1
|
Kang DH, Kim J, Lee J, Kang SW. The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling. Free Radic Biol Med 2025; 229:300-311. [PMID: 39848342 DOI: 10.1016/j.freeradbiomed.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure. The ETP derivatives with small side chains are the bona fide 2-Cys peroxiredoxin (PRX) mimetics that catalyze the H2O2-reducing reaction specifically coupled to the thioredoxin/thioredoxin reductase system. In contrast, the ETP derivatives with linear chains or a heterocyclic group show H2O2-reducing activity in coupling with both thioredoxin and glutathione systems. Moreover, the ETP derivatives with bulky heterocyclic groups almost lose catalytic activity. The 2-Cys PRX mimetics regulate intracellular H2O2 levels, thereby restoring the receptor Tyr kinase signaling and cellular functions disrupted by the absence of 2-Cys PRX in vascular cells. In a rodent model, the 2-Cys PRX mimetics reverse vascular occlusion in the injured carotid arteries by inhibiting smooth muscle hyperplasia and promoting reendothelialization. Thus, this study reveals a novel chemical platform for complementing defective 2-Cys PRX enzymes in biological systems.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiran Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiyoung Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Fracassi A, Qiao H, Lowell AN, Cao J, Bode JW, Masai H, Yoshizawa-Sugata N, Zhou R, Yamakoshi Y. Natural and Synthetic LDL-Based Imaging Probes for the Detection of Atherosclerotic Plaques. ACS Pharmacol Transl Sci 2025; 8:578-591. [PMID: 39974638 PMCID: PMC11833727 DOI: 10.1021/acsptsci.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Low-density lipoprotein (LDL) is the primary natural carrier of lipids in the bloodstream and plays a central role in the development of atherosclerosis. By leveraging LDL's natural tendency to accumulate at sites of plaque formation, LDL can be employed as a carrier to selectively deliver the imaging probes to efficiently detect atherosclerotic plaques. In our previous studies, we reported several LDL-based magnetic resonance imaging contrast agents (MRI-CAs) formed by modifying natural LDL (nLDL) or developing LDL-mimetic (synthetic LDL, sLDL) from lipid nanoparticles (LNPs) utilizing chemical reactions on the nanoparticle surface, including preliminary MRI tests. In this study, we report the in vivo biological functionality of these LDLs (both nLDL and sLDL)-based Gd(III)-based contrast agents (GBCAs) by conducting detailed in vivo studies on two types of atherosclerosis murine models, namely, apoE -/- and LDLr -/- . We provide more comprehensive MRI data accompanied by ex vivo results, including microscopic analysis of aorta segments for LDL accumulation and whole-body cryoVIZ analysis for biodistribution of the probe. We also tested in vitro cellular internalization of sLDL on two cell lines (RAW 264.7 and THP-1), which are derived from macrophages and monocytes, respectively, in order to observe sLDL uptake by macrophages, which are often present at the vulnerable types of atherosclerotic plaques. In conclusion, our current study demonstrates that modified LDLs-both nLDL and sLDL-facilitate MRI detection of atheroplaques by efficient uptake by macrophages. Taken together with the high loading capacity of Gd(III)-chelate molecules on LDL, especially sLDL, the LDL-based MRI contrast agents reported here hold significant potential for the early detection of atherosclerosis, including vulnerable ones, and should be useful for preventive diagnosis strategies.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hui Qiao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Andrew N. Lowell
- Department
of Chemistry, Virginia Polytechnic Institute and State University,
Davidson Hall, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Jianbo Cao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey W. Bode
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hisao Masai
- Department
of Basic Medical Sciences, Tokyo Metropolitan
Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Naoko Yoshizawa-Sugata
- Research
Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Rong Zhou
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Yoko Yamakoshi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| |
Collapse
|
3
|
Li Y, Wang S, Zhang R, Gong Y, Che Y, Li K, Pan Z. Single-cell and spatial analysis reveals the interaction between ITLN1 + foam cells and SPP1 + macrophages in atherosclerosis. Front Cardiovasc Med 2025; 12:1510082. [PMID: 40017519 PMCID: PMC11865089 DOI: 10.3389/fcvm.2025.1510082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Cardiovascular disease (CVD) caused by atherosclerosis (AS) remains the leading cause of mortality in developed countries. Understanding cellular heterogeneity within the inflammatory microenvironment is crucial for advancing disease management strategies. This study investigates the regulatory functions of distinct cell populations in AS pathogenesis, focusing on the interaction between vascular smooth muscle cell (VSMC)-derived ITLN1+ foam cells and SPP1+ FABP5+ macrophages. Methods We employed single-cell RNA sequencing to characterize cell populations within AS plaques. Correlation analyses and the CellChat package were utilized to elucidate intercellular communication networks among various cell types. The functional roles of key subsets of macrophages and VSMCs were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Pseudotime trajectory analysis was conducted to explore the dynamics of VSMC differentiation. Additionally, spatial transcriptomics analysis was used to demonstrate the physical interactions between different cell subpopulations. Results We identified significant infiltration of macrophage clusters in AS, with SPP1+ FABP5+ macrophages being highly enriched in AS plaques. These macrophages were associated with lipid transport, storage, and cell migration pathways. A distinct subset of ITLN1+ foam cells derived from VSMCs exhibited robust expression of foam cell markers and lipid metabolism-related genes. Pseudotime trajectory analysis indicated that ITLN1+ foam cells represent a terminal stage of VSMC differentiation, characterized by elevated expression of genes linked to lipid synthesis and AS progression. Spatial transcriptomics and CellChat analysis revealed a significant interaction between ITLN1+ foam cells and SPP1+ FABP5+ macrophages, mediated by the MIF-(CD74 + CD44) and SPP1-CD44 ligand-receptor axes. Discussion Our findings underscore the critical crosstalk between ITLN1+ foam cells and SPP1+ macrophages in promoting lipid accumulation and AS progression. Targeting this cell-cell interaction may offer new therapeutic avenues for managing atherosclerosis. Further validation of these mechanisms is necessary to develop effective immunotherapeutic strategies against AS.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shanshan Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ruidan Zhang
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Gong
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yulu Che
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kening Li
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Imaoka Y, Ohira M, Akabane M, Sasaki K, Ohdan H. Abdominal aortic calcification among gastroenterological and transplant surgery. Ann Gastroenterol Surg 2024; 8:987-998. [PMID: 39502733 PMCID: PMC11533033 DOI: 10.1002/ags3.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 11/08/2024] Open
Abstract
This review discusses the increasing global trend towards an aging population, which has resulted in a growing number of surgeries being performed on elderly patients, particularly those living with cancer. The focus was on the implications of abdominal aortic calcification (AAC), an indicator of systemic atherosclerosis, in these patients. This comprehensive review provided evidence detailing the complex processes of atherosclerosis and vascular calcification and various approaches to assess this condition. The prevalence of AAC is related to multiple factors, including cardiovascular disease, inflammation, frailty in various types of gastroenterological surgery. Additionally, notable links were found between AAC, postoperative complications, and patient survival following gastroenterological surgery. This study highlights how AAC could negatively impact the health status of elderly patients and undermine treatment efficacy, stressing the need for more research in this domain to improve patient outcomes.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
- Division of Abdominal TransplantStanford University School of MedicineStanfordCaliforniaUSA
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical ResearchHiroshima University HospitalHiroshimaJapan
| | - Miho Akabane
- Division of Abdominal TransplantStanford University School of MedicineStanfordCaliforniaUSA
| | - Kazunari Sasaki
- Division of Abdominal TransplantStanford University School of MedicineStanfordCaliforniaUSA
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| |
Collapse
|
5
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
6
|
Jacobs K, Docter D, de Smit L, Korfage HAM, Visser SC, Lobbezoo F, Hlushchuk R, de Bakker BS. High resolution imaging of human development: shedding light on contrast agents. Neuroradiology 2024; 66:1481-1493. [PMID: 38995394 PMCID: PMC11322402 DOI: 10.1007/s00234-024-03413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Visualizing (micro)vascular structures remains challenging for researchers and clinicians due to limitations in traditional radiological imaging methods. Exploring the role of vascular development in craniofacial malformations in experimental settings can enhance understanding of these processes, with the effectiveness of high-resolution imaging techniques being crucial for successful research in this field. Micro-CT imaging offers 3D microstructural insights, but requires contrast-enhancing staining agents (CESAs) for visualizing (micro)-vascular tissues, known as contrast-enhanced micro-CT (CECT). As effective contrast agents are crucial for optimal visualization, this review focuses on comparative studies investigating such agents for micro-vascular tissue imaging using micro-CT. Furthermore, we demonstrate the utilization of B-Lugol solution as a promising contrast agent for acquiring high-quality micro-CT images of (micro)vascular structures in human embryonic samples. METHOD This scoping review followed Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols. PubMed database provided relevant articles, screened initially by title and abstract. Inclusion and exclusion criteria defined outcomes of interest. RESULTS From an initial search, 273 records were identified, narrowed down to 9 articles after applying our criteria. Additionally, two articles were added through citation searching. This, a total of 11 articles were incorporated in this study. CONCLUSION This micro-CT contrast agent review underscores the need for tailored choices based on research goals. Both Barium sulfate and Iodine-based agents showing excellent results, providing high resolution (micro) vascular content, especially in ex-vivo specimens. However, careful consideration of protocols and tissue characteristics remains imperative for optimizing the effectiveness of micro-CT imaging for the study of cranio-facial vascular development.
Collapse
Affiliation(s)
- Karl Jacobs
- Department of Orofacial Pain and Disfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Daniel Docter
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | - Lotte de Smit
- Department of Orofacial Pain and Disfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Hans A M Korfage
- Department of Orofacial Pain and Disfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Sophie C Visser
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Disfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Ruslan Hlushchuk
- Micro-CT Research Group, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012, Bern, Switzerland
| | - Bernadette S de Bakker
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Pediatric Surgery, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Yang J, Li X, Zhang Y, Che P, Qin W, Wu X, Liu Y, Hu B. Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis. Mol Cell Biochem 2024; 479:2035-2045. [PMID: 37515673 DOI: 10.1007/s11010-023-04811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xiangyan Li
- Department of Interventional Catheter Lab, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Yuming Zhang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Pengfei Che
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Wei Qin
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xuecui Wu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Yue Liu
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Bing Hu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
8
|
Zheng H, Tai L, Xu C, Wang W, Ma Q, Sun W. Microfluidic-based cardiovascular systems for advanced study of atherosclerosis. J Mater Chem B 2024. [PMID: 38948949 DOI: 10.1039/d4tb00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Collapse
Affiliation(s)
- Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Lei Tai
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Chengbin Xu
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
9
|
Han GM, Liu B, Wang CY, Wang DX, Li QN, Cai QL, Kong DM. Diagnosis and Vulnerability Risk Assessment of Atherosclerotic Plaques Using an Amino Acid-Assembled Near-Infrared Ratiometric Nanoprobe. Anal Chem 2024; 96:10380-10390. [PMID: 38860916 DOI: 10.1021/acs.analchem.4c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.
Collapse
Affiliation(s)
- Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, P. R. China
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chen-Yu Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qing-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qi-Liang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Bian B, Chen H, Teng T, Huang J, Yu X. Circ_0104652 Promotes the Proliferation and Migration of ox-LDL-Stimulated Vascular Smooth Muscle Cells via Stabilizing ADAMTS7 and HMGB1. Am J Hypertens 2024; 37:465-476. [PMID: 38536049 DOI: 10.1093/ajh/hpae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) stands as the primary contributor to cardiovascular disease, a pervasive global health concern. Extensive research has underscored the pivotal role of circular RNAs (circRNAs) in cardiovascular disease development. However, the specific functions of numerous circRNAs in AS remain poorly understood. METHODS Quantitative real-time PCR analysis revealed a significant upregulation of circ_0104652 in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs). Loss-of-function experiments were subsequently employed to assess the impact of circ_0104652 on ox-LDL-induced VSMCs. RESULTS Silencing circ_0104652 was found to impede the proliferation and migration while promoting the apoptosis of ox-LDL-stimulated VSMCs. Mechanistic assays unveiled that circ_0104652 stabilized ADAM metallopeptidase with thrombospondin type 1 motif 7 (ADAMTS7) and high mobility group box 1 (HMGB1) by recruiting eukaryotic translation initiation factor 4A3 (EIF4A3) protein. Rescue assays further confirmed that circ_0104652 exerted its influence on ox-LDL-induced VSMC proliferation through modulation of ADAMTS7 and HMGB1. CONCLUSIONS This study elucidates the role of the circ_0104652/EIF4A3/ADAMTS7/HMGB1 axis in ox-LDL-stimulated VSMCs, providing valuable insights into the intricate mechanisms involved.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Lipoproteins, LDL/pharmacology
- Lipoproteins, LDL/metabolism
- Cell Proliferation/drug effects
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Cell Movement/drug effects
- Humans
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- ADAMTS7 Protein/metabolism
- ADAMTS7 Protein/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Cells, Cultured
- Signal Transduction
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Bo Bian
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Tianming Teng
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinyong Huang
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuefang Yu
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Ultrafast longitudinal imaging of haemodynamics via single-shot volumetric photoacoustic tomography with a single-element detector. Nat Biomed Eng 2024; 8:712-725. [PMID: 38036618 PMCID: PMC11136871 DOI: 10.1038/s41551-023-01149-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Techniques for imaging haemodynamics use ionizing radiation or contrast agents or are limited by imaging depth (within approximately 1 mm), complex and expensive data-acquisition systems, or low imaging speeds, system complexity or cost. Here we show that ultrafast volumetric photoacoustic imaging of haemodynamics in the human body at up to 1 kHz can be achieved using a single laser pulse and a single element functioning as 6,400 virtual detectors. The technique, which does not require recalibration for different objects or during long-term operation, enables the longitudinal volumetric imaging of haemodynamics in vasculature a few millimetres below the skin's surface. We demonstrate this technique in vessels in the feet of healthy human volunteers by capturing haemodynamic changes in response to vascular occlusion. Single-shot volumetric photoacoustic imaging using a single-element detector may facilitate the early detection and monitoring of peripheral vascular diseases and may be advantageous for use in biometrics and point-of-care testing.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yushun Zeng
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Castro R, Kalecký K, Huang NK, Petersen K, Singh V, Ross AC, Neuberger T, Bottiglieri T. A very-low carbohydrate content in a high-fat diet modifies the plasma metabolome and impacts systemic inflammation and experimental atherosclerosis. J Nutr Biochem 2024; 126:109562. [PMID: 38176626 DOI: 10.1016/j.jnutbio.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA; Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Neil K Huang
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, Massachusetts, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA; Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| |
Collapse
|
13
|
He Y, Cai Y, Wei D, Cao L, He Q, Zhang Y. Elucidating the mechanisms of formononetin in modulating atherosclerotic plaque formation in ApoE-/- mice. BMC Cardiovasc Disord 2024; 24:121. [PMID: 38388385 PMCID: PMC10882812 DOI: 10.1186/s12872-024-03774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic plaques and its underlying mechanisms remain to be elucidated. METHODS An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/JAK2/STAT3 axis effect molecules. RESULTS The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other markers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1β mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all dosages, whereas α7nAChR protein expression was enhanced. CONCLUSIONS According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influencing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression.
Collapse
Affiliation(s)
- Ying He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Youde Cai
- Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550081, China
| | - Dingling Wei
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Liping Cao
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Qiansong He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China.
| | - Yazhou Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
14
|
Esmaeili P, Roshanravan N, Ghaffari S, Mesri Alamdari N, Asghari-Jafarabadi M. Unraveling atherosclerotic cardiovascular disease risk factors through conditional probability analysis with Bayesian networks: insights from the AZAR cohort study. Sci Rep 2024; 14:4361. [PMID: 38388574 PMCID: PMC10883955 DOI: 10.1038/s41598-024-55141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
This study aimed at modelling the underlying predictor of ASCVD through the Bayesian network (BN). Data for the AZAR Cohort Study, which evaluated 500 healthcare providers in Iran, was collected through examinations, and blood samples. Two BNs were used to explore a suitable causal model for analysing the underlying predictor of ASCVD; Bayesian search through an algorithmic approach and knowledge-based BNs. Results showed significant differences in ASCVD risk factors across background variables' levels. The diagnostic indices showed better performance for the knowledge-based BN (Area under ROC curve (AUC) = 0.78, Accuracy = 76.6, Sensitivity = 62.5, Negative predictive value (NPV) = 96.0, Negative Likelihood Ratio (LR-) = 0.48) compared to Bayesian search (AUC = 0.76, Accuracy = 72.4, Sensitivity = 17.5, NPV = 93.2, LR- = 0.83). In addition, we decided on knowledge-based BN because of the interpretability of the relationships. Based on this BN, being male (conditional probability = 63.7), age over 45 (36.3), overweight (51.5), Mets (23.8), diabetes (8.3), smoking (10.6), hypertension (12.1), high T-C (28.5), high LDL-C (23.9), FBS (12.1), and TG (25.9) levels were associated with higher ASCVD risk. Low and normal HDL-C levels also had higher ASCVD risk (35.3 and 37.4), while high HDL-C levels had lower risk (27.3). In conclusion, BN demonstrated that ASCVD was significantly associated with certain risk factors including being older and overweight male, having a history of Mets, diabetes, hypertension, having high levels of T-C, LDL-C, FBS, and TG, but Low and normal HDL-C and being a smoker. The study may provide valuable insights for developing effective prevention strategies for ASCVD in Iran.
Collapse
Affiliation(s)
- Parya Esmaeili
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Asghari-Jafarabadi
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cabrini Research, Cabrini Health, Malvern, VIC, 3144, Australia.
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
15
|
Koppara T, Dregely I, Nekolla SG, Nährig J, Langwieser N, Bradaric C, Ganter C, Laugwitz KL, Schwaiger M, Ibrahim T. Simultaneous 18-FDG PET and MR imaging in lower extremity arterial disease. Front Cardiovasc Med 2024; 11:1352696. [PMID: 38404725 PMCID: PMC10884315 DOI: 10.3389/fcvm.2024.1352696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Background Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) is a novel hybrid imaging method integrating the advances of morphological tissue characterization of MRI with the pathophysiological insights of PET applications. Aim This study evaluated the use of simultaneous 18-FDG PET/MR imaging for characterizing atherosclerotic lesions in lower extremity arterial disease (LEAD). Methods Eight patients with symptomatic stenoses of the superficial femoral artery (SFA) under simultaneous acquisition of 18-FDG PET and contrast-enhanced MRI using an integrated whole-body PET/MRI scanner. Invasive plaque characterization of the SFA was performed by intravascular imaging using optical coherence tomography. Histological analysis of plaque specimens was performed after directional atherectomy. Results MRI showed contrast enhancement at the site of arterial stenosis, as assessed on T2-w and T1-w images, compared to a control area of the contralateral SFA (0.38 ± 0.15 cm vs. 0.23 ± 0.11 cm; 1.77 ± 0.19 vs. 1.57 ± 0.15; p-value <0.05). On PET imaging, uptake of 18F-FDG (target-to-background ratio TBR > 1) at the level of symptomatic stenosis was observed in all but one patient. Contrast medium-induced MR signal enhancement was detected in all plaques, whereas FDG uptake in PET imaging was increased in lesions with active fibroatheroma and reduced in fibrocalcified lesions. Conclusion In this multimodal imaging study, we report the feasibility and challenges of simultaneous PET/MR imaging of LEAD, which might offer new perspectives for risk estimation.
Collapse
Affiliation(s)
- Tobias Koppara
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
| | - Isabel Dregely
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephan G. Nekolla
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jörg Nährig
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nicolas Langwieser
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Bradaric
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Carl Ganter
- Institute of Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
| | - Markus Schwaiger
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tareq Ibrahim
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Schoenborn S, Pirola S, Woodruff MA, Allenby MC. Fluid-Structure Interaction Within Models of Patient-Specific Arteries: Computational Simulations and Experimental Validations. IEEE Rev Biomed Eng 2024; 17:280-296. [PMID: 36260570 DOI: 10.1109/rbme.2022.3215678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide and its incidence is rising due to an aging population. The development and progression of CVD is directly linked to adverse vascular hemodynamics and biomechanics, whose in-vivo measurement remains challenging but can be simulated numerically and experimentally. The ability to evaluate these parameters in patient-specific CVD cases is crucial to better predict future disease progression, risk of adverse events, and treatment efficacy. While significant progress has been made toward patient-specific hemodynamic simulations, blood vessels are often assumed to be rigid, which does not consider the compliant mechanical properties of vessels whose malfunction is implicated in disease. In an effort to simulate the biomechanics of flexible vessels, fluid-structure interaction (FSI) simulations have emerged as promising tools for the characterization of hemodynamics within patient-specific cardiovascular anatomies. Since FSI simulations combine the blood's fluid domain with the arterial structural domain, they pose novel challenges for their experimental validation. This paper reviews the scientific work related to FSI simulations for patient-specific arterial geometries and the current standard of FSI model validation including the use of compliant arterial phantoms, which offer novel potential for the experimental validation of FSI results.
Collapse
|
17
|
Zhang Y, Li J, Zhao J, Li X, Wang Z, Huang Y, Zhang H, Liu Q, Lei Y, Ding D. π-π Interaction-Induced Organic Long-wavelength Room-Temperature Phosphorescence for In Vivo Atherosclerotic Plaque Imaging. Angew Chem Int Ed Engl 2024; 63:e202313890. [PMID: 38059792 DOI: 10.1002/anie.202313890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have great potential for in vivo imaging because they can circumvent the autofluorescence of biological tissues. In this study, a class of organic-doped long-wavelength (≈600 nm) RTP materials with benzo[c][1,2,5] thiadiazole as a guest was constructed. Both host and guest molecules have simple structures and can be directly purchased commercially at a low cost. Owing to the long phosphorescence wavelength of the doping system, it exhibited good tissue penetration (10 mm). Notably, these RTP nanoparticles were successfully used to image atherosclerotic plaques, with a signal-to-background ratio (SBR) of 44.52. This study provides a new approach for constructing inexpensive red organic phosphorescent materials and a new method for imaging cardiovascular diseases using these materials.
Collapse
Affiliation(s)
- Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jisen Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiliang Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xuefei Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhimei Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yicheng Huang
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Hongkai Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| |
Collapse
|
18
|
Wang H, Zhang X, Li P, Huang F, Xiu T, Wang H, Zhang W, Zhang W, Tang B. Prediction of Early Atherosclerotic Plaques Using a Sequence-Activated Fluorescence Probe for the Simultaneous Detection of γ-Glutamyl Transpeptidase and Hypobromous Acid. Angew Chem Int Ed Engl 2024; 63:e202315861. [PMID: 37985247 DOI: 10.1002/anie.202315861] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Atherosclerosis is a lipoprotein-driven disease, and there is no effective therapy to reverse atherosclerosis or existing plaques. Therefore, it is urgently necessary to create a noninvasive and reliable approach for early atherosclerosis detection to prevent initial plaque formation. Atherosclerosis is intimately associated with inflammation, which is accompanied by an excess of reactive oxygen species (ROS), leading to cells requiring more glutathione (GSH) to resist severe oxidative stress. Therefore, the GSH-hydrolyzed protein γ-glutamyl transpeptidase (GGT) and the ROS-hypobromous acid (HBrO) are potential biomarkers for predicting atherogenesis. Hence, to avoid false-positive diagnoses caused by a single biomarker, we constructed an ingenious sequence-activated double-locked TP fluorescent probe, C-HBrO-GGT, in which two sequential triggers of GGT and HBrO are meticulously designed to ensure that the probe fluoresces in response to HBrO only after GGT hydrolyzes the probe. By utilization of C-HBrO-GGT, the voltage-gated chloride channel (CLC-1)-HBrO-catalase (CAT)-GGT signaling pathway was confirmed in cellular level. Notably, the forthcoming atherosclerotic plaques were successfully predicted before the plaques could be observed via the naked eye or classical immunofluorescent staining. Collectively, this research proposed a powerful tool to indicate the precise position of mature plaques and provide early warning of atherosclerotic plaques.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Xiaoting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - HongTong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
- People's Republic of China; Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, Shandong, P. R. China
| |
Collapse
|
19
|
Tang JC, Magalhães R, Wisniowiecki A, Razura D, Walker C, Applegate BE. Optical coherence tomography technology in clinical applications. BIOPHOTONICS AND BIOSENSING 2024:285-346. [DOI: 10.1016/b978-0-44-318840-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
20
|
Lee DY, Chang CC, Ko CF, Lee YH, Tsai YL, Chou RH, Chang TY, Guo SM, Huang PH. Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis. Eur J Clin Invest 2024; 54:e14089. [PMID: 37668089 DOI: 10.1111/eci.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time-consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. METHODS In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. RESULTS The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). CONCLUSIONS The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.
Collapse
Affiliation(s)
- Dan-Ying Lee
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chun-Chin Chang
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chieh-Fu Ko
- Institute of Medical Informatics, National Cheng Kung University, Tainan City, Taiwan
| | - Yin-Hao Lee
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medicine, Division of Cardiology, Taipei City Hospital, Taipei City, Taiwan
| | - Yi-Lin Tsai
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Ruey-Hsing Chou
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ting-Yung Chang
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Shu-Mei Guo
- Institute of Medical Informatics, National Cheng Kung University, Tainan City, Taiwan
| | - Po-Hsun Huang
- Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| |
Collapse
|
21
|
Park CI, Choe S, Lee W, Choi W, Kim M, Seung HM, Kim YY. Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel. Nat Commun 2023; 14:7818. [PMID: 38016968 PMCID: PMC10684589 DOI: 10.1038/s41467-023-43675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Imaging technologies that provide detailed information on intricate shapes and states of an object play critical roles in nanoscale dynamics, bio-organ and cell studies, medical diagnostics, and underwater detection. However, ultrasonic imaging of an object hidden by a nearly impenetrable metal barrier remains intractable. Here, we present the experimental results of ultrasonic imaging of an object in water behind a metal barrier of a high impedance mismatch. In comparison to direct ultrasonic images, our method yields sufficient object information on the shapes and locations with minimal errors. While our imaging principle is based on the Fabry-Perot (FP) resonance, our strategy for reducing attenuation in our experiments focuses on customising the resonance at any desired frequency. To tailor the resonance frequency, we placed an elaborately engineered panel of a specific material and thickness, called the FP resonance-tailoring panel (RTP), and installed the panel in front of a barrier at a controlled distance. Since our RTP-based imaging technique is readily compatible with conventional ultrasound devices, it can realise underwater barrier-through imaging and communication and enhance skull-through ultrasonic brain imaging.
Collapse
Affiliation(s)
- Chung Il Park
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungah Choe
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woorim Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wonjae Choi
- Intelligent Wave Engineering Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Miso Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hong Min Seung
- Intelligent Wave Engineering Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
- Department of Precision Measurement, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Yoon Young Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Zhu J, Liu Q, Zhuang Y, Wei R, Sun Y, Wang H, Song B. Intracranial Carotid Artery Calcification Subtype in Patients with Anterior Circulation Acute Ischemic Stroke Undergoing Intravenous Thrombolysis. Neurol India 2023; 71:1205-1210. [PMID: 38174459 DOI: 10.4103/0028-3886.391400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background and Aim The aim of this study was to investigate the potential value of intracranial carotid artery calcification (ICAC) in therapeutic efficacy and functional outcomes in patients with anterior circulation acute ischemic stroke (AIS) undergoing intravenous thrombolysis. Materials and Methods A total of 207 patients with anterior circulation AIS who underwent intravenous thrombolysis were enrolled in this retrospective study. We divided them into three groups according to thin-slice head noncontrast computed tomography as follows: no ICAC, medial ICAC, and intimal ICAC. The differences in risk factors of different ICAC subtypes were compared, and the effect of ICAC subtype on hemorrhage transformation (HT) after intravenous thrombolysis was also evaluated. Functional outcomes were assessed at 90 days using the modified Rankin Scale. Results Compared to the no and intimal ICAC, patients with the medial ICAC were older and more likely to have diabetes mellitus, hyperlipidemia, previous stroke, and atrial fibrillation. Moreover, the medial ICAC group had a high baseline National Institute of Health Stroke Scale (NIHSS) score and a high incidence of HT. Multivariate logistic regression analysis showed that baseline NIHSS score (odds ratio [OR]: 1.121, 95% confidence interval [CI]: 1.027-1.224) was independently associated with HT. Medial ICAC (OR: 7.418, 95% CI: 1.190-46.231) and baseline NIHSS score (OR: 1.141, 95% CI: 1.042-1.250) were independent risk factors of poor functional outcome at 90 days. Conclusions Medial ICAC could be a new imaging biomarker for predicting functional outcomes in patients with anterior circulation AIS undergoing intravenous thrombolysis. Medial ICAC and baseline NIHSS score were independently associated with poor prognosis at 90 days.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Qiping Liu
- Department of Ultrasound, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Yuzhong Zhuang
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Ran Wei
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Yi Sun
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Hao Wang
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| | - Bin Song
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, China
| |
Collapse
|
23
|
Ma Y, Sun W, Ye Z, Liu L, Li M, Shang J, Xu X, Cao H, Xu L, Liu Y, Kong X, Song G, Zhang XB. Oxidative stress biomarker triggered multiplexed tool for auxiliary diagnosis of atherosclerosis. SCIENCE ADVANCES 2023; 9:eadh1037. [PMID: 37831761 PMCID: PMC10575586 DOI: 10.1126/sciadv.adh1037] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Oxidative stress is integral in the development of atherosclerosis, but knowledge of how oxidative stress affects atherosclerosis remains insufficient. Here, we design a multiplexed diagnostic tool that includes two functions (photoacoustic imaging and urinalysis), for assessing intraplaque and urinary malondialdehyde (MDA), a well-recognized end-product of oxidative stress. Molecular design is conducted to develop the first near-infrared MDA-responsive molecule (MRM). Acid-unlocked ratiometric photoacoustic nanoprobe is designed to report intraplaque MDA, enabling it to reflect plaque burden. Furthermore, MRM is tailored for urinary MDA detection with excellent specificity in a blind study. Moreover, we found a significant difference in urinary MDA between healthy adults and atherosclerotic patients (more than 600 participants). Combining these two functions, such a multiplexed diagnostic tool can dynamically report intraplaque and systemic oxidative stress levels during atherosclerosis progression, pneumonia infection, and drug treatment in atherosclerotic mice, which is promising for the auxiliary diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liuhui Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Menghuan Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhui Shang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinyu Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Cao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongchao Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangqing Kong
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Schoenborn S, Lorenz T, Kuo K, Fletcher DF, Woodruff MA, Pirola S, Allenby MC. Fluid-structure interactions of peripheral arteries using a coupled in silico and in vitro approach. Comput Biol Med 2023; 165:107474. [PMID: 37703711 DOI: 10.1016/j.compbiomed.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Vascular compliance is considered both a cause and a consequence of cardiovascular disease and a significant factor in the mid- and long-term patency of vascular grafts. However, the biomechanical effects of localised changes in compliance cannot be satisfactorily studied with the available medical imaging technologies or surgical simulation materials. To address this unmet need, we developed a coupled silico-vitro platform which allows for the validation of numerical fluid-structure interaction results as a numerical model and physical prototype. This numerical one-way and two-way fluid-structure interaction study is based on a three-dimensional computer model of an idealised femoral artery which is validated against patient measurements derived from the literature. The numerical results are then compared with experimental values collected from compliant arterial phantoms via direct pressurisation and ring tensile testing. Phantoms within a compliance range of 1.4-68.0%/100 mmHg were fabricated via additive manufacturing and silicone casting, then mechanically characterised via ring tensile testing and optical analysis under direct pressurisation with moderately statistically significant differences in measured compliance ranging between 10 and 20% for the two methods. One-way fluid-structure interaction coupling underestimated arterial wall compliance by up to 14.7% compared with two-way coupled models. Overall, Solaris™ (Smooth-On) matched the compliance range of the numerical and in vivo patient models most closely out of the tested silicone materials. Our approach is promising for vascular applications where mechanical compliance is especially important, such as the study of diseases which commonly affect arterial wall stiffness, such as atherosclerosis, and the model-based design, surgical training, and optimisation of vascular prostheses.
Collapse
Affiliation(s)
- S Schoenborn
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia, QLD, 4072, Australia; Biofabrication and Tissue Morphology (BTM) Group, Faculty of Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
| | - T Lorenz
- Institute of Textile Technology, RWTH Aachen University, 52074, Aachen, Germany
| | - K Kuo
- Institute of Textile Technology, RWTH Aachen University, 52074, Aachen, Germany
| | - D F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW, 2006, Australia
| | - M A Woodruff
- Biofabrication and Tissue Morphology (BTM) Group, Faculty of Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
| | - S Pirola
- BHF Centre of Research Excellence, Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom; Department of Biomechanical Engineering, Faculty of Mechanical Engineering (3me), Delft University of Technology (TUD), Delft, the Netherlands
| | - M C Allenby
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia, QLD, 4072, Australia; Biofabrication and Tissue Morphology (BTM) Group, Faculty of Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
25
|
Zhang R, Lu K, Xiao L, Hu X, Cai W, Liu L, Liu Y, Li W, Zhou H, Qian Z, Wang S, Chen C, Zeng J, Gao M. Exploring atherosclerosis imaging with contrast-enhanced MRI using PEGylated ultrasmall iron oxide nanoparticles. Front Bioeng Biotechnol 2023; 11:1279446. [PMID: 37811376 PMCID: PMC10557075 DOI: 10.3389/fbioe.2023.1279446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Plaque rupture is a critical concern due to its potential for severe outcomes such as cerebral infarction and myocardial infarction, underscoring the urgency of noninvasive early diagnosis. Magnetic resonance imaging (MRI) has gained prominence in plaque imaging, leveraging its noninvasiveness, high spatial resolution, and lack of ionizing radiation. Ultrasmall iron oxides, when modified with polyethylene glycol, exhibit prolonged blood circulation and passive targeting toward plaque sites, rendering them conducive for MRI. In this study, we synthesized ultrasmall iron oxide nanoparticles of approximately 3 nm via high-temperature thermal decomposition. Subsequent surface modification facilitated the creation of a dual-modality magnetic resonance/fluorescence probe. Upon intravenous administration of the probes, MRI assessment of atherosclerotic plaques and diagnostic evaluation were conducted. The application of Flash-3D sequence imaging revealed vascular constriction at lesion sites, accompanied by a gradual signal amplification postprobe injection. T1-weighted imaging of the carotid artery unveiled a progressive signal ratio increase between plaques and controls within 72 h post-administration. Fluorescence imaging of isolated carotid arteries exhibited incremental lesion-to-control signal ratios. Additionally, T1 imaging of the aorta demonstrated an evolving signal enhancement over 48 h. Therefore, the ultrasmall iron oxide nanoparticles hold immense promise for early and noninvasive diagnosis of plaques, providing an avenue for dynamic evaluation over an extended time frame.
Collapse
Affiliation(s)
- Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Xiao
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuelan Hu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wu Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linjiang Liu
- Medical Imaging Department, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weihua Li
- Medical Imaging Department, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhiyuan Qian
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sixia Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Zhang X, Xiu T, Wang H, Wang H, Li P, Tang B. Recent progress in the development of small-molecule double-locked logic gate fluorescence probes. Chem Commun (Camb) 2023; 59:11017-11027. [PMID: 37667841 DOI: 10.1039/d3cc03492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Various bioactive substances are simultaneously involved in physiological processes, and research on the synergistic effect of them can promote the study of pathological mechanisms. To achieve this purpose, several small-molecule double-locked logic gate fluorescence probes have been developed recently. They overcome many shortcomings of the traditional "single-signal" fluorescent probes, with fluorescence that can be activated by two analytes of interest order-independently or order-dependently with one output. In this review, we summarize recently published small-molecule double-locked logic gate probes for the optical detection of two bioactive substances in living systems. We envision that this review will attract significant attention from researchers to exploit more powerful functional double-locked logic gate probes.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hongtong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei, Jimo, People's Republic of China
| |
Collapse
|
27
|
Guo Y, Hu J, Wang P, Yang H, Liang S, Chen D, Xu K, Huang Y, Wang Q, Liu X, Zhu H. In Vivo NIR-II Fluorescence Lifetime Imaging of Whole-Body Vascular Using High Quantum Yield Lanthanide-Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300392. [PMID: 37127883 DOI: 10.1002/smll.202300392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Second near infrared (NIR-II, 1000-1700 nm) fluorescence lifetime imaging is a powerful tool for biosensing, anti-counterfeiting, and multiplex imaging. However, the low photoluminescence quantum yield (PLQY) of fluorescence probes in NIR-II region limits its data collecting efficiency and accuracy, especially in multiplex molecular imaging in vivo. To solve this problem, lanthanide-doped nanoparticles (NPs) β-NaErF4 : 2%Ce@NaYbF4 @NaYF4 with high PLQY and tunable PL lifetime through multi-ion doping and core-shell structural design, are presented. The obtained internal PLQY can reach up to 50.1% in cyclohexane and 9.2% in water under excitation at 980 nm. Inspired by the above results, a fast NIR-II fluorescence lifetime imaging of whole-body vascular in mice is successfully performed by using the homebuilt fluorescence lifetime imaging system, which reveals a murine abdominal capillary network with low background. A further demonstration of fluorescence lifetime multiplex imaging is carried out in molecular imaging of atherosclerosis cells and different organs in vivo through NPs conjugating with specific peptides and different injection modalities, respectively. These results demonstrate that the high PLQY NPs combined with the homebuilt fluorescence lifetime imaging system can realize a fast and high signal-to-noise fluorescence lifetime imaging; thus, opening a road for multiplex molecular imaging of atherosclerosis.
Collapse
Affiliation(s)
- Yongwei Guo
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Hu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Hongyi Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sisi Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Dejian Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Kunyuan Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yingping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qinglai Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Haomiao Zhu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
28
|
Puricelli C, Gigliotti CL, Stoppa I, Sacchetti S, Pantham D, Scomparin A, Rolla R, Pizzimenti S, Dianzani U, Boggio E, Sutti S. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023; 15:1772. [PMID: 37376219 DOI: 10.3390/pharmaceutics15061772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
29
|
Li R, Zheng J, Zayed MA, Saffitz JE, Woodard PK, Jha AK. Carotid atherosclerotic plaque segmentation in multi-weighted MRI using a two-stage neural network: advantages of training with high-resolution imaging and histology. Front Cardiovasc Med 2023; 10:1127653. [PMID: 37293278 PMCID: PMC10244753 DOI: 10.3389/fcvm.2023.1127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction A reliable and automated method to segment and classify carotid artery atherosclerotic plaque components is needed to efficiently analyze multi-weighted magnetic resonance (MR) images to allow their integration into patient risk assessment for ischemic stroke. Certain plaque components such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater likelihood of plaque rupture and stroke event. Assessment for presence and extent of LRNC could assist in directing treatment with impact upon patient outcomes. Methods To address the need to accurately determine the presence and extent of plaque components on carotid plaque MRI, we proposed a two-staged deep-learning-based approach that consists of a convolutional neural network (CNN), followed by a Bayesian neural network (BNN). The rationale for the two-stage network approach is to account for the class imbalance of vessel wall and background by providing an attention mask to the BNN. A unique feature of the network training was to use ground truth defined by both high-resolution ex vivo MRI data and histopathology. More specifically, standard resolution 1.5 T in vivo MR image sets with corresponding high resolution 3.0 T ex vivo MR image sets and histopathology image sets were used to define ground-truth segmentations. Of these, data from 7 patients was used for training and from the remaining two was used for testing the proposed method. Next, to evaluate the generalizability of the method, we tested the method with an additional standard resolution 3.0 T in vivo data set of 23 patients obtained from a different scanner. Results Our results show that the proposed method yielded accurate segmentation of carotid atherosclerotic plaque and outperforms not only manual segmentation by trained readers, who did not have access to the ex vivo or histopathology data, but also three state-of-the-art deep-learning-based segmentation methods. Further, the proposed approach outperformed a strategy where the ground truth was generated without access to the high resolution ex vivo MRI and histopathology. The accurate performance of this method was also observed in the additional 23-patient dataset from a different scanner. Conclusion In conclusion, the proposed method provides a mechanism to perform accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI. Further, our study shows the advantages of using high-resolution imaging and histology to define ground truth for training deep-learning-based segmentation methods.
Collapse
Affiliation(s)
- Ran Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mohamed A. Zayed
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav K. Jha
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
30
|
Liu L, Liu Y, Zhao Y. Circular RNA circ_0008896 contributes to oxidized low-density lipoprotein-induced aortic endothelial cell injury via targeting miR-188-3p/NOD2 axis. Cell Stress Chaperones 2023; 28:275-287. [PMID: 36940068 PMCID: PMC10167080 DOI: 10.1007/s12192-023-01336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
We aimed to investigate the role and mechanism of circ_0008896 in Atherosclerosis (AS) by using oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cell (HAECs). Levels of genes and proteins were measured by quantitative real-time PCR and Western blot. Functional experiments, including enzyme-linked immunosorbent assay analysis, cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation assays and the detection of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) generation, were performed to investigate the role of circ_0008896 on ox-LDL-induced HAEC damage. Circ_0008896 was increased in AS patients and ox-LDL-stimulated HAECs. Functionally, circ_0008896 knockdown reversed ox-LDL-induced inflammatory response, oxidative stress, apoptosis as well as arrest of proliferation and angiogenesis in HAECs in vitro. Mechanistically, circ_0008896 functioned as a sponge for miR-188-3p to relieve the repression of miR-188-3p on its target NOD2. A series of rescue experiments showed that miR-188-3p inhibition attenuated the protective effects of circ_0008896 knockdown on ox-LDL-stimulated HAECs, and NOD2 overexpression abolished the beneficial action of miR-188-3p in the suppression of inflammatory response and oxidative stress, and the promotion of cell growth and angiogenesis in HAECs under ox-LDL treatment. Circ_0008896 silencing attenuates ox-LDL-induced inflammatory response, oxidative stress, and growth arrest in HAECs in vitro, adding further understanding for the pathogenesis of AS.
Collapse
Affiliation(s)
- Liping Liu
- Heart Function Examination Room, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yan Liu
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yueyan Zhao
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, China.
- , Dalian City, China.
| |
Collapse
|
31
|
Sharma S, Lassen MCH, Nielsen AB, Skaarup KG, Biering-Sørensen T. The clinical application of longitudinal layer specific strain as a diagnostic and prognostic instrument in ischemic heart diseases: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:980626. [PMID: 37051064 PMCID: PMC10083306 DOI: 10.3389/fcvm.2023.980626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/20/2023] [Indexed: 03/28/2023] Open
Abstract
Background2-dimensional Speckle-Tracking Echocardiography, to obtain longitudinal layer specific strain (LSS), has recently emerged as a novel and accurate non-invasive imaging technique for diagnosis as well as for prediction of adverse cardiac events. This systematic review and meta-analysis aimed to give an overview of the possible clinical implication and significance of longitudinal LSS.MethodsWe conducted a systematic review and meta-analysis with all the studies involving layer specific strain in patients with ischemic heart disease (IHD). Of 40 eligible studies, 9 met our inclusion criteria. Studies that were included either investigated the prognostic value (n = 3) or the diagnostic value (n = 6) of longitudinal LSS.ResultsThe pooled meta-analysis showed that longitudinal LSS is a significant diagnostic marker for coronary artery disease (CAD) in patients with IHD. Endocardial LSS was found to be a good diagnostic marker for CAD in IHD patients (OR: 1.28, CI95% [1.11–1.48], p < 0.001, per 1% decrease). Epicardial (OR: 1.34, CI95% [1.14–1.56], p < 0.001, per 1% decrease), Mid-Myocardial (OR: 1.24, CI95% [1.12–1.38], p < 0.001, per 1% decrease) and endocardial (OR: 1.21, CI95% [1.09–1.35], p < 0.001, per 1% decrease) LSS all entailed diagnostic information regarding CAD, with epicardial LSS emerging as the superior diagnostic marker for CAD in patients with SAP. Endocardial LSS proved to be the better diagnostic marker of CAD in patients with non-ST elevation acute coronary syndrome (NSTE-ACS). LSS was shown to be a good prognostic maker of adverse cardiac events in IHD patients. Two studies found endocardial circumferential strain to be the good predictor of outcome in CAD patients and when added to baseline characteristics. Epicardial LSS emerged as best predictor in acute coronary syndrome (ACS) patients.ConclusionIn patients with SAP, epicardial LSS was the stronger diagnostic marker while in NSTE-ACS patients, endocardial LSS was the stronger diagnostic marker. In addition, endocardial circumferential strain is the better predictor of adverse outcome in CAD patients whilst in ACS patients, epicardial LSS was found to be a better predictor of outcome.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Cardiology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
- Correspondence: Shreeya Sharma
| | - Mats Christian Højbjerg Lassen
- Department of Cardiology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anne Bjerg Nielsen
- Department of Cardiology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
| | - Kristoffer Grundtvig Skaarup
- Department of Cardiology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
32
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Single-shot 3D photoacoustic tomography using a single-element detector for ultrafast imaging of hemodynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532661. [PMID: 36993341 PMCID: PMC10055152 DOI: 10.1101/2023.03.14.532661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Imaging hemodynamics is crucial for the diagnosis, treatment, and prevention of vascular diseases. However, current imaging techniques are limited due to the use of ionizing radiation or contrast agents, short penetration depth, or complex and expensive data acquisition systems. Photoacoustic tomography shows promise as a solution to these issues. However, existing photoacoustic tomography methods collect signals either sequentially or through numerous detector elements, leading to either low imaging speed or high system complexity and cost. To address these issues, here we introduce a method to capture a 3D photoacoustic image of vasculature using a single laser pulse and a single-element detector that functions as 6,400 virtual ones. Our method enables ultrafast volumetric imaging of hemodynamics in the human body at up to 1 kHz and requires only a single calibration for different objects and for long-term operations. We demonstrate 3D imaging of hemodynamics at depth in humans and small animals, capturing the variability in blood flow speeds. This concept can inspire other imaging technologies and find applications such as home-care monitoring, biometrics, point-of-care testing, and wearable monitoring.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yushun Zeng
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laiming Jiang
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
33
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
34
|
Chen L, Gao Y, Ge J, Zhou Y, Yang Z, Li C, Huang B, Lu K, Kou D, Zhou D, Chen C, Wang S, Wu S, Zeng J, Huang G, Gao M. A clinically translatable kit for MRI/NMI dual-modality nanoprobes based on anchoring group-mediated radiolabeling. NANOSCALE 2023; 15:3991-3999. [PMID: 36723217 DOI: 10.1039/d2nr05988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging (MRI)/nuclear medicine imaging (NMI) dual-modality imaging based on radiolabeled nanoparticles has been increasingly exploited for accurate diagnosis of tumor and cardiovascular diseases by virtue of high spatial resolution and high sensitivity. However, significant challenges exist in pursuing truly clinical applications, including massive preparation and rapid radiolabeling of nanoparticles. Herein, we report a clinically translatable kit for the convenient construction of MRI/NMI nanoprobes relying on the flow-synthesis and anchoring group-mediated radiolabeling (LAGMERAL) of iron oxide nanoparticles. First, homogeneous iron oxide nanoparticles with excellent performance were successfully obtained on a large scale by flow synthesis, followed by the surface anchoring of diphosphonate-polyethylene glycol (DP-PEG) to simultaneously render the underlying nanoparticles biocompatible and competent in robust labeling of radioactive metal ions. Moreover, to enable convenient and safe usage in clinics, the DP-PEG modified nanoparticle solution was freeze-dried and sterilized to make a radiolabeling kit followed by careful evaluations of its in vitro and in vivo performance and applicability. The results showed that 99mTc labeled nanoprobes are effectively obtained with a labeling yield of over 95% in 30 minutes after simply injecting Na[99mTcO4] solution into the kit. In addition, the Fe3O4 nanoparticles sealed in the kit can well stand long-term storage even for 300 days without deteriorating the colloidal stability and radiolabeling yield. Upon intravenous injection of the as-prepared radiolabeled nanoprobes, high-resolution vascular images of mice were obtained by vascular SPECT imaging and magnetic resonance angiography, demonstrating the promising clinical translational value of our radiolabeling kit.
Collapse
Affiliation(s)
- Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Sixia Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
35
|
Xia M, Yang H, Huang Y, Qu Y, Zhou G, Zhang F, Wang Y, Guo Y. 3D pyramidal densely connected network with cross-frame uncertainty guidance for intravascular ultrasound sequence segmentation. Phys Med Biol 2023; 68. [PMID: 36745930 DOI: 10.1088/1361-6560/acb988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Objective. Automatic extraction of external elastic membrane border (EEM) and lumen-intima border (LIB) in intravascular ultrasound (IVUS) sequences aids atherosclerosis diagnosis. Existing IVUS segmentation networks ignored longitudinal relations among sequential images and neglected that IVUS images of different vascular conditions vary largely in intricacy and informativeness. As a result, they suffered from performance degradation in complicated parts in IVUS sequences.Approach. In this paper, we develop a 3D Pyramidal Densely-connected Network (PDN) with Adaptive learning and post-Correction guided by a novel cross-frame uncertainty (CFU). The proposed method is named PDN-AC. Specifically, the PDN enables the longitudinal information exploitation and the effective perception of size-varied vessel regions in IVUS samples, by pyramidally connecting multi-scale 3D dilated convolutions. Additionally, the CFU enhances the robustness of the method to complicated pathology from the frame-level (f-CFU) and pixel-level (p-CFU) via exploiting cross-frame knowledge in IVUS sequences. The f-CFU weighs the complexity of IVUS frames and steers an adaptive sampling during the PDN training. The p-CFU visualizes uncertain pixels probably misclassified by the PDN and guides an active contour-based post-correction.Main results. Human and animal experiments were conducted on IVUS datasets acquired from atherosclerosis patients and pigs. Results showed that the f-CFU weighted adaptive sampling reduced the Hausdorff distance (HD) by 10.53%/7.69% in EEM/LIB detection. Improvements achieved by the p-CFU guided post-correction were 2.94%/5.56%.Significance. The PDN-AC attained mean Jaccard values of 0.90/0.87 and HD values of 0.33/0.34 mm in EEM/LIB detection, preferable to state-of-the-art IVUS segmentation methods.
Collapse
Affiliation(s)
- Menghua Xia
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Hongbo Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, People's Republic of China
| | - Yi Huang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, People's Republic of China
| | - Guohui Zhou
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, People's Republic of China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, People's Republic of China
| | - Yuanyuan Wang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, People's Republic of China
| | - Yi Guo
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
36
|
Kim Y, Yu N, Jang YE, Lee E, Jung Y, Lee DJ, Taylor WR, Jo H, Kim J, Lee S, Kang SW. Conserved miR-370-3p/BMP-7 axis regulates the phenotypic change of human vascular smooth muscle cells. Sci Rep 2023; 13:2404. [PMID: 36765143 PMCID: PMC9918535 DOI: 10.1038/s41598-022-26711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Endothelial dysfunction and inflammatory immune response trigger dedifferentiation of vascular smooth muscle cells (SMCs) from contractile to synthetic phenotype and initiate arterial occlusion. However, the complex vascular remodeling process playing roles in arterial occlusion initiation is largely unknown. We performed bulk sequencing of small and messenger RNAs in a rodent arterial injury model. Bioinformatic data analyses reveal that six miRNAs are overexpressed in injured rat carotids as well as synthetic-type human vascular SMCs. In vitro cell-based assays show that four miRNAs (miR-130b-5p, miR-132-3p, miR-370-3p, and miR-410-3p) distinctly regulate the proliferation of and monocyte adhesion to the vascular SMCs. Individual inhibition of the four selected miRNAs strongly prevents the neointimal hyperplasia in the injured rat carotid arteries. Mechanistically, miR-132-3p and miR-370-3p direct the cell cycle progression, triggering SMC proliferation. Gene ontology analysis of mRNA sequencing data consistently reveal that the miRNA targets include gene clusters that direct proliferation, differentiation, and inflammation. Notably, bone morphogenic protein (BMP)-7 is a prominent target gene of miR-370-3p, and it regulates vascular SMC proliferation in cellular and animal models. Overall, this study first reports that the miR-370-3p/BMP-7 axis determines the vascular SMC phenotype in both rodent and human systems.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Namhee Yu
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ye Eun Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eunkyung Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeonjoo Jung
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Doo Jae Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - W Robert Taylor
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
37
|
Sammartino AM, Falco R, Drera A, Dondi F, Bellini P, Bertagna F, Vizzardi E. "Vascular inflammation and cardiovascular disease: review about the role of PET imaging". Int J Cardiovasc Imaging 2023; 39:433-440. [PMID: 36255543 PMCID: PMC9870832 DOI: 10.1007/s10554-022-02730-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Inflammation characterizes all stages of atherothrombosis and provides a critical pathophysiological link between plaque formation and its acute rupture, leading to coronary occlusion and heart attack. In the last 20 years the possibility of quantifying the degree of inflammation of atherosclerotic plaques and, therefore, also of vascular inflammation aroused much interest. 18Fluoro-deoxy-glucose photon-emissions-tomography (18F-FDG-PET) is widely used in oncology for staging and searching metastases; in cardiology, the absorption of 18F-FDG into the arterial wall was observed for the first time incidentally in the aorta of patients undergoing PET imaging for cancer staging. PET/CT imaging with 18F-FDG and 18F-sodium fluoride (18F-NaF) has been shown to assess atherosclerotic disease in its molecular phase, when the process may still be reversible. This approach has several limitations in the clinical practice, due to lack of prospective data to justify their use routinely, but it's desirable to develop further scientific evidence to confirm this technique to detect high-risk patients for cardiovascular events.
Collapse
Affiliation(s)
- Antonio Maria Sammartino
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| | - Raffaele Falco
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Andrea Drera
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Pietro Bellini
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Manohar HD, Karkour C, Desai RN. Influencing Appropriate Statin Use in a Charity Care Primary Clinic. Healthcare (Basel) 2022; 10:healthcare10122437. [PMID: 36553961 PMCID: PMC9778001 DOI: 10.3390/healthcare10122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
According to the American College of Cardiology/American Heart Association (ACC/AHA) new cholesterol management guidelines in 2019, statin regimen was prescribed to only about 46.4% and 30% of diabetes (DM) patients and patients with atherosclerotic cardiovascular disease (ASCVD), respectively. Atherosclerotic cardiovascular disease accounts for most deaths and disabilities in North America. This study argues that a systematic approach to identifying targeted interventions to adhere to the statin regimen for ASCVD is sparse in previous studies. This study seeks to address the research gap. Besides, the study argues that the statin regimen could improve cholesterol management with the enablers of pharmacy, providers, electronic medical records (E.M.R.), and patients. It paves the way for future research on cardiovascular and statin regimens from different perspectives. Current study has adopted the Qualitative observation method. Accordingly, the study approached the charity care primary clinic serving a large population in the northeastern part of the United States, which constitutes the project's setting. The facility has 51 internal medicine residents. The facility has E.H.R., which is used by the clinical staff. Besides, providers use electronic medication prescribing (E-Scribe). Four PDSA cycles were run in six months. Here, the interventions were intensified during each subsequent cycle. The interventions were then incorporated into routine clinical practice. Based on the observation, the study found a 25% relative improvement by six months based on the baseline data of the appropriate intensity statin prescription for patients with ASCVD or DM by medical resident trainees in our single-center primary care clinic. A total of 77% of cardiovascular disease patients were found to be on an appropriate statin dose at baseline. On the other hand, the proportion of patients with DM who were on proper dose statin was 80.4%. According to the study's findings, PDSA could result in a faster uptake and support of the ACC/AHA guidelines. Evidence indicates that overmedication of persons at low risk and time constraints are some of the most significant impediments to the greater use of prescription medications. Proactive panel management can help improve statins' use by ensuring they are used appropriately.
Collapse
Affiliation(s)
- Hasitha Diana Manohar
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
- Correspondence:
| | - Carole Karkour
- Department of Internal Medicine, Wood Johnson Medical School, Saint Peter’s University Hospital and Rutgers Robert, New Brunswick, NJ 08901, USA
| | - Rajesh N. Desai
- Department of Internal Medicine, Wood Johnson Medical School, Saint Peter’s University Hospital and Rutgers Robert, New Brunswick, NJ 08901, USA
| |
Collapse
|
39
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
40
|
Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis. Med Image Anal 2022; 82:102614. [PMID: 36115099 DOI: 10.1016/j.media.2022.102614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
The poor generalizability of intravascular ultrasound (IVUS) analysis methods caused by the great diversity of IVUS datasets is hopefully addressed by the domain adaptation strategy. However, existing domain adaptation models underperform in intravascular structural preservation, because of the complex pathology and low contrast in IVUS images. Losing structural information during the domain adaptation would lead to inaccurate analyses of vascular states. In this paper, we propose a Multilevel Structure-Preserved Generative Adversarial Network (MSP-GAN) for transferring IVUS domains while maintaining intravascular structures. On the generator-discriminator baseline, the MSP-GAN integrates the transformer, contrastive restraint, and self-ensembling strategy, for effectively preserving structures in multi-levels, including global, local, and fine levels. For the global-level pathology maintenance, the generator explores long-range dependencies in IVUS images via an incorporated vision transformer. For the local-level anatomy consistency, a region-to-region correspondence is forced between the translated and source images via a superpixel-wise multiscale contrastive (SMC) constraint. For reducing distortions of fine-level structures, a self-ensembling mean teacher generates the pixel-wise pseudo-label and restricts the translated image via an uncertainty-aware teacher-student consistency (TSC) constraint. Experiments were conducted on 20 MHz and 40 MHz IVUS datasets from different medical centers. Ablation studies illustrate that each innovation contributes to intravascular structural preservation. Comparisons with representative domain adaptation models illustrate the superiority of the MSP-GAN in the structural preservation. Further comparisons with the state-of-the-art IVUS analysis accuracy demonstrate that the MSP-GAN is effective in enlarging the generalizability of diverse IVUS analysis methods and promoting accurate vessel and lumen segmentation and stenosis-related parameter quantification.
Collapse
|
41
|
Huang M, Li F, Chen S, Liu M, Qin W, Wu J, Chen Y, Zhong J, Zhao Q, Hu B. Total White Blood Cell Count is Associated with Arterial Stiffness Among Hypertensive Patients. Angiology 2022:33197221115566. [PMID: 35833809 DOI: 10.1177/00033197221115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The association between white blood cell (WBC) count and arterial stiffness in patients with hypertension is not well-documented. We aimed to examine the relationships of total WBC count with arterial stiffness and risk of macrovascular damage in hypertensive patients. A total of 631 hypertensive adults (mean age: 65.6 years) were included in the present study. Arterial stiffness was determined by brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI). Macrovascular damage was defined as baPWV >1.8 m/s or ABI <.9. The dose-response associations were assessed by multivariate linear or logistic regression models. After multivariate adjustments, we observed a dose-response relationship between increasing total WBC count and arterial stiffness. Participants in the highest tertile of total WBC count showed a significantly elevated baPWV (β = .088; 95% CI: .021, .154; Ptrend = .010) and reduced ABI (β = -.027; 95% CI: -.046, -.008; Ptrend = .005), as compared with those in the first tertile. The association was similar in different subgroups. In addition, elevated total WBC count was related to a greater risk of macrovascular damage, as indicated by baPWV >1.8 m/s (OR = 1.86; 95% CI: 1.15, 2.99, comparing the extreme tertiles). Our data suggest that elevated total WBC count was related to arterial stiffness among individuals with hypertension.
Collapse
Affiliation(s)
- Min Huang
- Central Laboratory, 12390Renmin Hospital of Wuhan University, Wuhan, China
| | - Fajiu Li
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Si Chen
- Department of Infectious Disease, 74495The No. 969 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Huhehot, China
| | - Min Liu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Wei Qin
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Juanjuan Wu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Chen
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jinnan Zhong
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Qian Zhao
- Department of Cardiology, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bingzhu Hu
- Department of Pulmonary and Critical Care Medicine, 74777Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
42
|
Muñoz-Ortiz T, Hu J, Sanz-Rodríguez F, Ortgies DH, Jaque D, Méndez-González D, Aguilar R, Alfonso F, Rivero F, Martín Rodríguez E, García Solé J. Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102556. [PMID: 35390527 DOI: 10.1016/j.nano.2022.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis. Dark field microscopy and CV-OCT are used to evaluate the specific adhesion of these functionalized GNSs to activated endothelial cells. This adhesion is investigated under static and dynamic conditions, for shear stresses comparable to those of physiological conditions. An increase in the scattering signal given by the functionalized GNSs attached to activated cells is observed compared to non-activated cells. Thus, cLABL-functionalized GNSs behave as excellent contrast agents for CV-OCT and promise a novel strategy for clinical molecular imaging of atherosclerosis.
Collapse
Affiliation(s)
- Tamara Muñoz-Ortiz
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jie Hu
- Xiamen Institute of Rare-earth Materials, Haixi Institutes Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Francisco Sanz-Rodríguez
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dirk H Ortgies
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Madrid, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Madrid, Spain
| | - Diego Méndez-González
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Madrid, Spain
| | - Río Aguilar
- Cardiology Department, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), CIBER-CV, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Alfonso
- Cardiology Department, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), CIBER-CV, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Rivero
- Cardiology Department, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), CIBER-CV, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma Martín Rodríguez
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Madrid, Spain; Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - José García Solé
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
43
|
Li G, Xu F, Yang B, Lu X, Li X, Qi Y, Teng L, Li Y, Sun F, Liu W. A nanotherapy responsive to the inflammatory microenvironment for the dual-targeted treatment of atherosclerosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102557. [PMID: 35390526 DOI: 10.1016/j.nano.2022.102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis remains the main cause of death and disability, as well as a leading cause of coronary arterial disease. Inflammation is one of the pathogenic factors of arteriosclerosis; however, the current treatments based on lowering the level of inflammation in the plaque tissue of patients with atherosclerosis are not clinically used. Herein, we hypothesize that αvβ3 receptor affinity and low pH sensitivity may be regarded as a valid therapeutic strategy for targeting sites of atherosclerosis according to the microenvironments of inflammation. To prove this tentative hypothesis, an acid-labile material polyketal named PK3 was synthesized, and the cRGDfc peptide was used to modify nanoparticles composed of poly(lactide-co-glycolide) (PLGA), lecithin, and PK3, loaded with the anti-atherosclerotic drug rapamycin (RAP). The nanoparticles were prepared using an O/W method and then characterized, which showed an appropriate particle size and fulfilling responsive behaviors. In vitro release studies and stability tests showed that these nanoparticles can be effectively internalized by human umbilical vein endothelial cells (HUVEC), and also show a good in vitro anti-inflammatory effect. After intravenous (i.v.) injection, RGD targeted by pH-responsive nanotherapy (RAP-Nps-RGD) may be accumulated at the plaque site in ApoE-/- mice with atherosclerosis and can effectively attenuate plaque progression compared to other formulations. Moreover, its good safety profile and biocompatibility have been revealed in both in vitro and in vivo estimations. Accordingly, the prospect of nanoparticles responsive to the inflammatory microenvironment for preventing atherosclerotic through inflammation modulation provides great feasibility for the administration of alternate drug molecules to inflamed sites to slow down the process of arteriosclerosis.
Collapse
Affiliation(s)
- Ge Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, China.
| | - Bo Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinyue Lu
- School of Life Sciences, Jilin University, Changchun, China.
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China.
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, China.
| | - Wenhua Liu
- Jilin Univ, Hosp 2, Dept Anesthesiol, Changchun, PR China.
| |
Collapse
|
44
|
Anno S, Okano T, Mamoto K, Sugioka Y, Tada M, Inui K, Koike T, Nakamura H. Incidence of New Carotid Plaques in Rheumatoid Arthritis Patients: Six Years Prospective Results of the TOMORROW Study. Mod Rheumatol 2022; 33:481-489. [PMID: 35652495 DOI: 10.1093/mr/roac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate new incidence of carotid plaques in rheumatoid arthritis (RA) patients over 6-year prospective follow-up and assess the risk factors. METHODS This is a 10-year prospective cohort study included 208 RA patients and 205 age- and gender-matched controls. Ultrasound assessment of the bilateral carotid arteries was performed in 2011 and 2017. RESULTS There were no differences in the incidence of new carotid atherosclerotic plaques over 6 years between the two groups (35.5% vs. 37.0%, respectively; p = 0.936). The mean Disease Activity Score 28- C-reactive protein over 6 years in RA patients was 2.73 ± 0.95. Multiple logistic regression analysis showed that RA was not a risk factor for new carotid atherosclerotic plaques (odds ratios, 0.708; 95% CI, 0.348-1.440; p = 0.340). An average glucocorticoid dose >1.8 mg/day over 6 years was a risk factor for new carotid atherosclerotic plaques (odds ratios, 8.54; 95% CI, 1.641-44.455; p =0.011). CONCLUSIONS Incidence of new carotid atherosclerotic plaques was similar between well-controlled disease activity RA patients and control subjects. A mean glucocorticoid dose >1.8 mg/day over 6 years was a risk factor for new carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Shohei Anno
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka Social Medical Center, Osaka, Japan
| | - Tadashi Okano
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Mamoto
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuko Sugioka
- Center for Senile Degenerative Disorders (CSDD), Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Tada
- Department of Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Kentaro Inui
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Tatsuya Koike
- Center for Senile Degenerative Disorders (CSDD), Osaka City University Graduate School of Medicine, Osaka, Japan.,Search Institute for Bone and Arthritis Disease (SINBAD), Shirahama Foundation for Health and Welfare, Wakayama, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Sun Y, Liu M, Xiao Y, Chen Y. A novel molecular communication inspired detection method for the evolution of atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106756. [PMID: 35320741 DOI: 10.1016/j.cmpb.2022.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis is a leading cause of potentially serious cardiovascular diseases such as heart attack, stroke, and peripheral artery disease. Due to the prolonged and non-reversible process of thickening arteries walls, atherosclerosis plaques in the blood vessels are formed that restrict the blood flow. Early detection plays a vital role in minimizing the risk as there is no reliable method to detect the early stage of the disease. This paper proposes a novel atherosclerosis detection method based on the emerging paradigm of molecular communications. The work could pave the way to implement a low-cost and straightforward early detection method of atherosclerosis in the future. METHODS We used COMSOL to model the physical field, coupled the fluid module and the fluid particle tracking module, and mapped the contrast agent into nanoparticles (NPs). The NPs are released at the entrance of the blood vessel and received at the exit of the blood vessel, while NPs are propagating through different arterial stenosis. The arrival probability of NPs is defined as the ratio of the number of NPs that reach the outlet to the total number of released NPs. As a result of atherosclerosis, the arrival probability of Nps is affected by the dynamic flow nature changes, thereby reflecting the arterial stenosis degree. Furthermore, we introduce the multi-release method in this study, which has a similar concept of Inter-symbol interference in traditional communication. This multi-release method leads the overlapping concentrations of NPs remaining in the vessels and enhances the differences of arrival probability in different degrees of stenosis, which increases the chance of more observable results. RESULTS The assessment of arterial stenosis degree can be from the early stage to the late stage of the disease. To evaluate the arterial stenosis degree, we analyzed the Poincaré maps, representing the arrival probability of NPs at different arterial stenosis. Moreover, we could directly use data to quantify the pathological process at various stages. The difference between the data results obtained through multiple release methods is more prominent than a single-released method. CONCLUSIONS This research proposes a new atherosclerosis detection method based on molecular communication, that is, to evaluate the arterial stenosis degree by modelling and using statistical data of NPs emission and reception in blood vessels. This method can not only use a simple method to detect the early stage of the disease. In addition, we can directly use data to quantify the pathological process of each stage, which is straightforward to assist doctors and may reduce the labour cost of traditional detection.
Collapse
Affiliation(s)
- Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Meiling Liu
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yue Xiao
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yifan Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
46
|
Li J, Fan Y, Zhang J, Xing S, Tang S, Li X, Dang C, Zeng J. Silent brain infarction is associated with carotid siphon calcification in ischemic stroke patients. Neuroimage Clin 2022; 35:103050. [PMID: 35644109 PMCID: PMC9157544 DOI: 10.1016/j.nicl.2022.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Silent brain infarction (SBI) had a higher prevalence in ischemic stroke patients than healthy population. Intracranial artery calcification, as the important component of atherosclerosis, is a known risk factor of ischemic stroke. Whether it is also the risk factor of SBI is uncertain. We aimed to assess the association between SBI and carotid siphon calcification (CSC) in ischemic stroke patients. METHODS We retrospectively collected consecutive data of acute ischemic stroke patients with and without SBI by Magnetic Resonance Imaging (MRI) and calcification using non-contrast Computerized Tomography (NCCT). We used a histopathologically validated method to score the circularity, thickness, and morphology of calcification. Clinical characteristics, prevalence and pattern (intimal and medial) of CSC were compared between patients with and without SBI. The association of CSC and SBI was investigated by logistic regression analysis. RESULTS Totally, 303 acute ischemic stroke patients were enrolled, of whom 260 (85.8%) had CSC. Patients with SBI were older (64.5 ± 10.4 years vs. 61.3 ± 12.1 years, P = 0.032), had a higher proportion of hypertension (77.5% vs. 65.7%, P = 0.035). Of the 260 CSC patients, there's no significant difference except for hyperlipidemia between patients with SBI and without SBI. The prevalence of intimal pattern of CSC was higher in those with SBI (adjusted odds ratio 2.42, 95% CI 1.219-4.794). CONCLUSIONS Patients with SBI at acute phase of ischemic stroke have more risk factors than mentioned previously. SBI associated with the intimal pattern of CSC which relate to the atherosclerosis process in symptomatic ischemic stroke patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Shujin Tang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Xiaoshuang Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Chao Dang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
47
|
Huang C, Huang W, Zhang L, Zhang C, Zhou C, Wei W, Li Y, Zhou Q, Chen W, Tang Y. Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics 2022; 14:pharmaceutics14051083. [PMID: 35631669 PMCID: PMC9146689 DOI: 10.3390/pharmaceutics14051083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lifen Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA;
| | - Wei Wei
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Yongsheng Li
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Correspondence: (Q.Z.); (Y.T.)
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
- Correspondence: (Q.Z.); (Y.T.)
| |
Collapse
|
48
|
Guo Y, Qin J, Zhao Q, Yang J, Wei X, Huang Y, Xie M, Zhang C, Li Y. Plaque-Targeted Rapamycin Spherical Nucleic Acids for Synergistic Atherosclerosis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105875. [PMID: 35344289 PMCID: PMC9165522 DOI: 10.1002/advs.202105875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Indexed: 05/04/2023]
Abstract
Atherosclerosis with unstable plaques is the dominant pathological basis of lethal cardio-cerebrovascular diseases, which can cause acute death due to the rupture of plaques. Plaque-targeted drug delivery to achieve promoted treatment remains the main challenge because of the systemic occurrence of atheroma. Herein, a rapamycin (RAP) spherical nucleic acid (SNA) structure, capable of specifically accumulating in plaques for synergistic atherosclerosis treatment is constructed. By designing consecutive phosphorothioate (PS) at 3' terminus of the deoxyribonucleic acid (DNA) strand, multiple hydrophobic RAPs are covalently grafted onto the PS segment to form an amphiphilic drug-grafted DNA (RAP-DNA), which successively self-assembles into micellar SNA (RAP-SNA). Moreover, the phosphodiester-DNA segment constitutes the outer shell of RAP-SNA, enabling further hybridization with functional siRNA (targeting lectin-like oxidized low-density lipoprotein receptor-1, LOX-1) to obtain the drug codelivered SNA (LOX-1/RAP-SNA). With two active ingredients inside, LOX-1/RAP-SNA can not only induce robust autophagy and decrease the evil apoptosis of the pathological macrophages, but also simultaneously prohibit the LOX-1-mediated formation of damageable foam cells, realizing the effect of synergistic therapy. As a result, the LOX-1/RAP-SNA significantly reduces the progression of atheroma and stabilizes the plaques, providing a new strategy for synergistically targeted atherosclerosis treatment.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Jingcan Qin
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Qianqian Zhao
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Jiapei Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xiaoer Wei
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Yu Huang
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Miao Xie
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yuehua Li
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| |
Collapse
|
49
|
Comeau ZJ, Lessard BH, Shuhendler AJ. The Need to Pair Molecular Monitoring Devices with Molecular Imaging to Personalize Health. Mol Imaging Biol 2022; 24:675-691. [PMID: 35257276 PMCID: PMC8901094 DOI: 10.1007/s11307-022-01714-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.
Collapse
Affiliation(s)
- Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
50
|
Bikomeye JC, Beyer AM, Kwarteng JL, Beyer KMM. Greenspace, Inflammation, Cardiovascular Health, and Cancer: A Review and Conceptual Framework for Greenspace in Cardio-Oncology Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2426. [PMID: 35206610 PMCID: PMC8872601 DOI: 10.3390/ijerph19042426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of global morbidity and mortality. Cancer survivors have significantly elevated risk of poor cardiovascular (CV) health outcomes due to close co-morbid linkages and shared risk factors between CVD and cancer, as well as adverse effects of cancer treatment-related cardiotoxicity. CVD and cancer-related outcomes are exacerbated by increased risk of inflammation. Results from different pharmacological interventions aimed at reducing inflammation and risk of major adverse cardiovascular events (MACEs) have been largely mixed to date. Greenspaces have been shown to reduce inflammation and have been associated with CV health benefits, including reduced CVD behavioral risk factors and overall improvement in CV outcomes. Greenspace may, thus, serve to alleviate the CVD burden among cancer survivors. To understand pathways through which greenspace can prevent or reduce adverse CV outcomes among cancer survivors, we review the state of knowledge on associations among inflammation, CVD, cancer, and existing pharmacological interventions. We then discuss greenspace benefits for CV health from ecological to multilevel studies and a few existing experimental studies. Furthermore, we review the relationship between greenspace and inflammation, and we highlight forest bathing in Asian-based studies while presenting existing research gaps in the US literature. Then, we use the socioecological model of health to present an expanded conceptual framework to help fill this US literature gap. Lastly, we present a way forward, including implications for translational science and a brief discussion on necessities for virtual nature and/or exposure to nature images due to the increasing human-nature disconnect; we also offer guidance for greenspace research in cardio-oncology to improve CV health outcomes among cancer survivors.
Collapse
Affiliation(s)
- Jean C. Bikomeye
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- PhD Program in Public and Community Health, Division of Epidemiology & Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Andreas M. Beyer
- Department of Medicine, Division of Cardiology, Cardiovascular and Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Jamila L. Kwarteng
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Kirsten M. M. Beyer
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- PhD Program in Public and Community Health, Division of Epidemiology & Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| |
Collapse
|