1
|
Jiang B, Yu Y, Wan J, Xu R, Ma J, Tian Y, Hu L, Wu P, Hu C, Zhu M. The Use of Diffusion Tensor Imaging in the Identification of Acute Rejection and Chronic Allograft Nephropathy After Renal Transplantation. J Magn Reson Imaging 2024; 59:2082-2088. [PMID: 37807929 DOI: 10.1002/jmri.29042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Identifying the cause of renal allograft dysfunction is important for the clinical management of kidney transplant recipients. PURPOSE To evaluate the diagnostic efficiency of diffusion tensor imaging (DTI) for identifying allografts with acute rejection (AR) and chronic allograft nephropathy (CAN). STUDY TYPE Prospective. SUBJECTS Seventy-seven renal transplant patients (aged 42.5 ± 9.5 years), including 29 patients with well-functioning stable allografts (Control group), 25 patients diagnosed with acute rejection (AR group), and 23 patients diagnosed with chronic allograft nephropathy (CAN group). FIELD STRENGTH/SEQUENCE 1.5 T/T2-weighted imaging and DTI. ASSESSMENT The serum creatinine, proteinuria, pathologic results, and fractional anisotropy (FA) values were obtained and compared among the three groups. STATISTICAL TEST One-way analysis of variance; correlation analysis; independent-sample t-test; intraclass correlation coefficients and receiver operating characteristic curves. Statistical significance was set to a P-value <0.05. RESULTS The AR and CAN groups presented with significantly elevated serum creatinine as compared with the Control group (191.8 ± 181.0 and 163.1 ± 115.8 μmol/L vs. 82.3 ± 20.9 μmol/L). FA decreased in AR group (cortical/medullary: 0.13 ± 0.02/0.31 ± 0.07) and CAN group (cortical/medullary: 0.11 ± 0.02/0.27 ± 0.06), compared with the Control group (cortical/medullary: 0.15 ± 0.02/0.35 ± 0.05). Cortical FA in the AR group was higher than in the CAN group. The area under the curve (AUC) for identifying AR from normal allografts was 0.756 and 0.744 by cortical FA and medullary FA, respectively. The AUC of cortical FA and medullary FA for differentiating CAN from normal allografts was 0.907 and 0.830, respectively. The AUC of cortical FA and medullary FA for distinguishing AR and CAN from normal allografts was 0.828 and 0.785, respectively. Cortical FA was able to distinguish between AR and CAN with an AUC of 0.728. DATA CONCLUSION DTI was able to detect patients with dysfunctional allografts. Cortical FA can further distinguish between AR and CAN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Wan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yangyang Tian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Wu
- Philips Healthcare, Shanghai, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhu Q, Sun J, Ye J, Zhu W, Chen W. Comparison of conventional diffusion-weighted imaging and intravoxel incoherent motion in differentiating between chromophobe renal cell carcinoma and renal oncocytoma: a preliminary study. Br J Radiol 2024; 97:1146-1152. [PMID: 38688580 PMCID: PMC11135799 DOI: 10.1093/bjr/tqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE Quantitative comparison of the diagnostic efficacy of conventional diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) in differentiating between chromophobe renal cell carcinoma (ChRCC) from renal oncocytoma (RO). METHODS A total of 48 patients with renal tumours who had undergone DWI and IVIM were divided into two groups-ChRCC (n = 28) and RO (n = 20) groups, and the apparent diffusion coefficient (ADC), true diffusivity (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) and their diagnostic efficacy were compared between the two groups. RESULTS The D* values were higher in the ChRCCs group compared to the RO groups (0.019 ± 0.003 mm2/s vs 0.008 ± 0.002 mm2/s, P < .05). Moreover, the ADC, D and f values were higher in ROs compared to ChRCCs (0.61 ± 0.08 × 10-3 mm2/s vs 0.51 ± 0.06 × 10-3 mm2/s, 1.02 ± 0.15 × 10-3 mm2/s vs 0.86 ± 0.07 × 10-3 mm2/s, 0.41 ± 0.05 vs 0.28 ± 0.02, P < .05). The areas of the ADC, D, D* and f values under the ROC curves in differentiating ChRCCs from ROs were 0.713, 0.839, 0.856 and 0.906, respectively. The cut-off values of ADC, D, D* and f were 0.54, 0.91, 0.013 and 0.31, respectively. The AUC, sensitivity, specificity and accuracy of the f values were 0.906, 89.3%, 80.0% and 89.6%, respectively. For pairwise comparisons of ROC curves and diagnostic efficacy, IVIM parameters, that is, D, D* and f offered better diagnostic accuracy than ADC in differentiating ChRCCs from ROs (P = .013, .016, and .008) with f having the highest diagnostic accuracy. CONCLUSION IVIM parameters presented better performance than ADC in differentiating ChRCCs from ROs. ADVANCES IN KNOWLEDGE (1) D* values of ChRCCs were higher, while ADC, D and f values were lower than those of RO tumours. (2) f values had the highest diagnostic efficacy in differentiating ChRCC from RO. (3) IVIM parameters, that is, D, D* and f offered better diagnostic accuracy than ADC in differentiating ChRCC from RO (P=.013, .016, and .008).
Collapse
Affiliation(s)
- Qingqiang Zhu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jun Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jing Ye
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenrong Zhu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenxin Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
3
|
Makino Y, Ohno N, Miyati T, Hori N, Matsuura Y, Kobayashi S, Gabata T. Tri- and bi-exponential diffusion analyses of the kidney: effect of respiratory-controlled acquisition on diffusion parameters. Radiol Phys Technol 2023; 16:478-487. [PMID: 37523080 DOI: 10.1007/s12194-023-00734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study examined whether respiratory-controlled acquisition influences diffusion parameters obtained with intravoxel incoherent motion (IVIM) analysis using tri-exponential and bi-exponential models. Ten healthy volunteers were examined on a 3.0 T MRI system to obtain coronal diffusion-weighted images of both kidneys. The participants were scanned twice using respiratory-triggering (RT) and free-breathing (FB) acquisition to assess the repeatability of the measurements. We determined mean signal intensities in the renal cortex at each b value. Then, perfusion-related diffusion coefficient (Dp), fast-free diffusion coefficient (Df), slow-restricted diffusion coefficient (Ds), and their corresponding fractions (Fp, Ff, and Fs, respectively) were calculated using tri-exponential function. Moreover, perfusion-related diffusion coefficient (D*), the fraction (F), and perfusion-independent diffusion coefficient (D) were calculated using bi-exponential function. Normalized root-mean-square errors for the tri- and bi-exponential analyses (nRMSEtri and nRMSEbi, respectively) were determined to assess the deviation of the fitted to measured data, i.e., the fitting accuracy. Additionally, repeatability coefficients (RCs) were calculated from Bland-Altman plots to evaluate the repeatability of each diffusion parameter. These values were compared between the RT and FB groups. Dp and D* in the RT group were significantly lower than those in the FB group (P < 0.05). In addition, the RT group showed significantly lower nRMSEtri and nRMSEbi values than those in the FB group (P < 0.05). Moreover, Dp, Ds, Fs, and D* at RT showed lower RC values than those at FB. Respiratory-controlled acquisition affects perfusion-related diffusion parameters of the kidney obtained using tri-exponential and bi-exponential analyses.
Collapse
Affiliation(s)
- Yuki Makino
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
| | - Naoki Ohno
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan.
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Naoki Hori
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
| | - Yukihiro Matsuura
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
| | - Satoshi Kobayashi
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
- Department of Radiology, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 9208641, Japan
| |
Collapse
|
4
|
Grzywińska M, Świętoń D, Sabisz A, Piskunowicz M. Functional Magnetic Resonance Urography in Children-Tips and Pitfalls. Diagnostics (Basel) 2023; 13:diagnostics13101786. [PMID: 37238270 DOI: 10.3390/diagnostics13101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
MR urography can be an alternative to other imaging methods of the urinary tract in children. However, this examination may present technical problems influencing further results. Special attention must be paid to the parameters of dynamic sequences to obtain valuable data for further functional analysis. The analysis of methodology for renal function assessment using 3T magnetic resonance in children. A retrospective analysis of MR urography studies was performed in a group of 91 patients. Particular attention was paid to the acquisition parameters of the 3D-Thrive dynamic with contrast medium administration as a basic urography sequence. The authors have evaluated images qualitatively and compared contrast-to-noise ratio (CNR), curves smoothness, and quality of baseline (evaluation signal noise ratio) in every dynamic in each patient in every protocol used in our institution. Quality analysis of the image (ICC = 0.877, p < 0.001) was improved so that we have a statistically significant difference in image quality between protocols (χ2(3) = 20.134, p < 0.001). The results obtained for SNR in the medulla and cortex show that there was a statistically significant difference in SNR in the cortex (χ2(3) = 9.060, p = 0.029). Therefore, the obtained results show that with the newer protocol, we obtain lower values of standard deviation for TTP in the aorta (in ChopfMRU: first protocol SD = 14.560 vs. fourth protocol SD = 5.599; in IntelliSpace Portal: first protocol SD = 15.241 vs. fourth protocol SD = 5.506). Magnetic resonance urography is a promising technique with a few challenges that arise and need to be overcome. New technical opportunities should be introduced for everyday practice to improve MRU results.
Collapse
Affiliation(s)
- Małgorzata Grzywińska
- Applied Cognitive Neuroscience Lab., Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dominik Świętoń
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agnieszka Sabisz
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Maciej Piskunowicz
- 1st Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
5
|
Li X, Chen R, Xu X, Xiao Z, Wei X, Yang Y, Zhang Z, Wu Z, Zhu Y, Liu H. The comparison of diffusion tensor imaging in human hearts between 1.5 T and 3.0 T. BMC Med Imaging 2023; 23:14. [PMID: 36698134 PMCID: PMC9875455 DOI: 10.1186/s12880-023-00969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim was to compare the diffusion tensor imaging (DTI) indices derived from human hearts between 1.5 T and 3.0 T scanners. Additionally, the reproducibility of DTI indices was assessed between 1.5 T and 3.0 T scanners. METHODS A total of 18 ex-vivo hearts were derived from patients who underwent heart transplantation. The DTI schemes were performed at 1.5 T and 3.0 T, respectively. Then, the same slices from each ex-vivo heart were selected for image analysis. The student's t-test or Wilcoxon-rank test was used to compare the statistical differences. The agreement of DTI indices was mainly reported as the interclass correlation coefficient (ICC). RESULTS No significant differences (all P > 0.05) were found in the DTI indices between 1.5 T and 3.0 T scanners. Interestingly, the ICC of all DTI indices was relatively lower with a low b-value. The reproducibility of the helix angle (HA) was relatively lower when compared to the other DTI indices. CONCLUSION The DTI indices of ex-vivo human hearts between 1.5 T and 3.0 T scanners had no significant differences. The consistency of DTI indices needed caution using a low b-value with different field strengths, and the relatively low reproducibility of HA should be considered.
Collapse
Affiliation(s)
- Xiaodan Li
- grid.284723.80000 0000 8877 7471Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China
| | - Rui Chen
- grid.284723.80000 0000 8877 7471Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, Guangdong Province China
| | - Xi Xu
- grid.9227.e0000000119573309Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China ,grid.410726.60000 0004 1797 8419Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zebin Xiao
- grid.284723.80000 0000 8877 7471Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China
| | - Xiaoyu Wei
- grid.284723.80000 0000 8877 7471Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, Guangdong Province China
| | - Yuelong Yang
- grid.284723.80000 0000 8877 7471Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China
| | | | - Zhigang Wu
- Philips Healthcare China, Guangzhou, China
| | - Yanjie Zhu
- grid.9227.e0000000119573309Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China ,grid.410726.60000 0004 1797 8419Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hui Liu
- grid.284723.80000 0000 8877 7471Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, Guangdong Province China ,grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
With 3 Types of Respiratory Acquisition: 3.0 T Respiratory Triggered Acquisition Can Obtain Higher Quality DWI Images of the Upper Abdomen. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9579145. [PMID: 35854769 PMCID: PMC9288320 DOI: 10.1155/2022/9579145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Objective To compare the effects of 1.5 T and 3.0 T upper abdominal magnetic resonance diffusion-weighted imaging (DWI) under three acquisition techniques of breath holding, breath triggering, and free breathing, so as to provide a reference for the usage of upper abdominal DWI scanning. Methods Twenty-one healthy subjects were selected from social volunteers and underwent routine magnetic resonance imaging (MRI) and DWI on 1.5 T and 3.0 T, respectively. DWI included three acquisition methods: breath triggering, breath holding, and free breathing, and b values were 100 and 800. The DWI image artifacts, image quality, apparent diffusion coefficient (ADC), and the signal-to-noise ratio (SNR) obtained through the three acquisition methods were compared. Results The 1.5 T free-breathing DWI image quality was the best, while the 3.0 T had the best breath-triggered DWI image quality. The 3.0 T breath-triggered DWI image quality was better than the 1.5 T free-breathing DWI image (P=0.012), and the SNR of free-breathing DWI was the highest. Between the two field intensities, the SNR of the liver in the 3.0 T group was much lower than that in the 1.5 T group, and obvious differences were not observed in ADC values of normal liver, gallbladder, kidney, spleen, and pancreas. Conclusion 3.0 T respiratory-triggered acquisition can obtain higher quality DWI images. But in the case of only 1.5 T field strength, free-breathing acquisition of DWI images should be selected.
Collapse
|
7
|
Zhang H, Wang P, Shi D, Yao X, Li Y, Liu X, Sun Y, Ding J, Wang S, Wang G, Ren K. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 2022; 32:2988-2997. [PMID: 35031840 DOI: 10.1007/s00330-021-08415-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To prospectively investigate the capability of intravoxel incoherent motion (IVIM) and conventional diffusion tensor imaging (DTI) to identify early kidney function injury in type 2 diabetes. METHODS Forty-one diabetes patients (normoalbuminuria: n = 27; microalbuminuria: n = 14) and 28 volunteers were recruited. All participants were examined using DTI and IVIM with 3.0-T MRI. DTI parameters (mean diffusivity [MD], fractional anisotropy [FA]), and IVIM parameters (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion component fraction [f]) were measured in the renal parenchyma (cortex and medulla) by two experienced radiologists independently. Image features were compared among the groups using separate one-way analyses of variance. Diagnostic performances of various diffusion parameters for predicting diabetic renal damage were compared. RESULTS The medullary D and FA values were significantly different among the microalbuminuria subgroup, normoalbuminuria subgroup, and control group (all p < 0.001). In medulla, area under the curve (AUC) values for combined FA and D were significantly higher than single FA (AUC = 0.938, 0.769, respectively; p = 0.003), and the combined AUC of FA and D was numerically higher than that of single D (0.938 vs 0.878, p > 0.05). AUC of combined FA and D was 0.985, not significantly different from individual AUC for FA and D (AUC = 0.909 and 0.952, respectively; all p > 0.05) in differentiating the microalbuminuria subgroup from the control group. CONCLUSION IVIM-derived D and DTI-derived FA values were better than other parameters for evaluating early kidney impairment of diabetes. The single indicator FA and D performed as well as the combined diagnostic indicator in the medulla for differentiating the microalbuminuria subgroup from the control group. KEY POINTS • We speculated that early renal progression in type 2 diabetes result from restricted tubular flow and kidney tubule dysregulation may precede or at least accompany abnormal glomerular changes. • In medulla, the AUC values of FA and D and the combination of FA and D obtained by comparing the microalbuminuria subgroup with the control group were 0.909, 0.952, and 0.985, respectively. • IVIM-derived D and DTI-derived FA are effective MR biomarkers to evaluate early alterations of the renal function in patients with diabetes.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Peng Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xuedan Liu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yang Sun
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Jie Ding
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China. .,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China.
| |
Collapse
|
8
|
The role of diffusion tensor imaging of the liver in children with autoimmune hepatitis. Pol J Radiol 2021; 86:e461-e467. [PMID: 34567291 PMCID: PMC8449556 DOI: 10.5114/pjr.2021.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose To evaluate the role of diffusion tensor imaging (DTI) of the liver in children with autoimmune hepatitis (AIH). Material and methods A prospective study was done on 42 children with AIH (30 girls and 12 boys, with a mean age of 13 years) and 20 age- and sex-matched healthy control children. They underwent DTI of the liver and laboratory tests. Liver biopsy was done for the patients. The mean diffusivity (MD) and fractional anisotropy (FA) of the liver were calculated and correlated with the pathological results. Results The mean MD and FA of the liver in children with AIH were 1.42 ± 0.06 × 10-3 mm2/s and 0.37 ± 0.11; and in the control children they were 1.55 ± 0.07 × 10-3 mm2/s and 0.25 ± 0.03, respectively. The MD and FA were significantly different in the children with AIH compared to the control children (p = 0.001). The cutoff MD and FA used to differentiate patients from controls were 1.50 × 10-3 mm2/s, 0.31 with AUC of 0.919 and 0.813, sensitivity of 97.6% and 66.7%, a specificity of 80% and 70%, an accuracy of 94.2% and 67.3%, PPV of 95.3 and 90.3, and NPV of 88.9 and 33.3, respectively. There was significantly lower MD and higher FA of the liver in children with AIH type I (n = 31) than type II (n = 11) (p = 0.001), and patients with (n = 9) and without (n = 33) overlap syndrome (p = 0.005). Conclusions We concluded that DTI parameters can help to diagnose AIH, detect its phenotyping, and give clues as to the presence of associated overlap syndrome.
Collapse
|
9
|
Chebib FT, Torres VE. Assessing Risk of Rapid Progression in Autosomal Dominant Polycystic Kidney Disease and Special Considerations for Disease-Modifying Therapy. Am J Kidney Dis 2021; 78:282-292. [PMID: 33705818 DOI: 10.1053/j.ajkd.2020.12.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure, accounting for 5%-10% of cases. Predicting which patients with ADPKD will progress rapidly to kidney failure is critical to assess the risk-benefit ratio of any intervention and to consider early initiation of long-term kidney protective measures that will maximize the cumulative benefit of slowing disease progression. Surrogate prognostic biomarkers are required to predict future decline in kidney function. Clinical, genetic, environmental, epigenetic, and radiologic factors have been studied as predictors of progression to kidney failure in ADPKD. A complex interaction of these prognostic factors determines the number of kidney cysts and their growth rates, which affect total kidney volume (TKV). Age-adjusted TKV, represented by the Mayo imaging classification, estimates each patient's unique rate of kidney growth and provides the most individualized approach available clinically so far. Tolvaptan has been approved to slow disease progression in patients at risk of rapidly progressive disease. Several other disease-modifying treatments are being studied in clinical trials. Selection criteria for patients at risk of rapid progression vary widely among countries and are based on a combination of age, baseline glomerular filtration rate (GFR), GFR slope, baseline TKV, and TKV rate of growth. This review details the approach in assessing the risk of disease progression in ADPKD and identifying patients who would benefit from long-term therapy with disease-modifying agents.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN.
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
10
|
Lim RP, Lim JC, Teruel JR, Botterill E, Seah JM, Farquharson S, Ekinci EI, Sigmund EE. Geometric Distortion Correction of Renal Diffusion Tensor Imaging Using the Reversed Gradient Method. J Comput Assist Tomogr 2021; 45:218-223. [PMID: 33661149 PMCID: PMC8194095 DOI: 10.1097/rct.0000000000001124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT Renal echo planar diffusion tensor imaging (DTI) has clinical potential but suffers from geometric distortion. We evaluated feasibility of reversed gradient distortion correction in 10 diabetic patients and 6 volunteers. Renal area, apparent diffusion coefficient, fractional anisotropy, and tensor eigenvalues were measured on uncorrected and distortion-corrected DTI. Corrected DTI correlated better than uncorrected DTI (r = 0.904 vs 0.840, P = 0.002) with reference anatomic T2-weighted imaging, with no significant difference in DTI metrics.
Collapse
Affiliation(s)
- Ruth P. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jeremy C. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jose R. Teruel
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Elissa Botterill
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jas-mine Seah
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Shawna Farquharson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Elif I. Ekinci
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Eric E. Sigmund
- Department of Radiology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
11
|
Uh J, Merchant TE, Conklin HM, Ismael Y, Li Y, Han Y, Sabin ND, Babajani-Feremi A, Indelicato DJ, Hua CH. Diffusion Tensor Imaging-Based Analysis of Baseline Neurocognitive Function and Posttreatment White Matter Changes in Pediatric Patients With Craniopharyngioma Treated With Surgery and Proton Therapy. Int J Radiat Oncol Biol Phys 2021; 109:515-526. [PMID: 32898610 DOI: 10.1016/j.ijrobp.2020.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine the preirradiation baseline association of white matter integrity with neurocognitive function and to assess posttreatment changes in pediatric patients with craniopharyngioma treated with proton therapy. METHODS AND MATERIALS Ninety children and adolescents (2-20 years old) with craniopharyngioma were treated with proton therapy (54 Gy[RBE]) in a prospective therapeutic trial. Neurocognitive performance at the postoperative baseline before proton therapy and diffusion tensor imaging (DTI) data acquired at baseline and at annual follow-up were analyzed. Tract-based spatial statistics and structural connectomics were used to derive global and local white matter features from DTI. Baseline DTI features were compared for patients with average and below-average neurocognitive performance. Longitudinal DTI data were analyzed to determine the proton dose effect on white matter structures in relation to the irradiated brain volume and baseline age. RESULTS Before proton therapy, patients with below-average working memory, processing speed, verbal fluency, verbal learning, or fine motor dexterity exhibited more globally degraded white matter structures compared with their counterparts with average performance, as indicated by lower mean fractional anisotropy, decreased global efficiency, or higher modularity. Surgery, obstructive hydrocephalus, and preoperative hypothalamic involvement appeared to be related to this degradation. In local analyses, tract-based spatial statistics revealed left-lateralized associations with verbal and motor functions, which supported surgical approaches to midline tumors via the right hemisphere. The mean fractional anisotropy of the brain and the global efficiency derived from DTI increased over the 5 years after proton therapy. The rate of increase was lower with larger irradiated brain volumes and in older children. CONCLUSIONS Below-average baseline neurocognitive performance in patients with craniopharyngioma before proton therapy appeared to be related to structural degradation of white matter tracts. Posttherapy longitudinal DTI showed improving trends in global integrity and efficiency measures, particularly in children in whom a smaller brain volume was irradiated.
Collapse
Affiliation(s)
- Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather M Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yousef Ismael
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Abbas Babajani-Feremi
- Department of Pediatrics and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, and Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
12
|
Ko SF, Yip HK, Zhen YY, Hung CC, Lee CC, Huang CC, Ng SH, Chen YL, Lin JW. Renal Damages in Deoxycorticosterone Acetate-Salt Hypertensive Rats: Assessment with Diffusion Tensor Imaging and T2-mapping. Mol Imaging Biol 2021; 22:94-104. [PMID: 31065896 DOI: 10.1007/s11307-019-01364-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to investigate the feasibility of diffusion tensor imaging (DTI) and T2-mapping to assess temporal renal damage in deoxycorticosterone acetate-salt (DOCA-salt) hypertensive rats and compare the results with histopathologic and immunohistochemical findings. PROCEDURES After baseline renal magnetic resonance imaging (MRI), 24 out of 30 uninephrectomized Sprague-Dawley rats with DOCA-salt-induced hypertension were divided equally into four groups. Group 1 had renal MRI at weeks 2, 4, 6, and 8, and groups 2, 3, and 4 had MRI at weeks 2, 4, and 6, respectively. The remaining 6 rats were used as sham controls. The renal cortex and outer and inner stripes of the outer medulla were examined over time using fractional anisotropy (FA), apparent diffusion coefficient (ADC), and T2-mapping, and the results were compared with baseline values. The degree of glomerular and tubular injury, endothelial cell thickening, hyaline arteriolosclerosis, macrophage infiltration, microcyst formation, and fibrosis in different zones at different time points in the DOCA-salt rats were compared with controls. RESULTS Compared with baseline values, DOCA-salt rats demonstrated a significant decrease in renal cortical FA from week 4 to week 8 (0.244 ± 0.015 vs 0.172 ± 0.014-0.150 ± 0.016, P = 0.018-0.002), corresponding to significantly more glomerular damage, arteriolosclerosis, macrophage infiltration, and fibrosis. The DOCA-salt rats had significantly increased cortical ADC and T2 values at weeks 6 and 8 (1.778 ± 0.051 × 10-3 mm2/s vs 1.872 ± 0.058-1.917 ± 0.066 × 10-3 mm2/s; 93.7 ± 4.9 ms vs 98.0 ± 2.9-100.7 ± 4.0 ms, respectively, all P < 0.05), consistent with excessively fluid-filled microcysts (aquaporin-2+). Despite DOCA-salt rats harbored markedly increased fibrosis in outer and inner stripes of the outer medulla at weeks 6 and 8, only nonsignificant decreases in FA were observed in comparison with the controls suggesting that only limited microstructural changes were present. CONCLUSIONS Renal cortical FA is useful for the early detection and monitoring of renal damage in DOCA-salt hypertensive rats.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan.
| | - Hon-Kan Yip
- Department of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Researches in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Chung-Cheng Huang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Shu-Hang Ng
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Yi-Ling Chen
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan.,Center for Translational Researches in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Wei Lin
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Fu J, Ye J, Zhu W, Wu J, Chen W, Zhu Q. Magnetic resonance diffusion kurtosis imaging in differential diagnosis of benign and malignant renal tumors. Cancer Imaging 2021; 21:6. [PMID: 33413681 PMCID: PMC7791668 DOI: 10.1186/s40644-020-00369-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Benign and malignant renal tumors share similar some imaging findings. Methods Sixty-six patients with clear cell renal cell carcinoma (CCRCC), 13 patients with renal angiomyolipoma with minimal fat (RAMF) and 7 patients with renal oncocytoma (RO) were examined. For diffusion kurtosis imaging (DKI), respiratory triggered echo-planar imaging sequences were acquired in axial plane (3 b-values: 0, 500, 1000s/mm2). Mean Diffusivity (MD), fractional Anisotropy (FA), mean kurtosis (MK), kurtosis anisotropy (KA) and radial kurtosis (RK) were performed. Results For MD, a significant higher value was shown in CCRCC (3.08 ± 0.23) than the rest renal tumors (2.93 ± 0.30 for RO, 1.52 ± 0.24 for AML, P < 0.05). The MD values were higher for RO than for AML (2.93 ± 0.30 vs.1.52 ± 0.24, P < 0.05), while comparable MD values were found between CCRCC and RO (3.08 ± 0.23 vs. 2.93 ± 0.30, P > 0.05). For MK, KA and RK, a significant higher value was shown in AML (1.32 ± 0.16, 1.42 ± 0.23, 1.41 ± 0.29) than CCRCC (0.43 ± 0.08, 0.57 ± 0.16, 0.37 ± 0.11) and RO (0.81 ± 0.08, 0.86 ± 0.16, 0.69 ± 0.08) (P < 0.05). The MK, KA and RK values were higher for RO than for CCRCC (0.81 ± 0.08 vs. 0.43 ± 0.08, 0.86 ± 0.16 vs. 0.57 ± 0.16, 0.69 ± 0.08 vs. 0.37 ± 0.11, P < 0.05). Using MD values of 2.86 as the threshold value for differentiating CCRCC from RO and AML, the best result obtained had a sensitivity of 76.1%, specificity of 72.6%. Using MK, KA and RK values of 1.19,1.13 and 1.11 as the threshold value for differentiating AML from CCRCC and RO, the best result obtained had a sensitivity of 91.2, 86.7, 82.1%, and specificity of 86.7, 83.2, 72.8%. Conclusion DKI can be used as another noninvasive biomarker for benign and malignant renal tumors’ differential diagnosis.
Collapse
Affiliation(s)
- Jianxiong Fu
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China
| | - Jing Ye
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China
| | - Wenrong Zhu
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China
| | - Jingtao Wu
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China
| | - Wenxin Chen
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China
| | - Qingqiang Zhu
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, No 98 West Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
14
|
Gaudiano C, Clementi V, Corcioni B, Renzulli M, Mancini E, Golfieri R. Diffusion tensor imaging in renal artery stenosis: a preliminary report. Br J Radiol 2020; 93:20200101. [DOI: 10.1259/bjr.20200101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective: To investigate the diffusion properties in the kidneys affected by renal artery stenosis (RAS) using diffusion tensor imaging (DTI). Methods: In this prospective study, 35 patients with RAS and 15 patients without renal abnormalities were enrolled and examined using DTI. Cortical and medullary regions of interest (ROIs) were located to obtain the corresponding values of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA). The cortical and medullary ADC and FA were compared in the kidney affected by variable degrees of stenosis (RAS 50–75% and >75%) vs controls, using the one-way ANOVA and Student’s t-test. The Spearman correlation test was used to correlate the mean ADC and FA values in the cortex and medulla with the estimate glomerular filtration rate (eGFR). Results: For the controls, the ADC value was significantly (p = 0.03) higher in the cortex than in the medulla; the FA value was significantly (p = 0.001) higher in the medulla than in the cortex. Compared with the controls, a significant reduction in the cortical ADC was present with a RAS of 50–75% and >75% (p = 0.001 and 0.041, respectively); a significant reduction in the medullary FA was verified only for RAS >75% (p = 0.023). The Spearman correlation test did not show a statistically significant correlation between the cortical and medullary ADC and FA, and the eGFR. Conclusion: The alterations of the diffusional parameters caused by RAS can be detected by DTI and could be useful in the diagnostic evaluation of these patients. Advances in knowledge: 1. Magnetic resonance DTI could provide useful information about renal involvement in RAS. 2. Magnetic resonance DTI allows non-invasive repeatable evaluation of the renal parenchyma, without contrast media.
Collapse
Affiliation(s)
- Caterina Gaudiano
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Valeria Clementi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Elena Mancini
- Nephrology, Dialysis and Hypertension Unit, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| |
Collapse
|
15
|
Yu YM, Ni QQ, Wang ZJ, Chen ML, Zhang LJ. Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury. Korean J Radiol 2020; 20:894-908. [PMID: 31132815 PMCID: PMC6536799 DOI: 10.3348/kjr.2018.0540] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China
| | - Qian Qian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Meng Lin Chen
- Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Wang Z, Liu H, Meng H, Zhang D. Application of diffusion tensor imaging and blood oxygenation level-dependent magnetic resonance imaging to assess bilateral renal function induced by Iohexol in rabbits. BMC Nephrol 2020; 21:210. [PMID: 32493274 PMCID: PMC7268285 DOI: 10.1186/s12882-020-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) and diffusion tensor imaging (DTI) are useful methods for investigating the morphology and function of the kidneys, including revealing unilateral renal damage. Nevertheless, these techniques have not yet been applied for bilateral renal function. The aim of this study was to investigate whether the combination of DTI and BOLD could be used to examine different degrees of contrast-induced acute kidney injury (CI-AKI) in bilateral kidneys compared to standard methods such as serum creatinine (SCr) detection. Methods Forty-Two New Zealand white rabbits were divided into two groups: the experimental group and the control group. Physiological saline and iodine contrast agent (iohexol, 1.0 g iodine/kg, 1.0 ml/sec) were injected via the right renal artery. DTI and BOLD-MR data were acquired longitudinally at the baseline and 1, 24, 48, and 72 h after high-pressure syringe injection to measure the apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative transverse relaxation rate (R2*). After the MR scan at each time point, three rabbits in each group were sacrificed, and changes in SCr and hypoxia-inducible factor-1α (HIF-1α) were analyzed using histopathology and immunochemistry. Results Twenty-four hours after iohexol administration, the values of ADC and FA decreased significantly (P < 0.05), while R2* values increased (P < 0.05) in the renal cortex (CO), outer medulla (OM) and inner medulla (IM). Besides, significant negative correlations were observed among ADC, FA, and R2* in CO, OM, and IM (all P < 0.001, r = − 0.654–0.828). Conclusions DTI and BOLD can simultaneously and non-invasively assess different degrees of CI-AKI in bilateral kidneys.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Radiology, The Affiliated Hospital of BeiHua University, 12 Jiefang Street, Jilin, 132011, P.R. China
| | - Hongxu Liu
- Hospital of BeiHua University, 3999 Binjiang East Road, Jilin, 132013, P.R. China
| | - Heng Meng
- Department of Radiology, The Affiliated Hospital of BeiHua University, 12 Jiefang Street, Jilin, 132011, P.R. China.
| | - Duo Zhang
- Department of Radiology, The Affiliated Hospital of BeiHua University, 12 Jiefang Street, Jilin, 132011, P.R. China.
| |
Collapse
|
17
|
Cheng ZY, Feng YZ, Liu XL, Ye YJ, Hu JJ, Cai XR. Diffusional kurtosis imaging of kidneys in patients with hyperuricemia: initial study. Acta Radiol 2020; 61:839-847. [PMID: 31610679 DOI: 10.1177/0284185119878362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND At present, there remains a lack of a reliable indicator for monitoring renal function in patients with hyperuricemia. PURPOSE This study aimed to evaluate the feasibility of diffusion kurtosis imaging in the assessment of renal function in patients with hyperuricemia. MATERIAL AND METHODS A total of 75 male participants, including 25 with asymptomatic hyperuricemia, 25 with gouty arthritis, and 25 age-matched male healthy controls, were enrolled in this study. Diffusion kurtosis imaging data were acquired to derive axial (Ka), radial (Kr), and mean kurtosis (MK), fractional anisotropy, axial (Da), radial (Dr), and mean diffusivity (MD) for comparisons among the three groups. They were also correlated with estimated glomerular filtration rate (eGFR). RESULTS The MK values of the renal cortex and medulla and Kr value of the renal medulla in patients with asymptomatic hyperuricemia and gouty arthritis significantly increased compared with those in the controls (P < 0.05). Patients with gouty arthritis showed significant higher cortical and medullary Ka values compared with the other two groups (P < 0.05). The cortical Kr values of the asymptomatic hyperuricemia and gouty arthritis patients were significantly higher than that of the controls (P < 0.05). The medullary fractional anisotropy value showed a significant difference between the control and gouty arthritis groups (P < 0.05). No correlation was found between any diffusion kurtosis imaging parameters and eGFR value. CONCLUSION Diffusion kurtosis imaging is feasible in the assessment of the early changes of renal cortex and medulla in patients with hyperuricemia.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - You-Zhen Feng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - Xiao-Ling Liu
- Medical Imaging Center, Guangdong Provincial Hospital of Traditional Chinese Medicine Zhuhai Branch, Guangdong, PR China
| | - Yao-Jiang Ye
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Jun-Jiao Hu
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Xiang-Ran Cai
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
18
|
Adams LC, Bressem KK, Scheibl S, Nunninger M, Gentsch A, Fahlenkamp UL, Eckardt KU, Hamm B, Makowski MR. Multiparametric Assessment of Changes in Renal Tissue after Kidney Transplantation with Quantitative MR Relaxometry and Diffusion-Tensor Imaging at 3 T. J Clin Med 2020; 9:jcm9051551. [PMID: 32455558 PMCID: PMC7290480 DOI: 10.3390/jcm9051551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Magnetic resonance relaxometry (MRR) offers highly reproducible pixel-wise parametric maps of T1 and T2 relaxation times, reflecting specific tissue properties, while diffusion-tensor imaging (DTI) is a promising technique for the characterization of microstructural changes, depending on the directionality of molecular motion. Both MMR and DTI may be used for non-invasive assessment of parenchymal changes caused by kidney injury or graft dysfunction. Methods: We examined 46 patients with kidney transplantation and 16 healthy controls, using T1/T2 relaxometry and DTI at 3 T. Twenty-two early transplants and 24 late transplants were included. Seven of the patients had prior renal biopsy (all of them dysfunctional allografts; 6/7 with tubular atrophy and 7/7 with interstitial fibrosis). Results: Compared to healthy controls, T1 and T2 relaxation times in the renal parenchyma were increased after transplantation, with the highest T1/T2 values in early transplants (T1: 1700 ± 53 ms/T2: 83 ± 6 ms compared to T1: 1514 ± 29 ms/T2: 78 ± 4 ms in controls). Medullary and cortical ADC/FA values were decreased in early transplants and highest in controls, with medullary FA values showing the most pronounced difference. Cortical renal T1, mean medullary FA and corticomedullary differentiation (CMD) values correlated best with renal function as measured by eGFR (cortical T1: r = −0.63, p < 0.001; medullary FA: r = 0.67, p < 0.001; FA CMD: r = 0.62, p < 0.001). Mean medullary FA proved to be a significant predictor for tubular atrophy (p < 0.001), while cortical T1 appeared as a significant predictor of interstitial fibrosis (p = 0.003). Conclusion: Cortical T1, medullary FA, and FA CMD might serve as new imaging biomarkers of renal function and histopathologic microstructure.
Collapse
Affiliation(s)
- Lisa C. Adams
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
- Correspondence: (L.C.A.); (K.K.B.); Tel.: +49-30627376 (L.C.A.)
| | - Keno K. Bressem
- Department of Radiology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence: (L.C.A.); (K.K.B.); Tel.: +49-30627376 (L.C.A.)
| | - Sonja Scheibl
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Max Nunninger
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Andre Gentsch
- Department of Nephrology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (A.G.); (K.-U.E.)
| | - Ute L. Fahlenkamp
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Kai-Uwe Eckardt
- Department of Nephrology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (A.G.); (K.-U.E.)
| | - Bernd Hamm
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Marcus R. Makowski
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| |
Collapse
|
19
|
S. T, Arunachalam VK, R. R, R. S. Role of Diffusion Tensor Imaging in Functional Assessment of Transplant Kidneys at 3-Tesla MRI. JOURNAL OF GASTROINTESTINAL AND ABDOMINAL RADIOLOGY 2020. [DOI: 10.1055/s-0040-1709084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Abstract
Objectives The main purpose of this article is to measure the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of cortex and medulla of renal allograft using 3-Tesla diffusion tensor imaging (DTI) in renal transplant patients with normal and graft dysfunction and to assess the correlation between diffusion tensor parameters (ADC and FA) and the estimated glomerular filtration rate (eGFR) value.
Materials and Methods Fifty renal transplant recipients who received either living or cadaveric renal allografts were included in the study. Blood samples for serum creatinine and eGFR value were taken on the same day prior to the magnetic resonance study and the patients were assigned to three groups (A, B, C) according to allograft function (eGFR levels). The mean ADC and FA values of the cortex/medulla in upper, mid, and lower poles were calculated from the DTI sequence. Statistical analysis was performed using paired sample Student’s t-test and one-way analysis of variance test.
Results The mean ADC values of the cortex were higher than the medulla that was statistically significant. However, the mean FA values were significantly higher in the medulla than the cortex. Mean ADCs and FA of the renal cortex and medulla were significantly higher in group A patients with normal renal function than in group B and C with poor renal functions. The corticomedullary difference in the FA values was more in group A. However, this difference was lower in group B and more so in group C.
Conclusion ADC and FA values in the renal cortex and medulla exhibit a good correlation with allograft function and were significantly lower in transplants with dysfunction than those with good function. FA values appear to be more sensitive than eGFR and ADC for detection of early pathological changes in the graft dysfunction.
Collapse
Affiliation(s)
- Thambidurai S.
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | | | - Rupa R.
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | - Sriman R.
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
20
|
Stabinska J, Ljimani A, Frenken M, Feiweier T, Lanzman RS, Wittsack HJ. Comparison of PGSE and STEAM DTI acquisitions with varying diffusion times for probing anisotropic structures in human kidneys. Magn Reson Med 2020; 84:1518-1525. [PMID: 32072674 DOI: 10.1002/mrm.28217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the sensitivity of stimulated-echo acquisition mode (STEAM) and pulsed-gradient spin-echo (PGSE) diffusion tensor imaging (DTI) acquisitions with different diffusion times for measuring renal tissue anisotropy. METHODS Twelve healthy volunteers underwent an MRI examination at a 3T scanner including STEAM and PGSE DTI with variable diffusion times Δ (20.3, 37 and 125 ms). Three volunteers were scanned twice to test the reproducibility for repeated examinations. Diffusion parameters fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the automatically segmented cortical and medullary regions of interests in both kidneys were calculated and averaged over all subjects for further analysis. Moreover, 5-grade qualitative evaluation of the FA and ADC maps from each sequence was conducted by two experienced radiologists in a consensus. RESULTS The cortex-medulla difference in the STEAM sequence was significantly higher than that in PGSE with short ∆ = 20.3 ms (P < 0.001) and in PGSE with intermediate ∆ = 37 ms (P < 0.05) diffusion times. Reproducibility of the FA/ADC measurements was very good and comparable for all acquisition modes investigated. For the FA maps, the PGSE sequence with intermediate diffusion time scored highest in the subjective visual assessment of radiologists. CONCLUSION The delineation of anisotropy in renal tissue is depending on the used diffusion time of the DTI sequence. A PGSE acquisition at a diffusion time of about 37 ms provides reproducible results with optimal corticomedullary contrast in FA and ADC maps and good image quality.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Feiweier
- Diagnostic Imaging, Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Rotem Shlomo Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:177-195. [PMID: 31676990 PMCID: PMC7021760 DOI: 10.1007/s10334-019-00790-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Objectives Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. Materials and methods Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. Results Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65–74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. Discussion The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field. Electronic supplementary material The online version of this article (10.1007/s10334-019-00790-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Anna Caroli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Paul Vallee
- Department of Diagnostic, Geneva University Hospital and University of Geneva, 1211, Geneva-14, Switzerland
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Mike Notohamiprodjo
- Die Radiologie, Munich, Germany.,Department of Radiology, University Hospital Tuebingen, Tübingen, Germany
| | - Ruth P Lim
- Department of Radiology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harriet C Thoeny
- Department of Radiology, Hôpital Cantonal Fribourgois (HFR), University of Fribourg, 1708, Fribourg, Switzerland
| | - Pottumarthi Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pim Pullens
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium.,Department of Radiology, University Hospital Ghent, Ghent, Belgium
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Eric E Sigmund
- Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Health, New York, NY, USA
| |
Collapse
|
22
|
Diffusion Tensor Imaging of the Kidney: Design and Evaluation of a Reliable Processing Pipeline. Sci Rep 2019; 9:12789. [PMID: 31484949 PMCID: PMC6726597 DOI: 10.1038/s41598-019-49170-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) is particularly suitable for kidney studies due to tubules, collector ducts and blood vessels in the medulla that produce spatially restricted diffusion of water molecules, thus reflecting the high grade of anisotropy detectable by DTI. Kidney DTI is still a challenging technique where the off-resonance susceptibility artefacts and subject motion can severely affect the reproducibility of results. The aim of this study is to design a reliable processing pipeline by assessing different image processing approaches in terms of reproducibility and image artefacts correction. The results of four different processing pipelines (eddy: correction of eddy-currents and motion between DTI volume; eddy-s2v: eddy and within DTI volume motion correction; topup: eddy and geometric distortion correction; topup-s2v: topup and within DTI volume motion correction) are compared in terms of reproducibility by test-retest analysis in 14 healthy subjects. Within-subject coefficient of variation (wsCV) and intra-class correlation coefficient (ICC) are measured to assess the reproducibility and Dice similarity index is evaluated for the spatial alignment between DTI and anatomical images. Topup-s2v pipeline provides highest reproducibility (wsCV = 0.053, ICC = 0.814) and best correction of image distortion (Dice = 0.83). This study definitely provides a recipe for data processing, enabling for a clinical suitability of kidney DTI.
Collapse
|
23
|
Banach-Ambroziak E, Jankowska M, Grzywińska M, Pieńkowska J, Szurowska E. MRI-derived markers for predicting a decline in renal function in patients with autosomal dominant polycystic kidney disease. Pol J Radiol 2019; 84:e289-e294. [PMID: 31636763 PMCID: PMC6798776 DOI: 10.5114/pjr.2019.87763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) constitutes the fourth cause of end-stage renal disease in Europe. The course of the disease varies widely among patients with ADPKD. Due to the emergence of new possibilities of pharmacotherapy, it has become crucial to identify the group of patients with the fastest rate and risk of disease progression. This particular group of patients will benefit most from the therapy and they are the best candidates for clinical trials. At the early stages of ADPKD typical markers of severity and progression of the disease remain unchanged in contrast to the kidney volume, which increases continuously in an exponential way. Therefore, the use of height-adjusted total kidney volume as a biomarker should become a mandatory diagnostic option. Also, quantitative MRI techniques are promising biomarkers for the evaluation of disease severity and could provide additional insights into its course.
Collapse
Affiliation(s)
| | - Magdalena Jankowska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Poland
| | | | - Joanna Pieńkowska
- Second Department of Radiology, Medical University of Gdansk, Poland
| | - Edyta Szurowska
- Second Department of Radiology, Medical University of Gdansk, Poland
| |
Collapse
|
24
|
Non-invasive evaluation of renal structure and function of healthy individuals with multiparametric MRI: Effects of sex and age. Sci Rep 2019; 9:10661. [PMID: 31337796 PMCID: PMC6650480 DOI: 10.1038/s41598-019-46996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Clinically, when applying multiparametric magnetic resonance imaging (MRI) examinations in renal diseases, assessment of renal structure and function has to account for age- and sex-related effects. The aim of this study was to investigate the influence of age and sex on multiparametric MRI assessment of renal structure and function in healthy human beings. Studies on 33 healthy volunteers were performed using multiparametric MRI on a 3.0-Tesla MR scanner, including T1-weighted imaging, blood oxygen level-dependent MRI (BOLD MRI), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI). Our results revealed that the mean renal cortical thickness (RCT), ratio of cortex to parenchyma (CPR), and cortical R2* values were higher in males than in females. The cortical R2* value was higher in older group than in younger group (18.57 ± 0.99 vs 17.53 ± 0.58, p = 0.001); there was no significant difference in medullary R2* between the older and younger groups (38.18 ± 2.96 vs 36.45 ± 2.47, p = 0.077). The parenchymal thickness (PT) and medullary fractional anisotropy (FA) were lower in older group than in younger group (1.547 ± 0.06 vs 1.604 ± 0.05, p = 0.005 and 0.343 ± 0.03 vs 0.371 ± 0.03, p = 0.016, respectively). Pearson's correlation analysis showed that PT and medullary FA were inversely related with age (r = -0.483, p = 0.004; r = -0.446, p = 0.009) while cortical R2* values was positively related (r = 0.511, p = 0.002, respectively). The medullary apparent diffusion coefficient (ADC) value had a significant association with PT (r = 0.359, p = 0.04). This study indicated that multiparametric renal MRI parameters are age and sex dependent.
Collapse
|
25
|
Zhu Q, Zhu W, Ye J, Wu J, Chen W, Hao Z. Value of intravoxel incoherent motion for differential diagnosis of renal tumors. Acta Radiol 2019; 60:382-387. [PMID: 29863413 DOI: 10.1177/0284185118778884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Few studies have reported on the use of intravoxel incoherent motion (IVIM) for renal tumors. PURPOSE To investigate the value of IVIM for distinguishing renal tumors. MATERIAL AND METHODS Thirty-one patients with clear cell renal cell carcinomas (CCRCCs), 13 patients with renal angiomyolipomas with minimal fat (RAMFs), eight patients with chromophobe renal cell carcinomas (ChRCCs), and ten patients with papillary renal cell carcinomas (PRCCs) were examined. The tissue diffusivity (D), pseudodiffusivity (D*), and perfusion fraction (f) were calculated. RESULTS The D and f values were highest for CCRCCs, lowest for PRCCs, and intermediate for ChRCCs and RAMFs ( P < 0.05). The D values of CCRCCs differed significantly from those of ChRCCs and PRCCs ( P < 0.05). The D* values were highest for RAMFs, lowest for ChRCCs, and intermediate for CCRCCs and PRCCs ( P < 0.05). Statistically significant differences were observed between the D* values of CCRCCs and RAMFs ( P < 0.05). The D* values of the CCRCCs differed significantly from the D* values of the ChRCCs ( P < 0.05). Using the D and f values of 1.10 and 0.41, respectively, as the threshold values for differentiating CCRCCs from RAMFs, ChRCCs, and PRCCs, the best results had sensitivities of 81.0% and 66.8% and specificities of 85.7% and 81.0%, respectively. Using the D* value of 0.038 as the threshold value for differentiating RAMFs from CCRCCs, ChRCCs, and PRCCs, the best result obtained had a sensitivity of 90.5% and specificity of 76.2%. CONCLUSION IVIM may provide information for differentiating renal tumor types.
Collapse
Affiliation(s)
- Qingqiang Zhu
- Department of Medical Imaging, Subei People’s Hospital, Medical School of Yangzhou University, Yangzhou, PR China
| | - Wenrong Zhu
- Department of Medical Imaging, Subei People’s Hospital, Medical School of Yangzhou University, Yangzhou, PR China
| | - Jing Ye
- Department of Medical Imaging, Subei People’s Hospital, Medical School of Yangzhou University, Yangzhou, PR China
| | - Jingtao Wu
- Department of Medical Imaging, Subei People’s Hospital, Medical School of Yangzhou University, Yangzhou, PR China
| | - Wenxin Chen
- Department of Medical Imaging, Subei People’s Hospital, Medical School of Yangzhou University, Yangzhou, PR China
| | - Zhihua Hao
- Hebei General Hospital, Shijiazhuang, PR China
| |
Collapse
|
26
|
Delgado J, Berman JI, Maya C, Carson RH, Back SJ, Darge K. Pilot study on renal magnetic resonance diffusion tensor imaging: are quantitative diffusion tensor imaging values useful in the evaluation of children with ureteropelvic junction obstruction? Pediatr Radiol 2019; 49:175-186. [PMID: 30298211 DOI: 10.1007/s00247-018-4268-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/23/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ureteropelvic junction (UPJ) obstruction is a common cause of renal injury in children. Indications for surgery are still controversial. Currently, there is no threshold to differentiate patients with suspected UPJ obstruction requiring surgery from the ones that do not, or to predict renal outcome after surgery. Several studies have demonstrated that diffusion tensor imaging (DTI) results may correlate with microstructural changes in the kidneys. OBJECTIVE To evaluate the feasibility of using DTI to identify UPJ obstruction kidneys. MATERIALS AND METHODS We analyzed functional MR urography (fMRU) with renal DTI (b=0 and b=400, 20 directions, 1.5 Tesla, no respiratory triggering) in 26 kidneys of 19 children (mean age: 6.15 years) by comparing 13 kidneys with UPJ obstruction configuration that underwent pyeloplasty following the fMRU, and 13 anatomically normal age- and gender-matched kidneys. DTI tractography was reconstructed using a fractional anisotropy threshold of 0.10 and an angle threshold of 55°. User-defined regions of interest (ROIs) of the renal parenchyma (excluding collecting system) were drawn to quantify DTI parameters: fractional anisotropy, apparent diffusion coefficient (ADC), track length and track volume. The failure rate was evaluated. RESULTS All DTI parameters changed with age; fractional anisotropy decreased (P<0.032). Track volume and track length increased (P<0.05). ADC increased with age in normal kidneys (P<0.001) but not in UPJ obstruction kidneys (P=0.11). After controlling for age, the fractional anisotropy (UPJ obstruction mean: 0.18, normal kidney mean: 0.21; P=0.001) and track length (UPJ obstruction mean: 11.9 mm, normal kidney mean: 15.4 mm; P<0.001) were lower in UPJ obstruction vs. normal kidneys. There was a trend toward a higher ADC in UPJ obstruction kidneys vs. normal kidneys (P=0.062). The failure rate in UPJ obstruction kidneys due to technical limitations of DTI was 13/26 (50%). CONCLUSION We demonstrated that fractional anisotropy is lower in UPJ obstruction than in normal kidneys. It is necessary to improve this technique to increase the success rate and to perform more studies to evaluate if a decrease in fractional anisotropy can differentiate UPJ obstruction kidneys from hydronephrotic kidneys without UPJ obstruction.
Collapse
Affiliation(s)
- Jorge Delgado
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Jeffrey I Berman
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolina Maya
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Robert H Carson
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Susan J Back
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease. Clin Radiol 2018; 74:116-122. [PMID: 30360880 DOI: 10.1016/j.crad.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
AIM To investigate the clinical value of diffusion tensor imaging (DTI) in assessing renal function changes in diabetic patients with early-stage chronic kidney disease (CKD), and the relationship of DTI parameters with estimated glomerular filtration rate (eGFR) and urinary biomarkers. MATERIALS AND METHODS Thirty-six patients with diabetes mellitus (DM; 30 CKD stage 1 and 6 CKD stage 2) and 26 healthy control subjects were enrolled. DTI was performed using a clinical 3 T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were calculated from the renal cortex and medulla. The correlation of the DTI parameters with eGFR and urinary biomarkers was evaluated. RESULTS FA values were significantly reduced in the renal cortex and medulla of DM group compared with the control group (cortical FA, Z=-2.834, p=0.005; medullary FA, t=2.768, p=0.007). In the DM group, FA values in the renal cortex and medulla were positively correlated with eGFR, while FA values in the medulla were negatively correlated with the urinary albumin/creatinine ratio, urinary alpha-1 microglobulin/creatinine ratio, and urinary transferring/creatinine ratio. ADC values in the renal cortex and medulla showed a trend towards an increase in the DM group compared with the control group. CONCLUSIONS Renal DTI is a promising method for assessing early renal function changes in DM patients.
Collapse
|
28
|
Abstract
Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Collapse
|
29
|
Hedgire S, Kilcoyne A, Tonyushkin A, Mao Y, Uyeda JW, Gervais DA, Harisinghani MG. Effect of androgen deprivation and radiation therapy on MRI fiber tractography in prostate cancer: can we assess treatment response on imaging? Br J Radiol 2018; 92:20170170. [PMID: 30209952 DOI: 10.1259/bjr.20170170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate quantitative changes in Diffusion Tensor Magnetic Resonance Tractography in prostate cancer following androgen deprivation and radiation therapy. METHODS 22 patients with elevated PSA and biopsy proven prostate carcinoma who underwent MRI of the prostate at 1.5 T with an endorectal coil were included. Group A) was the study group (n = 11), participants who underwent androgen deprivation and/or radiation therapy and group B) were Gleason-matched control group (n = 11) participants who did not undergo such therapy. Diffusion weighted images were used to generate three-dimensional (3D) map of fiber tracts from DTI. 3D regions of interest (ROI) were drawn over the tumor and healthy prostatic parenchyma in both groups to record tract number and tract density. Tumor region and normal parenchymal tract densities within each group were compared. RESULTS Mean tract density in the tumor region and normal parenchyma was 2.3 and 3.3 in study group (tract numbers: 116.6 and 170.2 respectively) and 1.6 and 2.7 in the control group respectively (tract numbers: 252.5 and 346.3 respectively). The difference between these values was statistically significant for the control group (p = 0.0018) but not for the study group (p = 0.11). The difference between the tract numbers of tumor and normal parenchyma appears to narrow following therapy. CONCLUSION The study demonstrated utility in using tractography as a biomarker in prostate cancer patients post treatment. ADVANCES IN KNOWLEDGE Quantitative DTI fiber tractography is a promising imaging biomarker to quantitatively assess treatment response in the setting of post-androgen deprivation and radiation therapy for prostate cancer.
Collapse
Affiliation(s)
- Sandeep Hedgire
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Aoife Kilcoyne
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Alexey Tonyushkin
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA.,Physics Department, University of Massachusetts Boston, Boston, MA, USA
| | - Yun Mao
- Department of Radiology, The first affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Jennifer W Uyeda
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Debra A Gervais
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Mukesh G Harisinghani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Wang YT, Yan X, Pu H, Yin LL. In vivo evaluation of early renal damage in type 2 diabetic patients on 3.0 T MR diffusion tensor imaging. World J Radiol 2018; 10:83-90. [PMID: 30190800 PMCID: PMC6120998 DOI: 10.4329/wjr.v10.i8.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the utility of renal diffusion tensor imaging (DTI) to detect early renal damage in patients with type 2 diabetes.
METHODS Twenty-six diabetic patients (12 with microalbuminuria (MAU), and 14 with normoalbuminuria) and fourteen healthy volunteers were prospectively included in this study. Renal DTI on 3.0 T MR was performed, and estimated glomerular filtration rate (eGFR) was recorded for each subject. Mean cortical and medullary fractional anisotropy (FA) values were calculated by placing multiple representative regions of interest. Mean FA values were statistically compared among groups. Correlations between FA values and eGFR were evaluated.
RESULTS Both cortical and medullary FA were significantly reduced in diabetic patients compared to healthy controls (0.403 ± 0.064 vs 0.463 ± 0.047, P = 0.004, and 0.556 ± 0.084 vs 0.645 ± 0.076, P = 0.002, respectively). Cortical FA was significantly lower in diabetic patients with NAU than healthy controls (0.412 ± 0.068 vs 0.463 ± 0.047, P = 0.02). Medullary FA in diabetic patients with NAU and healthy controls were similar (0.582 ± 0.096 vs 0.645 ± 0.076, P = 0.06). Both cortical FA and medullary FA correlated with eGFR (r = 0.382, P = 0.015 and r = 0.552, P = 0.000, respectively).
CONCLUSION FA of renal parenchyma on DTI might serve as a more sensitive biomarker of early diabetic nephropathy than MAU.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Xiong Yan
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Long-Lin Yin
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| |
Collapse
|
31
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Glass JO, Ogg RJ, Hyun JW, Harreld JH, Schreiber JE, Palmer SL, Li Y, Gajjar AJ, Reddick WE. Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro Oncol 2018; 19:1408-1418. [PMID: 28541578 DOI: 10.1093/neuonc/nox062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Treatment of pediatric medulloblastoma is associated with known neurocognitive deficits that we hypothesize are caused by microstructural damage to frontal white matter (WM). Methods Longitudinal MRI examinations were collected from baseline (after surgery but before therapy) to 36 months in 146 patients and at 3 time points in 72 controls. Regional analyses of frontal WM volume and diffusion tensor imaging metrics were performed and verified with tract-based spatial statistics. Age-adjusted, linear mixed-effects models were used to compare patient and control images and to associate imaging changes with Woodcock-Johnson Tests of Cognitive Abilities. Results At baseline, WM volumes in patients were similar to those in controls; fractional anisotropy (FA) was lower bilaterally (P < 0.001) and was associated with decreased Processing Speed (P = 0.014) and Broad Attention (P = 0.025) performance at 36 months. During follow-up, WM volumes increased in controls but decreased in patients (P < 0.001) bilaterally. Smaller WM volumes in patients at 36 months were associated with concurrent decreased Working Memory (P = 0.026) performance. Conclusions Lower FA in patients with pediatric medulloblastoma compared with age-similar controls indicated that patients suffer substantial acute microstructural damage to supratentorial frontal WM following surgery but before radiation therapy or chemotherapy. Additionally, this damage to the frontal WM was associated with decreased cognitive performance in executive function 36 months later. This early damage also likely contributed to posttherapeutic failure of age-appropriate WM development and to the known association between decreased WM volumes and decreased cognitive performance.
Collapse
Affiliation(s)
- John O Glass
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert J Ogg
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jung W Hyun
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Julie H Harreld
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane E Schreiber
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Shawna L Palmer
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar J Gajjar
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Wilburn E Reddick
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
33
|
Wang YT, Li YC, Kong WF, Yin LL, Pu H. Diffusion tensor imaging beyond brains: Applications in abdominal and pelvic organs. World J Meta-Anal 2017; 5:71-79. [DOI: 10.13105/wjma.v5.i3.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (MRI) provided critical functional information in addition to the anatomic profiles offered by conventional MRI, and has been enormously used in the initial diagnosis and followed evaluation of various diseases. Diffusion tensor imaging (DTI) is a newly developed and advanced technique that measures the diffusion properties including both diffusion motion and its direction in situ, and has been extensively applied in central nerve system with acknowledged success. Technical advances have enabled DTI in abdominal and pelvic organs. Its application is increasing, yet remains less understood. A systematic overview of clinical application of DTI in abdominal and pelvic organs such as liver, pancreas, kidneys, prostate, uterus, etc., is therefore presented. Exploration of techniques with less artifacts and more normative post-processing enabled generally satisfactory image quality and repeatability of measurement. DTI appears to be more valuable in the evaluation of diffused diseases of organs with highly directionally arranged structures, such as the assessment of function impairment of native and transplanted kidneys. However, the utility of DTI to diagnose focal lesions, such as liver mass, pancreatic and prostate tumor, remains limited. Besides, diffusion of different layers of the uterus and the fiber structure disruption can be depicted by DTI. Finally, a discussion of future directions of research is given. The underlying heterogeneous pathologic conditions of certain diseases need to be further differentiated, and it is suggested that DTI parameters might potentially depict certain pathologic characterization such as cell density. Nevertheless, DTI should be better integrated into the current multi-modality evaluation in clinical practice.
Collapse
|
34
|
Lanzman RS, Wittsack HJ. Diffusion tensor imaging in abdominal organs. NMR IN BIOMEDICINE 2017; 30:e3434. [PMID: 26556181 DOI: 10.1002/nbm.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Initially, diffusion tensor imaging (DTI) was mainly applied in studies of the human brain to analyse white matter tracts. As DTI is outstanding for the analysis of tissue´s microstructure, the interest in DTI for the assessment of abdominal tissues has increased continuously in recent years. Tissue characteristics of abdominal organs differ substantially from those of the human brain. Further peculiarities such as respiratory motion and heterogenic tissue composition lead to difficult conditions that have to be overcome in DTI measurements. Thus MR measurement parameters have to be adapted for DTI in abdominal organs. This review article provides information on the technical background of DTI with a focus on abdominal imaging, as well as an overview of clinical studies and application of DTI in different abdominal regions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rotem Shlomo Lanzman
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Dusseldorf, Germany
| | - Hans-Jörg Wittsack
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
35
|
Özkan MB, Marterer R, Tscheuner S, Yildirim UM, Ozkan E. The role of kidney diffusion tensor magnetic resonance imaging in children. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2016.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Lupica R, Mormina E, Lacquaniti A, Trimboli D, Bianchimano B, Marino S, Bramanti P, Longo M, Buemi M, Granata F. 3 Tesla-Diffusion Tensor Imaging in Autosomal Dominant Polycystic Kidney Disease: The Nephrologist's Point of View. Nephron Clin Pract 2016; 134:73-80. [PMID: 27504997 DOI: 10.1159/000442296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS CT, MRI and ultrasound are currently used for screening and follow-up of individuals affected by autosomal dominant polycystic kidney disease (ADPKD). Dynamic contrast-enhanced MRI studies renal perfusion after gadolinium administration, with possible side effects, such as nephrogenic systemic fibrosis. The aim of our study was to evaluate the clinical application of 3 Tesla (3T)-diffusion tensor image (DTI) in ADPKD patients, correlating its parameters, such as fractional anisotropy (FA), and apparent diffusion coefficient (ADC) with kidney function tests. METHODS Eight ADPKD patients and 6 healthy volunteers (HS) were enrolled. FA and ADC mean values were calculated. And correlations between DTI-parameters, creatinine and estimated glomerular filtration rate (eGFR) were evaluated. RESULTS Parenchymal FA was significantly lower in ADPKD than HS (FA: 0.17 ± 0.03 vs. 0.22 ± 0.01; p = 0.02), whereas parenchymal ADC was higher in patients than controls (2.48 (×10-3) ± 0.16 vs. 2.28 (×10-3) ± 0.09), but a statistically significant difference was not achieved (p = 0.27). Direct correlations were revealed between eGFR and FA (r = 0.82; p = 0.0003), whereas an inverse correlation was found with creatinine (r = -0.77; p = 0.001). Similarly, ADC closely correlated with creatinine (r = 0.79; p = 0.0006) and eGFR (r = -0.620; p = 0.01). CONCLUSION 3T-DTI is a promising radiological tool that could be used by nephrologists to evaluate ADPKD patients, highlighting early micro-structure alterations, without side effects and contrast agent administration.
Collapse
Affiliation(s)
- Rosaria Lupica
- Department of Clinical and Experimental Medicine, Nephrology and Dialysis Unit, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dohan A, Taylor S, Hoeffel C, Barret M, Allez M, Dautry R, Zappa M, Savoye-Collet C, Dray X, Boudiaf M, Reinhold C, Soyer P. Diffusion-weighted MRI in Crohn's disease: Current status and recommendations. J Magn Reson Imaging 2016; 44:1381-1396. [PMID: 27249184 DOI: 10.1002/jmri.25325] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022] Open
Abstract
Over the past years, technological improvements and refinements in magnetic resonance imaging (MRI) hardware have made high-quality diffusion-weighted imaging (DWI) routinely possible for the bowel. DWI is promising for the detection and characterization of lesions in Crohn's disease (CD) and has been advocated as an alternative to intravenous gadolinium-based contrast agents. Furthermore, quantification using the apparent diffusion coefficient may have value as a biomarker of CD activity and has shown promise. In this article we critically review the literature pertaining to the value of DWI in CD for detection, characterization, and quantification of disease activity and complications. Although the body of supportive evidence is growing, it is clear that well-designed, multicenter studies are required before the role of DWI in clinical practice can be fully established. J. Magn. Reson. Imaging 2016;44:1381-1396.
Collapse
Affiliation(s)
- Anthony Dohan
- McGill University Health Center, Department of Radiology, McGill University Health Center, Montreal, QC, Canada
- Department of Body and Interventional Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- INSERM UMR 965, Paris, France
| | - Stuart Taylor
- Centre for Medical Imaging, University College London, Podium Level 2, University College Hospital, London, UK
| | | | - Maximilien Barret
- Department of Gastroenterology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Matthieu Allez
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Department of Gastroenterology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphael Dautry
- Department of Body and Interventional Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Magaly Zappa
- Department of Radiology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | | | - Xavier Dray
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Department of Gastroenterology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mourad Boudiaf
- Department of Body and Interventional Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Reinhold
- McGill University Health Center, Department of Radiology, McGill University Health Center, Montreal, QC, Canada
| | - Philippe Soyer
- Department of Body and Interventional Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- INSERM UMR 965, Paris, France
| |
Collapse
|
38
|
Hedgire S, Tonyushkin A, Kilcoyne A, Efstathiou JA, Hahn PF, Harisinghani M. Quantitative study of prostate cancer using three dimensional fiber tractography. World J Radiol 2016; 8:397-402. [PMID: 27158426 PMCID: PMC4840197 DOI: 10.4329/wjr.v8.i4.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/17/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate feasibility of a quantitative study of prostate cancer using three dimensional (3D) fiber tractography.
METHODS: In this institutional review board approved retrospective study, 24 men with biopsy proven prostate cancer underwent prostate magnetic resonance imaging (MRI) with an endorectal coil on a 1.5 T MRI scanner. Single shot echo-planar diffusion weighted images were acquired with b = 0.600 s/mm2, six gradient directions. Open-source available software TrackVis and its Diffusion Toolkit were used to generate diffusion tensor imaging (DTI) map and 3D fiber tracts. Multiple 3D spherical regions of interest were drawn over the areas of tumor and healthy prostatic parenchyma to measure tract density, apparent diffusion coefficient (ADC) and fractional anisotropy (FA), which were statistically analyzed.
RESULTS: DTI tractography showed rich fiber tract anatomy with tract heterogeneity. Mean tumor region and normal parenchymal tract densities were 2.53 and 3.37 respectively (P < 0.001). In the tumor, mean ADC was 0.0011 × 10-3 mm2/s vs 0.0014 × 10-3 mm2/s in the normal parenchyma (P < 0.001). The FA values for tumor and normal parenchyma were 0.2047 and 0.2259 respectively (P = 0.3819).
CONCLUSION: DTI tractography of the prostate is feasible and depicts congregate fibers within the gland. Tract density may offer new biomarker to distinguish tumor from normal tissue.
Collapse
|
39
|
Ye Q, Chen Z, Zhao Y, Zhang Z, Miao H, Xiao Q, Wang M, Li J. Initial experience of generalized intravoxel incoherent motion imaging and diffusion tensor imaging (GIVIM-DTI) in healthy subjects. J Magn Reson Imaging 2016; 44:732-8. [PMID: 27079733 DOI: 10.1002/jmri.25262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/18/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qiong Ye
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Zhongwei Chen
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Youfan Zhao
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Zhenhua Zhang
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Haiwei Miao
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Qinqin Xiao
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Meihao Wang
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| | - Jiance Li
- Department of Radiology; The First Affiliated Hospital of Wenzhou Medical University; ZheJiang P.R. China
| |
Collapse
|
40
|
Wang WJ, Pui MH, Guo Y, Wang LQ, Wang HJ, Liu M. 3T magnetic resonance diffusion tensor imaging in chronic kidney disease. ACTA ACUST UNITED AC 2016; 39:770-5. [PMID: 24623033 DOI: 10.1007/s00261-014-0116-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the relationship of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values with renal function on 3T diffusion tensor imaging (DTI) in chronic kidney disease. MATERIALS AND METHODS Twenty healthy volunteers and 29 patients with CKD underwent DTI. The relationship among ADC, FA, and renal function was analyzed. RESULTS Cortical and medullary ADC and FA values of patients with chronic kidney disease were lower than those of healthy volunteers (P = 0.000). Both the renal ADC and FA values correlated inversely with serum creatinine and blood urea nitrogen (P < 0.05). CONCLUSION DTI is a feasible and non-invasive means to reflect the severity of renal function damaged.
Collapse
Affiliation(s)
- Wen-juan Wang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2th Road, Guangzhou, 510080, Guangdong, China
| | | | | | | | | | | |
Collapse
|
41
|
Seif M, Mani LY, Lu H, Boesch C, Reyes M, Vogt B, Vermathen P. Diffusion tensor imaging of the human kidney: Does image registration permit scanning without respiratory triggering? J Magn Reson Imaging 2016; 44:327-34. [PMID: 26871263 DOI: 10.1002/jmri.25176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate if image registration of diffusion tensor imaging (DTI) allows omitting respiratory triggering for both transplanted and native kidneys MATERIALS AND METHODS Nine kidney transplant recipients and eight healthy volunteers underwent renal DTI on a 3T scanner with and without respiratory triggering. DTI images were registered using a multimodal nonrigid registration algorithm. Apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA) were determined. Relative root mean square errors (RMSE) of the fitting and the standard deviations of the derived parameters within the regions of interest (SDROI ) were evaluated as quality criteria. RESULTS Registration significantly reduced RMSE in all DTI-derived parameters of triggered and nontriggered measurements in cortex and medulla of both transplanted and native kidneys (P < 0.05 for all). In addition, SDROI values were lower with registration for all 16 parameters in transplanted kidneys (14 of 16 SDROI values were significantly reduced, P < 0.04) and for 15 of 16 parameters in native kidneys (9 of 16 SDROI values were significantly reduced, P < 0.05). Comparing triggered versus nontriggered DTI in transplanted kidneys revealed no significant difference for RMSE (P > 0.14) and for SDROI (P > 0.13) of all parameters. In contrast, in native kidneys relative RMSE from triggered scans were significantly lower than those from nontriggered scans (P < 0.02), while SDROI was slightly higher in triggered compared to nontriggered measurements in 15 out of 16 comparisons (significantly for two, P < 0.05). CONCLUSION Registration improves the quality of DTI in native and transplanted kidneys. Diffusion parameters in renal allografts can be measured without respiratory triggering. In native kidneys, respiratory triggering appears advantageous. J. Magn. Reson. Imaging 2016;44:327-334.
Collapse
Affiliation(s)
- Maryam Seif
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Laila Yasmin Mani
- Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Switzerland
| | - Huanxiang Lu
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Switzerland
| | - Peter Vermathen
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Jafar MM, Parsai A, Miquel ME. Diffusion-weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J Radiol 2016; 8:21-49. [PMID: 26834942 PMCID: PMC4731347 DOI: 10.4329/wjr.v8.i1.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10(-3) mm(2)/s in liver, 1.94 × 10(-3) mm(2)/s in kidney, 1.60 × 10(-3) mm(2)/s in pancreatic body, 0.85 × 10(-3) mm(2)/s in spleen, 2.73 × 10(-3) mm(2)/s in gallbladder, 1.64 × 10(-3) mm(2)/s and 1.31 × 10(-3) mm(2)/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10(-3) mm(2)/s), 1.44 × 10(-3) mm(2)/s in endometrium, 1.53 × 10(-3) mm(2)/s in myometrium, 1.71 × 10(-3) mm(2)/s in cervix and 1.92 × 10(-3) mm(2)/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared with phantom studies.
Collapse
|
43
|
Zhou HY, Chen TW, Zhang XM. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2027370. [PMID: 26925411 PMCID: PMC4746277 DOI: 10.1155/2016/2027370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper.
Collapse
Affiliation(s)
- Hai Ying Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| |
Collapse
|
44
|
Hueper K, Khalifa AA, Bräsen JH, Vo Chieu VD, Gutberlet M, Wintterle S, Lehner F, Richter N, Peperhove M, Tewes S, Weber K, Haller H, Wacker F, Gwinner W, Gueler F, Hartung D. Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016; 44:112-21. [PMID: 26778459 DOI: 10.1002/jmri.25158] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To combine diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for detection of allograft dysfunction in patients early after kidney transplantation and to correlate diffusion parameters with renal function and renal histology of allograft biopsies. MATERIALS AND METHODS Between day 4 and 11 after kidney transplantation 33 patients with initial graft function and 31 patients with delayed graft function (DGF) were examined with a 1.5T magnetic resonance imaging (MRI) scanner. DTI and DWI sequences were acquired and fractional anisotropy (FA), apparent diffusion coefficient (ADCmono), pure diffusion (ADCdiff ), and the perfusion fraction (Fp) were calculated. Kidney biopsies in 26 patients were analyzed for allograft pathology, ie, acute tubular injury, inflammation, edema, renal fibrosis, and rejection. Histological results were correlated with MRI parameters. RESULTS In the renal medulla FA (0.25 ± 0.06 vs. 0.29 ± 0.06, P < 0.01) and ADCmono (1.73 ± 0.13*10(-3) vs. 1.93 ± 0.16*10(-3) mm(2) /s, P < 0.001) were significantly reduced in DGF patients compared with patients with initial function. For ADCdiff and Fp similar reductions were observed. FA and ADCmono significantly correlated with renal function (r = 0.53 and r = 0.57, P < 0.001) and were inversely correlated with the amount of renal fibrosis (r = -0.63 and r = -0.65, P < 0.05). CONCLUSION Combined DTI and DWI detected allograft dysfunction early after kidney transplantation and correlated with allograft fibrosis. J. Magn. Reson. Imaging 2016;44:112-121.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Jan H Bräsen
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Van Dai Vo Chieu
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Sabine Wintterle
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Lehner
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Nicolas Richter
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Matti Peperhove
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Susanne Tewes
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Kristina Weber
- Institute for Biostatistics, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Wilfried Gwinner
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Dagmar Hartung
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Feng Q, Ma Z, Zhang S, Wu J. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. SPRINGERPLUS 2016; 5:12. [PMID: 26759751 PMCID: PMC4700039 DOI: 10.1186/s40064-015-1627-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
Abstract
To investigate the value of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in differentiating clear-cell renal cell carcinoma (CCRCC) from low-fat renal angiomyolipomas (RAML), and to obtain the optimal b value. Fifty patients, including 30 cases of CCRCC and 20 cases of low-fat RAML, were retrospectively recruited to participate in this study. Before renal nephrectomy, all subjects underwent functional magnetic resonance imaging. For diffusion tensor imaging (DTI), a respiratory-triggered coronal echo planar imaging sequence was performed with three groups of different b values (0 and 400, 600, and 800). The ADC and FA of kidneys were analyzed and compared between different b values using analysis of variance. Receiver operation characteristic analysis was computed to assess the diagnostic performance of ADC and FA in differentiating low-fat RAML from CCRCC and to determine the optimal b values. With either CCRCC or low-fat RAML, the ADC values decreased with increased b values and significant differences were observed (F = 11.34, 23.15, P < 0.05), while the FA values were not significantly different (F = 0.28, 2.80, P > 0.05). The statistical differences in ADC, and the FA values for CCRCC and low-fat RAML were significantly different (P < 0.05). When the b value was 0.800 s/mm2, the cutoff FA value for differentiating CCRCC from low-fat RAML was 0.254 × 10.3 mm2/s, and had a sensitivity of 100 %, and a specificity of 73.3 %. MR-DTI can be used to differentiate CCRCC from low-fat RAML.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Radiology, Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, 262500 Shandong People's Republic of China
| | - Zhijun Ma
- Department of Radiology, Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, 262500 Shandong People's Republic of China
| | - Sujuan Zhang
- Department of Radiology, Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, 262500 Shandong People's Republic of China
| | - Jianlin Wu
- Affiliated zhongshan Hospital, Dalian University, No. 6 jiefang Road, Zhongshan District, Dalian, 116001 Liaoning People's Republic of China
| |
Collapse
|
46
|
Comparison of Free-Breathing With Navigator-Triggered Technique in Diffusion Weighted Imaging for Evaluation of Small Hepatocellular Carcinoma: Effect on Image Quality and Intravoxel Incoherent Motion Parameters. J Comput Assist Tomogr 2015. [PMID: 26196345 DOI: 10.1097/rct.0000000000000278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. METHODS Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). RESULTS Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. CONCLUSIONS The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.
Collapse
|
47
|
Lanzman RS, Notohamiprodjo M, Wittsack HJ. [Functional magnetic resonance imaging of the kidneys]. Radiologe 2015; 55:1077-87. [PMID: 26628260 DOI: 10.1007/s00117-015-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors.
Collapse
|
48
|
Renal function impairment in liver cirrhosis: preliminary results with diffusion-weighted imaging at 3 T. AJR Am J Roentgenol 2015; 204:1024-30. [PMID: 25905937 DOI: 10.2214/ajr.14.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the utility of diffusion-weighted MRI (DWI) at 3 T for assessing renal function impairment in patients with liver cirrhosis. MATERIALS AND METHODS Sixty-four patients with liver cirrhosis who underwent both DWI at 3 T and renal function testing were retrospectively included. Twenty-two patients had moderate or severe renal function impairment (group A, estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m(2)) and 42 had good renal function or mild renal function impairment (group B, eGFR ≥ 60 mL/min/1.73 m(2)). Cortical and medullary apparent diffusion coefficients (ADCs) of both kidneys were measured. AUC was assessed for predicting group A with ADC. The correlation between renal ADC and eGFR or serum creatinine was analyzed. The reproducibility of ADC measurement was investigated. RESULTS Both cortical and medullary ADCs were lower in group A than in group B, (both, p < 0.05). In all patients, AUCs were 0.784 and 0.737 with cortical and medullary ADCs, respectively, for predicting group A. Both cortical and medullary ADCs had linear correlation with eGFR or serum creatinine (both, p < 0.05). The reproducibility of measurement was excellent for cortex (intraclass coefficient [ICC] = 0.808) and good for medulla (ICC = 0.692), with 1.6% or less variability. CONCLUSION DWI may have potential for assessing renal function impairment in patients with liver cirrhosis.
Collapse
|
49
|
Improving bladder cancer imaging using 3-T functional dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 2015; 49:390-5. [PMID: 24637583 DOI: 10.1097/rli.0000000000000022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The objective of this study was to assess the capability of T2-weighted magnetic resonance imaging (T2W-MRI) and the additional diagnostic value of dynamic contrast-enhanced MRI (DCE-MRI) using multitransmit 3 T in the localization of bladder cancer. MATERIALS AND METHODS This prospective study was approved by the local institutional review board. Thirty-six patients were included in the study and provided informed consent. Magnetic resonance imaging scans were performed with T2W-MRI and DCE-MRI on a 3-T multitransmit system. Two observers (with 12 and 25 years of experience) independently interpreted T2W-MRI before DCE-MRI data (maps of pharmacokinetic parameters) to localize bladder tumors. The pathological examination of cystectomy bladder specimens was used as a reference criteria standard. The McNemar test was performed to evaluate the differences in sensitivity, specificity, and accuracy. Scores of κ were calculated to assess interobserver agreement. RESULTS The sensitivity, specificity, and accuracy of the localization with T2W-MRI alone were 81% (29/36), 63% (5/8), and 77% (34/44) for observer 1 and 72% (26/36), 63% (5/8), and 70% (31/44) for observer 2. With additional DCE-MRI available, these values were 92% (33/36), 75% (6/8), and 89% (39/44) for observer 1 and 92% (33/36), 63% (5/8), and 86% (38/44) for observer 2. Dynamic contrast-enhanced MRI significantly (P<0.01) improved the sensitivity and accuracy for observer 2. For the 23 patients treated with chemotherapy, DCE-MRI also significantly (P<0.02) improved the sensitivity and accuracy of bladder cancer localization with T2W-MRI alone for observer 2. Scores of κ were 0.63 for T2W-MRI alone and 0.78 for additional DCE-MRI. Of 7 subcentimeter malignant tumors, 4 (57%) were identified on T2W images and 6 (86%) were identified on DCE maps. Of 11 malignant tumors within the bladder wall thickening, 6 (55%) were found on T2W images and 10 (91%) were found on DCE maps. CONCLUSIONS Compared with conventional T2W-MRI alone, the addition of DCE-MRI improved interobserver agreement as well as the localization of small malignant tumors and those within bladder wall thickening.
Collapse
|
50
|
Nissan N, Golan T, Furman-Haran E, Apter S, Inbar Y, Ariche A, Bar-Zakay B, Goldes Y, Schvimer M, Grobgeld D, Degani H. Diffusion tensor magnetic resonance imaging of the pancreas. PLoS One 2014; 9:e115783. [PMID: 25549366 PMCID: PMC4280111 DOI: 10.1371/journal.pone.0115783] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/30/2014] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To develop a diffusion-tensor-imaging (DTI) protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues. MATERIALS AND METHODS Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC), were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI), whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC), and fractional anisotropy (FA), as well as a λ1-vector map, and a main diffusion-direction map. RESULTS DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35)×10⁻³, λ2 = (1.87±0.22)×10⁻³, λ3 = (1.20±0.18)×10⁻³, ADC = (1.91±0.22)×10⁻³ (all in mm²/s units) and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001) and a significant increase (p<0.0001) in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM) component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue. CONCLUSION DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC when the reference b-value was modified from 0 to 100 s/mm², helped identifying the presence of malignancy.
Collapse
Affiliation(s)
- Noam Nissan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | - Talia Golan
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Edna Furman-Haran
- Unit of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Apter
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Yael Inbar
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Arie Ariche
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Hepato-Pancreato-Biliary Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Barak Bar-Zakay
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Hepato-Pancreato-Biliary Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Yuri Goldes
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Hepato-Pancreato-Biliary Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Michael Schvimer
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Dov Grobgeld
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|