1
|
Hossain S, Azam S, Montaha S, Karim A, Chowa SS, Mondol C, Zahid Hasan M, Jonkman M. Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model. Heliyon 2023; 9:e21369. [PMID: 37885728 PMCID: PMC10598544 DOI: 10.1016/j.heliyon.2023.e21369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Breast cancer stands as the second most deadly form of cancer among women worldwide. Early diagnosis and treatment can significantly mitigate mortality rates. Purpose The study aims to classify breast ultrasound images into benign and malignant tumors. This approach involves segmenting the breast's region of interest (ROI) employing an optimized UNet architecture and classifying the ROIs through an optimized shallow CNN model utilizing an ablation study. Method Several image processing techniques are utilized to improve image quality by removing text, artifacts, and speckle noise, and statistical analysis is done to check the enhanced image quality is satisfactory. With the processed dataset, the segmentation of breast tumor ROI is carried out, optimizing the UNet model through an ablation study where the architectural configuration and hyperparameters are altered. After obtaining the tumor ROIs from the fine-tuned UNet model (RKO-UNet), an optimized CNN model is employed to classify the tumor into benign and malignant classes. To enhance the CNN model's performance, an ablation study is conducted, coupled with the integration of an attention unit. The model's performance is further assessed by classifying breast cancer with mammogram images. Result The proposed classification model (RKONet-13) results in an accuracy of 98.41 %. The performance of the proposed model is further compared with five transfer learning models for both pre-segmented and post-segmented datasets. K-fold cross-validation is done to assess the proposed RKONet-13 model's performance stability. Furthermore, the performance of the proposed model is compared with previous literature, where the proposed model outperforms existing methods, demonstrating its effectiveness in breast cancer diagnosis. Lastly, the model demonstrates its robustness for breast cancer classification, delivering an exceptional performance of 96.21 % on a mammogram dataset. Conclusion The efficacy of this study relies on image pre-processing, segmentation with hybrid attention UNet, and classification with fine-tuned robust CNN model. This comprehensive approach aims to determine an effective technique for detecting breast cancer within ultrasound images.
Collapse
Affiliation(s)
- Shahed Hossain
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| | - Sidratul Montaha
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Asif Karim
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| | - Sadia Sultana Chowa
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Chaity Mondol
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Md Zahid Hasan
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mirjam Jonkman
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| |
Collapse
|
2
|
Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, Mickus A, Damaševičius R. Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. SENSORS 2022; 22:s22030807. [PMID: 35161552 PMCID: PMC8840464 DOI: 10.3390/s22030807] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
After lung cancer, breast cancer is the second leading cause of death in women. If breast cancer is detected early, mortality rates in women can be reduced. Because manual breast cancer diagnosis takes a long time, an automated system is required for early cancer detection. This paper proposes a new framework for breast cancer classification from ultrasound images that employs deep learning and the fusion of the best selected features. The proposed framework is divided into five major steps: (i) data augmentation is performed to increase the size of the original dataset for better learning of Convolutional Neural Network (CNN) models; (ii) a pre-trained DarkNet-53 model is considered and the output layer is modified based on the augmented dataset classes; (iii) the modified model is trained using transfer learning and features are extracted from the global average pooling layer; (iv) the best features are selected using two improved optimization algorithms known as reformed differential evaluation (RDE) and reformed gray wolf (RGW); and (v) the best selected features are fused using a new probability-based serial approach and classified using machine learning algorithms. The experiment was conducted on an augmented Breast Ultrasound Images (BUSI) dataset, and the best accuracy was 99.1%. When compared with recent techniques, the proposed framework outperforms them.
Collapse
Affiliation(s)
- Kiran Jabeen
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj 11942, Saudi Arabia;
| | - Yu-Dong Zhang
- Department of Informatics, University of Leicester, Leicester LE1 7RH, UK;
| | - Ameer Hamza
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Artūras Mickus
- Department of Applied Informatics, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
3
|
Shen Y, Shamout FE, Oliver JR, Witowski J, Kannan K, Park J, Wu N, Huddleston C, Wolfson S, Millet A, Ehrenpreis R, Awal D, Tyma C, Samreen N, Gao Y, Chhor C, Gandhi S, Lee C, Kumari-Subaiya S, Leonard C, Mohammed R, Moczulski C, Altabet J, Babb J, Lewin A, Reig B, Moy L, Heacock L, Geras KJ. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat Commun 2021; 12:5645. [PMID: 34561440 PMCID: PMC8463596 DOI: 10.1038/s41467-021-26023-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis.
Collapse
Affiliation(s)
- Yiqiu Shen
- grid.137628.90000 0004 1936 8753Center for Data Science, New York University, New York, NY USA
| | - Farah E. Shamout
- grid.440573.1Engineering Division, NYU Abu Dhabi, Abu Dhabi, UAE
| | - Jamie R. Oliver
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Jan Witowski
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Kawshik Kannan
- grid.482020.c0000 0001 1089 179XDepartment of Computer Science, Courant Institute, New York University, New York, NY USA
| | - Jungkyu Park
- grid.137628.90000 0004 1936 8753Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY USA
| | - Nan Wu
- grid.137628.90000 0004 1936 8753Center for Data Science, New York University, New York, NY USA
| | - Connor Huddleston
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Stacey Wolfson
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Alexandra Millet
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Robin Ehrenpreis
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Divya Awal
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Cathy Tyma
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Naziya Samreen
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Yiming Gao
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Chloe Chhor
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Stacey Gandhi
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Cindy Lee
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Sheila Kumari-Subaiya
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Cindy Leonard
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Reyhan Mohammed
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Christopher Moczulski
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Jaime Altabet
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - James Babb
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Alana Lewin
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Beatriu Reig
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Linda Moy
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY USA
| | - Laura Heacock
- grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Krzysztof J. Geras
- grid.137628.90000 0004 1936 8753Center for Data Science, New York University, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Radiology, NYU Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY USA
| |
Collapse
|
4
|
Caballo M, Pangallo DR, Sanderink W, Hernandez AM, Lyu SH, Molinari F, Boone JM, Mann RM, Sechopoulos I. Multi-marker quantitative radiomics for mass characterization in dedicated breast CT imaging. Med Phys 2020; 48:313-328. [PMID: 33232521 PMCID: PMC7898616 DOI: 10.1002/mp.14610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop and evaluate the diagnostic performance of an algorithm for multi‐marker radiomic‐based classification of breast masses in dedicated breast computed tomography (bCT) images. Methods Over 1000 radiomic descriptors aimed at quantifying mass and border heterogeneity, morphology, and margin sharpness were developed and implemented. These included well‐established texture and shape feature descriptors, which were supplemented with additional approaches for contour irregularity quantification, spicule and lobe detection, characterization of degree of infiltration, and differences in peritumoral compartments. All descriptors were extracted from a training set of 202 bCT masses (133 benign and 69 malignant), and their individual diagnostic performance was investigated in terms of area under the receiver operating characteristics (ROC) curve (AUC) of single‐feature‐based linear discriminant analysis (LDA) classifiers. Subsequently, the most relevant descriptors were selected through a multiple‐step feature selection process (including stability analysis, statistical significance, evaluation of feature interaction, and dimensionality reduction), and used to develop a final LDA radiomic model for classification of benign and malignant masses, which was then tested on an independent test set of 82 cases (45 benign and 37 malignant). Results The majority of the individual radiomic descriptors showed, on the training set, an AUC value deriving from a linear decision boundary higher than 0.65, with the lower limit of the associated 95% confidence interval (C.I.) not overlapping with random chance (AUC = 0.5). The final LDA radiomic model resulted in a test set AUC of 0.90 (95% C.I. 0.80–0.96). Conclusions The proposed multi‐marker radiomic approach achieved high diagnostic accuracy in bCT mass classification, using a radiomic signature based on different feature types. While future studies with larger datasets are needed to further validate these results, quantitative radiomics applied to bCT shows potential to improve the breast cancer diagnosis pipeline.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Domenico R Pangallo
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Biolab, Department of Electronics and Telecommunication, Politecnico di Torino, Torino, 10129, Italy
| | - Wendelien Sanderink
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Andrew M Hernandez
- Department of Radiology, University of California Davis, Sacramento, CA, 95817, USA
| | - Su Hyun Lyu
- Department of Biomedical Engineering, University of California Davis, Sacramento, CA, 95817, USA
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecommunication, Politecnico di Torino, Torino, 10129, Italy
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, CA, 95817, USA.,Department of Biomedical Engineering, University of California Davis, Sacramento, CA, 95817, USA
| | - Ritse M Mann
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Dutch Expert Center for Screening (LRCB), PO Box 6873, Nijmegen, 6503 GJ, The Netherlands
| |
Collapse
|
5
|
Wu GG, Zhou LQ, Xu JW, Wang JY, Wei Q, Deng YB, Cui XW, Dietrich CF. Artificial intelligence in breast ultrasound. World J Radiol 2019; 11:19-26. [PMID: 30858931 PMCID: PMC6403465 DOI: 10.4329/wjr.v11.i2.19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is gaining extensive attention for its excellent performance in image-recognition tasks and increasingly applied in breast ultrasound. AI can conduct a quantitative assessment by recognizing imaging information automatically and make more accurate and reproductive imaging diagnosis. Breast cancer is the most commonly diagnosed cancer in women, severely threatening women’s health, the early screening of which is closely related to the prognosis of patients. Therefore, utilization of AI in breast cancer screening and detection is of great significance, which can not only save time for radiologists, but also make up for experience and skill deficiency on some beginners. This article illustrates the basic technical knowledge regarding AI in breast ultrasound, including early machine learning algorithms and deep learning algorithms, and their application in the differential diagnosis of benign and malignant masses. At last, we talk about the future perspectives of AI in breast ultrasound.
Collapse
Affiliation(s)
- Ge-Ge Wu
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Qiang Zhou
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jian-Wei Xu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jia-Yu Wang
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qi Wei
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - You-Bin Deng
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin-Wu Cui
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Christoph F Dietrich
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Medical Clinic 2, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Würzburg 97980, Germany
| |
Collapse
|
6
|
Summers SM, Chin EJ, Long BJ, Grisell RD, Knight JG, Grathwohl KW, Ritter JL, Morgan JD, Salinas J, Blackbourne LH. Computerized Diagnostic Assistant for the Automatic Detection of Pneumothorax on Ultrasound: A Pilot Study. West J Emerg Med 2016; 17:209-15. [PMID: 26973754 PMCID: PMC4786248 DOI: 10.5811/westjem.2016.1.28087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Bedside thoracic ultrasound (US) can rapidly diagnose pneumothorax (PTX) with improved accuracy over the physical examination and without the need for chest radiography (CXR); however, US is highly operator dependent. A computerized diagnostic assistant was developed by the United States Army Institute of Surgical Research to detect PTX on standard thoracic US images. This computer algorithm is designed to automatically detect sonographic signs of PTX by systematically analyzing B-mode US video clips for pleural sliding and M-mode still images for the seashore sign. This was a pilot study to estimate the diagnostic accuracy of the PTX detection computer algorithm when compared to an expert panel of US trained physicians. METHODS This was a retrospective study using archived thoracic US obtained on adult patients presenting to the emergency department (ED) between 5/23/2011 and 8/6/2014. Emergency medicine residents, fellows, attending physicians, physician assistants, and medical students performed the US examinations and stored the images in the picture archive and communications system (PACS). The PACS was queried for all ED bedside US examinations with reported positive PTX during the study period along with a random sample of negatives. The computer algorithm then interpreted the images, and we compared the results to an independent, blinded expert panel of three physicians, each with experience reviewing over 10,000 US examinations. RESULTS Query of the PACS system revealed 146 bedside thoracic US examinations for analysis. Thirteen examinations were indeterminate and were excluded. There were 79 true negatives, 33 true positives, 9 false negatives, and 12 false positives. The test characteristics of the algorithm when compared to the expert panel were sensitivity 79% (95 % CI [63-89]) and specificity 87% (95% CI [77-93]). For the 20 images scored as highest quality by the expert panel, the algorithm demonstrated 100% sensitivity (95% CI [56-100]) and 92% specificity (95% CI [62-100]). CONCLUSION This novel computer algorithm has potential to aid clinicians with the identification of the sonographic signs of PTX in the absence of expert physician sonographers. Further refinement and training of the algorithm is still needed, along with prospective validation, before it can be utilized in clinical practice.
Collapse
Affiliation(s)
- Shane M Summers
- Brooke Army Medical Center, Department of Emergency Medicine, San Antonio, Texas
| | - Eric J Chin
- Brooke Army Medical Center, Department of Emergency Medicine, San Antonio, Texas
| | - Brit J Long
- Brooke Army Medical Center, Department of Emergency Medicine, San Antonio, Texas
| | - Ronald D Grisell
- United States Army Institute of Surgical Research, San Antonio, Texas
| | - John G Knight
- Brooke Army Medical Center, Department of Emergency Medicine, San Antonio, Texas
| | - Kurt W Grathwohl
- Brooke Army Medical Center, Department of Pulmonary/Critical Care, San Antonio, Texas
| | - John L Ritter
- Brooke Army Medical Center, Department of Radiology, San Antonio, Texas
| | - Jeffrey D Morgan
- Brooke Army Medical Center, Department of Emergency Medicine, San Antonio, Texas
| | - Jose Salinas
- United States Army Institute of Surgical Research, San Antonio, Texas
| | | |
Collapse
|