1
|
van der Wulp W, Remst DFG, Koster CS, Wouters AK, Ressing ME, Schuurman J, van Kasteren SI, Bleijlevens B, Hoeben RC, Guelen L, Heemskerk MHM. Increasing the odds: antibody-mediated delivery of two distinct immunogenic T-cell epitopes with one antibody. Oncoimmunology 2025; 14:2508050. [PMID: 40426019 PMCID: PMC12118402 DOI: 10.1080/2162402x.2025.2508050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Antibody-epitope conjugates (AECs) proved to be a promising new therapeutic strategy to redirect virus-specific CD8+ T cells toward cancer cells by delivering T-cell epitopes. To be able to redirect a larger fraction of the virus-specific T-cell population, it is beneficial to deliver a broader selection of T-cell epitopes. We investigated two different methods to generate AECs with two distinct virus-specific T-cell epitopes fused to one antibody. Epitopes were either placed in a tandem-like fashion at the C-terminus of the AEC (t-AEC) or bispecific-AECs (bs-AECs) were generated via controlled Fab-arm exchange to generate bs-AECs with two identical antigen binding domains, but two distinct epitopes on each Fab-arm. Our study revealed that maintaining a free epitope terminus was required for efficient delivery of the virus-specific T-cell epitopes. Consequently, viral-epitope delivery using t-AECs was suboptimal as the concatenated epitopes were less effectively delivered to the target cells. However, well-defined bs-AECs containing both CMV and EBV epitopes were successfully generated and both in vitro and in vivo efficacy was evaluated. Our results demonstrate that bispecific-AECs can efficiently deliver EBV and CMV epitopes simultaneously to multiple cancer cell lines from different origins, thereby redirecting and activating two distinct populations of virus-specific T cells. Furthermore, our in vivo findings indicate that when both virus-specific T-cell populations are present and tumor cells express the proteases required for efficient epitope delivery, bs-AECs exhibit similar efficacy in reducing tumor burden compared to AECs. To conclude, our study demonstrates the feasibility of redirecting two groups of virus-specific T cells using a single antibody and highlights the potential of bs-AECs both in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli S. Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sander I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
2
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
3
|
Zhang S, Zhou Y, Liu Z, Wang Y, Zhou X, Chen H, Zhang X, Chen Y, Feng Q, Ye X, Xie S, Zeng MS, Zhai W, Zeng YX, Cao S, Li G, Xu M. Immunosequencing identifies signatures of T cell responses for early detection of nasopharyngeal carcinoma. Cancer Cell 2025:S1535-6108(25)00168-0. [PMID: 40345188 DOI: 10.1016/j.ccell.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/10/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
To identify nasopharyngeal carcinoma (NPC)-relevant T cell receptors (TCRs), we profile the repertoires of peripheral blood TCRβ chains from 228 NPC patients, 241 at-risk controls positive for serum Epstein-Barr virus (EBV) VCA-IgA antibody, and 251 seronegative controls. We develop a TCR-based signature (T-score) based on 208 NPC-enriched CDR3β sequences, which accurately diagnoses NPC in both the original and independent validation cohorts. Notably, a higher T-score, associated with a shorter time interval to NPC diagnosis, effectively identifies early-stage NPC among EBV-seropositive at-risk individuals prior to clinical diagnosis. These NPC-enriched TCRs react against not only EBV-specific antigens but also non-EBV antigens expressed by NPC cells, indicating a broad range of specificities. Moreover, the abundance of NPC-enriched CD8+ T cells in blood correlates with the infiltration of non-exhausted T cell counterparts in tumors and predicts prolonged survival, suggesting that these NPC-enriched T cells have significant potential for disease monitoring and therapeutic applications.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Yuqian Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Xiang Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Haiwen Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P.R. China
| | - Xinyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yanhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaoping Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shanghang Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Sumei Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China.
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
4
|
Athamneh RY, Swaity HA, Al Moman W, Al-Taweil HI, Benbraiek A, Khalifeh AH. Molecular Characterization of Epstein - Barr virus Based on EBNA3C Protein among Hematopoietic Stem Cell Transplant Recipients in Jordan. Mediterr J Hematol Infect Dis 2025; 17:e2025032. [PMID: 40375912 PMCID: PMC12081047 DOI: 10.4084/mjhid.2025.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/12/2025] [Indexed: 05/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV), a human herpes virus, presents significant risks to hematopoietic stem cell transplant (HSCT) recipients due to immunosuppressive treatments. Two genotypes of EBV can infect humans: EBV1 and EBV2. These genotypes differ in their latent genes. One important latent protein is EBNA3, which plays a crucial role in immune evasion and pathogenesis of EBV. Objectives This study characterizes EBV genotypes among HSCT recipients in Jordan and examines the relationship between EBV positivity and demographic factors. Methods A retrospective observational study was conducted at the Jordanian Royal Medical Services Hospital (JRMS) from January to October 2024. Blood samples were collected from the virology department, and plasma was separated. EBV-DNA detection was performed using quantitative real-time PCR, while conventional PCR targeted EBNA3C genes for genotyping. Results Out of 93 EBV-positive HSCT recipients, 31 underwent genotyping analysis. The findings revealed a predominance of EBV2, detected in 26 samples (84%), while 5 samples (16%) exhibited mixed infections. Notably, EBV1 was not identified in any samples. A significant association was found between EBV positivity and male recipients, with a markedly higher prevalence in individuals under 18 years of age (P<0.0001). Conclusion EBV2 was the predominant genotype among HSCT recipients in Jordan, with coinfections of EBV1 and EBV2. Understanding the prevalent genotypes in transplant patients is crucial for managing EBV-related complications, ultimately improving patient outcomes. This study highlights the need for continuous monitoring and characterization of EBV genotypes in immunocompromised populations.
Collapse
Affiliation(s)
- Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Hiba A Swaity
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Waleed Al Moman
- Department of Basic Pathological Sciences, Faculty of Medicine, Yarmouk University, Jordan
| | - Hayyan I Al-Taweil
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Assia Benbraiek
- Medical and Clinical Laboratory Technology, Faculty of Allied Medical Sciences, Allied Science Private University
| | - Anas H Khalifeh
- Department of Community & Mental Health Nursing, Faculty of Nursing, Zarqa University, Zarqa, Jordan
| |
Collapse
|
5
|
Zhang W, Wang C, Meng Y, He L, Dong M. EBV Vaccines in the Prevention and Treatment of Nasopharyngeal Carcinoma. Vaccines (Basel) 2025; 13:478. [PMID: 40432090 PMCID: PMC12115577 DOI: 10.3390/vaccines13050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, has been robustly linked to the pathogenesis of nasopharyngeal carcinoma (NPC). The mechanism of EBV-induced NPC involves complex interactions between viral proteins and host cell pathways. This review aims to comprehensively outline the mechanism of EBV-induced NPC and the latest advances in targeted EBV vaccines for prophylaxis and treatment. This review explores the intricate molecular mechanisms by which EBV contributes to NPC pathogenesis, highlighting viral latency, genetic and epigenetic alterations, and immune evasion strategies. It emphasizes the pivotal role of key viral proteins, including EBNA1, LMP1, and LMP2A, in carcinogenesis. Subsequently, the discussion shifts towards the development of targeted EBV vaccines, including preventive vaccines aimed at preventing primary EBV infection and therapeutic vaccines aimed at treating diagnosed EBV-related NPC. The review underscores the challenges and future directions in the field, stressing the importance of developing innovative vaccine strategies and combination therapies to improve efficacy. This review synthesizes current insights into the molecular mechanisms of EBV-induced NPC and the development of EBV-targeted vaccines, highlighting the potential use of mRNA vaccines for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Chuang Wang
- Chengdu Yunce Medical Biotechnology Co., Ltd., Chengdu 611135, China;
| | - Yousheng Meng
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Mingqing Dong
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou 325000, China
| |
Collapse
|
6
|
Zhang H, Wang W, Zhou Q, Hou J, Ying W, Hui X, Sun J, Liu L, Liu L, Wang C, Zhang H, Sun B, Wang X. Characterization of the epidemiology, susceptibility genes and clinical features of viral infections among children with inborn immune errors: a retrospective study. Virol J 2025; 22:91. [PMID: 40176105 PMCID: PMC11963556 DOI: 10.1186/s12985-025-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Although viral infections are one of the common clinical manifestations in patients with inborn errors of immunity (IEIs), little is known about the epidemiology, susceptibility genes, and clinical status of viral infections in patients with IEIs. METHODS The demographic information, clinical diagnoses, and laboratory findings of 931 IEI patients who underwent viral testing from January 2016 to December 2022 were collected and analyzed. RESULTS In total, 47.15% (439/931) patients with IEI tested positive for at least one virus during hospitalization. There were a total of 640 viral infections during the study period, mainly from EBV 131 (20.47%), HRV 102(15.94%), CMV 100(15.63%), and RV 84(13.13%). CMV and RV infections were more common in the combined immunodeficiencies (IEI_I) group during the infant stage, whereas EBV infection was more common in the immune dysregulation (IEI_IV) group during the preschool stage. Mutations in SH2D1A (57.14%), PIK3CD (56.41%) and LRBA (50%) make individuals susceptible to EBV infection; mutations in WAS (30%) make individuals susceptible to CMV infection; and mutations in IL2RG (56.52%) and RAG1 (37.5%) make individuals susceptible to RV infection. Joinpoint analysis revealed trends in viral positivity in different years. CONCLUSION These data suggest that it is possible to target the prevention, treatment, and management of IEI patients who are infected with a virus by accounting for the age at infection, type of IEI, and mutant genes, but special attention needs to be paid to viral infections in IEI_I and IEI_IV patients during the infant stage.
Collapse
Affiliation(s)
- Haiqiao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lipin Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chenhao Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xiaochuan Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
7
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Mjelle R, Castro Í, Aass KR. The viral landscape in metastatic solid cancers. Heliyon 2025; 11:e42548. [PMID: 40028540 PMCID: PMC11870251 DOI: 10.1016/j.heliyon.2025.e42548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Here, we analyze the viral landscape in blood and tissue from 4918 metastatic cancer patients across 38 solid cancer types from the Hartwig Medical Foundation (HMF) cohort, the largest pan-cancer study on metastatic cancer. Using a coverage-based filtering approach, we detected 25 unique viral genera across 32 different cancer types, with a total of 747 unique virus-positive tissue samples. We detected 336 virus-positive blood samples across 29 cancer types, dominated by Torque teno virus and Alphatorquevirus. The tissue samples were dominated by Alphapapillomavirus and Roseolovirus. Alphapapillomavirus was significantly enriched in genital, anal, and colorectal cancers and was associated with host mutational signatures and transcriptional programs related to immunity and DNA repair. Host genes with Alphapapillomavirus integration tended to be more highly expressed and samples with HPV integration had higher somatic mutation rates and higher number of extrachromosomal DNA elements. Alphapapillomavirus was also detected in a significant proportion of blood samples from cervix and anal cancers, suggesting a potential blood-based biomarker.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St.Olavs Hospital, Trondheim, Norway
| | | | - Kristin Roseth Aass
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Ye J, Ji S, Wu Z, Ma G, Chen J, Wu S, Xie Y. Age-related immunosenescence and Epstein-Barr virus-positive mucocutaneous ulcer presenting as oral cancer: a case report. Front Med (Lausanne) 2025; 11:1458606. [PMID: 39927271 PMCID: PMC11804941 DOI: 10.3389/fmed.2024.1458606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Epstein-Barr virus-positive mucocutaneous ulcer (EBVMCU) is a rare condition characterized by skin or mucosal lesions resulting from defective immune surveillance of EBV due to immunosuppression, which can be iatrogenic or age-related. It represents a benign lymphoproliferative disorder that clinically may mimic malignant tumors. However, EBVMCU typically progresses slowly and often resolves spontaneously without specific treatment, emphasizing the critical need for differential diagnosis from malignancies. In this study, we report a case of EBVMCU in an elderly patient demonstrating ulcers on the oral mucosa, buccal area, and maxillary mucosa, with associated bone destruction, which was initially suspected to be an oral malignancy but was confirmed as EBVMCU through biopsy. This case underscores the importance of considering EBVMCU in elderly patients with unexplained persistent mucosal ulcers to exclude malignancies. In addition, attention should be given to unhealthy lifestyle habits such as smoking and drinking, as well as poor oral hygiene, which are potential factors that increase the risk of this disease and contribute to worse prognoses.
Collapse
Affiliation(s)
- Jiayuan Ye
- Department of Infectious Diseases, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Shengqiang Ji
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Zhouxiao Wu
- Health Science Center, Ningbo University, Ningbo, China
| | - Genhua Ma
- Department of Dermatology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Jing Chen
- Department of Dermatology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Shimin Wu
- Department of Gastroenterology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Yilian Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2025; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yan S, Ming X, Zhu X, Xiao Y. Role of rapidly evolving immunotherapy in chronic active Epstein-Barr virus disease. Front Immunol 2024; 15:1451977. [PMID: 39691713 PMCID: PMC11649625 DOI: 10.3389/fimmu.2024.1451977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Chronic active Epstein-Barr Virus disease is a kind of Epstein-Barr Virus associated T/NK cell lymphoproliferative disease. At present, there is still a lack of standard therapeutic regimen for its treatment, but its basic treatment principles include controlling inflammatory response, anti-tumor proliferation, and immune reconstitution. Hematopoietic stem cell transplantation is currently the only method that can cure this disease. In recent years, immunotherapy has developed rapidly and is widely used in the treatment of various hematological malignancies; various immunotherapy drugs, including PD-1 inhibitors, have also demonstrated their safety and efficacy in CAEBV, while immune cell therapies such as Epstein- Barr virus-specific T cells have also displayed their unique advantages in CAEBV.
Collapse
Affiliation(s)
| | | | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Martin E, Latour S. [Interleukin 27: a key factor of the immune response to Epstein-Barr virus]. Med Sci (Paris) 2024; 40:982-985. [PMID: 39705573 DOI: 10.1051/medsci/2024169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Affiliation(s)
- Emmanuel Martin
- Laboratoire Activation lymphocytaire et susceptibilité au virus Epstein Barr, Inserm UMR 1163, Institut Imagine, université Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratoire Activation lymphocytaire et susceptibilité au virus Epstein Barr, Inserm UMR 1163, Institut Imagine, université Paris Cité, Paris, France
| |
Collapse
|
13
|
Zhou J, Zhang J, Zhu D, Ma W, Zhong Q, Shen Q, Su J. The diagnostic value of peripheral blood lymphocyte testing in children with infectious mononucleosis. BMC Pediatr 2024; 24:746. [PMID: 39548405 PMCID: PMC11568541 DOI: 10.1186/s12887-024-05228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVE To investigate the diagnostic value of peripheral blood lymphocyte testing in children with infectious mononucleosis (IM). METHODS A total of 135 children with IM as the IM group and 100 healthy volunteers as the healthy group were included in this retrospective study. Peripheral blood lymphocyte subsets marked as CD3+, CD4+, CD8+, CD16 + CD56+, and CD19 + in the peripheral blood were quantified using flow cytometry. Statistical analysis was performed using the chi-square test, Kruskal-Wallis test, AUROC curve, and Kappa consistency test to assess the diagnostic value of these markers in IM. RESULTS The AUROC curve for CD8 + cells and for CD4+/CD8 + ratios both achieved a value of 1 with the sensitivity and specificity of 100% (P<0.001). The Kappa coefficients were 1 for CD8+, CD4+/CD8 + ratios and the combined EBV analysis, indicating a 100% consistency with the clinical diagnosis. Significant differences were also observed in the CD3+, CD4+, CD16 + CD56+, and CD19 + lymphocyte subsets between the IM group and the healthy group (P<0.05). CONCLUSION The evaluation of CD8 + and CD4+/CD8 + ratios in peripheral blood lymphocytes represents a significant advancement in the diagnosis of IM. Peripheral blood lymphocyte testing offers a reliable, sensitive, and specific diagnostic tool to enhance the clinical management of children with IM.
Collapse
Affiliation(s)
- Jingxin Zhou
- Department of Hematology, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Jia Zhang
- Department of Pediatrics, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Dan Zhu
- Department Of Clinical Laboratory, Suqian Children's Hospital, No. 1, Qinghai Lake Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Wentong Ma
- Intensive Care Unit, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Qing Zhong
- Hematology Laboratory, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Qin Shen
- Department of Pediatrics, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China.
| | - Jing Su
- Hematology Laboratory, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China.
- The Suqian Clinical College of Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu Province, 221004, China.
| |
Collapse
|
14
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Paudel S, Lee N. Epstein-Barr virus noncoding RNA EBER1 promotes the expression of a ribosomal protein paralog to boost oxidative phosphorylation. J Med Virol 2024; 96:e29869. [PMID: 39165093 PMCID: PMC11361555 DOI: 10.1002/jmv.29869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.
Collapse
Affiliation(s)
- Sita Paudel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
16
|
Paudel S, Lee N. Epstein-Barr virus noncoding RNA EBER1 promotes the expression of a ribosomal protein paralog to boost oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599158. [PMID: 38915488 PMCID: PMC11195164 DOI: 10.1101/2024.06.15.599158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.
Collapse
Affiliation(s)
- Sita Paudel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
17
|
Fischer F, Mücke J, Werny L, Gerrer K, Mihatsch L, Zehetmaier S, Riedel I, Geisperger J, Bodenhausen M, Schulte-Hillen L, Hoffmann D, Protzer U, Mautner J, Behrends U, Bauer T, Körber N. Evaluation of novel Epstein-Barr virus-derived antigen formulations for monitoring virus-specific T cells in pediatric patients with infectious mononucleosis. Virol J 2024; 21:139. [PMID: 38877590 PMCID: PMC11179387 DOI: 10.1186/s12985-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.
Collapse
Affiliation(s)
- Franziska Fischer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Mücke
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Louisa Werny
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Katrin Gerrer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lorenz Mihatsch
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Zehetmaier
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
| | - Isa Riedel
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jonas Geisperger
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Bodenhausen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lina Schulte-Hillen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Josef Mautner
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Nina Körber
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
18
|
Caduff N, Rieble L, Böni M, McHugh D, Roshan R, Miley W, Labo N, Barman S, Trivett M, Bosma DMT, Rühl J, Goebels N, Whitby D, Münz C. KSHV infection of B cells primes protective T cell responses in humanized mice. Nat Commun 2024; 15:4841. [PMID: 38844783 PMCID: PMC11156630 DOI: 10.1038/s41467-024-49209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.
Collapse
Affiliation(s)
- Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Pfizer, Medical Department, Schärenmoosstrasse 99, 8052, Zürich, Switzerland
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthew Trivett
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douwe M T Bosma
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM, Taylor GS. Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog 2024; 20:e1012177. [PMID: 38843296 PMCID: PMC11156336 DOI: 10.1371/journal.ppat.1012177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alison Leese
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Yolanda Van Wijck
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Michael R. Douglas
- Dudley Group of Hospitals NHS Foundation Trust, Dudley, United Kingdom
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jill M. Brooks
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
20
|
Fuchs KJ, Falkenburg JHF, Griffioen M. Minor histocompatibility antigens to predict, monitor or manipulate GvL and GvHD after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101555. [PMID: 39098803 DOI: 10.1016/j.beha.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 08/06/2024]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.
Collapse
Affiliation(s)
- Kyra J Fuchs
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands
| | - J H Frederik Falkenburg
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands.
| |
Collapse
|
21
|
Ben Hamza A, Welters C, Stadler S, Brüggemann M, Dietze K, Brauns O, Brümmendorf TH, Winkler T, Bullinger L, Blankenstein T, Rosenberger L, Leisegang M, Kammertöns T, Herr W, Moosmann A, Strobel J, Hackstein H, Dornmair K, Beier F, Hansmann L. Virus-reactive T cells expanded in aplastic anemia eliminate hematopoietic progenitor cells by molecular mimicry. Blood 2024; 143:1365-1378. [PMID: 38277625 DOI: 10.1182/blood.2023023142] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
ABSTRACT Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell-reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia. Single-cell sequencing and immunophenotyping revealed oligoclonal expansion and effector differentiation of CD8+ T-cell compartments. We reexpressed 28 dominant T-cell receptors (TCRs) of 9 patients in reporter cell lines to determine reactivity with (1) in vitro-expanded CD34+ bone marrow, (2) CD34- bone marrow, or (3) peptide pools covering immunodominant epitopes of highly prevalent viruses. Besides 5 cytomegalovirus-reactive TCRs, we identified 3 TCRs that recognized antigen presented on hematopoietic progenitor cells. T cells transduced with these TCRs eliminated hematopoietic progenitor cells of the respective patients in vitro. One progenitor cell-reactive TCR (11A5) also recognized an epitope of the Epstein-Barr virus-derived latent membrane protein 1 (LMP1) presented on HLA-A∗02:01. We identified 2 LMP1-related mimotopes within the human proteome as activating targets of TCR 11A5, providing proof of concept that molecular mimicry of viral and self-epitopes can drive T cell-mediated elimination of hematopoietic progenitor cells in aplastic anemia.
Collapse
Affiliation(s)
- Amin Ben Hamza
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carlotta Welters
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Serena Stadler
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Monika Brüggemann
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Leonie Rosenberger
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Leisegang
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL
| | - Thomas Kammertöns
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Center for Infection Research, Munich, Germany
- Helmholtz Munich, Munich, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
23
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
24
|
Khanna R, Gandhi MK. EBV-infected hematopoietic stem cells drive CAEBV. Blood 2024; 143:2-4. [PMID: 38175680 DOI: 10.1182/blood.2023022739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
|
25
|
van der Wulp W, Luu W, Ressing ME, Schuurman J, van Kasteren SI, Guelen L, Hoeben RC, Bleijlevens B, Heemskerk MHM. Antibody-epitope conjugates deliver immunogenic T-cell epitopes more efficiently when close to cell surfaces. MAbs 2024; 16:2329321. [PMID: 38494955 PMCID: PMC10950288 DOI: 10.1080/19420862.2024.2329321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Antibody-mediated delivery of immunogenic viral CD8+ T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8+ T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the N- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.
Collapse
Affiliation(s)
- W. van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - W. Luu
- Genmab, Utrecht, The Netherlands
| | - M. E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - S. I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - R. C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - M. H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
van der Wulp W, Remst DFG, Kester MGD, Hagedoorn RS, Parren PWHI, van Kasteren SI, Schuurman J, Hoeben RC, Ressing ME, Bleijlevens B, Heemskerk MHM. Antibody-mediated delivery of viral epitopes to redirect EBV-specific CD8 + T-cell immunity towards cancer cells. Cancer Gene Ther 2024; 31:58-68. [PMID: 37945970 PMCID: PMC10794138 DOI: 10.1038/s41417-023-00681-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
27
|
Zhang J, Sommermann T, Li X, Gieselmann L, de la Rosa K, Stecklum M, Klein F, Kocks C, Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front Immunol 2023; 14:1331730. [PMID: 38169736 PMCID: PMC10758421 DOI: 10.3389/fimmu.2023.1331730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion Our results identify a minimal set of EBV proteins sufficient for B cell transformation.
Collapse
Affiliation(s)
- Jingwei Zhang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Xun Li
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Center of Biological Design, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology (EPO) Berlin-Buch GmbH, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Kocks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| |
Collapse
|
28
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
30
|
Gerbitz A, Gary R, Aigner M, Moosmann A, Kremer A, Schmid C, Hirschbuehl K, Wagner E, Hauptrock B, Teschner D, Roesler W, Spriewald B, Tischer J, Moi S, Balzer H, Schaffer S, Bausenwein J, Wagner A, Schmidt F, Brestrich J, Ullrich B, Maas S, Herold S, Strobel J, Zimmermann R, Weisbach V, Hansmann L, Lammoglia-Cobo F, Remberger M, Stelljes M, Ayuk F, Zeiser R, Mackensen A. Prevention of CMV/EBV reactivation by double-specific T cells in patients after allogeneic stem cell transplantation: results from the randomized phase I/IIa MULTIVIR-01 study. Front Immunol 2023; 14:1251593. [PMID: 37965339 PMCID: PMC10642256 DOI: 10.3389/fimmu.2023.1251593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population. Methods We report the results of a randomized controlled multi centre phase I/IIa study (MULTIVIR-01) using a newly developed T cell product with specificity for CMV and EBV derived from the allogeneic stem cell grafts used for transplantation. The study aimed at prevention and preemptive treatment of both viruses in patients after allogeneic stem cell transplantation targeting first infusion on day +30. Primary endpoints were acute transfusion reaction and acute-graft versus-host-disease after infusion of activated T cells. Results Thirty-three patients were screened and 9 patients were treated with a total of 25 doses of the T cell product. We show that central manufacturing can be achieved successfully under study conditions and the product can be applied without major side effects. Overall survival, transplant related mortality, cumulative incidence of graft versus host disease and number of severe adverse events were not different between treatment and control groups. Expansion of CMV/EBV specific T cells was observed in a fraction of patients, but overall there was no difference in virus reactivation. Discussion Our study results indicate peptide stimulated epitope specific T cells derived from stem cell grafts can be administered safely for prevention and preemptive treatment of reactivation without evidence for induction of acute graft versus host disease. Clinical trial registration https://clinicaltrials.gov, identifier NCT02227641.
Collapse
Affiliation(s)
- Armin Gerbitz
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
- Princess Margaret Cancer Centre, Division of Medical Oncology/Hematology, Toronto, ON, Canada
| | - Regina Gary
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Moosmann
- Department of Medicine 3, LMU University Hospital, Munich, Germany
- Helmholtz Center Munich, Institute of Virology, Munich, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Munich, Germany
| | - Anita Kremer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmid
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Klaus Hirschbuehl
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Eva Wagner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Beate Hauptrock
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Wolf Roesler
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Johanna Tischer
- Department of Medicine 3, LMU University Hospital, Munich, Germany
| | - Stephanie Moi
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Heidi Balzer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Judith Bausenwein
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anja Wagner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Franziska Schmidt
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Brestrich
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Barbara Ullrich
- Medical Center for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Susanne Herold
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Fernanda Lammoglia-Cobo
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and Clinical Research and Development Unit (KFUE), Uppsala University Hospital, Uppsala, Sweden
| | - Matthias Stelljes
- Department of Hematology/Oncology, University Hospital Muenster, Muenster, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Zeiser
- Department of Medicine 1, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Ogawa K, Honjo M, Sakamoto K, Funamizu N, Tamura K, Shine M, Nishi Y, Nagaoka T, Ito C, Iwata M, Uraoka M, Sakamoto A, Takada Y, Kitazawa R. Epstein-Barr Virus-Associated Latent Malignant Lymphoma With Acute Exacerbation After Living Donor Liver Transplantation: Case Report. Transplant Proc 2023; 55:1959-1963. [PMID: 37543481 DOI: 10.1016/j.transproceed.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Concomitant malignant lymphoma at the time of transplantation is usually considered a contraindication to liver transplantation (LT). We report a case of Epstein-Barr virus (EBV)-associated malignant lymphoma that was latent preoperatively and rapidly became aggravated after LT. A 69-year-old man was referred to our hospital with an exacerbation of abdominal distension due to polycystic liver. As cystic infection, ascites, and deteriorated liver reserve function occurred after hepatic artery embolization, he underwent living-donor LT with his daughter as the donor. His respiratory condition worsened, and he was moved to the intensive care unit on postoperative day 34. Histopathologic examination of the excised liver returned around the same time revealed findings suggestive of EBV-associated malignant lymphoma in lymph nodes near the gallbladder. Subsequent computed tomography scans showed apparent neoplastic lesions in the abdominal cavity and worsening pleural effusion and ascites. Numerous atypical lymphocytes were observed in the pleural effusion and ascites, and the patient was diagnosed with exacerbation of EBV-associated malignant lymphoma. He was treated unsuccessfully with rituximab and died 66 days after LT. Caution should be exercised in elderly immunocompromised transplant candidates who may have comorbid EBV-associated lymphoproliferative disease.
Collapse
Affiliation(s)
- Kohei Ogawa
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan.
| | - Masahiko Honjo
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Katsunori Sakamoto
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Naotake Funamizu
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kei Tamura
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Mikiya Shine
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yusuke Nishi
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Tomoyuki Nagaoka
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Chihiro Ito
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Miku Iwata
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Mio Uraoka
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Akimasa Sakamoto
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
33
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Dasari V, McNeil LK, Beckett K, Solomon M, Ambalathingal G, Thuy TL, Panikkar A, Smith C, Steinbuck MP, Jakubowski A, Seenappa LM, Palmer E, Zhang J, Haqq CM, DeMuth PC, Khanna R. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat Commun 2023; 14:4371. [PMID: 37553346 PMCID: PMC10409721 DOI: 10.1038/s41467-023-39770-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8+ T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice. Immunization including Amphiphile-CpG also induces high frequencies of polyfunctional gp350-specific CD4+ T cells and EBV-specific CD8+ T cells that are 2-fold greater than soluble CpG and are maintained for >7 months post immunization. This combination of broad humoral and cellular immunity against multiple viral determinants is likely to provide better protection against primary infection and control of latently infected B cells leading to protection against the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Kirrilee Beckett
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew Solomon
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - George Ambalathingal
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - T Le Thuy
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Archana Panikkar
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Caitlyn Smith
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | - Jeff Zhang
- Elicio Therapeutics, Inc, Boston, MA, USA
| | | | | | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
36
|
Zhao M, Ma L, Jiang H, Gu Y, Yang X, Liu R, Sun C, Li Y. Interleukin-37 is involved in the immunopathogenesis of infectious mononucleosis. Ital J Pediatr 2023; 49:93. [PMID: 37507743 PMCID: PMC10386628 DOI: 10.1186/s13052-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Multiple immunopathological responses to viruses are observed in infectious mononucleosis (IM), a manifestation of primary infection with Epstein-Barr virus (EBV). Protective effects of the negative immunoregulatory molecule interleukin-37 (IL-37) have been observed in various bacterial and viral infections. However, the function of IL-37 in IM remains unknown. METHODS Flow cytometry and enzyme-linked immunosorbent assay (ELISA) were used to determine the expression of IL-37 in the peripheral blood of patients diagnosed with IM, and the variation of lymphocyte subsets. Furthermore, the associations between IL-37 expression and the percentage of lymphocyte subgroups were analyzed. RESULTS Patients with IM had severe immune dysfunction. The control group had a lower expression of IL-37 than the patients with IM. There were significant associations between IL-37 expression and both the proportion of CD3+T cells and the ratio of CD3+CD4+ to CD3+CD8+T cells. Patients with higher levels of IL-37 expression had lower levels of the liver inflammation indicators, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). CONCLUSIONS IL-37 may affect the immune pathogenesis of patients with IM infected with EBV, and may have immunotherapeutic benefit for EBV-associated illnesses.
Collapse
Affiliation(s)
- Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Li Ma
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Huihui Jiang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yufeng Gu
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Xin Yang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Riming Liu
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Chengming Sun
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yulan Li
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
37
|
Lambert N, El Moussaoui M, Baron F, Maquet P, Darcis G. Virus-Specific T-Cell Therapy for Viral Infections of the Central Nervous System: A Review. Viruses 2023; 15:1510. [PMID: 37515196 PMCID: PMC10383098 DOI: 10.3390/v15071510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Opportunistic viral infections of the central nervous system represent a significant cause of morbidity and mortality among an increasing number of immunocompromised patients. Since antiviral treatments are usually poorly effective, the prognosis generally relies on the ability to achieve timely immune reconstitution. Hence, strategies aimed at reinvigorating antiviral immune activity have recently emerged. Among these, virus-specific T-cells are increasingly perceived as a principled and valuable tool to treat opportunistic viral infections. Here we briefly discuss how to develop and select virus-specific T-cells, then review their main indications in central nervous system infections, including progressive multifocal leukoencephalopathy, CMV infection, and adenovirus infection. We also discuss their potential interest in the treatment of progressive multiple sclerosis, or EBV-associated central nervous system inflammatory disease. We finish with the key future milestones of this promising treatment strategy.
Collapse
Affiliation(s)
- Nicolas Lambert
- Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
| | - Majdouline El Moussaoui
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, 4000 Liège, Belgium
| | - Frédéric Baron
- Department of Hematology, University Hospital of Liège, 4000 Liège, Belgium
| | - Pierre Maquet
- Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
| | - Gilles Darcis
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
38
|
Bellucci G, Albanese A, Rizzi C, Rinaldi V, Salvetti M, Ristori G. The value of Interferon β in multiple sclerosis and novel opportunities for its anti-viral activity: a narrative literature review. Front Immunol 2023; 14:1161849. [PMID: 37334371 PMCID: PMC10275407 DOI: 10.3389/fimmu.2023.1161849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Interferon-beta (IFN-β) for Multiple Sclerosis (MS) is turning 30. The COVID-19 pandemic rejuvenated the interest in interferon biology in health and disease, opening translational opportunities beyond neuroinflammation. The antiviral properties of this molecule are in accord with the hypothesis of a viral etiology of MS, for which a credible culprit has been identified in the Epstein-Barr Virus. Likely, IFNs are crucial in the acute phase of SARS-CoV-2 infection, as demonstrated by inherited and acquired impairments of the interferon response that predispose to a severe COVID-19 course. Accordingly, IFN-β exerted protection against SARS-CoV-2 in people with MS (pwMS). In this viewpoint, we summarize the evidence on IFN-β mechanisms of action in MS with a focus on its antiviral properties, especially against EBV. We synopsize the role of IFNs in COVID-19 and the opportunities and challenges of IFN-β usage for this condition. Finally, we leverage the lessons learned in the pandemic to suggest a role of IFN-β in long-COVID-19 and in special MS subpopulations.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Angela Albanese
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
| | - Virginia Rinaldi
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
39
|
van der Wulp W, Gram AM, Bleijlevens B, Hagedoorn RS, Araman C, Kim RQ, Drijfhout JW, Parren PWHI, Hibbert RG, Hoeben RC, van Kasteren SI, Schuurman J, Ressing ME, Heemskerk MHM. Comparison of methods generating antibody-epitope conjugates for targeting cancer with virus-specific T cells. Front Immunol 2023; 14:1183914. [PMID: 37261346 PMCID: PMC10227578 DOI: 10.3389/fimmu.2023.1183914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Therapeutic antibody-epitope conjugates (AECs) are promising new modalities to deliver immunogenic epitopes and redirect virus-specific T-cell activity to cancer cells. Nevertheless, many aspects of these antibody conjugates require optimization to increase their efficacy. Here we evaluated different strategies to conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the antibodies cetuximab and trastuzumab. Three approaches were taken: chemical conjugation (i.e. a thiol-maleimide reaction) to reduced cysteine side chains, heavy chain C-terminal enzymatic conjugation using sortase A, and genetic fusions, to the heavy chain (HC) C-terminus. All three conjugates were capable of T-cell activation and target-cell killing via proteolytic release of the EBV epitope and expression of the antibody target was a requirement for T-cell activation. Moreover, AECs generated with a second immunogenic epitope derived from CMV (NLV/A2) were able to deliver and redirect CMV specific T-cells, in which the amino sequence of the attached peptide appeared to influence the efficiency of epitope delivery. Therefore, screening of multiple protease cleavage sites and epitopes attached to the antibody is necessary. Taken together, our data demonstrated that multiple AECs could sensitize cancer cells to virus-specific T cells.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna M. Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Maaike E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
40
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
41
|
Shi T, Ding Q, Liu X, Ai G, Zhou H, Huang L. Concordance of adenosine deaminase with immunoglobulins and lymphocyte subsets in EBV-related diseases. Ital J Pediatr 2023; 49:49. [PMID: 37095577 PMCID: PMC10127006 DOI: 10.1186/s13052-023-01457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Clinical manifestations of Epstein-Barr virus (EBV) infection are diverse. This study aimed to explore the immune response in EBV-related diseases and the correlation between immune cells and adenosine deaminase (ADA) levels. METHODS This study was conducted at the Children's Hospital of Soochow University. In total, 104 patients with EBV-associated respiratory tract infection (EBV-RTI), 32 patients with atypical EBV infection, 54 patients with EBV-associated infectious mononucleosis (IM1, with normal alanine aminotransferase [ALT] levels), 50 patients with EBV-IM2 (with elevated ALT levels), 50 patients with acute respiratory infection (AURI, with other pathogens), and 30 healthy controls were enrolled in this study. Indicators of ADA, immunoglobulins (Igs), and lymphocyte subsets were analyzed for EBV-related diseases. RESULTS Differences in the white blood cell, lymphocyte counts, ADA levels, IgA, IgG and IgM titers, percentage of CD3+, CD3+CD4+, CD3+CD8+, CD16+CD56+, CD3-CD19+, and CD19+CD23+ lymphocytes, and CD4+/CD8+ ratio between EBV-related disease groups were all statistically significant (P < 0.01). ADA levels in the EBV-related disease groups were significantly higher than those in the control group (P < 0.01). The lymphocyte count, ADA levels, IgA and IgG titers, and percentage of CD3+ and CD3+CD8 + lymphocytes in the atypical EBV infection, EBV-IM1, and EBV-IM2 groups were significantly higher than those in the EBV-RTI, AUTI, and control groups (P < 0.01), whereas the percentage of CD3+CD4+, CD3-CD19+, and CD19+CD23+ lymphocytes and CD4+/CD8+ ratio showed the opposite trend. ADA levels were consistent with and closely related to the viral load and cellular and humoral immunity in EBV-related diseases. CONCLUSIONS ADA levels, humoral immunity, and cellular immunity were diverse in EBV-related diseases, and ADA was closely related to Igs and lymphocyte subsets.
Collapse
Affiliation(s)
- Ting Shi
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China
| | - Qi Ding
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Ai
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhou
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Huang
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China.
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
42
|
Sacco KA, Notarangelo LD, Delmonte OM. When to suspect inborn errors of immunity in Epstein-Barr virus-related lymphoproliferative disorders. Clin Microbiol Infect 2023; 29:457-462. [PMID: 36209991 PMCID: PMC10066820 DOI: 10.1016/j.cmi.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND More than 95% of humans have been infected with Epstein-Barr virus (EBV) and develop anti-EBV IgG antibodies, conferring immunity. However, among specific populations, EBV may induce a range of B-cell lymphoproliferative disorders (LPDs). EBV may also contribute to T-cell and natural killer (NK)-cell lymphoproliferation. The immune system is essential to prevent infection and development of cancer. Inborn errors of immunity (IEIs) are a heterogenous group of more than 450 genetic disorders predisposing to severe and/or recurrent infection, autoimmunity, autoinflammation, or early-onset/severe neoplasia or lymphoproliferation. Monogenic disorders of T-cell and B-cell signalling are classic IEIs that predispose to EBV-associated LPDs. OBJECTIVES We aimed to outline the various clinical manifestations of EBV-associated LPDs and the underlying IEIs associated with such presentations and discuss the recommended management and therapeutic options pertaining to these disorders. SOURCES We searched PubMed, Embase, and Web of Science Core Collection on 30 September 2021. Clinical studies, systematic reviews, narrative reviews, and case reports were identified through search strategy and cross reference from primary literature. CONTENT Effective T-cell and NK-cell cytotoxicity towards EBV-infected B cells relies on intact MAGT1-dependent NKG2D pathways and signalling lymphocyte activation molecular-associated protein-dependent signalling lymphocyte activation molecular receptors. The interaction between CD27 and CD70 is also critical to drive the expansion of EBV-specific T cells. IEIs due to T-cell and B-cell signalling defects and/or impaired T-cell and NK-cell cytotoxicity predispose to EBV-related lymphoproliferation. This includes classic disorders such as X-linked lymphoproliferative disease 1 (due to SH2D1A mutations), X-linked lymphoproliferative disease 2 (XIAP), and other genetic diseases, such as ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. EBV-driven lymphoproliferation may manifest to a lesser degree in MST1/STK4, DOCK8, STIM1, CORO1A, IL21R, PIK3CD gain-of-function, and PI3KR1 deficiencies. IMPLICATIONS Early screening for IEIs is indicated in cases of EBV-related lymphoproliferation because different forms of IEIs have specific prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Zaffiri L, Messinger JE, Bush EJ, Staats JS, Patel P, Palmer SM, Weinhold KJ, Snyder LD, Luftig MA. Evaluation of host cellular responses to Epstein-Barr virus (EBV) in adult lung transplant patients with EBV-associated diseases. J Med Virol 2023; 95:e28724. [PMID: 37185866 PMCID: PMC10481801 DOI: 10.1002/jmv.28724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023]
Abstract
Epstein-Barr virus (EBV) reactivation is commonly observed in lung transplant recipients (LTRs). However, cellular immune responses to EBV in adult LTRs have not been well described. We aimed to study CD4/CD8 ratio, EBV-specific T cells polyfunctional responses and phenotypic changes in natural killer (NK) cells in adult LTRs presenting with EBV-associated diseases. The CD4/CD8 ratio was significantly decreased in LTRs with EBV DNAemia compared with LTRs without EBV DNAemia and healthy controls (HCs). Stimulation with EBV lytic antigen BZLF1 peptide pools induced significant individual and polyfunctional responses from CD8+ CD69+ T cells. Frequencies of CD8+ CD69+ T cells expressing CD107a were significantly higher in LTRs without EBV DNAemia than in LTRs with DNAemia. Frequencies of CD8+ CD69+ T cells concurrently expressing CD107a, IFN-γ, and TNF-α were significantly greater in LTRs with and without EBV DNAemia than in HCs. Finally, BZLF1 induced significantly higher frequencies of CD8+ CD69+ T cells expressing CD107a and IFN-γ in LTRs without EBV DNAemia when compared with EBNA3B. Frequency of more differentiated CD56dim CD16pos NK cells was significantly decreased in LTRs with EBV DNAemia and PTLD compared with HCs. In conclusion, we noted the presence of significant changes in circulating cellular immune responses to EBV in adult LTRs.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Division of Pulmonary and Critical Care, Duke University,
Durham, NC, USA
| | - Joshua E Messinger
- Department of Molecular Genetics and Microbiology, Duke
University School of Medicine, Durham, NC, 27710
| | - Erika J Bush
- Division of Pulmonary and Critical Care, Duke University,
Durham, NC, USA
| | | | | | - Scott M Palmer
- Division of Pulmonary and Critical Care, Duke University,
Durham, NC, USA
| | | | - Laurie D Snyder
- Division of Pulmonary and Critical Care, Duke University,
Durham, NC, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke
University School of Medicine, Durham, NC, 27710
| |
Collapse
|
44
|
Smith C, Khanna R. Adoptive T-cell therapy targeting Epstein-Barr virus as a treatment for multiple sclerosis. Clin Transl Immunology 2023; 12:e1444. [PMID: 36960148 PMCID: PMC10028422 DOI: 10.1002/cti2.1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Emergence of a definitive link between Epstein-Barr virus (EBV) and multiple sclerosis has provided an impetus to develop immune-based therapies to target EBV-infected B cells. Initial studies with autologous EBV-specific T-cell therapy demonstrated that this therapy is safe with minimal side effects and more importantly multiple patients showed both symptomatic and objective neurological improvements including improved quality of life, reduction of fatigue and reduced intrathecal IgG production. These observations have been successfully extended to an 'off-the-shelf' allogeneic EBV-specific T-cell therapy manufactured using peripheral blood lymphocytes of healthy seropositive individuals. This adoptive immunotherapy has also been shown to be safe with encouraging clinical responses. Allogeneic EBV T-cell therapy overcomes some of the limitations of autologous therapy and can be rapidly delivered to patients with improved therapeutic potential.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
45
|
Mestiri S, Merhi M, Inchakalody VP, Taib N, Smatti MK, Ahmad F, Raza A, Ali FH, Hydrose S, Fernandes Q, Ansari AW, Sahir F, Al-Zaidan L, Jalis M, Ghoul M, Allahverdi N, Al Homsi MU, Uddin S, Jeremijenko AM, Nimir M, Abu-Raddad LJ, Abid FB, Zaqout A, Alfheid SR, Saqr HMH, Omrani AS, Hssain AA, Al Maslamani M, Yassine HM, Dermime S. Persistence of spike-specific immune responses in BNT162b2-vaccinated donors and generation of rapid ex-vivo T cells expansion protocol for adoptive immunotherapy: A pilot study. Front Immunol 2023; 14:1061255. [PMID: 36817441 PMCID: PMC9933868 DOI: 10.3389/fimmu.2023.1061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. METHODS Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. RESULTS AND DISCUSSION Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese P. Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maria K. Smatti
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fatma H. Ali
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Munir Jalis
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mokhtar Ghoul
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Niloofar Allahverdi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed U. Al Homsi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Mai Nimir
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Fatma Ben Abid
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Ali S. Omrani
- College of Medicine, Qatar University, Doha, Qatar
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | | | - Hadi M. Yassine
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
46
|
Rzepka M, Depka D, Gospodarek-Komkowska E, Bogiel T. Diagnostic Value of Whole-Blood and Plasma Samples in Epstein-Barr Virus Infections. Diagnostics (Basel) 2023; 13:diagnostics13030476. [PMID: 36766581 PMCID: PMC9914079 DOI: 10.3390/diagnostics13030476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus classified by the World Health Organization as a class 1 carcinogen. Post-transplant lymphoproliferative disorders are believed to be strongly related to an EBV infection. Monitoring of EBV DNAemia is recommended to assess the risk of reactivation of latent infection and to assess the effectiveness of therapy. Currently, various types of clinical specimens are used for this purpose. The aim of the study was to assess a reliable method of EBV viral load investigation depending on the clinical material used: whole blood or plasma samples. We found that of 134 EBV-DNA-positive whole-blood samples derived from 51 patients (mostly hemato-oncology or post-transplantation), only 43 (32.1%) were plasma-positive. Of these, 37 (86.0%) had lower plasma DNAemia compared to the corresponding whole-blood samples. We conclude that whole-blood samples have a higher sensitivity than plasma samples in EBV DNA detection. The clinical utility of the tests is unclear, but our results suggest that either whole blood or plasma should be used consistently for EBV viral load monitoring.
Collapse
Affiliation(s)
- Mateusz Rzepka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
- Correspondence: (M.R.); (T.B.); Tel.: +48-52-585-44-80 (M.R.)
| | - Dagmara Depka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
- Correspondence: (M.R.); (T.B.); Tel.: +48-52-585-44-80 (M.R.)
| |
Collapse
|
47
|
Zhang Y, Huang C, Zhang H, Duan Z, Liu Q, Li J, Zong Q, Wei Y, Liu F, Duan W, Chen L, Zhou Q, Wang Q. Characteristics of immunological events in Epstein-Barr virus infection in children with infectious mononucleosis. Front Pediatr 2023; 11:1060053. [PMID: 36846163 PMCID: PMC9949895 DOI: 10.3389/fped.2023.1060053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUNDS & AIMS Epstein-Barr virus (EBV) infection occurs commonly in children and may cause acute infectious mononucleosis (AIM) and various malignant diseases. Host immune responses are key players in the resistance to EBV infection. We here assessed the immunological events and laboratory indicators of EBV infection, as well as determined the clinical usefulness of evaluating the severity and efficacy of antiviral therapy in AIM patients. METHODS We enrolled 88 children with EBV infection. The immune environment was defined by immunological events such as frequencies of lymphocyte subsets, phenotypes of T cells, and their ability to secrete cytokines, and so on. This environment was analyzed in EBV-infected children with different viral loads and in children in different phases of infectious mononucleosis (IM) from disease onset to convalescence. RESULTS Children with AIM had higher frequencies of CD3+ T and CD8+ T cells, but lower frequencies of CD4+ T cells and CD19+ B cells. In these children, the expression of CD62L was lower and that of CTLA-4 and PD-1 was higher on T cells. EBV exposure induced granzyme B expression, but reduced IFN-γ secretion, by CD8+ T cells, whereas NK cells exhibited reduced granzyme B expression and increased IFN-γ secretion. The frequency of CD8+ T cells was positively correlated with the EBV DNA load, whereas the frequencies of CD4+ T cells and B cells were negatively correlated. During the convalescent phase of IM, CD8+ T cell frequency and CD62L expression on T cells were restored. Moreover, patient serum levels of IL-4, IL-6, IL-10, and IFN-γ were considerably lower throughout the convalescent phase than throughout the acute phase. CONCLUSION Robust expansion of CD8+ T cells, accompanied by CD62L downregulation, PD-1 and CTLA-4 upregulation on T cells, enhanced granzyme B production, and impaired IFN-γ secretion, is a typical characteristic of immunological events in children with AIM. Noncytolytic and cytolytic effector functions of CD8+ T cells are regulated in an oscillatory manner. Furthermore, the AST level, number of CD8+ T cells, and CD62L expression on T cells may act as markers related to IM severity and the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Yunyun Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chengrong Huang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jianfei Li
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiyin Zong
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yu Wei
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Futing Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wanlu Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
49
|
Post-Transplant Lymphoproliferative Disease (PTLD) after Allogeneic Hematopoietic Stem Cell Transplantation: Biology and Treatment Options. J Clin Med 2022; 11:jcm11247542. [PMID: 36556158 PMCID: PMC9784583 DOI: 10.3390/jcm11247542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Post-transplant lymphoproliferative disease (PTLD) is a serious complication occurring as a consequence of immunosuppression in the setting of allogeneic hematopoietic stem cell transplantation (alloHSCT) or solid organ transplantation (SOT). The majority of PTLD arises from B-cells, and Epstein-Barr virus (EBV) infection is present in 60-80% of the cases, revealing the central role played by the latent infection in the pathogenesis of the disease. Therefore, EBV serological status is considered the most important risk factor associated with PTLDs, together with the depth of T-cell immunosuppression pre- and post-transplant. However, despite the advances in pathogenesis understanding and the introduction of novel treatment options, PTLD arising after alloHSCT remains a particularly challenging disease, and there is a need for consensus on how to treat rituximab-refractory cases. This review aims to explore the pathogenesis, risk factors, and treatment options of PTLD in the alloHSCT setting, finally focusing on adoptive immunotherapy options, namely EBV-specific cytotoxic T-lymphocytes (EBV-CTL) and chimeric antigen receptor T-cells (CAR T).
Collapse
|
50
|
Fukuzawa S, Yamagata K, Terada K, Uchida F, Ishibashi-Kanno N, Bukawa H. Age Related Immunosenescence Epstein-Barr Virus-positive Mucocutaneous Ulcer of the Palate Mimicking Medication-related Osteonecrosis of the Jaw. Indian J Otolaryngol Head Neck Surg 2022; 74:4593-4597. [PMID: 36742844 PMCID: PMC9895354 DOI: 10.1007/s12070-021-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) -positive mucocutaneous ulcer (EBVMCU) was first described as a lymphoproliferative disorder in 2010. In recent years, EBVMCU has been reported in the field of oral surgery. On the other hand, medication-related osteonecrosis of the jaw (MRONJ) is an osteomyelitis that occurs in patients receiving antiresorptive agents including bisphosphonates (BP) and/or denosumab developing with bacterial infections such as dental diseases and mucositis. MRONJ caused by EBVMCU in the elderly has not been reported. Here, we report a rare case of MRONJ caused by EBVMCU in the elderly. The patient, an 82-year-old woman, had received BP for more than 2 years. An ulcerative lesion was found in the palatal mucosa; biopsy performed from the site confirmed the diagnosis of EBVMCU. At follow-up, the lesion disappeared spontaneously. At the 6-month follow-up, bone formation was observed at the site of the lesion, and the sequestrum was removed. At the 12-month follow-up healing of the EBVMCU region was seen indicating a good prognosis.
Collapse
Affiliation(s)
- Satoshi Fukuzawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Kazuhiro Terada
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Naomi Ishibashi-Kanno
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| |
Collapse
|