for the excessive transmission and pathogenicity of SARS-CoV-2 in the human brain. In this precise review, we have tried to demonstrate the neurological symptoms in the case of COVID-19-positive-patients and the possible mechanisms of neurological damage, along with the treatment options for brain-related abnormalities. Knowing the transmission mechanism of SARS-CoV-2 in the human brain can assist us in generating novel treatments associated with neuroinflammation in other brain diseases.
Collapse
Affiliation(s)
- Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Rabeya Fatemi
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Yusha Araf
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| |
Collapse
|
15
|
Zhang YV, Kumanovics A, Wiencek J, Melanson SEF, Love T, Wu AHB, Zhao Z, Meng QH, Koch DD, Apple FS, Ondracek CR, Christenson RH. Performance of Three Anti-SARS-CoV-2 Anti-S and One Anti-N Immunoassays for the Monitoring of Immune Status and Vaccine Response. Viruses 2024; 16:292. [PMID: 38400067 PMCID: PMC10891747 DOI: 10.3390/v16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to evaluate and compare the performance of three anti-S and one anti-N assays that were available to the project in detecting antibody levels after three commonly used SARS-CoV-2 vaccines (Pfizer, Moderna, and Johnson & Johnson). It also aimed to assess the association of age, sex, race, ethnicity, vaccine timing, and vaccine side effects on antibody levels in a cohort of 827 individuals. In September 2021, 698 vaccinated individuals donated blood samples as part of the Association for Diagnostics & Laboratory Medicine (ADLM) COVID-19 Immunity Study. These individuals also participated in a comprehensive survey covering demographic information, vaccination status, and associated side effects. Additionally, 305 age- and gender-matched samples were obtained from the ADLM 2015 sample bank as pre-COVID-19-negative samples. All these samples underwent antibody level analysis using three anti-S assays, namely Beckman Access SARS-CoV-2 IgG (Beckman assay), Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 IgG (Ortho assay), Siemens ADVIA Centaur SARS-CoV-2 IgG (Siemens assay), and one anti-N antibody assay: Bio-Rad Platelia SARS-CoV-2 Total Ab assay (BioRad assay). A total of 827 samples (580 COVID-19 samples and 247 pre-COVID-19 samples) received results for all four assays and underwent further analysis. Beckman, Ortho, and Siemens anti-S assays showed an overall sensitivity of 99.5%, 97.6%, and 96.9%, and specificity of 90%, 100%, and 99.6%, respectively. All three assays indicated 100% sensitivity for individuals who received the Moderna vaccine and boosters, and over 99% sensitivity for the Pfizer vaccine. Sensitivities varied from 70.4% (Siemens), 81.5% (Ortho), and 96.3% (Beckman) for individuals who received the Johnson & Johnson vaccine. BioRad anti-N assays demonstrated 46.2% sensitivity and 99.25% specificity based on results from individuals with self-reported infection. The highest median anti-S antibody levels were measured in individuals who received the Moderna vaccine, followed by Pfizer and then Johnson & Johnson vaccines. Higher anti-S antibody levels were significantly associated with younger age and closer proximity to the last vaccine dose but were not associated with gender, race, or ethnicity. Participants with higher anti-S levels experienced significantly more side effects as well as more severe side effects (e.g., muscle pain, chills, fever, and moderate limitations) (p < 0.05). Anti-N antibody levels only indicated a significant correlation with headache. This study indicated performance variations among different anti-S assays, both among themselves and when analyzing individuals with different SARS-CoV-2 vaccines. Caution should be exercised when conducting large-scale studies to ensure that the same platform and/or assays are used for the most effective interpretation of the data.
Collapse
Affiliation(s)
- Y. Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Joesph Wiencek
- Department of Pathology, Microbiology and Immunology, Vanderbilt School of Medicine, Nashville, TN 37240, USA;
| | - Stacy E. F. Melanson
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA;
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Zhen Zhao
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Qing H. Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David D. Koch
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30303, USA;
| | - Fred S. Apple
- Department of Laboratory Medicine and Pathology, Hennepin Healthcare/Hennepin County Medical Center, Minneapolis, MN 55404, USA;
- Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| | - Caitlin R. Ondracek
- Association for Diagnostics & Laboratory Medicine, Washington, DC 22203, USA;
| | - Robert H. Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Matías-Pérez D, Antonio-Estrada C, Guerra-Martínez A, García-Melo KS, Hernández-Bautista E, García-Montalvo IA. Relationship of quercetin intake and oxidative stress in persistent COVID. Front Nutr 2024; 10:1278039. [PMID: 38260057 PMCID: PMC10800910 DOI: 10.3389/fnut.2023.1278039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Diana Matías-Pérez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Carolina Antonio-Estrada
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Araceli Guerra-Martínez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Karen Seydel García-Melo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Emilio Hernández-Bautista
- Department of Chemical Engineering, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Iván Antonio García-Montalvo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
17
|
Heydari B, Sahebnasagh A, Omrani MA, Azimi S, Dehghani MH, Salehi-Abargouei A, Farman F, Saghafi F. Promises and Pitfalls of Calcineurin Inhibitors in COVID-19: A Systematic Review and Meta-analysis of Controlled Trials. Curr Med Chem 2024; 31:4745-4755. [PMID: 38099537 DOI: 10.2174/0109298673264362231022150520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a violent attack on the body that leads to multi-organ failure and death in COVID-19 patients. The aim of this study was to systematically review the existing literature on the potential benefits of calcineurin inhibitors (CIs) as anti-vascular endothelial growth factor (VEGF) agents in improving the clinical outcomes of COVID-19 patients. METHODS We searched various databases, including PubMed, Scopus, ISI Web of Science, Google Scholar, Cochrane databases, and ClinicalTrials.gov from 31st December, 2019, to 3rd February, 2023, for relevant controlled trials. The quality of the evidence was assessed using the Cochrane Collaboration tool. Comprehensive Meta-Analysis Software was used for the statistical analyses using a random-effects model. RESULTS Three trials enrolling 293 participants were reviewed in the present systematic review and meta-analysis. The results showed CIs to lead to a significant reduction in mortality rate [risk ratio (RR): 0.598, 95% CI: 0.404-0.885, P-value = 0.010] with a low between-study heterogeneity (Cochrane Q test: I2 = 0.000%, P-value = 0.371). Pooled analysis of two studies (84 patients) illustrated that CIs could not significantly increase the rate of hospital discharge (RR: 1.161, 95% CI: 0.764-1.764, P-value = 0.485) and heterogeneity was not significant (Cochrane Q test: I2 = 26.798%, P-value = 0.242). CONCLUSION CIs are able to inhibit the virus nucleocapsid protein so that they can prevent replication and respiratory tract tissue damage caused by SARS-CoV-2. Based on the characteristics mentioned in detail, CIs can play a potential therapeutic role for COVID-19 patients.
Collapse
Affiliation(s)
- Behrooz Heydari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Adeleh Sahebnasagh
- Department of Internal Medicine, Clinical Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Ali Omrani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Dehghani
- Department of Anesthesiology and Critical Care, Shahid Rahnemoun Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farnoosh Farman
- Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Sharma KK, Devi S, Kumar D, Ali Z, Fatma N, Misra R, Kumar G. Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review. Curr Pharm Des 2024; 30:2562-2573. [PMID: 39041269 DOI: 10.2174/0113816128320161240703092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Shoma Devi
- Department of Zoology, Krishna College of Science & Information Technology, Bijnor 246701 (UP), India
| | - Dharmendra Kumar
- Science Branch, Pt. Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India, Greater Noida 201013, India
| | - Zeeshan Ali
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Nishat Fatma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Raghvendra Misra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College, MJP Rohilkhand University, Bareilly, Hasanpur, Amroha 244241 (UP), India
| |
Collapse
|
19
|
Hussain MS, Sharma G. The Burden of Cardiovascular Diseases Due to COVID-19 Pandemic. Thorac Cardiovasc Surg 2024; 72:40-50. [PMID: 35987194 DOI: 10.1055/s-0042-1755205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is an infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that produces respiratory symptoms and has serious consequences for people's cardiovascular systems (CVS). It is a severe issue and a major task not only for health care experts but also for governments to contain this pandemic. SARS-CoV-2 is the seventh member of the human coronavirus family to be implicated in this zoonotic outbreak. COVID-19's CV interactions are comparable to those of SARS-CoV, Middle East respiratory syndrome (MERS-CoV), and influenza. Those who have COVID-19 and underlying cardiovascular diseases (CVDs) are at a higher risk of serious illness and mortality, and disease has been linked to several direct and indirect CV consequences. COVID-19 causes CVDs such as arrhythmias, cardiac arrest, cardiogenic shock, myocarditis, stress-cardiomyopathy, and acute myocardial damage (AMD) as a consequence of acute coronary syndrome. The provision of CV care may expose health care professionals to risk as they become hosts or vectors of viral transmission. It binds to the angiotensin-converting enzyme receptor, causing constitutional and pulmonary signs in the beginning, and then as the infection advances, it affects other organs such as the gastrointestinal tract, CVS, neurological system, and so on. COVID-19 mortality is increased by underlying CVDs comorbidities.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan, India
| | - Ganesh Sharma
- Department of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan, India
| |
Collapse
|
20
|
Scott C, Hall S, Zhou J, Lehmann C. Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19-A Scoping Review. J Clin Med 2023; 13:227. [PMID: 38202234 PMCID: PMC10779964 DOI: 10.3390/jcm13010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute "long" COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations. This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection. Early in the SARS-CoV-19 infection, cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the associated cytokine storm. Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic stress injury, insomnia, pain, and decreased appetite. While current research primarily focuses on potential treatments for the acute phase of COVID-19, there is a gap in research addressing therapeutics for the early and post-infectious phases. This review highlights the potential for future research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a potential treatment strategy for both early and post-SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Cassidy Scott
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Stefan Hall
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| |
Collapse
|
21
|
Lim HJ, Lee JY, Baek YH, Park MY, Youm DJ, Kim I, Kim MJ, Choi J, Sohn YH, Park JE, Yang YJ. Evaluation of Multiplex Rapid Antigen Tests for the Simultaneous Detection of SARS-CoV-2 and Influenza A/B Viruses. Biomedicines 2023; 11:3267. [PMID: 38137488 PMCID: PMC10741453 DOI: 10.3390/biomedicines11123267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Single-target rapid antigen tests (RATs) are commonly used to detect highly transmissible respiratory viruses (RVs), such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses. The simultaneous detection of RVs presenting overlapping symptoms is vital in making appropriate decisions about treatment, isolation, and resource utilization; however, few studies have evaluated multiplex RATs for SARS-CoV-2 and other RVs. We assessed the diagnostic performance of multiplex RATs targeting both the SARS-CoV-2 and influenza A/B viruses with the GenBody Influenza/COVID-19 Ag Triple, InstaView COVID-19/Flu Ag Combo (InstaView), STANDARDTM Q COVID-19 Ag Test, and STANDARDTM Q Influenza A/B Test kits using 974 nasopharyngeal swab samples. The cycle threshold values obtained from the real-time reverse transcription polymerase chain reaction results showed higher sensitivity (72.7-100%) when the values were below, rather than above, the cut-off values. The InstaView kit exhibited significantly higher positivity rates (80.21% for SARS-CoV-2, 61.75% for influenza A, and 46.15% for influenza B) and cut-off values (25.57 for SARS-CoV-2, 21.19 for influenza A, and 22.35 for influenza B) than the other two kits, and was able to detect SARS-CoV-2 Omicron subvariants. Therefore, the InstaView kit is the best choice for routine screening for both SARS-CoV-2 and influenza A/B in local communities.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji-Yoon Lee
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Dong-Jae Youm
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Inhee Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jongmun Choi
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| |
Collapse
|
22
|
Jiang X, Liu J, Xi Y, Zhang Q, Wang Y, Zhao M, Lu X, Wu H, Shan T, Ni B, Zhang W, Ma X. Virome of high-altitude canine digestive tract and genetic characterization of novel viruses potentially threatening human health. mSphere 2023; 8:e0034523. [PMID: 37724888 PMCID: PMC10597464 DOI: 10.1128/msphere.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
The majority of currently emerging infectious illnesses are zoonotic infections, which have caused serious public health and economic implications. The development of viral metagenomics has helped us to explore unknown viruses. We collected 1,970 canine feces from Yushu and Guoluo in the plateau region of China for this study to do a metagenomics analysis of the viral community of the canine digestive tract. Our analysis identified 203 novel viruses, classified into 11 known families and 2 unclassified groups. These viruses include the hepatitis E virus, first identified in dogs, and the astrovirus, coronavirus, polyomavirus, and others. The relationship between the newly identified canine viruses and known viruses was investigated through the use of phylogenetic analysis. Furthermore, we demonstrated the cross-species transmission of viruses and predicted new viruses that may cause diseases in both humans and animals, providing technical support for the prevention and control of diseases caused by environmental pollution viruses. IMPORTANCE Most emerging infectious diseases are due to zoonotic disease agents. Because of their effects on the security of human or animal life, agriculture production, and food safety, zoonotic illnesses and livestock diseases are of worldwide significance. Because dogs are closely related to humans and domestic animals, they serve as one of the important links in the transmission of zoonotic and livestock diseases. Canines can contaminate the environment in which humans live such as water and soil through secretions, potentially altering the human gut microbiota or causing diseases. Our study enriched the viral community in the digestive tract microbiome of dogs and found types of viruses that threaten human health, providing technical support for the prevention and control of early warning of diseases caused by environmental contaminant viruses.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| |
Collapse
|
23
|
Pratelli A, Buonavoglia C. A Brief Focus on SARS-CoV-2 Genomic Evolution and Vaccines. Pathogens 2023; 12:1253. [PMID: 37887769 PMCID: PMC10610376 DOI: 10.3390/pathogens12101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus type 2 (SARS-CoV-2) emerged in a live animal market in the Hubei Province of Wuhan in China in late 2019 and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020 [...].
Collapse
Affiliation(s)
- Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, Sp Casamassima Km3, 70010 Valenzano (Ba), Italy;
| | | |
Collapse
|
24
|
Uchechukwu CF, Anyaduba UL, Udekwu CC, Orababa OQ, Kade AE. Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications. J Gen Virol 2023; 104. [PMID: 37815458 DOI: 10.1099/jgv.0.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.
Collapse
Affiliation(s)
- Chidiebere F Uchechukwu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | | | | | | |
Collapse
|
25
|
Chrysostomou AC, Vrancken B, Haralambous C, Alexandrou M, Gregoriou I, Ioannides M, Ioannou C, Kalakouta O, Karagiannis C, Marcou M, Masia C, Mendris M, Papastergiou P, Patsalis PC, Pieridou D, Shammas C, Stylianou DC, Zinieri B, Lemey P, Network TCOMESSAR, Kostrikis LG. Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacton Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021-Oct 2022). Viruses 2023; 15:1933. [PMID: 37766339 PMCID: PMC10535466 DOI: 10.3390/v15091933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021-January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed "Deltacron", was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation-a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus's local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus's epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic's dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation.
Collapse
Affiliation(s)
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Christos Haralambous
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | - Maria Alexandrou
- Microbiology Department, Larnaca General Hospital, 6301 Larnaca, Cyprus
| | - Ioanna Gregoriou
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | | | - Costakis Ioannou
- Medical Laboratory of Ammochostos General Hospital, Ammochostos General Hospital, 5310 Paralimni, Cyprus
| | - Olga Kalakouta
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | | | - Markella Marcou
- Department of Microbiology, Archbishop Makarios III Hospital, 2012 Nicosia, Cyprus
| | - Christina Masia
- Medical Laboratory of Ammochostos General Hospital, Ammochostos General Hospital, 5310 Paralimni, Cyprus
| | - Michail Mendris
- Microbiology Department, Limassol General Hospital, 4131 Limassol, Cyprus
| | | | - Philippos C. Patsalis
- Medicover Genetics, 2409 Nicosia, Cyprus
- Medical School, University of Nicosia, 2417 Nicosia, Cyprus
| | - Despo Pieridou
- Microbiology Department, Nicosia General Hospital, 2029 Nicosia, Cyprus
| | - Christos Shammas
- S.C.I.N.A. Bioanalysis Sciomedical Centre Ltd., 4040 Limassol, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
| | - Barbara Zinieri
- Microbiology Department, Paphos General Hospital, Achepans, 8026 Paphos, Cyprus
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, 1011 Nicosia, Cyprus
| |
Collapse
|
26
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
27
|
Shaikh AA, Mubasher TA, Makkawi MH, Alasmari SZ. Predictive value of ferritin, glucose, urea, and creatinine for COVID-19 severity and mortality in patients from Asir, Saudi Arabia. Saudi Med J 2023; 44:773-781. [PMID: 37582571 PMCID: PMC10425619 DOI: 10.15537/smj.2023.44.8.20230162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVES To correlate demographics, blood groupings, and laboratory characteristics of hospitalized COVID-19 patients with disease severity and outcomes. METHODS This study included 294 COVID-19 patients. Data on patient age, gender, laboratory results, clinical severity, mortality, comorbidities, and blood group were obtained from medical records retrospectively. RESULTS High levels of ferritin (p<0.01), urea (p<0.0001), and creatinine (p<0.05) were detected in intensive care unit (ICU)-admitted patients. Ferritin (p<0.05), glucose (p<0.0001), urea (p<0.0001), and creatinine (p<0.0001) were significantly higher in non-survivor compared to survivor COVID-19 patients. Predictors for ICU admission among patients were ferritin (odd ratio [OR]=0.999, p=0.0055) and urea (OR=0.991, p=0.0001). Predictors for mortality were: age (OR=0.963, p=0.0001), ferritin (OR=0.999, p=0.0149), glucose (OR=0.993, p=0.0001), urea (OR=0.976, p=0.0001), and creatinine (OR=0.556, p=0.0001). The most reliable laboratory parameters in predicting mortality were: age (area under the curve [AUC]=0.685, p<0.0001), ferritin (AUC=0.610, p<0.05), glucose (AUC=0.681, p<0.0001), urea (AUC=0.856, p<0.0001), and creatinine (AUC=0.823, p<0.0001). CONCLUSION High ferritin, glucose, urea, and creatinine levels may predict poor outcomes in COVID-19 patients. These findings could help predict admissions to the ICU and mortality among such patients.
Collapse
Affiliation(s)
- Ahmad A. Shaikh
- From the the Department of Clinical Laboratory Sciences (Shaikh, Makkawi, Alasmari), Faculty of Applied Medical Sciences, King Khalid University, and from the Department of Clinical Laboratory (Mubasher), Asir Central Hospital, Abha, Kingdom of Saudi Arabia.
| | - Turki A. Mubasher
- From the the Department of Clinical Laboratory Sciences (Shaikh, Makkawi, Alasmari), Faculty of Applied Medical Sciences, King Khalid University, and from the Department of Clinical Laboratory (Mubasher), Asir Central Hospital, Abha, Kingdom of Saudi Arabia.
| | - Mohammed H. Makkawi
- From the the Department of Clinical Laboratory Sciences (Shaikh, Makkawi, Alasmari), Faculty of Applied Medical Sciences, King Khalid University, and from the Department of Clinical Laboratory (Mubasher), Asir Central Hospital, Abha, Kingdom of Saudi Arabia.
| | - Sultan Z. Alasmari
- From the the Department of Clinical Laboratory Sciences (Shaikh, Makkawi, Alasmari), Faculty of Applied Medical Sciences, King Khalid University, and from the Department of Clinical Laboratory (Mubasher), Asir Central Hospital, Abha, Kingdom of Saudi Arabia.
| |
Collapse
|
28
|
Yousefi M, Sadriirani M, Mahmoodi S, Samimi B, Pourmahmoudi A, Hosseinikia M, Sadeghi O, Roustaei N, Saeedinezhad Z, Espín JC, Ansari S, Panahande SB. Adjuvant Pomegranate Juice Intake Improves the Inflammatory Status of Hospitalized COVID-19 Patients: A Randomized and Placebo-Controlled Trial. Complement Ther Med 2023:102958. [PMID: 37271189 DOI: 10.1016/j.ctim.2023.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the effect of pomegranate juice intake on the inflammatory status and complete blood count in hospitalized Covid-19 patients. METHODS This randomized, double-blinded placebo-controlled trial included 48 patients with two parallel arms. In addition to the standard care provided at the hospital, the patients consumed 500mL of whole pomegranate juice (PJ) daily or a placebo for 14 days. Inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR)) and complete blood count were determined at baseline and after the 14 days of intervention. RESULTS At the end of the intervention, a significant decreased was observed in primary outcomes [mean difference (95%CI)] including IL-6 [5.24(0.87 to 9.61)], CRP [23.19(11.93 to 34.44)] and ESR [10.52(1.54 to 19.50)] in the PJ group vs. before the intervention. In addition, significant changes were also observed in the some of the secondary outcomes, including neutrophils, lymphocytes, platelets, platelets-to-lymphocyte(PLR) and neutrophils-to-lymphocyte (NLR) ratios (p<0.05) in the PJ group compared to before the intervention. At the end of the intervention period, the mean change of IL-6 [-7.09(-12.21 to -1.96)], white blood cells [-3.09(-6.14 to -0.05)], neutrophils [-9.12(-18.08 to -0.15)], lymphocyte [7.05(0.17 to 13.92)], platelets [-94.54(-139.33 to -49.75)], PLR [-15.99(-29.31 to -2.67)], blood oxygen saturation [1.75(0.13 to 3.37)] and MCV [0.31(-0.25 to 0.88)] levels were significantly different between groups while no difference was observed between the two groups in other blood indices. CONCLUSION Our results suggest that pomegranate juice intake might slightly improve the inflammatory status and CBC outcomes of COVID-19 patients and it may be beneficial. AVAILABILITY OF DATA AND MATERIALS The final dataset of trial will be available upon request from the primary investigator via e-mail at panahande.b@gmail.com, after obtaining permission from Regional Ethics Committee.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammadreza Sadriirani
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sara Mahmoodi
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahar Samimi
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Azizollah Pourmahmoudi
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahboobe Hosseinikia
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Omid Sadeghi
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidmiology, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zaker Saeedinezhad
- Department of Internal Medicine, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Juan Carlos Espín
- Food & Health Lab; Quality, Safety, and Bioactivity of Plant Foods; CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Somaye Ansari
- Department of nursing, School of nursing, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Bahman Panahande
- Department of Nutrition, School of Health and nutrition, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
29
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
30
|
Kar SS, Dhar AK, Palei NN, Bhatt S. Small-molecule oligonucleotides as smart modality for antiviral therapy: a medicinal chemistry perspective. Future Med Chem 2023; 15:1091-1110. [PMID: 37584172 DOI: 10.4155/fmc-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Small-molecule oligonucleotides could be exploited therapeutically to silence the expression of viral infection-causing genes, and a few of them are now in clinical trials for the management of viral infections. The most challenging aspect of these oligonucleotides' therapeutic success involves their delivery. Thus medicinal chemistry strategies are inevitable to avoid degradation by serum nucleases, avoid kidney clearance and improve cellular uptake. Recently small-molecule oligonucleotide design has opened up new avenues to improve the treatment of drug-resistant viral infections, along with the development of COVID-19 medicines. This review is directed toward the recent advances in rational design, mechanism of action, structure-activity relationships and future perspective of the small-molecule oligonucleotides targeting viral infections, including COVID-19.
Collapse
Affiliation(s)
- Sidhartha S Kar
- Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, 754202, India
| | - Arghya Kusum Dhar
- School of Pharmacy, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South) West Bengal, 743368, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| |
Collapse
|
31
|
Abdelkawy K, Elbarbry F, El-Masry SM, Zakaria AY, Rodríguez-Pérez C, El-Khodary NM. Changes in dietary habits during Covid-19 lockdown in Egypt: the Egyptian COVIDiet study. BMC Public Health 2023; 23:956. [PMID: 37231373 DOI: 10.1186/s12889-023-15777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
PURPOSE COVID-19 lockdown changed social habits and lifestyle, including dietary habits, of people worldwide. However, limited information is available about these changes in Egypt. This cross-sectional study investigates the effects of COVID-19 lockdown on dietary habits among the Egyptian populations. METHODS An online questionnaire, based on sociodemographic data and dietary adherence in accordance with the validated PREDIMED MedDiet Adherence Screener (MEDAS), was used all over the Egyptian governorates. The dietary changes were statistically evaluated for significance in relation to age, gender, body mass index (BMI), education level and governorates. RESULTS A total of 1010 participants (76% aged below 36 years, 77% female, 22% obese, and 62% university-level education) answered the questionnaire. Respondents ≤ 20 years had a significant increase in weight and consumption of carbonated beverages, commercial pastries, fried and fast food. Egyptians > 50 years old had a significant decrease in physical activity. Underweight people (less than 3% of participants) increased their fast food intake with a prominent rise in weight. However, obese people increased cooking frequency and increased eating times with a decrease in physical activity. Male participants reported increased intake of carbonated beverages and fast food, while female participants increased the intake of homemade pastries with a significant decrease in physical activity. Approximately 50% of participants with postgraduate education reported decreased intake of fast food and carbonated beverages as well as decreased body weight. Residents of Cairo showed a significant increase in vegetable intake, and fried food intake with a decrease in seafood consumption. Participants from the Delta region had a significant increase in pastries intake. CONCLUSION The findings of this study explored the need for increasing awareness about healthy lifestyle in future lockdown periods.
Collapse
Affiliation(s)
- Khaled Abdelkawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | | | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Amr Y Zakaria
- Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus Universitario de Cartuja, Granada, 18017, Spain
- Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) 'José Mataix', University of Granada, Avenida del Conocimiento s/n, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Noha M El-Khodary
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt.
| |
Collapse
|
32
|
Khattab R, Abdelmaksoud IR, Abdelrazek S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey. NEW GENERATION COMPUTING 2023; 41:343-400. [PMID: 37229176 PMCID: PMC10071474 DOI: 10.1007/s00354-023-00213-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), surprised the world in December 2019 and has threatened the lives of millions of people. Countries all over the world closed worship places and shops, prevented gatherings, and implemented curfews to stand against the spread of COVID-19. Deep Learning (DL) and Artificial Intelligence (AI) can have a great role in detecting and fighting this disease. Deep learning can be used to detect COVID-19 symptoms and signs from different imaging modalities, such as X-Ray, Computed Tomography (CT), and Ultrasound Images (US). This could help in identifying COVID-19 cases as a first step to curing them. In this paper, we reviewed the research studies conducted from January 2020 to September 2022 about deep learning models that were used in COVID-19 detection. This paper clarified the three most common imaging modalities (X-Ray, CT, and US) in addition to the DL approaches that are used in this detection and compared these approaches. This paper also provided the future directions of this field to fight COVID-19 disease.
Collapse
Affiliation(s)
- Rana Khattab
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Islam R. Abdelmaksoud
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Samir Abdelrazek
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Hoffmann K, Michalak M, Bońka A, Bryl W, Myśliński W, Kostrzewska M, Kopciuch D, Zaprutko T, Ratajczak P, Nowakowska E, Kus K, Paczkowska A. Association between Compliance with COVID-19 Restrictions and the Risk of SARS-CoV-2 Infection in Poland. Healthcare (Basel) 2023; 11:healthcare11060914. [PMID: 36981571 PMCID: PMC10048166 DOI: 10.3390/healthcare11060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During the coronavirus disease 19 (COVID-19) pandemic it has become very important to comply with preventive measures. We aimed to assess compliance with applicable restrictions and to explore the links between the level of compliance and the risk of COVID-19. This cross-sectional study included Polish adults who were asked to complete a validated questionnaire. The study period was from 1 November 2020 to 31 January 2021 and a computer-assisted web interview method was chosen to perform the survey. The study involved 562 women and 539 men. COVID-19 was reported in 11.26% of participants. A good level of compliance with the sanitary restrictions was reported for 38.87% of participants, an average level of compliance for 47.96%, and a low level of compliance for 13.17%. A reduced risk of COVID-19 was associated with the following preventive measures: regular use of protective masks, social and physical distancing in public places, regular use of hand sanitizers with high ethanol content, and the use of disposable gloves in public places. Our survey revealed satisfactory public compliance with the pandemic restrictions. Sanitary and epidemiologic measures to prevent the pandemic were shown to be adequate and effective.
Collapse
Affiliation(s)
- Karolina Hoffmann
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Aleksandra Bońka
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Wojciech Myśliński
- Department of Internal Disease, Medical University of Lublin, 20-059 Lublin, Poland
| | - Magdalena Kostrzewska
- Department of Pulmonology, Allergology and Pulmonological Oncology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Dorota Kopciuch
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Tomasz Zaprutko
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Piotr Ratajczak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland
| | - Krzysztof Kus
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Paczkowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
34
|
An immunoinformatics approach to study the epitopes of SARS-CoV-2 helicase, Nsp13. VACUNAS 2023. [PMCID: PMC9977615 DOI: 10.1016/j.vacun.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Introduction and objective. Vaccines are administered worldwide to control on-going coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2. Vaccine efficacy is largely contributed by the epitopes present on the viral proteins and their alteration might help emerging variants to escape host immune surveillance. Therefore, this study was designed to study SARS-CoV-2 Nsp13 protein, its epitopes and evolution. Methods Clustal Omega was used to identify mutations in Nsp13 protein. Secondary structure and disorder score was predicted by CFSSP and PONDR-VSL2 webservers. Protein stability was predicted by DynaMut webserver. B cell epitopes were predicted by IEDB DiscoTope 2.0 tools and their 3D structures were represented by discovery studio. Antigenicity and allergenicity of epitopes were predicted by Vaxijen2.0 and AllergenFPv.1.0. Physiochemical properties of epitopes were predicted by Toxinpred, HLP webserver tool. Results Our data revealed 182 mutations in Nsp13 among Indian SARS-CoV-2 isolates, which were characterised by secondary structure and per-residue disorderness, stability and dynamicity predictions. To correlate the functional impact of these mutations, we characterised the most prominent B cell and T cell epitopes contributed by Nsp13. Our data revealed twenty-one epitopes, which exhibited antigenicity, stability and interactions with MHC class-I and class-II molecules. Subsequently, the physiochemical properties of these epitopes were analysed. Furthermore, eighteen mutations reside in these Nsp13 epitopes. Conclusions We report appearance of eighteen mutations in the predicted twenty-one epitopes of Nsp13. Among these, at least seven epitopes closely matches with the functionally validated epitopes. Altogether, our study shows the pattern of evolution of Nsp13 epitopes and their probable implications.
Collapse
|
35
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
36
|
Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med 2023; 21:152. [PMID: 36841805 PMCID: PMC9958328 DOI: 10.1186/s12967-023-03996-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Karim Rahimian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, 2040, 3000 CA, Rotterdam, The Netherlands
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
37
|
Lim HJ, Park MY, Baek YH, Lee HS, Kim I, Kwon Y, You Y, Nam K, Yang JH, Kim MJ, Yu N, Sohn YH, Park JE, Yang YJ. Evaluation of Four Rapid Antigen Tests for the Detection of SARS-CoV-2 Infection with Nasopharyngeal Swabs. Biomedicines 2023; 11:biomedicines11030701. [PMID: 36979680 PMCID: PMC10045780 DOI: 10.3390/biomedicines11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Owing to the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the capacity of testing systems based on the gold standard real-time reverse transcription–polymerase chain reaction (rRT-PCR) is limited. Rapid antigen tests (RATs) can substantially contribute to the prevention of community transmission, but their further assessment is required. Here, using 1503 nasopharyngeal swabs, we compared the diagnostic performance of four RAT kits (Abbott Panbio™ COVID-19 Ag Rapid Test, SD Biosensor Standard™ Q COVID-19 Ag Test, Humasis COVID-19 Ag Test, and SG Medical Acrosis COVID-19 Ag Test) to the cycle threshold (Ct) values obtained from rRT-PCR. The precision values, area under the curve values, SARS-CoV-2 variant detection ability, and non-SARS-CoV-2 specificity of all four kits were similar. An assay using the Acrosis kit had a significantly better positive detection rate with a higher recall value and cut-off value than that using the other three RAT kits. During the current COVID-19 pandemic, the Acrosis kit is an effective tool to prevent the spread of SARS-CoV-2 in communities.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Hyeon-Seo Lee
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Inhee Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Youngjin Kwon
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Youngshin You
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Kyoungwoo Nam
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Nae Yu
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
- Correspondence: (J.-E.P.); (Y.-J.Y.)
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Correspondence: (J.-E.P.); (Y.-J.Y.)
| |
Collapse
|
38
|
Onajin-Obembe BOI. Equity in provision and access to obstetric anaesthesia care in Nigeria. Int J Obstet Anesth 2023; 54:103642. [PMID: 36841064 DOI: 10.1016/j.ijoa.2023.103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Nigeria has a high maternal mortality rate, yet there is wide variation in the proportion of births by caesarean section between zones, states, and cities within Nigeria. This review examines the pattern of the COVID-19 pandemic and the impact of mitigation measures on women's health in Nigeria. The combined impact of COVID-19 and conflicts on maternal healthcare and access to obstetric care, as well as the availability of obstetric anaesthesia in Nigeria, are discussed. There is a vicious cycle, intensified by unwanted pregnancy, abortion, and preventable maternal death.
Collapse
Affiliation(s)
- B O I Onajin-Obembe
- Department of Anaesthesiology, Faculty of Health Sciences, College of Health Sciences, University of Port Harcourt, Rivers State, Nigeria; Department of Anaesthesiology, University of Port Harcourt Teaching Hospital, Rivers State, Nigeria.
| |
Collapse
|
39
|
Khan A, Heng W, Imran K, Zhu G, Ji J, Zhang Y, Guan X, Ge G, Wei DQ. Discovery of Isojacareubin as a covalent inhibitor of SARS-CoV-2 main protease using structural and experimental approaches. J Med Virol 2023; 95:e28542. [PMID: 36727647 DOI: 10.1002/jmv.28542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The ongoing pandemic with the emergence of immune evasion potential and, particularly, the current omicron subvariants intensified the situation further. Although vaccines are available, the immune evasion capabilities of the recent variants demand further efficient therapeutic choices to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Hence, considering the necessity of the small molecule inhibitor, we target the main protease (3CLpro), which is an appealing target for the development of antiviral drugs against SARS-CoV-2. High-throughput molecular in silico screening of South African natural compounds database reported Isojacareubin and Glabranin as the potential inhibitors for the main protease. The calculated docking scores were reported to be -8.47 and -8.03 kcal/mol, respectively. Moreover, the structural dynamic assessment reported that Isojacareubin in complex with 3CLpro exhibit a more stable dynamic behavior than Glabranin. Inhibition assay indicated that Isojacareubin could inhibit SARS-CoV-2 3CLpro in a time- and dose-dependent manner, with half maximal inhibitory concentration values of 16.00 ± 1.35 μM (60 min incubation). Next, the covalent binding sites of Isojacareubin on SARS-CoV-2 3CLpro was identified by biomass spectrometry, which reported that Isojacareubin can covalently bind to thiols or Cysteine through Michael addition. To evaluate the inactivation potency of Isojacareubin, the inactivation kinetics was further investigated. The inactivation kinetic curves were plotted according to various concentrations with gradient-ascending incubation times. The KI value of Isojacareubin was determined as 30.71 μM, whereas the Kinact value was calculated as 0.054 min-1 . These results suggest that Isojacareubin is a covalent inhibitor of SARS-CoV-2 3CLpro .
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, P.R., China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R., China
| | - Wang Heng
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R., China
| | - Kashif Imran
- Services Institute of Medical Sciences, Lahore, Punjab, Pakistan
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Ji
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, P.R., China
| | - Yani Zhang
- Peng Cheng Laboratory, Vanke Cloud City, Nashan District, Shenzhen, Guangdong, P.R., China
| | - Xiaoqing Guan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, P.R., China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R., China
- Peng Cheng Laboratory, Vanke Cloud City, Nashan District, Shenzhen, Guangdong, P.R., China
| |
Collapse
|
40
|
Sameh M, Khalaf HM, Anwar AM, Osama A, Ahmed EA, Mahgoub S, Ezzeldin S, Tanios A, Alfishawy M, Said AF, Mohamed MS, Sayed AA, Magdeldin S. Integrated multiomics analysis to infer COVID-19 biological insights. Sci Rep 2023; 13:1802. [PMID: 36720931 PMCID: PMC9888750 DOI: 10.1038/s41598-023-28816-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Three years after the pandemic, we still have an imprecise comprehension of the pathogen landscape and we are left with an urgent need for early detection methods and effective therapy for severe COVID-19 patients. The implications of infection go beyond pulmonary damage since the virus hijacks the host's cellular machinery and consumes its resources. Here, we profiled the plasma proteome and metabolome of a cohort of 57 control and severe COVID-19 cases using high-resolution mass spectrometry. We analyzed their proteome and metabolome profiles with multiple depths and methodologies as conventional single omics analysis and other multi-omics integrative methods to obtain the most comprehensive method that portrays an in-depth molecular landscape of the disease. Our findings revealed that integrating the knowledge-based and statistical-based techniques (knowledge-statistical network) outperformed other methods not only on the pathway detection level but even on the number of features detected within pathways. The versatile usage of this approach could provide us with a better understanding of the molecular mechanisms behind any biological system and provide multi-dimensional therapeutic solutions by simultaneously targeting more than one pathogenic factor.
Collapse
Affiliation(s)
- Mahmoud Sameh
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Hossam M Khalaf
- Intensive Care Unit, As-Salam International Hospital, Cairo, Egypt
| | - Ali Mostafa Anwar
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Aya Osama
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Eman Ali Ahmed
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Sebaey Mahgoub
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Shahd Ezzeldin
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Anthony Tanios
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Mostafa Alfishawy
- Infectious Diseases Consultants and Academic Researchers of Egypt (IDCARE), Cairo, Egypt
- Alazhar Center for Allergy and Immunology, Cairo, Egypt
| | - Azza Farag Said
- Department of Pulmonary Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Maged Salah Mohamed
- Department of Anesthesia and Intensive Care, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Department of Basic Research, Genomics Program, Children's Cancer Hospital 57357, Cairo, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt.
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
41
|
Kamga Wouambo R, Djuikoué CI, Esemu LF, Kagoue Simeni LA, Tchitchoua MC, Djouela Djoulako PD, Fokam J, Singwe-Ngandeu M, Mpoudi Ngolé E, Apalata T. Comparative Performance of Serological (IgM/IgG) and Molecular Testing (RT-PCR) of COVID-19 in Three Private Universities in Cameroon during the Pandemic. Viruses 2023; 15:407. [PMID: 36851621 PMCID: PMC9966400 DOI: 10.3390/v15020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND COVID-19 remains a rapidly evolving and deadly pandemic worldwide. This necessitates the continuous assessment of existing diagnostic tools for a robust, up-to-date, and cost-effective pandemic response strategy. We sought to determine the infection rate (PCR-positivity) and degree of spread (IgM/IgG) of SARS-CoV-2 in three university settings in Cameroon Method: Study volunteers were recruited from November 2020 to July 2021 among COVID-19 non-vaccinated students in three Universities from two regions of Cameroon (West and Centre). Molecular testing was performed by RT-qPCR on nasopharyngeal swabs, and IgM/IgG antibodies in plasma were detected using the Abbott Panbio IgM/IgG rapid diagnostic test (RDT) at the Virology Laboratory of CREMER/IMPM/MINRESI. The molecular and serological profiles were compared, and p < 0.05 was considered statistically significant. RESULTS Amongst the 291 participants enrolled (mean age 22.59 ± 10.43 years), 19.59% (57/291) were symptomatic and 80.41% (234/291) were asymptomatic. The overall COVID-19 PCR-positivity rate was 21.31% (62/291), distributed as follows: 25.25% from UdM-Bangangte, 27.27% from ISSBA-Yaounde, and 5% from IUEs/INSAM-Yaounde. Women were more affected than men (28.76% [44/153] vs. 13.04% [18/138], p < 0.0007), and had higher seropositivity rates to IgM+/IgG+ (15.69% [24/153] vs. 7.25% [10/138], p < 0.01). Participants from Bangangté, the nomadic, and the "non-contact cases" primarily presented an active infection compared to those from Yaoundé (p= 0.05, p = 0.05, and p = 0.01, respectively). Overall IgG seropositivity (IgM-/IgG+ and IgM+/IgG+) was 24.4% (71/291). A proportion of 26.92% (7/26) presenting COVID-19 IgM+/IgG- had negative PCR vs. 73.08% (19/26) with positive PCR, p < 0.0001. Furthermore, 17.65% (6/34) with COVID-19 IgM+/IgG+ had a negative PCR as compared to 82.35% with a positive PCR (28/34), p < 0.0001. Lastly, 7.22% (14/194) with IgM-/IgG- had a positive PCR. CONCLUSION This study calls for a rapid preparedness and response strategy in higher institutes in the case of any future pathogen with pandemic or epidemic potential. The observed disparity between IgG/IgM and the viral profile supports prioritizing assays targeting the virus (nucleic acid or antigen) for diagnosis and antibody screening for sero-surveys.
Collapse
Affiliation(s)
- Rodrigue Kamga Wouambo
- Section of Hepatology, Department of Medicine II, University of Leipzig Medical Centre, 04103 Leipzig, Germany
- American Society for Microbiology (ASM), ASM Cameroon, Bangangte, Cameroon
| | - Cecile Ingrid Djuikoué
- American Society for Microbiology (ASM), ASM Cameroon, Bangangte, Cameroon
- Faculty of Health Science, Université des Montagnes, Bangangte, Cameroon
| | - Livo Forgu Esemu
- Laboratory of Fundamental Virology, Centre for Research on Emerging and Reemerging Diseases (CREMER), Yaounde, Cameroon
- Department of Biomedical Sciences, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Luc Aime Kagoue Simeni
- American Society for Microbiology (ASM), ASM Cameroon, Bangangte, Cameroon
- Department of Microbiology, Faculty of Health Science, University of Buea, Buea, Cameroon
| | | | - Paule Dana Djouela Djoulako
- American Society for Microbiology (ASM), ASM Cameroon, Bangangte, Cameroon
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
| | - Joseph Fokam
- Department of Medical Laboratory Sciences, Faculty of Health Science, University of Buea, Buea, Cameroon
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | | | - Eitel Mpoudi Ngolé
- Laboratory of Fundamental Virology, Centre for Research on Emerging and Reemerging Diseases (CREMER), Yaounde, Cameroon
| | - Teke Apalata
- Faculty of Health Sciences & National Health Laboratory Services, Walter Sisulu University, Mthatha 5099, South Africa
| |
Collapse
|
42
|
Prabhakar PK, Khurana N, Vyas M, Sharma V, Batiha GES, Kaur H, Singh J, Kumar D, Sharma N, Kaushik A, Kumar R. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020451. [PMID: 36839773 PMCID: PMC9960567 DOI: 10.3390/pharmaceutics15020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Coronavirus, a causative agent of the common cold to a much more complicated disease such as "severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)", is a member of the coronaviridae family and contains a positive-sense single-stranded RNA of 26-32 kilobase pairs. COVID-19 has shown very high mortality and morbidity and imparted a significantly impacted socioeconomic status. There are many variants of SARS-CoV-2 that have originated from the mutation of the genetic material of the original coronavirus. This has raised the demand for efficient treatment/therapy to manage newly emerged SARS-CoV-2 infections successfully. However, different types of vaccines have been developed and administered to patients but need more attention because COVID-19 is not under complete control. In this article, currently developed nanotechnology-based vaccines are explored, such as inactivated virus vaccines, mRNA-based vaccines, DNA-based vaccines, S-protein-based vaccines, virus-vectored vaccines, etc. One of the important aspects of vaccines is their administration inside the host body wherein nanotechnology can play a very crucial role. Currently, more than 26 nanotechnology-based COVID-19 vaccine candidates are in various phases of clinical trials. Nanotechnology is one of the growing fields in drug discovery and drug delivery that can also be used for the tackling of coronavirus. Nanotechnology can be used in various ways to design and develop tools and strategies for detection, diagnosis, and therapeutic and vaccine development to protect against COVID-19. The design of instruments for speedy, precise, and sensitive diagnosis, the fabrication of potent sanitizers, the delivery of extracellular antigenic components or mRNA-based vaccines into human tissues, and the administration of antiretroviral medicines into the organism are nanotechnology-based strategies for COVID-19 management. Herein, we discuss the application of nanotechnology in COVID-19 vaccine development and the challenges and opportunities in this approach.
Collapse
Affiliation(s)
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
- Correspondence: (N.K.); (R.K.)
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Harpreet Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Jashanpreet Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Uttarakhand 248007, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Sciences, Omaha, NE 68198, USA
- Correspondence: (N.K.); (R.K.)
| |
Collapse
|
43
|
Dardas LA, Sallam M, Woodward A, Sweis N, Sweis N, Sawair FA. Evaluating Research Impact Based on Semantic Scholar Highly Influential Citations, Total Citations, and Altmetric Attention Scores: The Quest for Refined Measures Remains Illusive. PUBLICATIONS 2023; 11:5. [DOI: 10.3390/publications11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Background: The evaluation of scholarly articles’ impact has been heavily based on the citation metrics despite the limitations of this approach. Therefore, the quest for meticulous and refined measures to evaluate publications’ impact is warranted. Semantic Scholar (SS) is an artificial intelligence-based database that allegedly identifies influential citations defined as “Highly Influential Citations” (HICs). Citations are considered highly influential according to SS when the cited publication has a significant impact on the citing publication (i.e., the citer uses or extends the cited work). Altmetrics are measures of online attention to research mined from activity in online tools and environments. Aims: The current study aimed to explore whether SS HICs provide an added value when it comes to measuring research impact compared to total citation counts and Altmetric Attention Score (AAS). Methods: Dimensions was used to generate the dataset for this study, which included COVID-19-related scholarly articles published by researchers affiliated to Jordanian institutions. Altmetric Explorer was selected as an altmetrics harvesting tool, while Semantic Scholar was used to extract details related to HICs. A total of 618 publications comprised the final dataset. Results: Only 4.57% (413/9029) of the total SS citations compiled in this study were classified as SS HICs. Based on SS categories of citations intent, 2626 were background citations (29.08%, providing historical context, justification of importance, and/or additional information related to the cited paper), 358 were result citations (3.97%, that extend on findings from research that was previously conducted), and 263 were method citations (2.91%, that use the previously established procedures or experiments to determine whether the results are consistent with findings in related studies). No correlation was found between HICs and AAS (r = 0.094). Manual inspection of the results revealed substantial contradictions, flaws, and inconsistencies in the SS HICs tool. Conclusions: The use of SS HICs in gauging research impact is significantly limited due to the enigmatic method of its calculation and total dependence on artificial intelligence. Along with the already documented drawbacks of total citation counts and AASs, continuous evaluation of the existing tools and the conception of novel approaches are highly recommended to improve the reliability of publication impact assessment.
Collapse
Affiliation(s)
- Latefa Ali Dardas
- Community Health Nursing Department, School of Nursing, The University of Jordan, Amman 11942, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Amanda Woodward
- Lane Medical Library, Stanford University, Stanford, CA 94305, USA
| | - Nadia Sweis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Narjes Sweis
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Faleh A. Sawair
- School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology, School of Dentistry, The University of Jordan, Jordan University Hospital, Amman 11942, Jordan
- Deanship of the Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
44
|
Dallavalasa S, Tulimilli SV, Prakash J, Ramachandra R, Madhunapantula SV, Veeranna RP. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023; 12:pathogens12020184. [PMID: 36839456 PMCID: PMC9967788 DOI: 10.3390/pathogens12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Recent evidence relating to the impact of COVID-19 on people with diabetes is limited but continues to emerge. COVID-19 pneumonia is a newly identified illness spreading rapidly throughout the world and causes many disabilities and fatal deaths. Over the ensuing 2 years, the indirect effects of the pandemic on healthcare delivery have become prominent, along with the lingering effects of the virus on those directly infected. Diabetes is a commonly identified risk factor that contributes not only to the severity and mortality of COVID-19 patients, but also to the associated complications, including acute respiratory distress syndrome (ARDS) and multi-organ failure. Diabetic patients are highly affected due to increased viral entry into the cells and decreased immunity. Several hypotheses to explain the increased incidence and severity of COVID-19 infection in people with diabetes have been proposed and explained in detail recently. On the other hand, 20-50% of COVID-19 patients reported new-onset hyperglycemia without diabetes and new-onset diabetes, suggesting the two-way interactions between COVID-19 and diabetes. A systematic review is required to confirm diabetes as a complication in those patients diagnosed with COVID-19. Diabetes and diabetes-related complications in COVID-19 patients are primarily due to the acute illness caused during the SARS-CoV-2 infection followed by the release of glucocorticoids, catecholamines, and pro-inflammatory cytokines, which have been shown to drive hyperglycemia positively. This review provides brief insights into the potential mechanisms linking COVID-19 and diabetes, and presents clinical management recommendations for better handling of the disease.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Janhavi Prakash
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - Ramya Ramachandra
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
- Correspondence:
| |
Collapse
|
45
|
Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47:fuac042. [PMID: 36323404 PMCID: PMC9841970 DOI: 10.1093/femsre/fuac042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Departmento de Bioloquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
46
|
Abbas HS, Abd-elhakeem MM, Abd El Galil RM, Reyad OA, Mohamed HA, Ismail SES, Nabil MA. Natural Immunomodulators Treat the Cytokine Storm in SARS-CoV-2. Adv Pharm Bull 2023; 13:79-87. [PMID: 36721816 PMCID: PMC9871270 DOI: 10.34172/apb.2023.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, the world has been dealing with a destructive global pandemic Coronavirus disease 2019 (COVID-19) infection, since 2020; there were millions of infections and hundreds of thousands of deaths worldwide. With sequencing generations of the virus, around 60% are expected to become infected during the pandemic. Unfortunately, no drug or vaccine has been approved because no real evidence from clinical trials in treatment was reached. According to current thinking, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mortality is caused by a cytokine storm syndrome in patients with hyper-inflammatory conditions, resulting in acute respiratory distress and finally death. In this review, we discuss the various types of natural immune-modulatory agents and their role in the management of SARS-CoV-2, and cytokine storm syndrome. For example, Polyphenols as natural products can block the binding of SARS-CoV-2 spike protein to host cell receptor ACE2, stop viral entry into the host cell and block viral RNA replication. Also, saikosaponins (A, B2, C, and D), triterpene glycosides, which are isolated from medicinal plants exert antiviral action against HCoV-22E9, and Houttuynia cordata water extract has antiviral effects on SARS-CoV. Moreover, eucalyptus oil has promising potential for COVID-19 prevention and treatment. There is an urgent need for research to improve the function of the human immune system all over the world. As a result, actions for better understanding and improving the human immune system are critical steps toward mitigating risks and negative outcomes. These approaches will be strongly recommended for future emerging viruses and pathogens.
Collapse
Affiliation(s)
- Heba Salah Abbas
- Microbiology Department, National Organization for Drug Control and Research(NODCAR), Egyptian Drug Authority, Giza, Egypt.,Corresponding Author: Heba Salah Abbas,
| | | | | | | | - Heba Ahmed Mohamed
- Master Student, Microbiology, Faculty of Science, Suez University, Egypt
| | | | - Manal Ahmed Nabil
- Department of Immunology & Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
47
|
Abir MH, Rahat MAH, Etu SN, Hussain T, Chakraborty A, Alam M, Litzow E, Hassan MM. Knowledge, attitudes, and practices regarding immunity boosting dietary behavior of mass population amid COVID-19. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001872. [PMID: 37134071 PMCID: PMC10156064 DOI: 10.1371/journal.pgph.0001872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
During the increasing spread of COVID-19 occurrences in Chattogram Metropolitan Area (CMA) of Bangladesh, a series of measures were taken to control the transmission. These measures greatly influenced the knowledge, attitudes, and practices (KAP) of the population on their dietary behavior. However, there are no current studies demonstrating the KAP of the CMA citizens regarding their dietary habit that can boost the immunity. In this study, we appraised KAP in regard to immunity boosting dietary behavior from April 26, 2021 to November 17, 2021 during implementation of lockdown measures by the government of Bangladesh. Apart from the basic knowledge and attitudes toward immunity boosting dietary behavior, we have also aimed to assess the practices of the population by whether the nutrients, especially vitamin A, B6, B9, B12, C, D, E, and trace minerals such as zinc, selenium, and iron were included in their diet and in what frequency. This study is a cross-sectional study, and the participants were recruited using both online platforms during the lockdown and through in-person interviews after the withdrawal of lockdown. After obtaining the proper consent from the participants, their sociodemographic variables, and KAP towards immunity boosting dietary behavior were assessed. Total 400 participants were included in this study and a non-probability sampling technique named purposive sampling has been followed for participants recruitment. Among the 400 participants, the majority of them (64.3%) were male, most of them (62.7%) were students, unmarried (69.5%), aged between 18-35 years (82.5%), had a bachelor's degree (50.0%), and had a monthly family income between 10000-30000 BDT (35.5%). This study indicated that 82.8% of the populations had the correct knowledge, 71.3% had favorable attitudes, and 44% had good practices regarding immunity boosting diet during COVID-19. The majority (79.3%) of the participants had an idea about nutrition, most of them (78.5%) knew the nutrients needed to strengthen their immune system, almost all (98.5%) washed fruits and vegetables purchased from the market before eating them, 78% did not often purchase food online, and 53% often ate junk food. In a binary logistic regression, correct knowledge was significantly associated with the females, having HSC or bachelor's degree, being in the occupation of business, laborer or others, and having a monthly family income between 50000-100000 or >100000. The favorable attitudes were significantly associated with having a master's degree or above, and for government job holders. However, the good practices did not show any significant association with the sociodemographic factors in binary logistic regression. Moreover, the study found the presence of bad or unhealthy practices among the populations despite having correct knowledge and favorable attitudes. Thus, this study could identify the variables, such as gender differences, education, monthly family income, and occupation on which emphasis should be given during public health campaigns or training programs to improve the KAP regarding immunity boosting diet.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mahdi Al Hasan Rahat
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Silvia Naznin Etu
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Tahmid Hussain
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Anik Chakraborty
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mahabub Alam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Emily Litzow
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
48
|
Mpinganzima L, Ntaganda JM, Banzi W, Muhirwa JP, Nannyonga BK, Niyobuhungiro J, Rutaganda E. Analysis of COVID-19 mathematical model for predicting the impact of control measures in Rwanda. INFORMATICS IN MEDICINE UNLOCKED 2023; 37:101195. [PMID: 36819990 PMCID: PMC9930676 DOI: 10.1016/j.imu.2023.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
This paper shows the impact of control measures on the predictive COVID-19 mathematical model in Rwanda through sensitivity analysis of the basic reproduction number R 0 . We have introduced different levels of the control measures in the model, precisely, 90%, 80%, 60%, 40%, 20%, 0% and studied their effects on the variation of the model variables. The results from numerical simulations reveal that the more the adherence to the control measures at the percentage of 90%, 80%, 60%, 40%, 20%, 0%, the more the number of COVID-19 cases, hospitalized and deaths reduces which indicates the reduction of the spread of the pandemic in Rwanda. Moreover, It was shown that the transition rate from the infectious compartment is very sensitive to R 0 as the increase/decrease in its value increases/decreases the value of R 0 and this leads to the high spread or the containment of the pandemic respectively.
Collapse
Affiliation(s)
- Lydie Mpinganzima
- Department of Mathematics, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Jean Marie Ntaganda
- Department of Mathematics, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Wellars Banzi
- Department of Mathematics, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Jean Pierre Muhirwa
- Department of Mathematics, University of Rwanda, P.O. Box 3900, Kigali, Rwanda,Corresponding author
| | - Betty Kivumbi Nannyonga
- Department of Mathematics, School of Physical Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Japhet Niyobuhungiro
- National Council for Science and Technology, 13th Floor, Grand Pension Plaza KN 2 Avenue, Nyarugenge - Kigali - Rwanda, P.O. Box 2285, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, Kigali University Teaching Hospital, P.O. Box 3286, Kigali, Rwanda
| |
Collapse
|
49
|
Singh MP, Singh N, Mishra D, Ehsan S, Chaturvedi VK, Chaudhary A, Singh V, Vamanu E. Computational Approaches to Designing Antiviral Drugs against COVID-19: A Comprehensive Review. Curr Pharm Des 2023; 29:2601-2617. [PMID: 37916490 DOI: 10.2174/0113816128259795231023193419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
The global impact of the COVID-19 pandemic caused by SARS-CoV-2 necessitates innovative strategies for the rapid development of effective treatments. Computational methodologies, such as molecular modelling, molecular dynamics simulations, and artificial intelligence, have emerged as indispensable tools in the drug discovery process. This review aimed to provide a comprehensive overview of these computational approaches and their application in the design of antiviral agents for COVID-19. Starting with an examination of ligand-based and structure-based drug discovery, the review has delved into the intricate ways through which molecular modelling can accelerate the identification of potential therapies. Additionally, the investigation extends to phytochemicals sourced from nature, which have shown promise as potential antiviral agents. Noteworthy compounds, including gallic acid, naringin, hesperidin, Tinospora cordifolia, curcumin, nimbin, azadironic acid, nimbionone, nimbionol, and nimocinol, have exhibited high affinity for COVID-19 Mpro and favourable binding energy profiles compared to current drugs. Although these compounds hold potential, their further validation through in vitro and in vivo experimentation is imperative. Throughout this exploration, the review has emphasized the pivotal role of computational biologists, bioinformaticians, and biotechnologists in driving rapid advancements in clinical research and therapeutic development. By combining state-of-the-art computational techniques with insights from structural and molecular biology, the search for potent antiviral agents has been accelerated. The collaboration between these disciplines holds immense promise in addressing the transmissibility and virulence of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India
| | - Saba Ehsan
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anupriya Chaudhary
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Veer Singh
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bucharest 011464, Romania
| |
Collapse
|
50
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|