1
|
Shiraishi K, Nakaura T, Yoshida N, Matsuo K, Kobayashi N, Hokamura M, Uetani H, Nagayama Y, Kidoh M, Morita K, Yamashita Y, Tanaka Y, Baba H, Hirai T. Deep Learning Reconstruction for Enhanced Resolution and Image Quality in Breath-Hold MRCP: A Preliminary Study. J Comput Assist Tomogr 2025; 49:367-376. [PMID: 39761494 DOI: 10.1097/rct.0000000000001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images. METHODS Our retrospective study incorporated 34 patients diagnosed with biliary and pancreatic disorders. We obtained MRCP images using a single breath-hold MRCP on a 3T MRI system. We reconstructed MRCP images with ER-DLR (matrix = 768 × 960) and without ER-DLR (matrix = 256 × 320). Quantitative evaluation involved measuring the signal-to-noise ratio (SNR), contrast, contrast-to-noise ratio (CNR) between the common bile duct and periductal tissues, and slope. Two radiologists independently scored image noise, contrast, artifacts, sharpness, and overall image quality for the 2 image types using a 4-point scale. Results are expressed as median and interquartile range (IQR), and we compared quantitative and qualitative scores employing the Wilcoxon test. RESULTS In quantitative analyses, ER-DLR significantly improved SNR (21.08 [IQR: 14.85, 31.5] vs 15.07 [IQR: 9.57, 25.23], P < 0.001), CNR (19.29 [IQR: 13.87, 24.98] vs 11.23 [IQR: 8.98, 15.74], P < 0.001), contrast (0.96 [IQR: 0.94, 0.97] vs 0.9 [IQR: 0.87, 0.92], P < 0.001), and slope of MRCP (0.62 [IQR: 0.56, 0.66] vs 0.49 [IQR: 0.45, 0.53], P < 0.001). The qualitative evaluation demonstrated significant improvements in the perceived noise ( P < 0.001), contrast ( P = 0.013), sharpness ( P < 0.001), and overall image quality ( P < 0.001). CONCLUSIONS ER-DLR markedly increased the resolution, SNR, and CNR of breath-hold-MRCP compared to cases without ER-DLR.
Collapse
Affiliation(s)
| | | | | | - Kensei Matsuo
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | | | | | | | | | | | - Kosuke Morita
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | | | | | - Hideo Baba
- Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
2
|
Nozaki T, Hashimoto M, Ueda D, Fujita S, Fushimi Y, Kamagata K, Matsui Y, Ito R, Tsuboyama T, Tatsugami F, Fujima N, Hirata K, Yanagawa M, Yamada A, Fujioka T, Kawamura M, Nakaura T, Naganawa S. Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI? LA RADIOLOGIA MEDICA 2025; 130:587-597. [PMID: 39992330 DOI: 10.1007/s11547-024-01947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/29/2024] [Indexed: 02/25/2025]
Abstract
The advances in artificial intelligence (AI) technology in recent years have been remarkable, and the field of radiology is at the forefront of applying and implementing these technologies in daily clinical practice. Radiologists must keep up with this trend and continually update their knowledge. This narrative review discusses the application of artificial intelligence in the field of musculoskeletal imaging. For image generation, we focused on the clinical application of deep learning reconstruction and the recently emerging MRI-based cortical bone imaging. For automated diagnostic support, we provided an overview of qualitative diagnosis, including classifications essential for daily practice, and quantitative diagnosis, which can serve as imaging biomarkers for treatment decision making and prognosis prediction. Finally, we discussed current issues in the use of AI, the application of AI in the diagnosis of rare diseases, and the role of AI-based diagnostic imaging in preventive medicine as part of our outlook for the future.
Collapse
Affiliation(s)
- Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, Japan.
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Asari Y, Yasaka K, Endo K, Kanzawa J, Okimoto N, Watanabe Y, Suzuki Y, Amemiya S, Kiryu S, Abe O. Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01522-6. [PMID: 40301290 DOI: 10.1007/s10278-025-01522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Super-resolution deep learning reconstruction (SR-DLR) is a promising tool for improving image quality by enhancing spatial resolution compared to conventional deep learning reconstruction (DLR). This study aimed to evaluate whether SR-DLR improves microbleed detection and visualization in brain magnetic resonance imaging (MRI) compared to DLR. This retrospective study included 69 patients (66.2 ± 13.8 years; 44 females) who underwent 3 T brain MRI with T2*-weighted 2D gradient echo and 3D flow-sensitive black blood imaging (reference standard) between June and August 2024. T2*-weighted images were reconstructed using SR-DLR and DLR. Three blinded readers detected microbleeds and assessed image quality, including microbleed and normal structure visibility, sharpness, noise, artifacts, and overall quality. Quantitative analysis involved measuring signal intensity along the septum pellucidum. Microbleed detection performance was analyzed using jackknife alternative free-response receiver operating characteristic analysis, while image quality was analyzed using the Wilcoxon signed-rank test and paired t-test. SR-DLR significantly outperformed DLR in microbleed detection (figure of merit: 0.690 vs. 0.645, p < 0.001). SR-DLR also demonstrated higher sensitivity for microbleed detection. Qualitative analysis showed better microbleed visualization for two readers (p < 0.001) and improved image sharpness for all readers (p ≤ 0.008). Quantitative analysis revealed enhanced sharpness, especially in full width at half maximum and edge rise slope (p < 0.001). SR-DLR improved image sharpness and quality, leading to better microbleed detection and visualization in brain MRI compared to DLR.
Collapse
Affiliation(s)
- Yusuke Asari
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan.
| | - Kazuki Endo
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Naomasa Okimoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286 - 0124, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| |
Collapse
|
4
|
Zhu P, Liu C, Fu Y, Chen N, Qiu A. Cycle-conditional diffusion model for noise correction of diffusion-weighted images using unpaired data. Med Image Anal 2025; 103:103579. [PMID: 40273728 DOI: 10.1016/j.media.2025.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Diffusion-weighted imaging (DWI) is a key modality for studying brain microstructure, but its signals are highly susceptible to noise due to the thermal motion of water molecules and interactions with tissue microarchitecture, leading to significant signal attenuation and a low signal-to-noise ratio (SNR). In this paper, we propose a novel approach, a Cycle-Conditional Diffusion Model (Cycle-CDM) using unpaired data learning, aimed at improving DWI quality and reliability through noise correction. Cycle-CDM leverages a cycle-consistent translation architecture to bridge the domain gap between noise-contaminated and noise-free DWIs, enabling the restoration of high-quality images without requiring paired datasets. By utilizing two conditional diffusion models, Cycle-CDM establishes data interrelationships between the two types of DWIs, while incorporating synthesized anatomical priors from the cycle translation process to guide noise removal. In addition, we introduce specific constraints to preserve anatomical fidelity, allowing Cycle-CDM to effectively learn the underlying noise distribution and achieve accurate denoising. Our experiments conducted on simulated datasets, as well as children and adolescents' datasets with strong clinical relevance. Our results demonstrate that Cycle-CDM outperforms comparative methods, such as U-Net, CycleGAN, Pix2Pix, MUNIT and MPPCA, in terms of noise correction performance. We demonstrated that Cycle-CDM can be generalized to DWIs with head motion when they were acquired using different MRI scannsers. Importantly, the denoised DWI data produced by Cycle-CDM exhibit accurate preservation of underlying tissue microstructure, thus substantially improving their medical applicability.
Collapse
Affiliation(s)
- Pengli Zhu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Chaoqiang Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Yingji Fu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong; Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, the Johns Hopkins University, USA.
| |
Collapse
|
5
|
Takatsu Y, Harada S, Murayama K, Miyati T. Comparative analysis of synthetic and conventional magnetic resonance imaging features across various brain regions. Eur J Radiol 2025; 185:111947. [PMID: 40036930 DOI: 10.1016/j.ejrad.2025.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
PURPOSE This study compared the contrast characteristics of synthetic magnetic resonance imaging (MRI) with conventional MRI in normal brain tissue and tumor-related areas. METHODS A retrospective analysis was performed on 60 patients who underwent noncontrast synthetic and conventional MRIs. Synthetic MRI was reconstructed to match conventional MRI parameters using magnetization-prepared 2 rapid acquisition gradient echoes and multiple spin echo sequences. The contrast in T1-weighted (T1WI), fluid-attenuated inversion recovery (FLAIR), and T2-weighted images (T2WI) was assessed across various brain regions and tumor-related areas. Relaxation times and dynamic range were analyzed, and a five-point visual assessment was conducted for overall image quality. RESULTS Synthetic MRI demonstrated significantly higher contrast in T1WI across all normal brain regions and most tumor-related areas (P < 0.01). For FLAIR, synthetic MRI exhibited superior contrast around the putamen (P < 0.05) but variable results in other regions. In T2WI, synthetic MRI showed higher contrast overall (P < 0.01), though conventional MRI performed better in some comparisons. Relaxation times of synthetic MRI were generally consistent with literature values but differed in cerebrospinal fluid (CSF) and lesion areas. The dynamic range of synthetic MRI was narrower. Visual assessments showed that synthetic MRI outperformed conventional MRI in all sequences except FLAIR (P < 0.01). CONCLUSION Synthetic MRI provided superior overall image quality for T1WI and T2WI, particularly achieving higher T1WI contrast. However, synthetic FLAIR had inferior overall quality despite better contrast around the putamen. Caution is needed in T2WI for CSF and edema depiction, which have relatively long T2 relaxation times.
Collapse
Affiliation(s)
- Yasuo Takatsu
- Graduate School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University. 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | - Shohei Harada
- Graduate School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Radiology, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University. 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
6
|
Kang Y, Kim SY, Kim JH, Son NH, Park CJ. Deep learning-based reconstruction for three-dimensional volumetric brain MRI: a qualitative and quantitative assessment. BMC Med Imaging 2025; 25:102. [PMID: 40148785 PMCID: PMC11951731 DOI: 10.1186/s12880-025-01647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND To evaluate the performance of a deep learning reconstruction (DLR) based on Adaptive-Compressed sensing (CS)-Network for brain MRI and validate it in a clinical setting. METHODS Ten healthy volunteers and 22 consecutive patients were prospectively enrolled. Volunteers underwent 3D brain MRI including T1 without CS factor (9:16 min, reference standard); with CS factor of 2 without DLR (CS2, 4:6 min); with CS factor of 2 with DLR (DLR-CS2); with CS factor of 4 without DLR (CS4, 2:6 min); and with CS factor of 4 with DLR (DLR-CS4). The patients' MRI included the CS2 and DLR-CS4. The volumes of lateral ventricles, hippocampus, choroid plexus, and white matter hypointensity were calculated and compared among the sequences. Three radiologists independently assessed anatomical conspicuity, overall image quality, artifacts, signal-to-noise ratio (SNR), and sharpness using a 5-point scale for each sequence. RESULTS Applying acceleration factors of 2 and 4 reduced the scan time to 65.4% and 33.5%, respectively, of that of the reference standard. Volumes of all the measured subregions showed no significant differences among different sequences in all participants. In qualitative analysis, the interrater agreement was excellent (κ = 0.844-0.926). In volunteers, quality of DLR-CS4 were comparable to those of CS2 for all metrics except for the overall image quality and SNR despite a 51.2% scan time reduction. In patients, DLR-CS4 showed quality comparable to that of CS2 for all metrics. CONCLUSIONS DLR allowed the scan time reduction by at least half without sacrificing image quality and volumetric quantification accuracy, supporting its reliability and efficiency.
Collapse
Affiliation(s)
- Yeseul Kang
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Sang-Young Kim
- MR Clinical Science, Philips Healthcare, Seoul, Republic of Korea
| | - Jun Hwee Kim
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu, Republic of Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
7
|
Jung HK, Choi Y, Kim S, Nickel D, Park JE, Kim HS. Image quality assessment and white matter hyperintensity quantification in two accelerated high-resolution 3D FLAIR techniques: Wave-CAIPI and deep learning-based SPACE. Clin Radiol 2025; 82:106783. [PMID: 39842179 DOI: 10.1016/j.crad.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
AIM To compare the image quality obtained using two accelerated high-resolution 3D fluid-attenuated inversion recovery (FLAIR) techniques for the brain-deep learning-reconstruction SPACE (DL-SPACE) and Wave-CAIPI FLAIR. MATERIALS AND METHODS A total of 123 participants who underwent DL-SPACE and Wave-CAIPI FLAIR brain imaging were retrospectively reviewed. In a qualitative analysis, two radiologists rated the quality of each image, including the overall image quality, artifacts, sharpness, fine-structure conspicuity, and lesion conspicuity based on Likert scales. In a quantitative analysis, the signal-to-noise ratio (SNR) for the normal-appearing white matter (NAWM) and lesion and the contrast-to-noise ratio (CNR) for a lesion were calculated and compared. Moreover, the volumes of white matter hyperintensities (WMHs) obtained with the two techniques were automatically quantified and compared. RESULTS The DL-SPACE FLAIR technique demonstrated a significantly higher fine-structure conspicuity (P < 0.001), lower degree of artifacts (P < 0.001) and higher overall image quality (P = 0.001). The mean SNR values were significantly higher with the DL-SPACE FLAIR technique (NAWM, 43.95 vs. 31.6; lesion, 31.35 vs. 21.28; all, P < 0.001). Additionally, the mean CNR of the WMH was significantly higher with the DL-SPACE FLAIR technique (11.34 vs. 8.22; P < 0.001). The periventricular and deep WMH volumes were significantly larger with the DL-SPACE FLAIR technique (1.91 ± 4.69 vs. 1.54 ± 4.18; P < 0.001 and 0.26 ± 0.42 vs. 0.23 ± 0.38; P = 0.002, respectively). CONCLUSION The DL-SPACE FLAIR technique produced images with superior quality, SNR and CNR compared with the Wave-CAIPI FLAIR technique with the same acquisition time.
Collapse
Affiliation(s)
- H K Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Y Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - S Kim
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - D Nickel
- Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - J E Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - H S Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T, Ochi H, Bito Y, Takizawa M, Ikebe Y, Kameda H, Harada T, Fujima N, Kudo K. Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities. Jpn J Radiol 2025; 43:200-209. [PMID: 39316286 PMCID: PMC11790734 DOI: 10.1007/s11604-024-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate deep learning-reconstructed (DLR)-fluid-attenuated inversion recovery (FLAIR) images generated from undersampled data, compare them with fully sampled and rapidly acquired FLAIR images, and assess their potential for white matter hyperintensity evaluation. MATERIALS AND METHODS We examined 30 patients with white matter hyperintensities, obtaining fully sampled FLAIR images (standard FLAIR, std-FLAIR). We created accelerated FLAIR (acc-FLAIR) images using one-third of the fully sampled data and applied deep learning to generate DLR-FLAIR images. Three neuroradiologists assessed the quality (amount of noise and gray/white matter contrast) in all three image types. The reproducibility of hyperintensities was evaluated by comparing a subset of 100 hyperintensities in acc-FLAIR and DLR-FLAIR images with those in the std-FLAIR images. Quantitatively, similarities and errors of the entire image and the focused regions on white matter hyperintensities in acc-FLAIR and DLR-FLAIR images were measured against std-FLAIR images using structural similarity index measure (SSIM), regional SSIM, normalized root mean square error (NRMSE), and regional NRMSE values. RESULTS All three neuroradiologists evaluated DLR-FLAIR as having significantly less noise and higher image quality scores compared with std-FLAIR and acc-FLAIR (p < 0.001). All three neuroradiologists assigned significantly higher frontal lobe gray/white matter visibility scores for DLR-FLAIR than for acc-FLAIR (p < 0.001); two neuroradiologists attributed significantly higher scores for DLR-FLAIR than for std-FLAIR (p < 0.05). Regarding white matter hyperintensities, all three neuroradiologists significantly preferred DLR-FLAIR (p < 0.0001). DLR-FLAIR exhibited higher similarity to std-FLAIR in terms of visibility of the hyperintensities, with 97% of the hyperintensities rated as nearly identical or equivalent. Quantitatively, DLR-FLAIR demonstrated significantly higher SSIM and regional SSIM values than acc-FLAIR, with significantly lower NRMSE and regional NRMSE values (p < 0.0001). CONCLUSIONS DLR-FLAIR can reduce scan time and generate images of similar quality to std-FLAIR in patients with white matter hyperintensities. Therefore, DLR-FLAIR may serve as an effective method in traditional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Noriko Nishioka
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yukio Kaneko
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Toru Shirai
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Atsuro Suzuki
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Hisaaki Ochi
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Yoshitaka Bito
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Yohei Ikebe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, Sapporo, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Yang R, Zou Y, Li L, Liu WV, Liu C, Wen Z, Zha Y. Enhancing repeatability of follicle counting with deep learning reconstruction high-resolution MRI in PCOS patients. Sci Rep 2025; 15:1241. [PMID: 39775101 PMCID: PMC11868616 DOI: 10.1038/s41598-024-84812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Follicle count, a pivotal metric in the adjunct diagnosis of polycystic ovary syndrome (PCOS), is often underestimated when assessed via transvaginal ultrasonography compared to MRI. Nevertheless, the repeatability of follicle counting using traditional MR images is still compromised by motion artifacts or inadequate spatial resolution. In this prospective study involving 22 PCOS patients, we employed periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and single-shot fast spin-echo (SSFSE) T2-weighted sequences to suppress motion artifacts in high-resolution ovarian MRI. Additionally, deep learning (DL) reconstruction was utilized to compensate noise in SSFSE imaging. We compared the performance of DL reconstruction SSFSE (SSFSE-DL) images with conventional reconstruction SSFSE (SSFSE-C) and PROPELLER images in follicle detection, employing qualitative indices (blurring artifacts, subjective noise, and conspicuity of follicles) and the repeatability of follicle number per ovary (FNPO) assessment. Despite similar subjective noise between SSFSE-DL and PROPELLER as assessed by one observer, SSFSE-DL images outperformed SSFSE-C and PROPELLER images across all three qualitative indices, resulting in enhanced repeatability in FNPO assessment. These results highlighted the potential of DL reconstruction high-resolution SSFSE imaging as a more dependable method for identifying polycystic ovary, thus facilitating more accurate diagnosis of PCOS in future clinical practices.
Collapse
Affiliation(s)
- Renjie Yang
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yujie Zou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | | | - Changsheng Liu
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
10
|
Wilpert C, Schneider H, Rau A, Russe MF, Oerther B, Strecker R, Nickel MD, Weiland E, Haeger A, Benndorf M, Mayrhofer T, Weiss J, Bamberg F, Windfuhr-Blum M, Neubauer J. Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study. Korean J Radiol 2025; 26:29-42. [PMID: 39780629 PMCID: PMC11717867 DOI: 10.3348/kjr.2023.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI). MATERIALS AND METHODS This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed. RESULTS Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001). CONCLUSION T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.
Collapse
Affiliation(s)
- Caroline Wilpert
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Hannah Schneider
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuroradiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Frederic Russe
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedict Oerther
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Strecker
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
- EMEA Scientific Partnerships, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Elisabeth Weiland
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Matthias Benndorf
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marisa Windfuhr-Blum
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Neubauer
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Do HP, Lockard CA, Berkeley D, Tymkiw B, Dulude N, Tashman S, Gold G, Gross J, Kelly E, Ho CP. Improved Resolution and Image Quality of Musculoskeletal Magnetic Resonance Imaging using Deep Learning-based Denoising Reconstruction: A Prospective Clinical Study. Skeletal Radiol 2024; 53:2585-2596. [PMID: 38653786 DOI: 10.1007/s00256-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To prospectively evaluate a deep learning-based denoising reconstruction (DLR) for improved resolution and image quality in musculoskeletal (MSK) magnetic resonance imaging (MRI). METHODS Images from 137 contrast-weighted sequences in 40 MSK patients were evaluated. Each sequence was performed twice, first with the routine parameters and reconstructed with a routine reconstruction filter (REF), then with higher resolution and reconstructed with DLR, and with three conventional reconstruction filters (NL2, GA43, GA53). The five reconstructions (REF, DLR, NL2, GA43, and GA53) were de-identified, randomized, and blindly reviewed by three MSK radiologists using eight scoring criteria and a forced ranking. Quantitative SNR, CNR, and structure's full width at half maximum (FWHM) for resolution assessment were measured and compared. To account for repeated measures, Generalized Estimating Equations (GEE) with Bonferroni adjustment was used to compare the reader's scores, SNR, CNR, and FWHM between DLR vs. NL2, GA43, GA53, and REF. RESULTS Compared to the routine REF images, the resolution was improved by 47.61% with DLR from 0.39 ± 0.15 mm2 to 0.20 ± 0.06 mm2 (p < 0.001). Per-sequence average scan time was shortened by 7.93% with DLR from 165.58 ± 21.86 s to 152.45 ± 25.65 s (p < 0.001). Based on the average scores, DLR images were rated significantly higher in all image quality criteria and the forced ranking (p < 0.001). CONCLUSION This prospective clinical evaluation demonstrated that DLR allows approximately two times finer resolution and improved image quality compared to the standard-of-care images.
Collapse
Affiliation(s)
- Hung P Do
- Canon Medical Systems USA, Inc., 2441 Michelle Drive, Tustin, CA, 92780, USA.
| | - Carly A Lockard
- Steadman Philippon Research Institute, 181 West Meadow Dr, Vail, CO, 81657, USA
| | - Dawn Berkeley
- Canon Medical Systems USA, Inc., 2441 Michelle Drive, Tustin, CA, 92780, USA
| | - Brian Tymkiw
- Canon Medical Systems USA, Inc., 2441 Michelle Drive, Tustin, CA, 92780, USA
| | - Nathan Dulude
- The Steadman Clinic, 181 West Meadow Drive, Suite 400, Vail, CO, 81657, USA
| | - Scott Tashman
- Steadman Philippon Research Institute, 181 West Meadow Dr, Vail, CO, 81657, USA
| | - Garry Gold
- Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305-2004, USA
| | - Jordan Gross
- University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA, 90089, USA
| | - Erin Kelly
- Canon Medical Systems USA, Inc., 2441 Michelle Drive, Tustin, CA, 92780, USA
| | - Charles P Ho
- Steadman Philippon Research Institute, 181 West Meadow Dr, Vail, CO, 81657, USA
| |
Collapse
|
12
|
Yasaka K, Akai H, Kato S, Tajima T, Yoshioka N, Furuta T, Kageyama H, Toda Y, Akahane M, Ohtomo K, Abe O, Kiryu S. Iterative Motion Correction Technique with Deep Learning Reconstruction for Brain MRI: A Volunteer and Patient Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3070-3076. [PMID: 38942939 PMCID: PMC11612051 DOI: 10.1007/s10278-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
The aim of this study was to investigate the effect of iterative motion correction (IMC) on reducing artifacts in brain magnetic resonance imaging (MRI) with deep learning reconstruction (DLR). The study included 10 volunteers (between September 2023 and December 2023) and 30 patients (between June 2022 and July 2022) for quantitative and qualitative analyses, respectively. Volunteers were instructed to remain still during the first MRI with fluid-attenuated inversion recovery sequence (FLAIR) and to move during the second scan. IMCoff DLR images were reconstructed from the raw data of the former acquisition; IMCon and IMCoff DLR images were reconstructed from the latter acquisition. After registration of the motion images, the structural similarity index measure (SSIM) was calculated using motionless images as reference. For qualitative analyses, IMCon and IMCoff FLAIR DLR images of the patients were reconstructed and evaluated by three blinded readers in terms of motion artifacts, noise, and overall quality. SSIM for IMCon images was 0.952, higher than that for IMCoff images (0.949) (p < 0.001). In qualitative analyses, although noise in IMCon images was rated as increased by two of the three readers (both p < 0.001), all readers agreed that motion artifacts and overall quality were significantly better in IMCon images than in IMCoff images (all p < 0.001). In conclusion, IMC reduced motion artifacts in brain FLAIR DLR images while maintaining similarity to motionless images.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shimpei Kato
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Toshihiro Furuta
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hajime Kageyama
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yui Toda
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Ktiakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
13
|
Ota H, Morita Y, Vucevic D, Higuchi S, Takagi H, Kutsuna H, Yamashita Y, Kim P, Miyazaki M. Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. MAGMA (NEW YORK, N.Y.) 2024; 37:1105-1117. [PMID: 38916681 DOI: 10.1007/s10334-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE To develop a new MR coronary angiography (MRCA) technique by employing a zigzag fan-shaped centric ky-kz k-space trajectory combined with high-resolution deep learning reconstruction (HR-DLR). METHODS All imaging data were acquired from 12 healthy subjects and 2 patients using two clinical 3-T MR imagers, with institutional review board approval. Ten healthy subjects underwent both standard 3D fast gradient echo (sFGE) and centric ky-kz k-space trajectory FGE (cFGE) acquisitions to compare the scan time and image quality. Quantitative measures were also performed for signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as sharpness of the vessel. Furthermore, the feasibility of the proposed cFGE sequence was assessed in two patients. For assessing the feasibility of the centric ky-kz trajectory, the navigator-echo window of a 30-mm threshold was applied in cFGE, whereas sFGE was applied using a standard 5-mm threshold. Image quality of MRCA using cFGE with HR-DLR and sFGE without HR-DLR was scored in a 5-point scale (non-diagnostic = 1, fair = 2, moderate = 3, good = 4, and excellent = 5). Image evaluation of cFGE, applying HR-DLR, was compared with sFGE without HR-DLR. Friedman test, Wilcoxon signed-rank test, or paired t tests were performed for the comparison of related variables. RESULTS The actual MRCA scan time of cFGE with a 30-mm threshold was acquired in less than 5 min, achieving nearly 100% efficiency, showcasing its expeditious and robustness. In contrast, sFGE was acquired with a 5-mm threshold and had an average scan time of approximately 15 min. Overall image quality for MRCA was scored 3.3 for sFGE and 2.7 for cFGE without HR-DLR but increased to 3.6 for cFGE with HR-DLR and (p < 0.05). The clinical result of patients obtained within 5 min showed good quality images in both patients, even with a stent, without artifacts. Quantitative measures of SNR, CNR, and sharpness of vessel presented higher in cFGE with HR-DLR. CONCLUSION Our findings demonstrate a robust, time-efficient solution for high-quality MRCA, enhancing patient comfort and increasing clinical throughput.
Collapse
Affiliation(s)
- Hideki Ota
- Department of Advanced Radiological Imaging Collaborative Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Yoshiaki Morita
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Diana Vucevic
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Satoshi Higuchi
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Hidenobu Takagi
- Department of Advanced Radiological Imaging Collaborative Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | | | | | - Paul Kim
- Department of Cardiology, University of California, San Diego, La Jolla, CA, USA
| | - Mitsue Miyazaki
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Singh R, Singh N, Kaur L. Deep learning methods for 3D magnetic resonance image denoising, bias field and motion artifact correction: a comprehensive review. Phys Med Biol 2024; 69:23TR01. [PMID: 39569887 DOI: 10.1088/1361-6560/ad94c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Magnetic resonance imaging (MRI) provides detailed structural information of the internal body organs and soft tissue regions of a patient in clinical diagnosis for disease detection, localization, and progress monitoring. MRI scanner hardware manufacturers incorporate various post-acquisition image-processing techniques into the scanner's computer software tools for different post-processing tasks. These tools provide a final image of adequate quality and essential features for accurate clinical reporting and predictive interpretation for better treatment planning. Different post-acquisition image-processing tasks for MRI quality enhancement include noise removal, motion artifact reduction, magnetic bias field correction, and eddy electric current effect removal. Recently, deep learning (DL) methods have shown great success in many research fields, including image and video applications. DL-based data-driven feature-learning approaches have great potential for MR image denoising and image-quality-degrading artifact correction. Recent studies have demonstrated significant improvements in image-analysis tasks using DL-based convolutional neural network techniques. The promising capabilities and performance of DL techniques in various problem-solving domains have motivated researchers to adapt DL methods to medical image analysis and quality enhancement tasks. This paper presents a comprehensive review of DL-based state-of-the-art MRI quality enhancement and artifact removal methods for regenerating high-quality images while preserving essential anatomical and physiological feature maps without destroying important image information. Existing research gaps and future directions have also been provided by highlighting potential research areas for future developments, along with their importance and advantages in medical imaging.
Collapse
Affiliation(s)
- Ram Singh
- Department of Computer Science & Engineering, Punjabi University, Chandigarh Road, Patiala 147002, Punjab, India
| | - Navdeep Singh
- Department of Computer Science & Engineering, Punjabi University, Chandigarh Road, Patiala 147002, Punjab, India
| | - Lakhwinder Kaur
- Department of Computer Science & Engineering, Punjabi University, Chandigarh Road, Patiala 147002, Punjab, India
| |
Collapse
|
15
|
Ginocchio LA, Jaglan S, Tong A, Smereka PN, Benkert T, Chandarana H, Shanbhogue KP. Accelerated Diffusion-Weighted Magnetic Resonance Imaging of the Liver at 1.5 T With Deep Learning-Based Image Reconstruction: Impact on Image Quality and Lesion Detection. J Comput Assist Tomogr 2024; 48:853-858. [PMID: 38722777 DOI: 10.1097/rct.0000000000001622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To perform image quality comparison between deep learning-based multiband diffusion-weighted sequence (DL-mb-DWI), accelerated multiband diffusion-weighted sequence (accelerated mb-DWI), and conventional multiband diffusion-weighted sequence (conventional mb-DWI) in patients undergoing clinical liver magnetic resonance imaging (MRI). METHODS Fifty consecutive patients who underwent clinical MRI of the liver at a 1.5-T scanner, between September 1, 2021, and January 31, 2022, were included in this study. Three radiologists independently reviewed images using a 5-point Likert scale for artifacts and image quality factors, in addition to assessing the presence of liver lesions and lesion conspicuity. RESULTS DL-mb-DWI acquisition time was 65.0 ± 2.4 seconds, significantly ( P < 0.001) shorter than conventional mb-DWI (147.5 ± 19.2 seconds) and accelerated mb-DWI (94.3 ± 1.8 seconds). DL-mb-DWI received significantly higher scores than conventional mb-DWI for conspicuity of the left lobe ( P < 0.001), sharpness of intrahepatic vessel margin ( P < 0.001), sharpness of the pancreatic contour ( P < 0.001), in-plane motion artifact ( P = 0.002), and overall image quality ( P = 0.005) by reader 2. DL-mb-DWI received significantly higher scores for conspicuity of the left lobe ( P = 0.006), sharpness of the pancreatic contour ( P = 0.020), and in-plane motion artifact ( P = 0.042) by reader 3. DL-mb-DWI received significantly higher scores for strength of fat suppression ( P = 0.004) and sharpness of the pancreatic contour ( P = 0.038) by reader 1. The remaining quality parameters did not reach statistical significance for reader 1. CONCLUSIONS Novel diffusion-weighted MRI sequence with deep learning-based image reconstruction demonstrated significantly decreased acquisition times compared with conventional and accelerated mb-DWI sequences, while maintaining or improving image quality for routine abdominal MRI. DL-mb-DWI offers a potential alternative to conventional mb-DWI in routine clinical liver MRI.
Collapse
Affiliation(s)
- Luke A Ginocchio
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Sonam Jaglan
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Angela Tong
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Paul N Smereka
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Krishna P Shanbhogue
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
16
|
Fujita N, Yokosawa S, Shirai T, Terada Y. Numerical and Clinical Evaluation of the Robustness of Open-source Networks for Parallel MR Imaging Reconstruction. Magn Reson Med Sci 2024; 23:460-478. [PMID: 37518672 PMCID: PMC11447470 DOI: 10.2463/mrms.mp.2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
PURPOSE Deep neural networks (DNNs) for MRI reconstruction often require large datasets for training. Still, in clinical settings, the domains of datasets are diverse, and how robust DNNs are to domain differences between training and testing datasets has been an open question. Here, we numerically and clinically evaluate the generalization of the reconstruction networks across various domains under clinically practical conditions and provide practical guidance on what points to consider when selecting models for clinical application. METHODS We compare the reconstruction performance between four network models: U-Net, the deep cascade of convolutional neural networks (DC-CNNs), Hybrid Cascade, and variational network (VarNet). We used the public multicoil dataset fastMRI for training and testing and performed a single-domain test, where the domains of the dataset used for training and testing were the same, and cross-domain tests, where the source and target domains were different. We conducted a single-domain test (Experiment 1) and cross-domain tests (Experiments 2-4), focusing on six factors (the number of images, sampling pattern, acceleration factor, noise level, contrast, and anatomical structure) both numerically and clinically. RESULTS U-Net had lower performance than the three model-based networks and was less robust to domain shifts between training and testing datasets. VarNet had the highest performance and robustness among the three model-based networks, followed by Hybrid Cascade and DC-CNN. Especially, VarNet showed high performance even with a limited number of training images (200 images/10 cases). U-Net was more robust to domain shifts concerning noise level than the other model-based networks. Hybrid Cascade showed slightly better performance and robustness than DC-CNN, except for robustness to noise-level domain shifts. The results of the clinical evaluations generally agreed with the results of the quantitative metrics. CONCLUSION In this study, we numerically and clinically evaluated the robustness of the publicly available networks using the multicoil data. Therefore, this study provided practical guidance for clinical applications.
Collapse
Affiliation(s)
- Naoto Fujita
- Institute of Applied Physics, University of Tsukuba
| | - Suguru Yokosawa
- FUJIFILM Corporation, Medical Systems Research & Development Center
| | - Toru Shirai
- FUJIFILM Corporation, Medical Systems Research & Development Center
| | | |
Collapse
|
17
|
Takayama Y, Sato K, Tanaka S, Murayama R, Jingu R, Yoshimitsu K. Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging. Abdom Radiol (NY) 2024; 49:3450-3463. [PMID: 38755452 DOI: 10.1007/s00261-024-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To evaluate the effectiveness of deep learning-based reconstruction (DLR) in improving image quality and tumor detectability of isovoxel high-resolution breath-hold fat-suppressed T1-weighted imaging (HR-BH-FS-T1WI) in the hepatobiliary phase (HBP) of Gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-MRI). MATERIALS AND METHODS This retrospective evaluated 42 patients with 98 liver tumors who underwent Gd-EOB-MRI between March 2023 and May 2023 using three techniques based on HBP imaging: isovoxel HR-BH-FS-T1WI reconstructed (1) with DLR (BH-DLR +) and (2) without DLR (BH-DLR -) and (3) HR-FS-T1WI scanned with a free-breathing technique using a navigator-echo-triggered technique and DLR (Navi-DLR +). The three techniques were qualitatively and quantitatively compared by the Friedman test and the Bonferroni post-hoc test. Tumor detectability was compared using the McNemar test. RESULTS BH-DLR + (3.85, average score of two radiologists) showed significantly better qualitative scores for image noise than BH-DLR - (2.84) and Navi-DLR + (3.37) (p < 0.0167), and Navi-DLR + showed significantly better scores than BH-DLR - (p < 0.0167). BH-DLR + (3.77) and BH-DLR - (3.77) showed significantly better qualitative scores for respiratory motion artifact than Navi-DLR + (2.75) (p < 0.0167), but there was no significant difference in scores between BH-DLR + and BH-DLR - (p > 0.0167). BH-DLR + (0.32) and Navi-DLR + (0.33) showed significantly higher lesion-to-nonlesion CR than BH-DLR - (0.29) (p < 0.0167), but there was no significant difference in lesion-to-nonlesion CR between BH-DLR + and Navi-DLR + (p > 0.0167). BH-DLR + (89.8%) showed significantly better tumor detectability than BH-DLR - (76.0%) and Navi-DLR + (77.6%) (p < 0.05). CONCLUSION The use of DLR for isovoxel HR-BH-FS-T1WI was effective in improving image quality and tumor detectability.
Collapse
Affiliation(s)
- Yukihisa Takayama
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan.
| | - Keisuke Sato
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Shinji Tanaka
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Ryo Murayama
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Ryotaro Jingu
- Radiology Center, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Kengo Yoshimitsu
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| |
Collapse
|
18
|
Yasaka K, Uehara S, Kato S, Watanabe Y, Tajima T, Akai H, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2466-2473. [PMID: 38671337 PMCID: PMC11522216 DOI: 10.1007/s10278-024-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI. This retrospective study included 39 patients who underwent 1.5T cervical spine MRI. T2-weighted sagittal images were reconstructed with SR-DLR and DLR. Three blinded radiologists independently evaluated the images in terms of the degree of neuroforaminal stenosis, depictions of the vertebrae, spinal cord and neural foramina, sharpness, noise, artefacts and diagnostic acceptability. In quantitative image analyses, a fourth radiologist evaluated the signal-to-noise ratio (SNR) by placing a circular or ovoid region of interest on the spinal cord, and the edge slope based on a linear region of interest placed across the surface of the spinal cord. Interobserver agreement in the evaluations of neuroforaminal stenosis using SR-DLR and DLR was 0.422-0.571 and 0.410-0.542, respectively. The kappa values between reader 1 vs. reader 2 and reader 2 vs. reader 3 significantly differed. Two of the three readers rated depictions of the spinal cord, sharpness, and diagnostic acceptability as significantly better with SR-DLR than with DLR. Both SNR and edge slope (/mm) were also significantly better with SR-DLR (12.9 and 6031, respectively) than with DLR (11.5 and 3741, respectively) (p < 0.001 for both). In conclusion, compared to DLR, SR-DLR improved interobserver agreement in the evaluations of neuroforaminal stenosis using 1.5T cervical spine MRI.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Shunichi Uehara
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shimpei Kato
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Ktiakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
19
|
Wu X, Yue X, Peng P, Tan X, Huang F, Cai L, Li L, He S, Zhang X, Liu P, Sun J. Accelerated 3D whole-heart non-contrast-enhanced mDIXON coronary MR angiography using deep learning-constrained compressed sensing reconstruction. Insights Imaging 2024; 15:224. [PMID: 39298070 DOI: 10.1186/s13244-024-01797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES To investigate the feasibility of a deep learning-constrained compressed sensing (DL-CS) method in non-contrast-enhanced modified DIXON (mDIXON) coronary magnetic resonance angiography (MRA) and compare its diagnostic accuracy using coronary CT angiography (CCTA) as a reference standard. METHODS Ninety-nine participants were prospectively recruited for this study. Thirty healthy subjects (age range: 20-65 years; 50% female) underwent three non-contrast mDIXON-based coronary MRA sequences including DL-CS, CS, and conventional sequences. The three groups were compared based on the scan time, subjective image quality score, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The remaining 69 patients suspected of coronary artery disease (CAD) (age range: 39-83 years; 51% female) underwent the DL-CS coronary MRA and its diagnostic performance was compared with that of CCTA. RESULTS The scan time for the DL-CS and CS sequences was notably shorter than that of the conventional sequence (9.6 ± 3.1 min vs 10.0 ± 3.4 min vs 13.0 ± 4.9 min; p < 0.001). The DL-CS sequence obtained the highest image quality score, mean SNR, and CNR compared to CS and conventional methods (all p < 0.001). Compared to CCTA, the accuracy, sensitivity, and specificity of DL-CS mDIXON coronary MRA per patient were 84.1%, 92.0%, and 79.5%; those per vessel were 90.3%, 82.6%, and 92.5%; and those per segment were 98.0%, 85.1%, and 98.0%, respectively. CONCLUSION The DL-CS mDIXON coronary MRA provided superior image quality and short scan time for visualizing coronary arteries in healthy individuals and demonstrated high diagnostic value compared to CCTA in CAD patients. CRITICAL RELEVANCE STATEMENT DL-CS resulted in improved image quality with an acceptable scan time, and demonstrated excellent diagnostic performance compared to CCTA, which could be an alternative to enhance the workflow of coronary MRA. KEY POINTS Current coronary MRA techniques are limited by scan time and the need for noise reduction. DL-CS reduced the scan time in coronary MR angiography. Deep learning achieved the highest image quality among the three methods. Deep learning-based coronary MR angiography demonstrated high performance compared to CT angiography.
Collapse
Affiliation(s)
- Xi Wu
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xun Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xianzheng Tan
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Feng Huang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lei Cai
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuai He
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | | | - Peng Liu
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Ueda T, Yamamoto K, Yazawa N, Tozawa I, Ikedo M, Yui M, Nagata H, Nomura M, Ozawa Y, Ohno Y. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T. Eur Radiol Exp 2024; 8:103. [PMID: 39254920 PMCID: PMC11387279 DOI: 10.1186/s41747-024-00506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND We aimed to determine the capabilities of compressed sensing (CS) and deep learning reconstruction (DLR) with those of conventional parallel imaging (PI) for improving image quality while reducing examination time on female pelvic 1.5-T magnetic resonance imaging (MRI). METHODS Fifty-two consecutive female patients with various pelvic diseases underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. Signal-to-noise ratio (SNR) of muscle and contrast-to-noise ratio (CNR) between fat tissue and iliac muscle on T1-weighted images (T1WI) and between myometrium and straight muscle on T2-weighted images (T2WI) were determined through region-of-interest measurements. Overall image quality (OIQ) and diagnostic confidence level (DCL) were evaluated on 5-point scales. SNRs and CNRs were compared using Tukey's test, and qualitative indexes using the Wilcoxon signed-rank test. RESULTS SNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.010). CNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.003). OIQ of T1WI and T2WI obtained using CS with DLR were higher than that using CS without DLR or conventional PI (p < 0.001). DCL of T2WI obtained using CS with DLR was higher than that using conventional PI or CS without DLR (p < 0.001). CONCLUSION CS with DLR provided better image quality and shorter examination time than those obtainable with PI for female pelvic 1.5-T MRI. RELEVANCE STATEMENT CS with DLR can be considered effective for attaining better image quality and shorter examination time for female pelvic MRI at 1.5 T compared with those obtainable with PI. KEY POINTS Patients underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. CS with DLR allowed for examination times significantly shorter than those of PI and provided significantly higher signal- and CNRs, as well as OIQ.
Collapse
Affiliation(s)
- Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
| | | | | | - Ikki Tozawa
- Department of Radiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
21
|
Hokamura M, Nakaura T, Yoshida N, Uetani H, Shiraishi K, Kobayashi N, Matsuo K, Morita K, Nagayama Y, Kidoh M, Yamashita Y, Miyamoto T, Hirai T. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Eur J Radiol 2024; 178:111587. [PMID: 39002269 DOI: 10.1016/j.ejrad.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVES This study aims to assess the effectiveness of super-resolution deep-learning-based reconstruction (SR-DLR), which leverages k-space data, on the image quality of lumbar spine magnetic resonance (MR) bone imaging using a 3D multi-echo in-phase sequence. MATERIALS AND METHODS In this retrospective study, 29 patients who underwent lumbar spine MRI, including an MR bone imaging sequence between January and April 2023, were analyzed. Images were reconstructed with and without SR-DLR (Matrix sizes: 960 × 960 and 320 × 320, respectively). The signal-to-noise ratio (SNR) of the vertebral body and spinal canal and the contrast and contrast-to-noise ratio (CNR) between the vertebral body and spinal canal were quantitatively evaluated. Furthermore, the slope at half-peak points of the profile curve drawn across the posterior border of the vertebral body was calculated. Two radiologists independently assessed image noise, contrast, artifacts, sharpness, and overall image quality of both image types using a 4-point scale. Interobserver agreement was evaluated using weighted kappa coefficients, and quantitative and qualitative scores were compared via the Wilcoxon signed-rank test. RESULTS SNRs of the vertebral body and spinal canal were notably improved in images with SR-DLR (p < 0.001). Contrast and CNR were significantly enhanced with SR-DLR compared to those without SR-DLR (p = 0.023 and p = 0.022, respectively). The slope of the profile curve at half-peak points across the posterior border of the vertebral body and spinal canal was markedly higher with SR-DLR (p < 0.001). Qualitative scores (noise: p < 0.001, contrast: p < 0.001, artifact p = 0.042, sharpness: p < 0.001, overall image quality: p < 0.001) were superior in images with SR-DLR compared to those without. Kappa analysis indicated moderate to good agreement (noise: κ = 0.56, contrast: κ = 0.51, artifact: κ = 0.46, sharpness: κ = 0.76, overall image quality: κ = 0.44). CONCLUSION SR-DLR, which is based on k-space data, has the potential to enhance the image quality of lumbar spine MR bone imaging utilizing a 3D gradient echo in-phase sequence. CLINICAL RELEVANCE STATEMENT The application of SR-DLR can lead to improvements in lumbar spine MR bone imaging quality.
Collapse
Affiliation(s)
- Masamichi Hokamura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kaori Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kensei Matsuo
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kosuke Morita
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Yuichi Yamashita
- Canon Medical Systems Corporation, 70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-0015, Japan.
| | - Takeshi Miyamoto
- Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| |
Collapse
|
22
|
Sasaki G, Uetani H, Nakaura T, Nakahara K, Morita K, Nagayama Y, Kidoh M, Iwashita K, Yoshida N, Hokamura M, Yamashita Y, Nakajima M, Ueda M, Hirai T. Optimizing High-Resolution MR Angiography: The Synergistic Effects of 3D Wheel Sampling and Deep Learning-Based Reconstruction. J Comput Assist Tomogr 2024; 48:819-825. [PMID: 38346820 DOI: 10.1097/rct.0000000000001590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE The aim of this study was to assess the utility of the combined use of 3D wheel sampling and deep learning-based reconstruction (DLR) for intracranial high-resolution (HR)-time-of-flight (TOF)-magnetic resonance angiography (MRA) at 3 T. METHODS This prospective study enrolled 20 patients who underwent head MRI at 3 T, including TOF-MRA. We used 3D wheel sampling called "fast 3D" and DLR for HR-TOF-MRA (spatial resolution, 0.39 × 0.59 × 0.5 mm 3 ) in addition to conventional MRA (spatial resolution, 0.39 × 0.89 × 1 mm 3 ). We compared contrast and contrast-to-noise ratio between the blood vessels (basilar artery and anterior cerebral artery) and brain parenchyma, full width at half maximum in the P3 segment of the posterior cerebral artery among 3 protocols. Two board-certified radiologists evaluated noise, contrast, sharpness, artifact, and overall image quality of 3 protocols. RESULTS The contrast and contrast-to-noise ratio of fast 3D-HR-MRA with DLR are comparable or higher than those of conventional MRA and fast 3D-HR-MRA without DLR. The full width at half maximum was significantly lower in fast 3D-MRA with and without DLR than in conventional MRA ( P = 0.006, P < 0.001). In qualitative evaluation, fast 3D-MRA with DLR had significantly higher sharpness and overall image quality than conventional MRA and fast 3D-MRA without DLR (sharpness: P = 0.021, P = 0.001; overall image quality: P = 0.029, P < 0.001). CONCLUSIONS The combination of 3D wheel sampling and DLR can improve visualization of arteries in intracranial TOF-MRA.
Collapse
Affiliation(s)
- Goh Sasaki
- From the Departments of Diagnostic Radiology
| | | | | | - Keiichi Nakahara
- Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Kosuke Morita
- Central Radiology Section, Kumamoto University Hospital, Kumamoto
| | | | | | | | | | | | - Yuichi Yamashita
- MRI Clinical Strategy Group, MRI Sales Department, Canon Medical Systems Corporation, Kanagawa, Japan
| | - Makoto Nakajima
- Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Mitsuharu Ueda
- Neurology, Graduate School of Medical Sciences, Kumamoto University
| | | |
Collapse
|
23
|
Chung CB, Pathria MN, Resnick D. MRI in MSK: is it the ultimate examination? Skeletal Radiol 2024; 53:1727-1735. [PMID: 38277028 DOI: 10.1007/s00256-024-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Affiliation(s)
- Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA.
- Department of Radiology, Veterans Affairs Medical Center, San Diego, CA, USA.
| | - Mini N Pathria
- Department of Radiology, University of California, San Diego, CA, USA
| | - Donald Resnick
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
24
|
Duncan-Gelder P, O'Keeffe D, Bones P, Marsh S. PhoenixMR: A GPU-based MRI simulation framework with runtime-dynamic code execution. Med Phys 2024; 51:6120-6133. [PMID: 39078046 DOI: 10.1002/mp.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Simulations of physical processes and behavior can provide unique insights and understanding of real-world problems. Magnetic Resonance Imaging (MRI) is an imaging technique with several components of complexity. Several of these components have been characterized and simulated in the past. However, several computational challenges prevent simulations from being simultaneously fast, flexible, and accurate. PURPOSE The simulation of MRI experiments is underutilized by medical physicists and researchers using currently available simulators due to reasons including speed, accuracy, and extensibility constraints. This paper introduces an innovative MRI simulation engine and framework that aims to overcome these issues making available realistic and fast MRI simulation. METHODS Using the CUDA C/C++ programing language, an MRI simulation engine (PhoenixMR), incorporating a Turing-complete virtual machine (VM) to simulate abstract spatiotemporal complexities, was developed. This engine solves a set of time-discrete Bloch equations using the symmetric operator splitting technique. An extensible front-end framework package (written in Python) aids the use of PhoenixMR to simplify simulation development. RESULTS The PhoenixMR library and front-end codes have been developed and tested. A set of example simulations were performed to demonstrate the ease of use and flexibility of simulation components such as geometrical setup, pulse sequence design, phantom design, and so forth. Initial validation of PhoenixMR is performed by comparing its accuracy and performance against a widely used MRI simulator using identical simulation parameters. Validation results show PhoenixMR simulations are three orders of magnitude faster. There is also strong agreement between models. CONCLUSIONS A novel MRI simulation platform called PhoenixMR has been introduced. This research tool is designed to be usable by physicists and engineers interested in performing MRI simulations. Examples are shown demonstrating the accuracy, flexibility, and usability of PhoenixMR in several key areas of MRI simulation.
Collapse
Affiliation(s)
- Phillip Duncan-Gelder
- University of Canterbury, Christchurch, New Zealand
- Te Whatu Ora - Health New Zealand, Wellington, New Zealand
| | - Darin O'Keeffe
- University of Canterbury, Christchurch, New Zealand
- Te Whatu Ora - Health New Zealand, Wellington, New Zealand
| | - Phil Bones
- University of Canterbury, Christchurch, New Zealand
| | - Steven Marsh
- University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
25
|
Sato Y, Ohkuma K. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland. Radiol Phys Technol 2024; 17:756-764. [PMID: 38850389 DOI: 10.1007/s12194-024-00819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to evaluate whether the image quality of 1.5 T magnetic resonance imaging (MRI) of the prostate is equal to or higher than that of 3 T MRI by applying deep learning reconstruction (DLR). To objectively analyze the images from the 13 healthy volunteers, we measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the images obtained by the 1.5 T scanner with and without DLR, as well as for images obtained by the 3 T scanner. In the subjective, T2W images of the prostate were visually evaluated by two board-certified radiologists. The SNRs and CNRs in 1.5 T images with DLR were higher than that in 3 T images. Subjective image scores were better for 1.5 T images with DLR than 3 T images. The use of the DLR technique in 1.5 T MRI substantially improved the SNR and image quality of T2W images of the prostate gland, as compared to 3 T MRI.
Collapse
Affiliation(s)
- Yoshiomi Sato
- Department of Radiology, Saitama City Hospital, Mimuro 2460, Saitama, 336-8522, Japan.
| | - Kiyoshi Ohkuma
- Department of Diagnostic Radiology, Saitama City Hospital, Mimuro 2460, Saitama, 336-8522, Japan
| |
Collapse
|
26
|
Zhang A, Chen Z, Mei S, Ji Y, Lin Y, Shi H. DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients. Quant Imaging Med Surg 2024; 14:5831-5844. [PMID: 39144041 PMCID: PMC11320494 DOI: 10.21037/qims-24-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
Background Axillary lymph node (ALN) status is a crucial prognostic indicator for breast cancer metastasis, with manual interpretation of whole slide images (WSIs) being the current standard practice. However, this method is subjective and time-consuming. Recent advancements in deep learning-based methods for medical image analysis have shown promise in improving clinical diagnosis. This study aims to leverage these technological advancements to develop a deep learning model based on features extracted from primary tumor biopsies for preoperatively identifying ALN metastasis in early-stage breast cancer patients with negative nodes. Methods We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA). The proposed model consists of a feature extractor based on convolutional neural network (CNN) and an improved self-attention mechanism module, which can preserve the independence of features in WSIs for analysis and enhancement to provide rich feature representation. To validate the performance of the proposed model, we conducted comparative experiments and ablation studies using publicly available datasets, and verification was performed through quantitative analysis. Results The comparative experiment illustrates the superior performance of the proposed model in the task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art (SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the performance of the proposed model. Conclusions The experimental results demonstrate that the model proposed in this paper outperforms the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of doctors during the diagnostic process.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Zhen Chen
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
- Institute of Spatial Information Technology, Xiamen University of Technology, Xiamen, China
| | - Shengxiang Mei
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| | - Yunfan Ji
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Yiqi Lin
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, China
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
27
|
Adam NL, Kowalik G, Tyler A, Mooiweer R, Neofytou AP, McElroy S, Kunze K, Speier P, Stäb D, Neji R, Nazir MS, Razavi R, Chiribiri A, Roujol S. Fast reconstruction of SMS bSSFP myocardial perfusion images using noise map estimation network (NoiseMapNet): a head-to-head comparison with parallel imaging and iterative reconstruction. Front Cardiovasc Med 2024; 11:1350345. [PMID: 39055659 PMCID: PMC11269255 DOI: 10.3389/fcvm.2024.1350345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Simultaneous multi-slice (SMS) bSSFP imaging enables stress myocardial perfusion imaging with high spatial resolution and increased spatial coverage. Standard parallel imaging techniques (e.g., TGRAPPA) can be used for image reconstruction but result in high noise level. Alternatively, iterative reconstruction techniques based on temporal regularization (ITER) improve image quality but are associated with reduced temporal signal fidelity and long computation time limiting their online use. The aim is to develop an image reconstruction technique for SMS-bSSFP myocardial perfusion imaging combining parallel imaging and image-based denoising using a novel noise map estimation network (NoiseMapNet), which preserves both sharpness and temporal signal profiles and that has low computational cost. Methods The proposed reconstruction of SMS images consists of a standard temporal parallel imaging reconstruction (TGRAPPA) with motion correction (MOCO) followed by image denoising using NoiseMapNet. NoiseMapNet is a deep learning network based on a 2D Unet architecture and aims to predict a noise map from an input noisy image, which is then subtracted from the noisy image to generate the denoised image. This approach was evaluated in 17 patients who underwent stress perfusion imaging using a SMS-bSSFP sequence. Images were reconstructed with (a) TGRAPPA with MOCO (thereafter referred to as TGRAPPA), (b) iterative reconstruction with integrated motion compensation (ITER), and (c) proposed NoiseMapNet-based reconstruction. Normalized mean squared error (NMSE) with respect to TGRAPPA, myocardial sharpness, image quality, perceived SNR (pSNR), and number of diagnostic segments were evaluated. Results NMSE of NoiseMapNet was lower than using ITER for both myocardium (0.045 ± 0.021 vs. 0.172 ± 0.041, p < 0.001) and left ventricular blood pool (0.025 ± 0.014 vs. 0.069 ± 0.020, p < 0.001). There were no significant differences between all methods for myocardial sharpness (p = 0.77) and number of diagnostic segments (p = 0.36). ITER led to higher image quality than NoiseMapNet/TGRAPPA (2.7 ± 0.4 vs. 1.8 ± 0.4/1.3 ± 0.6, p < 0.001) and higher pSNR than NoiseMapNet/TGRAPPA (3.0 ± 0.0 vs. 2.0 ± 0.0/1.3 ± 0.6, p < 0.001). Importantly, NoiseMapNet yielded higher pSNR (p < 0.001) and image quality (p < 0.008) than TGRAPPA. Computation time of NoiseMapNet was only 20s for one entire dataset. Conclusion NoiseMapNet-based reconstruction enables fast SMS image reconstruction for stress myocardial perfusion imaging while preserving sharpness and temporal signal profiles.
Collapse
Affiliation(s)
- Naledi Lenah Adam
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Grzegorz Kowalik
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Andrew Tyler
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Alexander Paul Neofytou
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Karl Kunze
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Peter Speier
- Cardiovascular Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, VIC, Australia
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Royal Brompton Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Yoo RE, Choi SH. Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging. Magn Reson Med Sci 2024; 23:341-351. [PMID: 38684425 PMCID: PMC11234952 DOI: 10.2463/mrms.rev.2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite its superior soft tissue contrast and non-invasive nature, MRI requires long scan times due to its intrinsic signal acquisition principles, a main drawback which technological advancements in MRI have been focused on. In particular, scan time reduction is a natural requirement in neuroimaging due to detailed structures requiring high resolution imaging and often volumetric (3D) acquisitions, and numerous studies have recently attempted to harness deep learning (DL) technology in enabling scan time reduction and image quality improvement. Various DL-based image reconstruction products allow for additional scan time reduction on top of existing accelerated acquisition methods without compromising the image quality.
Collapse
Affiliation(s)
- Roh-Eul Yoo
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
29
|
Hokamura M, Uetani H, Hamasaki T, Nakaura T, Morita K, Yamashita Y, Kitajima M, Sugitani A, Mukasa A, Hirai T. Effect of deep learning-based reconstruction on high-resolution three-dimensional T2-weighted fast asymmetric spin-echo imaging in the preoperative evaluation of cerebellopontine angle tumors. Neuroradiology 2024; 66:1123-1130. [PMID: 38480538 DOI: 10.1007/s00234-024-03328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE We aimed to evaluate the effect of deep learning-based reconstruction (DLR) on high-spatial-resolution three-dimensional T2-weighted fast asymmetric spin-echo (HR-3D T2-FASE) imaging in the preoperative evaluation of cerebellopontine angle (CPA) tumors. METHODS This study included 13 consecutive patients who underwent preoperative HR-3D T2-FASE imaging using a 3 T MRI scanner. The reconstruction voxel size of HR-3D T2-FASE imaging was 0.23 × 0.23 × 0.5 mm. The contrast-to-noise ratios (CNRs) of the structures were compared between HR-3D T2-FASE images with and without DLR. The observers' preferences based on four categories on the tumor side on HR-3D T2-FASE images were evaluated. The facial nerve in relation to the tumor on HR-3D T2-FASE images was assessed with reference to intraoperative findings. RESULTS The mean CNR between the tumor and trigeminal nerve and between the cerebrospinal fluid and trigeminal nerve was significantly higher for DLR images than non-DLR-based images (14.3 ± 8.9 vs. 12.0 ± 7.6, and 66.4 ± 12.0 vs. 53.9 ± 8.5, P < 0.001, respectively). The observer's preference for the depiction and delineation of the tumor, cranial nerves, vessels, and location relation on DLR HR-3D T2FASE images was superior to that on non-DLR HR-3D T2FASE images in 7 (54%), 6 (46%), 6 (46%), and 6 (46%) of 13 cases, respectively. The facial nerves around the tumor on HR-3D T2-FASE images were visualized accurately in five (38%) cases with DLR and in four (31%) without DLR. CONCLUSION DLR HR-3D T2-FASE imaging is useful for the preoperative assessment of CPA tumors.
Collapse
Affiliation(s)
- Masamichi Hokamura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan.
| | - Tadashi Hamasaki
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Kosuke Morita
- Central Radiology Section, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Yuichi Yamashita
- Canon Medical Systems Corporation, MRI Sales Department, Sales Engineer Group, 70-1, Yanagi-Cho, Saiwai-Ku, Kawasaki-Shi, Kanagawa, 212-0015, Japan
| | - Mika Kitajima
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Aki Sugitani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, Japan
| |
Collapse
|
30
|
Xiao L, Hu J, Yang Y, Feng Y, Li Z, Chen Z. Research on Feature Extraction Data Processing System for MRI of Brain Diseases Based on Computer Deep Learning. 2024 IEEE 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND COMPUTER APPLICATIONS (ICIPCA) 2024; 12:1346-1351. [DOI: 10.1109/icipca61593.2024.10709125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Jinxin Hu
- Arizona State University,Arizona,USA
| | - Yutian Yang
- University of California,Davis,California,USA
| | | | - Zichao Li
- Canoakbit Alliance Inc,Ottawa,Canada
| | - Zexi Chen
- North Carolina State University,North Carolina,USA
| |
Collapse
|
31
|
Kim BK, You SH, Kim B, Shin JH. Deep Learning-Based High-Resolution Magnetic Resonance Angiography (MRA) Generation Model for 4D Time-Resolved Angiography with Interleaved Stochastic Trajectories (TWIST) MRA in Fast Stroke Imaging. Diagnostics (Basel) 2024; 14:1199. [PMID: 38893725 PMCID: PMC11171826 DOI: 10.3390/diagnostics14111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE The purpose of this study is to improve the qualitative and quantitative image quality of the time-resolved angiography with interleaved stochastic trajectories technique (4D-TWIST-MRA) using deep neural network (DNN)-based MR image reconstruction software. MATERIALS AND METHODS A total of 520 consecutive patients underwent 4D-TWIST-MRA for ischemic stroke or intracranial vessel stenosis evaluation. Four-dimensional DNN-reconstructed MRA (4D-DNR) was generated using commercially available software (SwiftMR v.3.0.0.0, AIRS Medical, Seoul, Republic of Korea). Among those evaluated, 397 (76.3%) patients received concurrent time-of-flight MRA (TOF-MRA) to compare the signal-to-noise ratio (SNR), image quality, noise, sharpness, vascular conspicuity, and degree of venous contamination with a 5-point Likert scale. Two radiologists independently evaluated the detection rate of intracranial aneurysm in TOF-MRA, 4D-TWIST-MRA, and 4D-DNR in separate sessions. The other 123 (23.7%) patients received 4D-TWIST-MRA due to a suspicion of acute ischemic stroke. The confidence level and decision time for large vessel occlusion were evaluated in these patients. RESULTS In qualitative analysis, 4D-DNR demonstrated better overall image quality, sharpness, vascular conspicuity, and noise reduction compared to 4D-TWIST-MRA. Moreover, 4D-DNR exhibited a higher SNR than 4D-TWIST-MRA. The venous contamination and aneurysm detection rates were not significantly different between the two MRA images. When compared to TOF-MRA, 4D-CE-MRA underestimated the aneurysm size (2.66 ± 0.51 vs. 1.75 ± 0.62, p = 0.029); however, 4D-DNR showed no significant difference in size compared to TOF-MRA (2.66 ± 0.51 vs. 2.10 ± 0.41, p = 0.327). In the diagnosis of large vessel occlusion, 4D-DNR showed a better confidence level and shorter decision time than 4D-TWIST-MRA. CONCLUSION DNN reconstruction may improve the qualitative and quantitative image quality of 4D-TWIST-MRA, and also enhance diagnostic performance for intracranial aneurysm and large vessel occlusion.
Collapse
Affiliation(s)
| | - Sung-Hye You
- Department of Radiology, Anam Hospital, Korea University College of Medicine, #126-1, 5-Ka Anam-dong, Sungbuk ku, Seoul 136-705, Republic of Korea; (B.K.K.); (B.K.); (J.H.S.)
| | | | | |
Collapse
|
32
|
Akai H, Yasaka K, Sugawara H, Furuta T, Tajima T, Kato S, Yamaguchi H, Ohtomo K, Abe O, Kiryu S. Faster acquisition of magnetic resonance imaging sequences of the knee via deep learning reconstruction: a volunteer study. Clin Radiol 2024; 79:453-459. [PMID: 38614869 DOI: 10.1016/j.crad.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
AIM To evaluate whether deep learning reconstruction (DLR) can accelerate the acquisition of magnetic resonance imaging (MRI) sequences of the knee for clinical use. MATERIALS AND METHODS Using a 1.5-T MRI scanner, sagittal fat-suppressed T2-weighted imaging (fs-T2WI), coronal proton density-weighted imaging (PDWI), and coronal T1-weighted imaging (T1WI) were performed. DLR was applied to images with a number of signal averages (NSA) of 1 to obtain 1DLR images. Then 1NSA, 1DLR, and 4NSA images were compared subjectively, and by noise (standard deviation of intra-articular water or medial meniscus) and contrast-to-noise ratio between two anatomical structures or between an anatomical structure and intra-articular water. RESULTS Twenty-seven healthy volunteers (age: 40.6 ± 11.9 years) were enrolled. Three 1DLR image sequences were obtained within 200 s (approximately 12 minutes for 4NSA image). According to objective evaluations, PDWI 1DLR images showed the smallest noise and significantly higher contrast than 1NSA and 4NSA images. For fs-T2WI, smaller noise and higher contrast were observed in the order of 4NSA, 1DLR, and 1NSA images. According to the subjective analysis, structure visibility, image noise, and overall image quality were significantly better for PDWI 1DLR than 1NSA images; moreover, the visibility of the meniscus and bone, image noise, and overall image quality were significantly better for 1DLR than 4NSA images. Fs-T2WI and T1WI 1DLR images showed no difference between 1DLR and 4NSA images. CONCLUSION Compared to PDWI 4NSA images, PDWI 1DLR images were of higher quality, while the quality of fs-T2WI and T1WI 1DLR images was similar to that of 4NSA images.
Collapse
Affiliation(s)
- H Akai
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - K Yasaka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan; Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - H Sugawara
- Department of Diagnostic Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - T Furuta
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - T Tajima
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan; Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - S Kato
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - H Yamaguchi
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - K Ohtomo
- International University of Health and Welfare, 2600-1 Kiakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - O Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - S Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
33
|
Ishimoto Y, Ide S, Watanabe K, Oyu K, Kasai S, Umemura Y, Sasaki M, Nagaya H, Tatsuo S, Nozaki A, Ikushima Y, Wakayama T, Asano K, Saito A, Tomiyama M, Kakeda S. Usefulness of pituitary high-resolution 3D MRI with deep-learning-based reconstruction for perioperative evaluation of pituitary adenomas. Neuroradiology 2024; 66:937-945. [PMID: 38374411 DOI: 10.1007/s00234-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE To evaluate the diagnostic value of T1-weighted 3D fast spin-echo sequence (CUBE) with deep learning-based reconstruction (DLR) for depiction of pituitary adenoma and parasellar regions on contrast-enhanced MRI. METHODS We evaluated 24 patients with pituitary adenoma or residual tumor using CUBE with and without DLR, 1-mm slice thickness 2D T1WI (1-mm 2D T1WI) with DLR, and 3D spoiled gradient echo sequence (SPGR) as contrast-enhanced MRI. Depiction scores of pituitary adenoma and parasellar regions were assigned by two neuroradiologists, and contrast-to-noise ratio (CNR) was calculated. RESULTS CUBE with DLR showed significantly higher scores for depicting pituitary adenoma or residual tumor compared to CUBE without DLR, 1-mm 2D T1WI with DLR, and SPGR (p < 0.01). The depiction score for delineation of the boundary between adenoma and the cavernous sinus was higher for CUBE with DLR than for 1-mm 2D T1WI with DLR (p = 0.01), but the difference was not significant when compared to SPGR (p = 0.20). CUBE with DLR had better interobserver agreement for evaluating adenomas than 1-mm 2D T1WI with DLR (Kappa values, 0.75 vs. 0.41). The CNR of the adenoma to the brain parenchyma increased to a ratio of 3.6 (obtained by dividing 13.7, CNR of CUBE with DLR, by 3.8, that without DLR, p < 0.01). CUBE with DLR had a significantly higher CNR than SPGR, but not 1-mm 2D T1WI with DLR. CONCLUSION On the contrast-enhanced MRI, compared to CUBE without DLR, 1-mm 2D T1WI with DLR and SPGR, CUBE with DLR improves the depiction of pituitary adenoma and parasellar regions.
Collapse
Affiliation(s)
- Yuka Ishimoto
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Kazuhiko Oyu
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Sera Kasai
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshihito Umemura
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Miho Sasaki
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Haruka Nagaya
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Soichiro Tatsuo
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | | | | | | | - Kenichiro Asano
- Department of Neurosurgery, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan
| | - Atsushi Saito
- Department of Neurosurgery, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
34
|
Brain ME, Amukotuwa S, Bammer R. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality. J Med Imaging Radiat Oncol 2024; 68:377-384. [PMID: 38577926 DOI: 10.1111/1754-9485.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Deep learning reconstruction (DLR) technologies are the latest methods attempting to solve the enduring problem of reducing MRI acquisition times without compromising image quality. The clinical utility of this reconstruction technique is yet to be fully established. This study aims to assess whether a commercially available DLR technique applied to 2D T2-weighted FLAIR brain images allows a reduction in scan time, without compromising image quality and thus diagnostic accuracy. METHODS 47 participants (24 male, mean age 55.9 ± 18.7 SD years, range 20-89 years) underwent routine, clinically indicated brain MRI studies in March 2022, that included a standard-of-care (SOC) T2-weighted FLAIR sequence, and an accelerated acquisition that was reconstructed using the DLR denoising product. Overall image quality, lesion conspicuity, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artefacts for each sequence, and preferred sequence on direct comparison, were subjectively assessed by two readers. RESULTS There was a strong preference for SOC FLAIR sequence for overall image quality (P = 0.01) and head-to-head comparison (P < 0.001). No difference was observed for lesion conspicuity (P = 0.49), perceived SNR (P = 1.0), and perceived CNR (P = 0.84). There was no difference in motion (P = 0.57) nor Gibbs ringing (P = 0.86) artefacts. Phase ghosting (P = 0.038) and pseudolesions were significantly more frequent (P < 0.001) on DLR images. CONCLUSION DLR algorithm allowed faster FLAIR acquisition times with comparable image quality and lesion conspicuity. However, an increased incidence and severity of phase ghosting artefact and presence of pseudolesions using this technique may result in a reduction in reading speed, efficiency, and diagnostic confidence.
Collapse
Affiliation(s)
- Matthew E Brain
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Shalini Amukotuwa
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Roland Bammer
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Kakigi T, Sakamoto R, Arai R, Yamamoto A, Kuriyama S, Sano Y, Imai R, Numamoto H, Miyake KK, Saga T, Matsuda S, Nakamoto Y. Thin-slice 2D MR Imaging of the Shoulder Joint Using Denoising Deep Learning Reconstruction Provides Higher Image Quality Than 3D MR Imaging. Magn Reson Med Sci 2024:mp.2023-0115. [PMID: 38777762 DOI: 10.2463/mrms.mp.2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
PURPOSE This study was conducted to evaluate whether thin-slice 2D fat-saturated proton density-weighted images of the shoulder joint in three imaging planes combined with parallel imaging, partial Fourier technique, and denoising approach with deep learning-based reconstruction (dDLR) are more useful than 3D fat-saturated proton density multi-planar voxel images. METHODS Eighteen patients who underwent MRI of the shoulder joint at 3T were enrolled. The denoising effect of dDLR in 2D was evaluated using coefficient of variation (CV). Qualitative evaluation of anatomical structures, noise, and artifacts in 2D after dDLR and 3D was performed by two radiologists using a five-point Likert scale. All were analyzed statistically. Gwet's agreement coefficients were also calculated. RESULTS The CV of 2D after dDLR was significantly lower than that before dDLR (P < 0.05). Both radiologists rated 2D higher than 3D for all anatomical structures and noise (P < 0.05), except for artifacts. Both Gwet's agreement coefficients of anatomical structures, noise, and artifacts in 2D and 3D produced nearly perfect agreement between the two radiologists. The evaluation of 2D tended to be more reproducible than 3D. CONCLUSION 2D with parallel imaging, partial Fourier technique, and dDLR was proved to be superior to 3D for depicting shoulder joint structures with lower noise.
Collapse
Affiliation(s)
- Takahide Kakigi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Real World Data Research and Development, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryuzo Arai
- Department of Orthopaedic Surgery, Kyoto Katsura Hospital, Kyoto, Kyoto, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Center for Medical Education, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuichiro Sano
- MRI Systems Division, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Rimika Imai
- MRI Systems Division, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hitomi Numamoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Kanae Kawai Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsuneo Saga
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
36
|
Nagata H, Ohno Y, Yoshikawa T, Yamamoto K, Shinohara M, Ikedo M, Yui M, Matsuyama T, Takahashi T, Bando S, Furuta M, Ueda T, Ozawa Y, Toyama H. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI. Magn Reson Imaging 2024; 108:67-76. [PMID: 38309378 DOI: 10.1016/j.mri.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE The purpose of this study was to determine the utility of compressed sensing (CS) with deep learning reconstruction (DLR) for improving spatial resolution, image quality and focal liver lesion detection on high-resolution contrast-enhanced T1-weighted imaging (HR-CE-T1WI) obtained by CS with DLR as compared with conventional CE-T1WI with parallel imaging (PI). METHODS Seventy-seven participants with focal liver lesions underwent conventional CE-T1WI with PI and HR-CE-T1WI, surgical resection, transarterial chemoembolization, and radiofrequency ablation, followed by histopathological or >2-year follow-up examinations in our hospital. Signal-to-noise ratios (SNRs) of liver, spleen and kidney were calculated for each patient, after which each SNR was compared by means of paired t-test. To compare focal lesion detection capabilities of the two methods, a 5-point visual scoring system was adopted for a per lesion basis analysis. Jackknife free-response receiver operating characteristic (JAFROC) analysis was then performed, while sensitivity and false positive rates (/data set) for consensus assessment of the two methods were also compared by using McNemar's test or the signed rank test. RESULTS Each SNR of HR-CE-T1WI was significantly higher than that of conventional CE-T1WI with PI (p < 0.05). Sensitivities for consensus assessment showed that HR-CE-MRI had significantly higher sensitivity than conventional CE-T1WI with PI (p = 0.004). Moreover, there were significantly fewer FP/cases for HR-CE-T1WI than for conventional CE-T1WI with PI (p = 0.04). CONCLUSION CS with DLR are useful for improving spatial resolution, image quality and focal liver lesion detection capability of Gd-EOB-DTPA enhanced 3D T1WI without any need for longer breath-holding time.
Collapse
Affiliation(s)
- Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiharu Ohno
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, 673-0021, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Maiko Shinohara
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Minami Furuta
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
37
|
Tachikawa Y, Maki Y, Ikeda K, Yoshikai H, Toyonari N, Hamano H, Chiwata N, Suzuyama K, Takahashi Y. Flow independent black blood imaging with a large FOV from the neck to the aortic arch: A feasibility study at 3 tesla. Magn Reson Imaging 2024; 108:77-85. [PMID: 38331052 DOI: 10.1016/j.mri.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To investigate the feasibility of obtaining black-blood imaging with a large FOV from the neck to the aortic arch at 3 T using a newly modified Relaxation-Enhanced Angiography without Contrast and Triggering for Black-Blood Imaging (REACT-BB). MATERIALS AND METHODS REACT-BB provides black-blood images by adjusting the inversion time (TI) in REACT to the null point of blood. The optimal TI for REACT-BB was investigated in 10 healthy volunteers with TI varied from 200 ms to 1400 ms. Contrast ratios were calculated between muscle and three branch arteries of the aortic arch. Additionally, a comparison between REACT-BB and MPRAGE involved evaluating the depiction of high-intensity plaques in 222 patients with stroke or transient ischemic attack. Measurements included plaque-to-muscle signal intensity ratios (PMR), plaque volumes, and carotid artery stenosis rates in 60 patients with high-intensity plaques in carotid arteries. RESULTS REACT-BB with TI = 850 ms produced the black-blood image with the best contrast between blood and background tissues. REACT-BB outperformed MPRAGE in depicting high-intensity plaques in the aortic arch (55.4% vs 45.5%) and exhibited superior overall image quality in visual assessment (3.31 ± 0.70 vs 2.89 ± 0.73; p < 0.05). Although the PMR of REACT-BB was significantly lower than MPRAGE (2.227 ± 0.601 vs 2.285 ± 0.662; P < 0.05), a strong positive correlation existed between REACT-BB and MPRAGE (ρ = 0.935; P < 0.05), and all high-intensity plaques that MPRAGE detected were clearly detected by REACT-BB. CONCLUSION REACT-BB provides black-blood images with uniformly suppressed fat and blood signals over a large FOV from the neck to the aortic arch with comparable or better high-signal plaque depiction than MPRAGE.
Collapse
Affiliation(s)
- Yoshihiko Tachikawa
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan.
| | - Yasunori Maki
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| | - Kento Ikeda
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| | - Hikaru Yoshikai
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| | - Nobuyuki Toyonari
- Department of Radiology, Kumamoto Chuo Hospital, 1-5-1 Tainoshima, Minami-ku, Kumamoto 862-0962, Japan
| | - Hiroshi Hamano
- Philips Japan, Philips Building, 2-13-37 Kohnan, Minato-ku, Tokyo 108-8507, Japan
| | - Naoya Chiwata
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| | - Kenji Suzuyama
- Department of Neurosurgery, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| | - Yukihiko Takahashi
- Department of Radiology, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan
| |
Collapse
|
38
|
Ikeda H, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, Kumazawa Y, Shimamura Y, Takagi Y, Nakagaki Y, Hanamatsu S, Obama Y, Ueda T, Nagata H, Ozawa Y, Iwase A, Toyama H. Deep Learning Reconstruction for DWIs by EPI and FASE Sequences for Head and Neck Tumors. Cancers (Basel) 2024; 16:1714. [PMID: 38730665 PMCID: PMC11083776 DOI: 10.3390/cancers16091714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. METHODS For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman's rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey's Honest Significant Difference test. RESULTS For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). CONCLUSION In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors.
Collapse
Affiliation(s)
- Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Yunosuke Kumazawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yurika Shimamura
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yui Takagi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuhei Nakagaki
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
39
|
Liu Z, Wen B, Wang Z, Wang K, Xie L, Kang Y, Tao Q, Wang W, Zhang Y, Cheng J, Zhang Y. Deep learning-based reconstruction enhances image quality and improves diagnosis in magnetic resonance imaging of the shoulder joint. Quant Imaging Med Surg 2024; 14:2840-2856. [PMID: 38617178 PMCID: PMC11007508 DOI: 10.21037/qims-23-1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 04/16/2024]
Abstract
Background Accelerated magnetic resonance imaging sequences reconstructed using the vendor-provided Recon deep learning algorithm (DL-MRI) were found to be more likely than conventional magnetic resonance imaging (MRI) sequences to detect subacromial (SbA) bursal thickening. However, the extent of this thickening was not extensively explored. This study aimed to compare the image quality of DL-MRI with conventional MRI sequences reconstructed via conventional pipelines (Conventional-MRI) for shoulder examinations and evaluate the effectiveness of DL-MRI in accurately demonstrating the degree of SbA bursal and subcoracoid (SC) bursal thickening. Methods This prospective cross-sectional study enrolled 41 patients with chronic shoulder pain who underwent 3-T MRI (including both Conventional-MRI and accelerated MRI sequences) of the shoulder between December 2022 and April 2023. Each protocol consisted of oblique axial, coronal, and sagittal images, including proton density-weighted imaging (PDWI) with fat suppression (FS) and oblique coronal T1-weighted imaging (T1WI) with FS. The image quality and degree of artifacts were assessed using a 5-point Likert scale for both Conventional-MRI and DL-MRI. Additionally, the degree of SbA and SC bursal thickening, as well as the relative signal-to-noise ratio (rSNR) and relative contrast-to-noise ratio (rCNR) were analyzed using the paired Wilcoxon test. Statistical significance was defined as P<0.05. Results The utilization of accelerated sequences resulted in a remarkable 54.7% reduction in total scan time. Overall, DL-MRI exhibited superior image quality scores and fewer artifacts compared to Conventional-MRI. Specifically, DL-MRI demonstrated significantly higher measurements of SC bursal thickenings in the oblique sagittal PDWI sequence compared to Conventional-MRI [3.92 (2.83, 5.82) vs. 3.74 (2.92, 5.96) mm, P=0.028]. Moreover, DL-MRI exhibited higher detection of SbA bursal thickenings in the oblique coronal PDWI sequence [2.61 (1.85, 3.46) vs. 2.48 (1.84, 3.25) mm], with a notable trend towards significant differences (P=0.071). Furthermore, the rSNRs of the muscle in DL-MRI images were significantly higher than those in Conventional-MRI images across most sequences (P<0.001). However, the rSNRs of bone on Conventional-MRI of oblique axial and oblique coronal PDWI sequences showed adverse results [oblique axial: 1.000 (1.000, 1.000) vs. 0.444 (0.367, 0.523); and oblique coronal: 1.000 (1.000, 1.000) vs. 0.460 (0.387, 0.631); all P<0.001]. Additionally, all DL-MRI images exhibited significantly greater rSNRs and rCNRs compared to accelerated MRI sequences reconstructed using traditional pipelines (P<0.001). Conclusions In conclusion, the utilization of DL-MRI enhances image quality and improves diagnostic capabilities, making it a promising alternative to Conventional-MRI for shoulder imaging.
Collapse
Affiliation(s)
- Zijun Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyu Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Lizhi Xie
- MR Research China, GE Healthcare, Beijing, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Sneag DB, Queler SC, Campbell G, Colucci PG, Lin J, Lin Y, Wen Y, Li Q, Tan ET. Optimized 3D brachial plexus MR neurography using deep learning reconstruction. Skeletal Radiol 2024; 53:779-789. [PMID: 37914895 DOI: 10.1007/s00256-023-04484-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To evaluate whether 'fast,' unilateral, brachial plexus, 3D magnetic resonance neurography (MRN) acquisitions with deep learning reconstruction (DLR) provide similar image quality to longer, 'standard' scans without DLR. MATERIALS AND METHODS An IRB-approved prospective cohort of 30 subjects (13F; mean age = 50.3 ± 17.8y) underwent clinical brachial plexus 3.0 T MRN with 3D oblique-coronal STIR-T2-weighted-FSE. 'Standard' and 'fast' scans (time reduction = 23-48%, mean = 33%) were reconstructed without and with DLR. Evaluation of signal-to-noise ratio (SNR) and edge sharpness was performed for 4 image stacks: 'standard non-DLR,' 'standard DLR,' 'fast non-DLR,' and 'fast DLR.' Three raters qualitatively evaluated 'standard non-DLR' and 'fast DLR' for i) bulk motion (4-point scale), ii) nerve conspicuity of proximal and distal suprascapular and axillary nerves (5-point scale), and iii) nerve signal intensity, size, architecture, and presence of a mass (binary). ANOVA or Wilcoxon signed rank test compared differences. Gwet's agreement coefficient (AC2) assessed inter-rater agreement. RESULTS Quantitative SNR and edge sharpness were superior for DLR versus non-DLR (SNR by + 4.57 to + 6.56 [p < 0.001] for 'standard' and + 4.26 to + 4.37 [p < 0.001] for 'fast;' sharpness by + 0.23 to + 0.52/pixel for 'standard' [p < 0.018] and + 0.21 to + 0.25/pixel for 'fast' [p < 0.003]) and similar between 'standard non-DLR' and 'fast DLR' (SNR: p = 0.436-1, sharpness: p = 0.067-1). Qualitatively, 'standard non-DLR' and 'fast DLR' had similar motion artifact, as well as nerve conspicuity, signal intensity, size and morphology, with high inter-rater agreement (AC2: 'standard' = 0.70-0.98, 'fast DLR' = 0.69-0.97). CONCLUSION DLR applied to faster, 3D MRN acquisitions provides similar image quality to standard scans. A faster, DL-enabled protocol may replace currently optimized non-DL protocols.
Collapse
Affiliation(s)
- D B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA.
- Weill Medical College of Cornell, New York, NY, USA.
| | - S C Queler
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - G Campbell
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| | - P G Colucci
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| | - J Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| | - Y Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| | - Y Wen
- GE Healthcare, Waukesha, WI, USA
| | - Q Li
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| | - E T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70Th St., New York, NY, 10021, USA
| |
Collapse
|
41
|
Iwamura M, Ide S, Sato K, Kakuta A, Tatsuo S, Nozaki A, Wakayama T, Ueno T, Haga R, Kakizaki M, Yokoyama Y, Yamauchi R, Tsushima F, Shibutani K, Tomiyama M, Kakeda S. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis. Magn Reson Med Sci 2024; 23:184-192. [PMID: 36927877 PMCID: PMC11024714 DOI: 10.2463/mrms.mp.2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions. METHODS Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions. RESULTS For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR. CONCLUSION Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.
Collapse
Affiliation(s)
- Masatoshi Iwamura
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka, Japan
| | - Kenya Sato
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Akihisa Kakuta
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Soichiro Tatsuo
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Atsushi Nozaki
- MR Application and Workflow, GE Healthcare, Tokyo, Japan
| | | | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Rie Haga
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Misako Kakizaki
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Yoko Yokoyama
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Ryoichi Yamauchi
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Fumiyasu Tsushima
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Koichi Shibutani
- Department of Radiology, Aomori Prefectural Central Hospital, Aomori, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
42
|
Song YS, Lee IS, Hwang M, Jang K, Wang X, Fung M. Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging. Br J Radiol 2024; 97:812-819. [PMID: 38366622 PMCID: PMC11027290 DOI: 10.1093/bjr/tqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE To demonstrate that a T2 periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique using deep learning reconstruction (DLR) will provide better image quality and decrease image noise. METHODS From December 2020 to March 2021, 35 patients examined cervical spine MRI were included in this study. Four sets of images including fast spin echo (FSE), original PROPELLER, PROPELLER DLR50%, and DLR75% were quantitatively and qualitatively reviewed. We calculated the signal-to-noise ratio (SNR) of the spinal cord and sternocleidomastoid (SCM) muscle and the contrast-to-noise ratio (CNR) of the spinal cord by applying region-of-interest at the spinal cord, SCM muscle, and background air. We evaluated image noise with regard to the spinal cord, SCM, and back muscles at each level from C2-3 to C6-7 in the 4 sets. RESULTS At all disc levels, the mean SNR values for the spinal cord and SCM muscles were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE and original PROPELLER images (P < .0083). The mean CNR values of the spinal cord were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE at the C3-4 and 4-5 levels and PROPELLER DLR75% compared to FSE at the C6-7 level (P < .0083). Qualitative analysis of image noise on the spinal cord, SCM, and back muscles showed that PROPELLER DLR50% and PROPELLER DLR75% images showed a significant denoising effect compared to the FSE and original PROPELLER images. CONCLUSION The combination of PROPELLER and DLR improved image quality with a high SNR and CNR and reduced noise. ADVANCES IN KNOWLEDGE Motion-insensitive imaging technique (PROPELLER) increased the image quality compared to conventional FSE images. PROPELLER technique with a DLR reduced image noise and improved image quality.
Collapse
Affiliation(s)
- You Seon Song
- Pusan National University School of Medicine, Busan, Korea
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan 49241, Korea
| | - In Sook Lee
- Pusan National University School of Medicine, Busan, Korea
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan 49241, Korea
| | - Moonjung Hwang
- GE Healthcare, 15F Seoul Square 416, Seoul, Seoul 04367, Korea
| | - Kyoungeun Jang
- AIRS Medical, 13-14F, Keungil Tower, Seoul, Seoul 06142, Korea
| | - Xinzeng Wang
- GE Healthcare, MR Clinical Solutions & Research Collaborations, Houston, Texas 77081, United States
| | - Maggie Fung
- GE Healthcare, MR Clinical Solutions & Research Collaborations, New York, NY 10032, United States
| |
Collapse
|
43
|
Hayashi T, Kojima S, Ito T, Hayashi N, Kondo H, Yamamoto A, Oba H. Evaluation of deep learning reconstruction on diffusion-weighted imaging quality and apparent diffusion coefficient using an ice-water phantom. Radiol Phys Technol 2024; 17:186-194. [PMID: 38153622 DOI: 10.1007/s12194-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
This study assessed the influence of deep learning reconstruction (DLR) on the quality of diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) using an ice-water phantom. An ice-water phantom with known diffusion properties (true ADC = 1.1 × 10-3 mm2/s at 0 °C) was imaged at various b-values (0, 1000, 2000, and 4000 s/mm2) using a 3 T magnetic resonance imaging scanner with slice thicknesses of 1.5 and 3.0 mm. All DWIs were reconstructed with or without DLR. ADC maps were generated using combinations of b-values 0 and 1000, 0 and 2000, and 0 and 4000 s/mm2. Based on the quantitative imaging biomarker alliance profile, the signal-to-noise ratio (SNRs) in DWIs was calculated, and the accuracy, precision, and within-subject parameter variance (wCV) of the ADCs were evaluated. DLR improved the SNR in DWIs with b-values ranging from 0 to 2000s/mm2; however, its effectiveness was diminished at 4000 s/mm2. There was no noticeable difference in the ADCs of images generated with or without implementing DLR. For a slice thickness of 1.5 mm and combined b-values of 0 and 4000 s/mm2, the ADC values were 0.97 × 10-3and 0.98 × 10-3mm2/s with and without DLR, respectively, both being lower than the true ADC value. Furthermore, DLR enhanced the precision and wCV of the ADC measurements. DLR can enhance the SNR, repeatability, and precision of ADC measurements; however, it does not improve their accuracies.
Collapse
Affiliation(s)
- Tatsuya Hayashi
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Shinya Kojima
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshimune Ito
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Norio Hayashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma, 371-0052, Japan
| | - Hiroshi Kondo
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Asako Yamamoto
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Hiroshi Oba
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
44
|
Suzuki Y, Ueyama T, Sakata K, Kasahara A, Iwanaga H, Yasaka K, Abe O. High-angular resolution diffusion imaging generation using 3d u-net. Neuroradiology 2024; 66:371-387. [PMID: 38236423 PMCID: PMC11399202 DOI: 10.1007/s00234-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE To investigate the effects on tractography of artificial intelligence-based prediction of motion-probing gradients (MPGs) in diffusion-weighted imaging (DWI). METHODS The 251 participants in this study were patients with brain tumors or epileptic seizures who underwent MRI to depict tractography. DWI was performed with 64 MPG directions and b = 0 s/mm2 images. The dataset was divided into a training set of 191 (mean age 45.7 [± 19.1] years), a validation set of 30 (mean age 41.6 [± 19.1] years), and a test set of 30 (mean age 49.6 [± 18.3] years) patients. Supervised training of a convolutional neural network was performed using b = 0 images and the first 32 axes of MPG images as the input data and the second 32 axes as the reference data. The trained model was applied to the test data, and tractography was performed using (a) input data only; (b) input plus prediction data; and (c) b = 0 images and the 64 MPG data (as a reference). RESULTS In Q-ball imaging tractography, the average dice similarity coefficient (DSC) of the input plus prediction data was 0.715 (± 0.064), which was significantly higher than that of the input data alone (0.697 [± 0.070]) (p < 0.05). In generalized q-sampling imaging tractography, the average DSC of the input plus prediction data was 0.769 (± 0.091), which was also significantly higher than that of the input data alone (0.738 [± 0.118]) (p < 0.01). CONCLUSION Diffusion tractography is improved by adding predicted MPG images generated by an artificial intelligence model.
Collapse
Affiliation(s)
- Yuichi Suzuki
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Kentarou Sakata
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihiro Kasahara
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideyuki Iwanaga
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan.
| | - Osamu Abe
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Herrmann J, Benkert T, Brendlin A, Gassenmaier S, Hölldobler T, Maennlin S, Almansour H, Lingg A, Weiland E, Afat S. Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T. Acad Radiol 2024; 31:921-928. [PMID: 37500416 DOI: 10.1016/j.acra.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
RATIONALE AND OBJECTIVES To determine the impact on acquisition time reduction and image quality of a deep learning (DL) reconstruction for accelerated diffusion-weighted imaging (DWI) of the pelvis at 1.5 T compared to standard DWI. MATERIALS AND METHODS A total of 55 patients (mean age, 61 ± 13 years; range, 27-89; 20 men, 35 women) were consecutively included in this retrospective, monocentric study between February and November 2022. Inclusion criteria were (1) standard DWI (DWIS) in clinically indicated magnetic resonance imaging (MRI) at 1.5 T and (2) DL-reconstructed DWI (DWIDL). All patients were examined using the institution's standard MRI protocol according to their diagnosis including DWI with two different b-values (0 and 800 s/mm2) and calculation of apparent diffusion coefficient (ADC) maps. Image quality was qualitatively assessed by four radiologists using a visual 5-point Likert scale (5 = best) for the following criteria: overall image quality, noise level, extent of artifacts, sharpness, and diagnostic confidence. The qualitative scores for DWIS and DWIDL were compared with the Wilcoxon signed-rank test. RESULTS The overall image quality was evaluated to be significantly superior in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .05). The extent of noise was evaluated to be significantly less in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .001). No significant differences were found regarding artifacts, lesion detectability, sharpness of organs, and diagnostic confidence (P > .05). Acquisition time for DWIS was 2:06 minutes, and simulated acquisition time for DWIDL was 1:12 minutes. CONCLUSION DL image reconstruction improves image quality, and simulation results suggest that a reduction in acquisition time for diffusion-weighted MRI of the pelvis at 1.5 T is possible.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Andreas Brendlin
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Thomas Hölldobler
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Simon Maennlin
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Elisabeth Weiland
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany.
| |
Collapse
|
46
|
Kang SH, Lee Y. Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images. Bioengineering (Basel) 2024; 11:227. [PMID: 38534500 DOI: 10.3390/bioengineering11030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
This study aimed to remove motion artifacts from brain magnetic resonance (MR) images using a U-Net model. In addition, a simulation method was proposed to increase the size of the dataset required to train the U-Net model while avoiding the overfitting problem. The volume data were rotated and translated with random intensity and frequency, in three dimensions, and were iterated as the number of slices in the volume data. Then, for every slice, a portion of the motion-free k-space data was replaced with motion k-space data, respectively. In addition, based on the transposed k-space data, we acquired MR images with motion artifacts and residual maps and constructed datasets. For a quantitative evaluation, the root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient of correlation (CC), and universal image quality index (UQI) were measured. The U-Net models for motion artifact reduction with the residual map-based dataset showed the best performance across all evaluation factors. In particular, the RMSE, PSNR, CC, and UQI improved by approximately 5.35×, 1.51×, 1.12×, and 1.01×, respectively, and the U-Net model with the residual map-based dataset was compared with the direct images. In conclusion, our simulation-based dataset demonstrates that U-Net models can be effectively trained for motion artifact reduction.
Collapse
Affiliation(s)
- Seong-Hyeon Kang
- Department of Biomedical Engineering, Eulji University, Seongnam 13135, Republic of Korea
| | - Youngjin Lee
- Department of Radiological Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
47
|
Campbell GJ, Sneag DB, Queler SC, Lin Y, Li Q, Tan ET. Quantitative double echo steady state T2 mapping of upper extremity peripheral nerves and muscles. Front Neurol 2024; 15:1359033. [PMID: 38426170 PMCID: PMC10902120 DOI: 10.3389/fneur.2024.1359033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction T2 mapping can characterize peripheral neuropathy and muscle denervation due to axonal damage. Three-dimensional double echo steady-state (DESS) can simultaneously provide 3D qualitative information and T2 maps with equivalent spatial resolution. However, insufficient signal-to-noise ratio may bias DESS-T2 values. Deep learning reconstruction (DLR) techniques can reduce noise, and hence may improve quantitation of high-resolution DESS-T2. This study aims to (i) evaluate the effect of DLR methods on DESS-T2 values, and (ii) to evaluate the feasibility of using DESS-T2 maps to differentiate abnormal from normal nerves and muscles in the upper extremities, with abnormality as determined by electromyography. Methods and results Analysis of images from 25 subjects found that DLR decreased DESS-T2 values in abnormal muscles (DLR = 37.71 ± 9.11 msec, standard reconstruction = 38.56 ± 9.44 msec, p = 0.005) and normal muscles (DLR: 27.18 ± 6.34 msec, standard reconstruction: 27.58 ± 6.34 msec, p < 0.001) consistent with a noise reduction bias. Mean DESS-T2, both with and without DLR, was higher in abnormal nerves (abnormal = 75.99 ± 38.21 msec, normal = 35.10 ± 9.78 msec, p < 0.001) and muscles (abnormal = 37.71 ± 9.11 msec, normal = 27.18 ± 6.34 msec, p < 0.001). A higher DESS-T2 in muscle was associated with electromyography motor unit recruitment (p < 0.001). Discussion These results suggest that quantitative DESS-T2 is improved by DLR and can differentiate the nerves and muscles involved in peripheral neuropathies from those uninvolved.
Collapse
Affiliation(s)
- Gracyn J. Campbell
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
| | - Sophie C. Queler
- College of Medicine, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Yenpo Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Qian Li
- Biostatistics Core, Hospital for Special Surgery, New York, NY, United States
| | - Ek T. Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
48
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Sprinkart AM, Isaak A, Attenberger U, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI. Front Cardiovasc Med 2024; 11:1323443. [PMID: 38410246 PMCID: PMC10894983 DOI: 10.3389/fcvm.2024.1323443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose This study aims to evaluate deep learning (DL) denoising reconstructions for image quality improvement of Doppler ultrasound (DUS)-gated fetal cardiac MRI in congenital heart disease (CHD). Methods Twenty-five fetuses with CHD (mean gestational age: 35 ± 1 weeks) underwent fetal cardiac MRI at 3T. Cine imaging was acquired using a balanced steady-state free precession (bSSFP) sequence with Doppler ultrasound gating. Images were reconstructed using both compressed sensing (bSSFP CS) and a pre-trained convolutional neural network trained for DL denoising (bSSFP DL). Images were compared qualitatively based on a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent) and quantitatively by calculating the apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR). Diagnostic confidence was assessed for the atria, ventricles, foramen ovale, valves, great vessels, aortic arch, and pulmonary veins. Results Fetal cardiac cine MRI was successful in 23 fetuses (92%), with two studies excluded due to extensive fetal motion. The image quality of bSSFP DL cine reconstructions was rated superior to standard bSSFP CS cine images in terms of contrast [3 (interquartile range: 2-4) vs. 5 (4-5), P < 0.001] and endocardial edge definition [3 (2-4) vs. 4 (4-5), P < 0.001], while the extent of artifacts was found to be comparable [4 (3-4.75) vs. 4 (3-4), P = 0.40]. bSSFP DL images had higher aSNR and aCNR compared with the bSSFP CS images (aSNR: 13.4 ± 6.9 vs. 8.3 ± 3.6, P < 0.001; aCNR: 26.6 ± 15.8 vs. 14.4 ± 6.8, P < 0.001). Diagnostic confidence of the bSSFP DL images was superior for the evaluation of cardiovascular structures (e.g., atria and ventricles: P = 0.003). Conclusion DL image denoising provides superior quality for DUS-gated fetal cardiac cine imaging of CHD compared to standard CS image reconstruction.
Collapse
Affiliation(s)
- Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, PD Clinical Science, Hamburg, Germany
| | | | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| |
Collapse
|
49
|
Hokamura M, Uetani H, Nakaura T, Matsuo K, Morita K, Nagayama Y, Kidoh M, Yamashita Y, Ueda M, Mukasa A, Hirai T. Exploring the impact of super-resolution deep learning on MR angiography image quality. Neuroradiology 2024; 66:217-226. [PMID: 38148334 DOI: 10.1007/s00234-023-03271-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE The aim of this study is to assess the effect of super-resolution deep learning-based reconstruction (SR-DLR), which uses k-space properties, on image quality of intracranial time-of-flight (TOF) magnetic resonance angiography (MRA) at 3 T. METHODS This retrospective study involved 35 patients who underwent intracranial TOF-MRA using a 3-T MRI system with SR-DLR based on k-space properties in October and November 2022. We reconstructed MRA with SR-DLR (matrix = 1008 × 1008) and MRA without SR-DLR (matrix = 336 × 336). We measured the signal-to-noise ratio (SNR), contrast, and contrast-to-noise ratio (CNR) in the basilar artery (BA) and the anterior cerebral artery (ACA) and the sharpness of the posterior cerebral artery (PCA) using the slope of the signal intensity profile curve at the half-peak points. Two radiologists evaluated image noise, artifacts, contrast, sharpness, and overall image quality of the two image types using a 4-point scale. We compared quantitative and qualitative scores between images with and without SR-DLR using the Wilcoxon signed-rank test. RESULTS The SNRs, contrasts, and CNRs were all significantly higher in images with SR-DLR than those without SR-DLR (p < 0.001). The slope was significantly greater in images with SR-DLR than those without SR-DLR (p < 0.001). The qualitative scores in MRAs with SR-DLR were all significantly higher than MRAs without SR-DLR (p < 0.001). CONCLUSION SR-DLR with k-space properties can offer the benefits of increased spatial resolution without the associated drawbacks of longer scan times and reduced SNR and CNR in intracranial MRA.
Collapse
Affiliation(s)
- Masamichi Hokamura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan.
| | - Kensei Matsuo
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Kosuke Morita
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Yuichi Yamashita
- Canon Medical Systems Corporation, 70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa, 212-0015, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| |
Collapse
|
50
|
Malis V, Bae WC, Yamamoto A, McEvoy LK, McDonald MA, Miyazaki M. Age-related Decline of Intrinsic Cerebrospinal Fluid Outflow in Healthy Humans Detected with Non-contrast Spin-labeling MR Imaging. Magn Reson Med Sci 2024; 23:66-79. [PMID: 36529500 PMCID: PMC10838716 DOI: 10.2463/mrms.mp.2022-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Clearance of cerebrospinal fluid (CSF) is important for the removal of toxins from the brain, with implications for neurodegenerative diseases. Imaging evaluation of CSF outflow in humans has been limited, relying on venous or invasive intrathecal injections of contrast agents. The objective of this study was to introduce a novel spin-labeling MRI technique to detect and quantify the movement of endogenously tagged CSF, and then apply it to evaluate CSF outflow in normal humans of varying ages. METHODS This study was performed on a clinical 3-Tesla MRI scanner in 16 healthy subjects with an age range of 19-71 years with informed consent. Our spin-labeling MRI technique applies a tag pulse on the brain hemisphere, and images the outflow of the tagged CSF into the superior sagittal sinus (SSS). We obtained 3D images in real time, which was analyzed to determine tagged-signal changes in different regions of the meninges involved in CSF outflow. Additionally, the signal changes over time were fit to a signal curve to determine quantitative flow metrics. These were correlated against subject age to determine aging effects. RESULTS We observed the signal of the tagged CSF moving from the dura mater and parasagittal dura, and finally draining into the SSS. In addition, we observed a possibility of another pathway which is seen in some young subjects. Furthermore, quantitative CSF outflow metrics were shown to decrease significantly with age. CONCLUSION We demonstrate a novel non-invasive MRI technique identifying two intrinsic CSF clearance pathways, and observe an age-related decline of CSF flow metrics in healthy subjects. Our work provides a new opportunity to better understand the relationships of these CSF clearance pathways during the aging process, which may ultimately provide insight into the age-related prevalence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vadim Malis
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Won C. Bae
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, Veterans Affairs Healthcare System, La Jolla, CA, USA
| | - Asako Yamamoto
- Department of Radiology, Teikyo University, Tokyo, Japan
| | - Linda K. McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Marin A. McDonald
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Mitsue Miyazaki
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|