1
|
Molina-Ruiz FJ, Sanders P, Gomis C, Abante J, Londoño F, Bombau G, Galofré M, Vinyes-Bassols GL, Monforte V, Canals JM. CD200-based cell sorting results in homogeneous transplantable striatal neuroblasts for human cell therapy for Huntington's disease. Neurobiol Dis 2025; 209:106905. [PMID: 40220917 DOI: 10.1016/j.nbd.2025.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Neurodegenerative diseases are characterized by selective loss of neurons. Cell replacement therapies are the most promising therapeutic strategies to restore the neuronal functions lost during these neurodegenerative processes. However, cell replacement-based clinical trials for Huntington's (HD) and Parkinson's diseases (PD) failed due to the large heterogeneity of the samples. Here, we identify CD200 as a cell surface marker for human striatal neuroblasts (NBs) using massively parallel single-cell RNA sequencing. Next, we set up a CD200-based immunomagnetic sorting pipeline that allows high-yield enrichment of human striatal NBs from in vitro differentiation of human pluripotent stem cells (hPSCs). We also show that sorted CD200-positive cells are striatal projection neuron (SPN)-committed NBs which survive upon intra-striatal transplantation in adult mice with no evidence of graft overgrowth in vivo. In conclusion, we implemented a new CD200 cell selection strategy that reduces the heterogeneity and batch-to-batch variation and potentially decreases the teratogenic risk of hPSC-based cell therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Cinta Gomis
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Abante
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Francisco Londoño
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Gal la Vinyes-Bassols
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Veronica Monforte
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
2
|
Abeyasinghe PM, Cole JH, Razi A, Poudel GR, Paulsen JS, Tabrizi SJ, Long JD, Georgiou‐Karistianis N. Brain Age as a New Measure of Disease Stratification in Huntington's Disease. Mov Disord 2025; 40:627-641. [PMID: 39876588 PMCID: PMC12006897 DOI: 10.1002/mds.30109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Despite advancements in understanding Huntington's disease (HD) over the past two decades, absence of disease-modifying treatments remains a challenge. Accurately characterizing progression states is crucial for developing effective therapeutic interventions. Various factors contribute to this challenge, including the need for precise methods that can account for the complex nature of HD progression. OBJECTIVE This study aims to address this gap by leveraging the concept of the brain's biological age as a foundation for a data-driven clustering method to delineate various states of progression. Brain-predicted age, influenced by somatic expansion and its impact on brain volumes, offers a promising avenue for stratification by stratifying subgroups and determining the optimal timing for interventions. METHODS To achieve this, data from 953 participants across diverse cohorts, including PREDICT-HD, TRACK-HD, and IMAGE-HD, were meticulously analyzed. Brain-predicted age was computed using sophisticated algorithms, and participants were categorized into four groups based on CAG and age product score. Unsupervised k-means clustering with brain-predicted age difference (brain-PAD) was then employed to identify distinct progression states. RESULTS The analysis revealed significant disparities in brain-predicted age between HD participants and controls, with these differences becoming more pronounced as the disease progressed. Brain-PAD demonstrated a correlation with disease severity, effectively identifying five distinct progression states characterized by significant longitudinal disparities. CONCLUSIONS These findings highlight the potential of brain-PAD in capturing HD progression states, thereby enhancing prognostic methodologies and providing valuable insights for future clinical trial designs and interventions. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pubu M. Abeyasinghe
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - James H. Cole
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Adeel Razi
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- Welcome Centre for Human Neuroimaging, UCLLondonUnited Kingdom
| | - Govinda R. Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic UniversityMelbourneVictoriaAustralia
| | - Jane S. Paulsen
- Department of NeurologyUniversity of WisconsinMadisonWisconsinUSA
| | - Sarah J. Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Jeffrey D. Long
- Department of PsychiatryCarver College of Medicine, The University of IowaIowa CityIowaUSA
- Department of BiostatisticsCollege of Public Health, The University of IowaIowa CityIowaUSA
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Scahill RI, Farag M, Murphy MJ, Hobbs NZ, Leocadi M, Langley C, Knights H, Ciosi M, Fayer K, Nakajima M, Thackeray O, Gobom J, Rönnholm J, Weiner S, Hassan YR, Ponraj NKP, Estevez-Fraga C, Parker CS, Malone IB, Hyare H, Long JD, Heslegrave A, Sampaio C, Zhang H, Robbins TW, Zetterberg H, Wild EJ, Rees G, Rowe JB, Sahakian BJ, Monckton DG, Langbehn DR, Tabrizi SJ. Somatic CAG repeat expansion in blood associates with biomarkers of neurodegeneration in Huntington's disease decades before clinical motor diagnosis. Nat Med 2025; 31:807-818. [PMID: 39825149 PMCID: PMC11922752 DOI: 10.1038/s41591-024-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 01/20/2025]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.5 years compared with 46 controls (false discovery rate (FDR) > 0.3). However, cerebrospinal fluid (CSF) markers showed very early signs of neurodegeneration in HDGE with elevated neurofilament light (NfL) protein, an indicator of neuroaxonal damage (FDR = 3.2 × 10-12), and reduced proenkephalin (PENK), a surrogate marker for the state of striatal medium spiny neurons (FDR = 2.6 × 10-3), accompanied by brain atrophy, predominantly in the caudate (FDR = 5.5 × 10-10) and putamen (FDR = 1.2 × 10-9). Longitudinal increase in somatic CAG repeat expansion ratio (SER) in blood was a significant predictor of subsequent caudate (FDR = 0.072) and putamen (FDR = 0.148) atrophy. Atypical loss of interruption HTT repeat structures, known to predict earlier age at clinical motor diagnosis, was associated with substantially faster caudate and putamen atrophy. We provide evidence in living humans that the influence of CAG length on HD neuropathology is mediated by somatic CAG repeat expansion. These critical mechanistic insights into the earliest neurodegenerative changes will inform the design of preventative clinical trials aimed at modulating somatic expansion. ClinicalTrials.gov registration: NCT06391619 .
Collapse
Affiliation(s)
- Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mena Farag
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael J Murphy
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nicola Z Hobbs
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michela Leocadi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Harry Knights
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kate Fayer
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mitsuko Nakajima
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Olivia Thackeray
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - John Rönnholm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Yara R Hassan
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nehaa K P Ponraj
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher S Parker
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Harpreet Hyare
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey D Long
- Department of Psychiatry and Biostatistics, Carver College of Medicine and College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Heslegrave
- Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cristina Sampaio
- Faculdade Medicina da Universidade de Lisboa (FMUL), Lisbon, Portugal
- CHDI Management, Inc. Advisors to CHDI Foundation, Princeton, NJ, USA
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Hong Kong Center for Neurodegeneassociated with substantially fasterrative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- UCL Institute of Cognitive Neuroscience, University College London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas R Langbehn
- Department of Psychiatry and Biostatistics, Carver College of Medicine and College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
4
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
5
|
Farag M, Knights H, Scahill RI, McColgan P, Estevez-Fraga C. Neuroimaging Techniques in Huntington's Disease: A Critical Review. Mov Disord Clin Pract 2025. [PMID: 39976324 DOI: 10.1002/mdc3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by cognitive, neuropsychiatric and motor symptoms caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Imaging techniques are crucial for understanding HD pathophysiology and monitoring disease progression. OBJECTIVES This review is targeted at general neurologists and movement disorders specialists with an interest in HD and aims to bring complex imaging, including new experimental techniques, closer to the practicing clinician. METHODS We provide a summary of findings from conventional structural, diffusion and functional imaging in HD studies, together with an update on emerging novel techniques, including multiparametric mapping, multi-shell diffusion techniques, ultra-high field 7-Tesla MRI, positron emission tomography and magnetoencephalography. RESULTS Conventional imaging techniques have deepened our understanding of neuropathological progression in HD, from striatal atrophy to widespread cortical and white matter changes. The integration of novel imaging techniques reviewed has further improved our ability to interrogate, quantify and visualize disease-specific alterations with high precision. CONCLUSIONS Novel imaging techniques have promising roles to further our understanding of HD pathology and as imaging markers for clinical trials, disease staging and therapeutic monitoring. Additionally, the synergistic potential of combining imaging modalities with molecular and genetic data, along with wet biomarkers and clinical data, will help provide a complete and comprehensive view of HD pathology and progression.
Collapse
Affiliation(s)
- Mena Farag
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harry Knights
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter McColgan
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| |
Collapse
|
6
|
Moreu-Valls A, Puig-Davi A, Martinez-Horta S, Kulisevsky G, Sampedro F, Perez-Perez J, Horta-Barba A, Olmedo-Saura G, Pagonabarraga J, Kulisevsky J. A randomized clinical trial to evaluate the efficacy of cognitive rehabilitation and music therapy in mild cognitive impairment in Huntington's disease. J Neurol 2025; 272:202. [PMID: 39934473 DOI: 10.1007/s00415-025-12927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Cognitive impairment is a core feature of Huntington's disease (HD), yet no disease-modifying or symptomatic interventions have demonstrated efficacy in addressing these deficits. Non-pharmacological interventions, particularly cognitive training (CT), are promising options for maintaining neural plasticity, enhancing cognition, and improving emotional well-being. METHODS This 24-week, single-center, randomized, single-blind study evaluated the safety and efficacy of two cognitive rehabilitation strategies in early-to-middle-stage HD patients. Participants were randomized into a computerized cognitive training (CT; n = 13) intervention or a music therapy (MT; n = 16) intervention. A standard of care (SoC; n = 15) group with no active intervention was also involved. Weekly 45-min sessions were conducted. Baseline and endpoint assessments included measures of global cognition, functional, motor, and neuropsychiatric assessments, along with structural and functional neuroimaging. RESULTS Both CT and MT groups demonstrated significant improvements in primary and secondary cognitive endpoints, including global cognition an composite measures of disease severity. Regression analysis identified longitudinal cognitive score changes as independent predictors of the rate of atrophy in the caudate, putamen, and inferior frontal gyrus. Functional connectivity analysis showed distinct intervention-related effects: CT group exhibited increased connectivity between the central executive and sensorymotor networks, while MT group reduced aberrant connectivity between the central executive and the default-mode network. CONCLUSION This is the first randomized-controlled trial to evaluate two cognitive rehabilitation strategies in HD using multimodal neuroimaging. Both interventions were effective in improving cognition and modulating structural and functional brain changes in regions critical to HD. Trial Registration ClinicalTrials.gov (ID: NCT05769972).
Collapse
Affiliation(s)
- Andrea Moreu-Valls
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gabriel Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
7
|
Denaro S, D’Aprile S, Vicario N, Parenti R. Mechanistic insights into connexin-mediated neuroglia crosstalk in neurodegenerative diseases. Front Cell Neurosci 2025; 19:1532960. [PMID: 40007760 PMCID: PMC11850338 DOI: 10.3389/fncel.2025.1532960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Multiple Sclerosis (MS), and Huntington's disease (HD), although distinct in their clinical manifestations, share a common hallmark: a disrupted neuroinflammatory environment orchestrated by dysregulation of neuroglial intercellular communication. Neuroglial crosstalk is physiologically ensured by extracellular mediators and by the activity of connexins (Cxs), the forming proteins of gap junctions (Gjs) and hemichannels (HCs), which maintain intracellular and extracellular homeostasis. However, accumulating evidence suggests that Cxs can also act as pathological pore in neuroinflammatory conditions, thereby contributing to neurodegenerative phenomena such as synaptic dysfunction, oxidative stress, and ultimately cell death. This review explores mechanistic insights of Cxs-mediated intercellular communication in the progression of neurodegenerative diseases and discusses the therapeutic potential of targeting Cxs to restore cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Antonioni A, Raho EM, Granieri E, Koch G. Frontotemporal dementia. How to deal with its diagnostic complexity? Expert Rev Neurother 2025:1-35. [PMID: 39911129 DOI: 10.1080/14737175.2025.2461758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) encompasses a group of heterogeneous neurodegenerative disorders. Aside from genetic cases, its diagnosis is challenging, particularly in the early stages when symptoms are ambiguous, and structural neuroimaging does not reveal characteristic patterns. AREAS COVERED The authors performed a comprehensive literature search through MEDLINE, Scopus, and Web of Science databases to gather evidence to aid the diagnostic process for suspected FTD patients, particularly in early phases, even in sporadic cases, ranging from established to promising tools. Blood-based biomarkers might help identify very early neuropathological stages and guide further evaluations. Subsequently, neurophysiological measures reflecting functional changes in cortical excitatory/inhibitory circuits, along with functional neuroimaging assessing brain network, connectivity, metabolism, and perfusion alterations, could detect specific changes associated to FTD even decades before symptom onset. As the neuropathological process advances, cognitive-behavioral profiles and atrophy patterns emerge, distinguishing specific FTD subtypes. EXPERT OPINION Emerging disease-modifying therapies require early patient enrollment. Therefore, a diagnostic paradigm shift is needed - from relying on typical cognitive and neuroimaging profiles of advanced cases to widely applicable biomarkers, primarily fluid biomarkers, and, subsequently, neurophysiological and functional neuroimaging biomarkers where appropriate. Additionally, exploring subjective complaints and behavioral changes detected by home-based technologies might be crucial for early diagnosis.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, FE, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, FE, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Roma, RM, Italy
| |
Collapse
|
9
|
Aqel S, Ahmad J, Saleh I, Fathima A, Al Thani AA, Mohamed WMY, Shaito AA. Advances in Huntington's Disease Biomarkers: A 10-Year Bibliometric Analysis and a Comprehensive Review. BIOLOGY 2025; 14:129. [PMID: 40001897 PMCID: PMC11852324 DOI: 10.3390/biology14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Neurodegenerative disorders (NDs) cause progressive neuronal loss and are a significant public health concern, with NDs projected to become the second leading global cause of death within two decades. Huntington's disease (HD) is a rare, progressive ND caused by an autosomal-dominant mutation in the huntingtin (HTT) gene, leading to severe neuronal loss in the brain and resulting in debilitating motor, cognitive, and psychiatric symptoms. Given the complex pathology of HD, biomarkers are essential for performing early diagnosis, monitoring disease progression, and evaluating treatment efficacy. However, the identification of consistent HD biomarkers is challenging due to the prolonged premanifest HD stage, HD's heterogeneous presentation, and its multiple underlying biological pathways. This study involves a 10-year bibliometric analysis of HD biomarker research, revealing key research trends and gaps. The study also features a comprehensive literature review of emerging HD biomarkers, concluding the need for better stratification of HD patients and well-designed longitudinal studies to validate HD biomarkers. Promising candidate wet HD biomarkers- including neurofilament light chain protein (NfL), microRNAs, the mutant HTT protein, and specific metabolic and inflammatory markers- are discussed, with emphasis on their potential utility in the premanifest HD stage. Additionally, biomarkers reflecting brain structural deficits and motor or behavioral impairments, such as neurophysiological (e.g., motor tapping, speech, EEG, and event-related potentials) and imaging (e.g., MRI, PET, and diffusion tensor imaging) biomarkers, are evaluated. The findings underscore that the discovery and validation of reliable HD biomarkers urgently require improved patient stratification and well-designed longitudinal studies. Reliable biomarkers, particularly in the premanifest HD stage, are crucial for optimizing HD clinical management strategies, enabling personalized treatment approaches, and advancing clinical trials of HD-modifying therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jamil Ahmad
- Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Aseela Fathima
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 50728, Malaysia;
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
10
|
Cerejo C, De Cleene N, Mandler E, Schwarzová K, Labrecque S, Mahlknecht P, Krismer F, Djamshidian A, Seppi K, Heim B. Optical Coherence Tomography in Huntington's Disease-A Potential Future Biomarker for Neurodegeneration? Neurol Int 2025; 17:13. [PMID: 39852777 PMCID: PMC11767877 DOI: 10.3390/neurolint17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder for which, until now, only symptomatic treatment has been available. Lately, there have been multiple ongoing clinical trials targeting therapeutic agents for preventing disease onset or slowing disease progression in HD. These studies are in constant need of reliable biomarkers for neurodegeneration in HD. In recent years, retinal biomarkers have attracted significant attention in neurodegenerative disorders. Likewise, optical coherence tomography (OCT) is being evaluated as a potential biomarker in HD. In this article, we review the existing literature on OCT as a biomarker for neurodegeneration in HD.
Collapse
Affiliation(s)
- Clancy Cerejo
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Nicolas De Cleene
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Elias Mandler
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katarina Schwarzová
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Samuel Labrecque
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
- Department of Neurology, Hospital Kufstein, Kufstein 6330, Austria
| | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
11
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
12
|
Gray SM, Dai J, Smith AC, Beckley JT, Rahmati N, Lewis MC, Quirk MC. Changes in 24(S)-Hydroxycholesterol Are Associated with Cognitive Performance in Early Huntington's Disease: Data from the TRACK and ENROLL HD Cohorts. J Huntingtons Dis 2024; 13:449-465. [PMID: 39269850 DOI: 10.3233/jhd-240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND There is evidence for dysregulated cholesterol homeostasis in Huntington's disease (HD). The brain-specific cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-OHC) is decreased in manifest HD. 24(S)-OHC is an endogenous positive allosteric modulator (PAM) of the N-methyl-D-aspartate (NMDA) receptor, suggesting lower 24(S)-OHC may contribute to NMDA receptor hypofunction in HD. We hypothesized changes in 24(S)-OHC would be associated with cognitive impairment in early HD. OBJECTIVE To determine the interactions between oxysterols (24(S)-OHC, 25-OHC, and 27-OHC) at the NMDA receptor, the plasma levels of these oxysterols, and how these levels relate to cognitive performance. METHODS An in vitro competition assay was used to evaluate interactions at the NMDA receptor, liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was used to measure plasma 24(S)-OHC, 25-OHC, and 27-OHC levels, and correlation analyses investigated their relationship to performance on cognitive endpoints in TRACK and ENROLL-HD (NCT01574053). RESULTS In vitro, 25-OHC and 27-OHC attenuated the PAM activity of 24(S)-OHC on the NMDA receptor. Lower plasma 24(S)-OHC levels and 24(S)/25-OHC ratios were detected in participants with early HD. Moderate and consistent associations were detected between plasma 24(S)/25-OHC ratio and performance on Stroop color naming, symbol digit modality, Trails A/B, and emotion recognition. Little association was observed between the ratio and psychiatric or motor endpoints, suggesting specificity for the relationship to cognitive performance. CONCLUSIONS Our findings support growing evidence for dysregulated CNS cholesterol homeostasis in HD, demonstrate a relationship between changes in oxysterols and cognitive performance in HD, and propose that NMDA receptor hypofunction may contribute to cognitive impairment in HD.
Collapse
Affiliation(s)
| | - Jing Dai
- Sage Therapeutics Inc, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
13
|
van Wamelen DJ, Martin NH, Makos O, Badenoch J, Valera-Bermejo JM, Hartmann M, Cristales AR, Wood TC, Veronese M, Moretto M, Zelaya F, dell'Acqua F, O'Daly O, Lythgoe DJ, Ginestet C, Turkheimer F, Palasits N, Mrzljak L, Warner JH, Rabiner EA, Gunn R, Tabrizi SJ, Sampaio C, Wood A, Williams SC. Study protocol for the iMarkHD study in individuals with Huntington's disease. J Huntingtons Dis 2024; 13:479-489. [PMID: 39973385 DOI: 10.1177/18796397241288165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background: Huntington's disease (HD) is still often defined by the onset of motor symptoms, inversely associated with the size of the CAG repeat expansion in the huntingtin gene. Although the cause of HD is known, much remains unknown about mechanisms underlying clinical symptom development, disease progression, and specific clinical subtypes/endophenotypes. Objective: In the iMarkHD study, we aim to investigate four discrete molecular positron emission tomography (PET) tracers and magnetic resonance imaging (MRI) markers as biomarkers for disease and symptom progression. Methods: Following MRI optimization in five healthy volunteers (cohort 1), we aim to recruit 108 participants of whom 72 are people with HD (PwHD) and 36 healthy volunteers (cohort 2). Pending interim analysis, these numbers could increase to 96 PwHD and 48 healthy controls. Participants will complete a total of 10 study visits, consisting of a screening visit followed by a clinical and MRI visit and PET visits at baseline, year 1, and year 2. PET targets include the cannabinoid 1, histamine 3, and serotonin 2A receptors, and phosphodiesterase 10A, whereas MRI will be multimodal, including, but not limited to, the assessment of cerebral blood flow, functional connectivity, and brain iron. Results: Recruitment is currently active and started in September 2022. Conclusions: By combining PET and multi-modal MRI assessments we expect to provide a comprehensive examination of the molecular, functional, and structural framework of HD progression. As such, the iMarkHD study will provide a solid base for the identification of treatment targets and novel outcome measures for future clinical trials.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - Naomi H Martin
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Orsolya Makos
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - James Badenoch
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Jose Manuel Valera-Bermejo
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Monika Hartmann
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Alay Rangel Cristales
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Tobias C Wood
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Manuela Moretto
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Fernando Zelaya
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Flavio dell'Acqua
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Owen O'Daly
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - David J Lythgoe
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Cedric Ginestet
- Institute of Psychiatry, Psychology & Neuroscience, Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Federico Turkheimer
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| | - Nikki Palasits
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Princeton, NJ, USA
| | - Ladislav Mrzljak
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Princeton, NJ, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - John H Warner
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Princeton, NJ, USA
| | | | - Roger Gunn
- Invicro, A Konica Minolta Company, London, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, Department of Neurodegenerative Diseases, University College London, London, UK
| | - Cristina Sampaio
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Princeton, NJ, USA
| | - Andrew Wood
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Princeton, NJ, USA
| | - Steven Cr Williams
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, King's College London, London, UK
| |
Collapse
|
14
|
Demir A, Rosas HD. Altered interhemispheric connectivity in Huntington's Disease. Neuroimage Clin 2024; 44:103670. [PMID: 39293356 PMCID: PMC11422549 DOI: 10.1016/j.nicl.2024.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Pyramidal cells give rise to the corpus callosum, interhemispheric fibers that constitute the associations between the left and the right hemispheres. These interconnections are the substrates of important neurological functions, such as perception, memory, emotion, and movement control, which are all affected in Huntington's disease (HD). In this study we used directional tract density patterns (dTDPs) to evaluate changes in interhemispheric connectivity in gene-expanded individuals, which included presymptomatic and early symptomatic HD subjects. Our results demonstrated regionally selective and progressive differences in dTDPs between distinct regions of the corpus callosum (subdivided by Hofer-Frahm scheme) in the gene-expanded cohorts. In the presymptomatic HD cohort, we found trends, such that the density of fibers was reduced in CC regions IIb, III, and IV (p < 0.05); fibers from these regions project to sensory, premotor, and motor cortical regions, respectively. In the HD cohort, we found reduction in the density of fibers in all CC regions, including in fibers extending to the cortical surface (p < 0.002). Our results support the use of dTDPs to evaluate individual and progressive changes in interhemispheric connectivity in HD.
Collapse
Affiliation(s)
- Ali Demir
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
15
|
Huynh NPT, Osipovitch M, Foti R, Bates J, Mansky B, Cano JC, Benraiss A, Zhao C, Lu QR, Goldman SA. Shared patterns of glial transcriptional dysregulation link Huntington's disease and schizophrenia. Brain 2024; 147:3099-3112. [PMID: 39028640 PMCID: PMC11370805 DOI: 10.1093/brain/awae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 07/21/2024] Open
Abstract
Huntington's disease and juvenile-onset schizophrenia have long been regarded as distinct disorders. However, both manifest cell-intrinsic abnormalities in glial differentiation, with resultant astrocytic dysfunction and hypomyelination. To assess whether a common mechanism might underlie the similar glial pathology of these otherwise disparate conditions, we used comparative correlation network approaches to analyse RNA-sequencing data from human glial progenitor cells (hGPCs) produced from disease-derived pluripotent stem cells. We identified gene sets preserved between Huntington's disease and schizophrenia hGPCs yet distinct from normal controls that included 174 highly connected genes in the shared disease-associated network, focusing on genes involved in synaptic signalling. These synaptic genes were largely suppressed in both schizophrenia and Huntington's disease hGPCs, and gene regulatory network analysis identified a core set of upstream regulators of this network, of which OLIG2 and TCF7L2 were prominent. Among their downstream targets, ADGRL3, a modulator of glutamatergic synapses, was notably suppressed in both schizophrenia and Huntington's disease hGPCs. Chromatin immunoprecipitation sequencing confirmed that OLIG2 and TCF7L2 each bound to the regulatory region of ADGRL3, whose expression was then rescued by lentiviral overexpression of these transcription factors. These data suggest that the disease-associated suppression of OLIG2 and TCF7L2-dependent transcription of glutamate signalling regulators may impair glial receptivity to neuronal glutamate. The consequent loss of activity-dependent mobilization of hGPCs may yield deficient oligodendrocyte production, and hence the hypomyelination noted in these disorders, as well as the disrupted astrocytic differentiation and attendant synaptic dysfunction associated with each. Together, these data highlight the importance of convergent glial molecular pathology in both the pathogenesis and phenotypic similarities of two otherwise unrelated disorders, Huntington's disease and schizophrenia.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Rossana Foti
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Janna Bates
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Mansky
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jose C Cano
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Piao X, Li D, Liu H, Guo Q, Yu Y. Advances in Gene and Cellular Therapeutic Approaches for Huntington's Disease. Protein Cell 2024:pwae042. [PMID: 39121016 DOI: 10.1093/procel/pwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/11/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and non-pharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Collapse
Affiliation(s)
- Xuejiao Piao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Dickmann CGF, Milicevic Sephton S, Barker RA, Aigbirhio FI. PET Ligands for Imaging Mutant Huntingtin Aggregates: A Case Study in Non-For-Profit Scientific Management. Chembiochem 2024; 25:e202400152. [PMID: 38695673 DOI: 10.1002/cbic.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.
Collapse
Affiliation(s)
- Catherine G F Dickmann
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Selena Milicevic Sephton
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
19
|
Reilmann R, Anderson KE, Feigin A, Tabrizi SJ, Leavitt BR, Stout JC, Piccini P, Schubert R, Loupe P, Wickenberg A, Borowsky B, Rynkowski G, Volkinshtein R, Li T, Savola JM, Hayden M, Gordon MF. Safety and efficacy of laquinimod for Huntington's disease (LEGATO-HD): a multicentre, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Neurol 2024; 23:243-255. [PMID: 38280392 DOI: 10.1016/s1474-4422(23)00454-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Laquinimod modulates CNS inflammatory pathways thought to be involved in the pathology of Huntington's disease. Studies with laquinimod in transgenic rodent models of Huntington's disease suggested improvements in motor function, reduction of brain volume loss, and prolonged survival. We aimed to evaluate the safety and efficacy of laquinimod in improving motor function and reducing caudate volume loss in patients with Huntington's disease. METHODS LEGATO-HD was a multicentre, double-blind, placebo-controlled, phase 2 study done at 48 sites across ten countries (Canada, Czech Republic, Germany, Italy, Netherlands, Portugal, Russia, Spain, UK, and USA). Patients aged 21-55 years with a cytosine-adenosine-guanine (CAG) repeat length of between 36 and 49 who had symptomatic Huntington's disease with a Unified Huntington's Disease Rating Scale-Total Motor Score (UHDRS-TMS) of higher than 5 and a Total Functional Capacity score of 8 or higher were randomly assigned (1:1:1:1) by centralised interactive response technology to laquinimod 0·5 mg, 1·0 mg, or 1·5 mg, or to matching placebo, administered orally once daily over 52 weeks; people involved in the randomisation had no other role in the study. Participants, investigators, and study personnel were masked to treatment assignment. The 1·5 mg group was discontinued before recruitment was finished because of cardiovascular safety concerns in multiple sclerosis studies. The primary endpoint was change from baseline in the UHDRS-TMS and the secondary endpoint was percent change in caudate volume, both comparing the 1·0 mg group with the placebo group at week 52. Primary and secondary endpoints were assessed in the full analysis set (ie, all randomised patients who received at least one dose of study drug and had at least one post-baseline UHDRS-TMS assessment). Safety measures included adverse event frequency and severity, and clinical and laboratory examinations, and were assessed in the safety analysis set (ie, all randomised patients who received at least one dose of study drug). This trial is registered with ClinicalTrials.gov, NCT02215616, and EudraCT, 2014-000418-75, and is now complete. FINDINGS Between Oct 28, 2014, and June 19, 2018, 352 adults with Huntington's disease (179 [51%] men and 173 [49%] women; mean age 43·9 [SD 7·6] years and 340 [97%] White) were randomly assigned: 107 to laquinimod 0·5 mg, 107 to laquinimod 1·0 mg, 30 to laquinimod 1·5 mg, and 108 to matching placebo. Least squares mean change from baseline in UHDRS-TMS at week 52 was 1·98 (SE 0·83) in the laquinimod 1·0 mg group and 1·2 (0·82) in the placebo group (least squares mean difference 0·78 [95% CI -1·42 to 2·98], p=0·4853). Least squares mean change in caudate volume was 3·10% (SE 0·38) in the 1·0 mg group and 4·86% (0·38) in the placebo group (least squares mean difference -1·76% [95% CI -2·67 to -0·85]; p=0·0002). Laquinimod was well tolerated and there were no new safety findings. Serious adverse events were reported by eight (7%) patients on placebo, seven (7%) on laquinimod 0·5 mg, five (5%) on laquinimod 1·0 mg, and one (3%) on laquinimod 1·5 mg. There was one death, which occurred in the placebo group and was unrelated to treatment. The most frequent adverse events in all laquinimod dosed groups (0·5 mg, 1·0 mg, and 1·5 mg) were headache (38 [16%]), diarrhoea (24 [10%]), fall (18 [7%]), nasopharyngitis (20 [8%]), influenza (15 [6%]), vomiting (13 [5%]), arthralgia (11 [5%]), irritability (ten [4%]), fatigue (eight [3%]), and insomnia (eight [3%]). INTERPRETATION Laquinimod did not show a significant effect on motor symptoms assessed by the UHDRS-TMS, but significantly reduced caudate volume loss compared with placebo at week 52. Huntington's disease has a chronic and slowly progressive course, and this study does not address whether a longer duration of laquinimod treatment could have produced detectable and meaningful changes in the clinical assessments. FUNDING Teva Pharmaceutical Industries.
Collapse
Affiliation(s)
- Ralf Reilmann
- George Huntington Institute, Münster, Germany; Department of Clinical Radiology, University of Münster, Münster, Germany; Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Karen E Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Feigin
- New York University Langone Health, New York, NY, USA
| | - Sarah J Tabrizi
- University College London Queen Square Institute of Neurology, London, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Julie C Stout
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Paola Piccini
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Pippa Loupe
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | | | | | - Gail Rynkowski
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | - Rita Volkinshtein
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | - Thomas Li
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | | | - Michael Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Prilenia Therapeutics, Herzliya, Israel
| | - Mark Forrest Gordon
- Research and Development, Teva Pharmaceutical Industries, Petah Tikva, Israel
| |
Collapse
|
20
|
Sun Z, Ware J, Dey S, Eyigoz E, Sathe S, Sampaio C, Hu J. Large-scale screening of clinical assessments to distinguish between states in the Integrated HD Progression Model (IHDPM). Front Aging Neurosci 2024; 16:1320755. [PMID: 38414632 PMCID: PMC10896990 DOI: 10.3389/fnagi.2024.1320755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Background Understanding the sensitivity and utility of clinical assessments across different HD stages is important for study/trial endpoint selection and clinical assessment development. The Integrated HD Progression Model (IHDPM) characterizes the complex symptom progression of HD and separates the disease into nine ordered disease states. Objective To generate a temporal map of discriminatory clinical measures across the IHDPM states. Methods We applied the IHDPM to all HD individuals in an integrated longitudinal HD dataset derived from four observational studies, obtaining disease state assignment for each study visit. Using large-scale screening, we estimated Cohen's effect sizes to rank the discriminative power of 2,472 clinical measures for separating observations in disease state pairs. Individual trajectories through IHDPM states were examined. Discriminative analyses were limited to individuals with observations in both states of the pairs compared (N = 3,790). Results Discriminative clinical measures were heterogeneous across the HD life course. UHDRS items were frequently identified as the best state pair discriminators, with UHDRS Motor items - most notably TMS - showing the highest discriminatory power between the early-disease states and early post-transition period states. UHDRS functional items emerged as strong discriminators from the transition period and on. Cognitive assessments showed good discriminative power between all state pairs examined, excepting state 1 vs. 2. Several non-UHDRS assessments were also flagged as excellent state discriminators for specific disease phases (e.g., SF-12). For certain state pairs, single assessment items other than total/summary scores were highlighted as having excellent discriminative power. Conclusion By providing ranked quantitative scores indicating discriminatory ability of thousands of clinical measures between specific pairs of IHDPM states, our results will aid clinical trial designers select the most effective outcome measures tailored to their study cohort. Our observations may also assist in the development of end points targeting specific phases in the disease life course, through providing specific conceptual foci.
Collapse
Affiliation(s)
- Zhaonan Sun
- IBM Research, Yorktown Heights, NY, United States
| | | | - Sanjoy Dey
- IBM Research, Yorktown Heights, NY, United States
| | - Elif Eyigoz
- IBM Research, Yorktown Heights, NY, United States
| | - Swati Sathe
- CHDI Management, Inc., Princeton, NJ, United States
| | | | - Jianying Hu
- IBM Research, Yorktown Heights, NY, United States
| |
Collapse
|
21
|
Nunes AS, Pawlik M, Mishra RK, Waddell E, Coffey M, Tarolli CG, Schneider RB, Dorsey ER, Vaziri A, Adams JL. Digital assessment of speech in Huntington disease. Front Neurol 2024; 15:1310548. [PMID: 38322583 PMCID: PMC10844459 DOI: 10.3389/fneur.2024.1310548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background Speech changes are an early symptom of Huntington disease (HD) and may occur prior to other motor and cognitive symptoms. Assessment of HD commonly uses clinician-rated outcome measures, which can be limited by observer variability and episodic administration. Speech symptoms are well suited for evaluation by digital measures which can enable sensitive, frequent, passive, and remote administration. Methods We collected audio recordings using an external microphone of 36 (18 HD, 7 prodromal HD, and 11 control) participants completing passage reading, counting forward, and counting backwards speech tasks. Motor and cognitive assessments were also administered. Features including pausing, pitch, and accuracy were automatically extracted from recordings using the BioDigit Speech software and compared between the three groups. Speech features were also analyzed by the Unified Huntington Disease Rating Scale (UHDRS) dysarthria score. Random forest machine learning models were implemented to predict clinical status and clinical scores from speech features. Results Significant differences in pausing, intelligibility, and accuracy features were observed between HD, prodromal HD, and control groups for the passage reading task (e.g., p < 0.001 with Cohen'd = -2 between HD and control groups for pause ratio). A few parameters were significantly different between the HD and control groups for the counting forward and backwards speech tasks. A random forest classifier predicted clinical status from speech tasks with a balanced accuracy of 73% and an AUC of 0.92. Random forest regressors predicted clinical outcomes from speech features with mean absolute error ranging from 2.43-9.64 for UHDRS total functional capacity, motor and dysarthria scores, and explained variance ranging from 14 to 65%. Montreal Cognitive Assessment scores were predicted with mean absolute error of 2.3 and explained variance of 30%. Conclusion Speech data have the potential to be a valuable digital measure of HD progression, and can also enable remote, frequent disease assessment in prodromal HD and HD. Clinical status and disease severity were predicted from extracted speech features using random forest machine learning models. Speech measurements could be leveraged as sensitive marker of clinical onset and disease progression in future clinical trials.
Collapse
Affiliation(s)
| | - Meghan Pawlik
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Emma Waddell
- Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Madeleine Coffey
- Donald and Barbara Zucker School of Medicine, Uniondale, NY, United States
| | - Christopher G. Tarolli
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ruth B. Schneider
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Jamie L. Adams
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
22
|
Murakhovskaya YK, Sheremet NL, Eliseeva DD, Bryukhov VV. [Brain magnetic resonance imaging features in Leber's hereditary optic neuropathy]. Vestn Oftalmol 2024; 140:146-153. [PMID: 39569788 DOI: 10.17116/oftalma2024140051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common inherited mitochondrial disease, characterized by the development of bilateral partial optic nerve atrophy. Modern neuroimaging technologies enable the acquisition of high-quality images, allowing for the evaluation of all structural components of the orbits, including the optic nerve. Consequently, the relevance of performing magnetic resonance imaging (MRI) in patients with LHON has increased. MRI is an essential tool for clarifying the topographic localization and the extent of the pathological process in LHON, both within and beyond the visual system. Correlating MRI findings with the clinical manifestations of LHON can help in predicting disease progression and assessing the effectiveness of therapy.
Collapse
Affiliation(s)
- Yu K Murakhovskaya
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N L Sheremet
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | | | | |
Collapse
|
23
|
Zheng C, Tong L, Zhang Y. Multivariate longitudinal analysis for the association between brain atrophy and cognitive impairment in prodromal Huntington's disease subjects. J R Stat Soc Ser C Appl Stat 2024; 73:104-122. [PMID: 39280900 PMCID: PMC11393497 DOI: 10.1093/jrsssc/qlad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cognitive impairment has been widely accepted as a disease progression measure prior to the onset of Huntington's disease. We propose a sophisticated measurement error correction method that can handle potentially correlated measurement errors in longitudinally collected exposures and multiple outcomes. The asymptotic theory for the proposed method is developed. A simulation study is conducted to demonstrate the satisfactory performance of the proposed two-stage fitting method and shows that the independent working correlation structure outperforms other alternatives. We conduct a comprehensive longitudinal analysis to assess how brain striatal atrophy affects impairment in various cognitive domains for Huntington's disease.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Lili Tong
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Ying Zhang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| |
Collapse
|
24
|
Coleman A, Langan MT, Verma G, Knights H, Sturrock A, Leavitt BR, Tabrizi SJ, Scahill RI, Hobbs NZ. Assessment of Perivascular Space Morphometry Across the White Matter in Huntington's Disease Using MRI. J Huntingtons Dis 2024; 13:91-101. [PMID: 38517798 DOI: 10.3233/jhd-231508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are limited reports of enlarged PVS across the grey matter in manifest Huntington's disease (HD). Little is known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have the potential to both contribute to HD pathology and affect the distribution and success of intraparenchymal and intrathecally administered huntingtin-lowering therapies. Objective To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships between PVS morphometry and disease burden and severity measures were examined. Methods White matter PVS were segmented on 3T T2 W MRI brain scans of 33 healthy controls, 30 premanifest HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-HD study. PVS count and total PVS volume were measured. Results PVS total count slightly increased in pre-HD (p = 0.004), and early-HD groups (p = 0.005), compared to healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD compared to healthy controls (p = 0.044), but not in early-HD. No associations between PVS measures and HD disease burden or severity were found. Conclusions This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD and early-HD. Subtle morphometric abnormalities are implied but require confirmation in a larger cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its potential impact on future treatments, with a focus on subcortical grey matter, is warranted.
Collapse
Affiliation(s)
- Annabelle Coleman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Mackenzie T Langan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, USA
| | - Gaurav Verma
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, USA
| | - Harry Knights
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Aaron Sturrock
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Nicola Z Hobbs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
25
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
26
|
Ponomareva NV, Klyushnikov SA, Abramycheva N, Konovalov RN, Krotenkova M, Kolesnikova E, Malina D, Urazgildeeva G, Kanavets E, Mitrofanov A, Fokin V, Rogaev E, Illarioshkin SN. Neurophysiological hallmarks of Huntington's disease progression: an EEG and fMRI connectivity study. Front Aging Neurosci 2023; 15:1270226. [PMID: 38161585 PMCID: PMC10755012 DOI: 10.3389/fnagi.2023.1270226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide corroborative data on neurophysiological alterations in Huntington's disease (HD). However, the alterations in EEG and fMRI resting-state functional connectivity (rsFC), as well as their interrelations, at different stages of HD remain insufficiently investigated. This study aimed to identify neurophysiological alterations in individuals with preclinical HD (preHD) and early manifest HD (EMHD) by analyzing EEG and fMRI rsFC and examining their interrelationships. We found significant differences in EEG power between preHD individuals and healthy controls (HC), with a decrease in power in a specific frequency range at the theta-alpha border and slow alpha activity. In EMHD patients, in addition to the decrease in power in the 7-9 Hz range, a reduction in power within the classic alpha band compared to HC was observed. The fMRI analysis revealed disrupted functional connectivity in various brain networks, particularly within frontal lobe, putamen-cortical, and cortico-cerebellar networks, in individuals with the HD mutation compared to HC. The analysis of the relationship between EEG and fMRI rsFC revealed an association between decreased alpha power, observed in individuals with EMHD, and increased connectivity in large-scale brain networks. These networks include putamen-cortical, DMN-related and cortico-hippocampal circuits. Overall, the findings suggest that EEG and fMRI provide valuable information for monitoring pathological processes during the development of HD. A decrease in inhibitory control within the putamen-cortical, DMN-related and cortico-hippocampal circuits, accompanied by a reduction in alpha and theta-alpha border oscillatory activity, could potentially contribute to cognitive decline in HD.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | | | | | | | | | | | | | | | - Evgeny Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA, United States
| | | |
Collapse
|
27
|
McColgan P, Thobhani A, Boak L, Schobel SA, Nicotra A, Palermo G, Trundell D, Zhou J, Schlegel V, Sanwald Ducray P, Hawellek DJ, Dorn J, Simillion C, Lindemann M, Wheelock V, Durr A, Anderson KE, Long JD, Wild EJ, Landwehrmeyer GB, Leavitt BR, Tabrizi SJ, Doody R. Tominersen in Adults with Manifest Huntington's Disease. N Engl J Med 2023; 389:2203-2205. [PMID: 38055260 DOI: 10.1056/nejmc2300400] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Julian Zhou
- Roche Pharma Product Development China, Shanghai, China
| | | | | | | | - Jonas Dorn
- F. Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | | | | | - Edward J Wild
- University College London Queen Square Institute of Neurology, London, United Kingdom
| | | | | | - Sarah J Tabrizi
- University College London Queen Square Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
28
|
Evangelisti S, Boessenkool S, Pflanz CP, Basting R, Betts JF, Jenkinson M, Clare S, Muhammed K, LeHeron C, Armstrong R, Klein JC, Husain M, Nemeth AH, Hu MT, Douaud G. Subthalamic nucleus shows opposite functional connectivity pattern in Huntington's and Parkinson's disease. Brain Commun 2023; 5:fcad282. [PMID: 38075949 PMCID: PMC10699743 DOI: 10.1093/braincomms/fcad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Huntington's and Parkinson's disease are two movement disorders representing mainly opposite states of the basal ganglia inhibitory function. Despite being an integral part of the cortico-subcortico-cortical circuitry, the subthalamic nucleus function has been studied at the level of detail required to isolate its signal only through invasive studies in Huntington's and Parkinson's disease. Here, we tested whether the subthalamic nucleus exhibited opposite functional signatures in early Huntington's and Parkinson's disease. We included both movement disorders in the same whole-brain imaging study, and leveraged ultra-high-field 7T MRI to achieve the very fine resolution needed to investigate the smallest of the basal ganglia nuclei. Eleven of the 12 Huntington's disease carriers were recruited at a premanifest stage, while 16 of the 18 Parkinson's disease patients only exhibited unilateral motor symptoms (15 were at Stage I of Hoehn and Yahr off medication). Our group comparison interaction analyses, including 24 healthy controls, revealed a differential effect of Huntington's and Parkinson's disease on the functional connectivity at rest of the subthalamic nucleus within the sensorimotor network, i.e. an opposite effect compared with their respective age-matched healthy control groups. This differential impact in the subthalamic nucleus included an area precisely corresponding to the deep brain stimulation 'sweet spot'-the area with maximum overall efficacy-in Parkinson's disease. Importantly, the severity of deviation away from controls' resting-state values in the subthalamic nucleus was associated with the severity of motor and cognitive symptoms in both diseases, despite functional connectivity going in opposite directions in each disorder. We also observed an altered, opposite impact of Huntington's and Parkinson's disease on functional connectivity within the sensorimotor cortex, once again with relevant associations with clinical symptoms. The high resolution offered by the 7T scanner has thus made it possible to explore the complex interplay between the disease effects and their contribution on the subthalamic nucleus, and sensorimotor cortex. Taken altogether, these findings reveal for the first time non-invasively in humans a differential, clinically meaningful impact of the pathophysiological process of these two movement disorders on the overall sensorimotor functional connection of the subthalamic nucleus and sensorimotor cortex.
Collapse
Affiliation(s)
- Stefania Evangelisti
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Sirius Boessenkool
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Chris Patrick Pflanz
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Romina Basting
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- Department of Experimental Psychology, University of Oxford, OX2 6GG Oxford, UK
| | - Jill F Betts
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Mark Jenkinson
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- School of Computer Science, Faculty of Engineering, University of Adelaide, 5005 Adelaide, Australia
| | - Stuart Clare
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Kinan Muhammed
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Campbell LeHeron
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
| | - Richard Armstrong
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Johannes C Klein
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Masud Husain
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
- Department of Experimental Psychology, University of Oxford, OX2 6GG Oxford, UK
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| | - Gwenaëlle Douaud
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK
| |
Collapse
|
29
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
30
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Horta-Barba A, Martinez-Horta S, Pérez-Pérez J, Puig-Davi A, de Lucia N, de Michele G, Salvatore E, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Júlio F, Januário C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Wallner R, Nuzzi A, Pagonabarraga J, Kulisevsky J. Measuring cognitive impairment and monitoring cognitive decline in Huntington's disease: a comparison of assessment instruments. J Neurol 2023; 270:5408-5417. [PMID: 37462754 PMCID: PMC10576674 DOI: 10.1007/s00415-023-11804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Progressive cognitive decline is an inevitable feature of Huntington's disease (HD) but specific criteria and instruments are still insufficiently developed to reliably classify patients into categories of cognitive severity and to monitor the progression of cognitive impairment. METHODS We collected data from a cohort of 180 positive gene-carriers: 33 with premanifest HD and 147 with manifest HD. Using a specifically developed gold-standard for cognitive status we classified participants into those with normal cognition, those with mild cognitive impairment, and those with dementia. We administered the Parkinson's Disease-Cognitive Rating Scale (PD-CRS), the MMSE and the UHDRS cogscore at baseline, and at 6-month and 12-month follow-up visits. Cutoff scores discriminating between the three cognitive categories were calculated for each instrument. For each cognitive group and instrument we addressed cognitive progression, sensitivity to change, and the minimally clinical important difference corresponding to conversion from one category to another. RESULTS The PD-CRS cutoff scores for MCI and dementia showed excellent sensitivity and specificity ratios that were not achieved with the other instruments. Throughout follow-up, in all cognitive groups, PD-CRS captured the rate of conversion from one cognitive category to another and also the different patterns in terms of cognitive trajectories. CONCLUSION The PD-CRS is a valid and reliable instrument to capture MCI and dementia syndromes in HD. It captures the different trajectories of cognitive progression as a function of cognitive status and shows sensitivity to change in MCI and dementia.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesús Pérez-Pérez
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Giuseppe de Michele
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Elena Salvatore
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Cristina Januário
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Jesús Ruiz-Idiago
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurological and Psychiatric Nursing, Faculty of Health Science Medical, University of Gdansk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus, Gdańsk, Poland
| | - Renata Wallner
- Department of Psychiatry, Medical University of Wroclaw, Wroclaw, Poland
| | - Angela Nuzzi
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Javier Pagonabarraga
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- European Huntington's Disease Network (EHDN), Ulm, Germany.
| |
Collapse
|
32
|
Perumal TM, Wolf D, Berchtold D, Pointeau G, Zhang YP, Cheng WY, Lipsmeier F, Sprengel J, Czech C, Chiriboga CA, Lindemann M. Digital measures of respiratory and upper limb function in spinal muscular atrophy: design, feasibility, reliability, and preliminary validity of a smartphone sensor-based assessment suite. Neuromuscul Disord 2023; 33:845-855. [PMID: 37722988 DOI: 10.1016/j.nmd.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 09/20/2023]
Abstract
Spinal muscular atrophy (SMA) is characterized by progressive muscle weakness and paralysis. Motor function is monitored in the clinical setting using assessments including the 32-item Motor Function Measure (MFM-32), but changes in disease severity between clinical visits may be missed. Digital health technologies may assist evaluation of disease severity by bridging gaps between clinical visits. We developed a smartphone sensor-based assessment suite, comprising nine tasks, to assess motor and muscle function in people with SMA. We used data from the risdiplam phase 2 JEWELFISH trial to assess the test-retest reliability and convergent validity of each task. In the first 6 weeks, 116 eligible participants completed assessments on a median of 6.3 days per week. Eight of the nine tasks demonstrated good or excellent test-retest reliability (intraclass correlation coefficients >0.75 and >0.9, respectively). Seven tasks showed a significant association (P < 0.05) with related clinical measures of motor function (individual items from the MFM-32 or Revised Upper Limb Module scales) and seven showed significant association (P < 0.05) with disease severity measured using the MFM-32 total score. This cross-sectional study supports the feasibility, reliability, and validity of using smartphone-based digital assessments to measure function in people living with SMA.
Collapse
Affiliation(s)
- Thanneer Malai Perumal
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Detlef Wolf
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Doris Berchtold
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Grégoire Pointeau
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Yan-Ping Zhang
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Wei-Yi Cheng
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Florian Lipsmeier
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jörg Sprengel
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Christian Czech
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | | | - Michael Lindemann
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
33
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
34
|
Mühlbäck A, Mana J, Wallner M, Frank W, Lindenberg KS, Hoffmann R, Klempířová O, Klempíř J, Landwehrmeyer GB, Bezdicek O. Establishing normative data for the evaluation of cognitive performance in Huntington's disease considering the impact of gender, age, language, and education. J Neurol 2023; 270:4903-4913. [PMID: 37347292 PMCID: PMC10511566 DOI: 10.1007/s00415-023-11823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND A declining cognitive performance is a hallmark of Huntington's disease (HD). The neuropsychological battery of the Unified HD Rating Scale (UHDRS'99) is commonly used for assessing cognition. However, there is a need to identify and minimize the impact of confounding factors, such as language, gender, age, and education level on cognitive decline. OBJECTIVES Aim is to provide appropriate, normative data to allow clinicians to identify disease-associated cognitive decline in diverse HD populations by compensating for the impact of confounding factors METHODS: Sample data, N = 3267 (60.5% females; mean age of 46.9 years (SD = 14.61, range 18-86) of healthy controls were used to create a normative dataset. For each neuropsychological test, a Bayesian generalized additive model with age, education, gender, and language as predictors was constructed to appropriately stratify the normative dataset. RESULTS With advancing age, there was a non-linear decline in cognitive performance. In addition, performance was dependent on educational levels and language in all tests. Gender had a more limited impact. Standardized scores have been calculated to ease the interpretation of an individual's test outcome. A web-based online tool has been created to provide free access to normative data. CONCLUSION For defined neuropsychological tests, the impact of gender, age, education, and language as factors confounding disease-associated cognitive decline can be minimized at the level of a single patient examination.
Collapse
Affiliation(s)
- Alžbeta Mühlbäck
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany.
- Huntington Center South, kbo-Isar-Amper-Klinikum, Taufkirchen, Germany.
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia.
| | - Josef Mana
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | | | - Wiebke Frank
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Katrin S Lindenberg
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Rainer Hoffmann
- Huntington Center South, kbo-Isar-Amper-Klinikum, Taufkirchen, Germany
| | - Olga Klempířová
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiří Klempíř
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | | | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
35
|
van Eimeren T, Giehl K, Reetz K, Sampaio C, Mestre TA. Neuroimaging biomarkers in Huntington's disease: Preparing for a new era of therapeutic development. Parkinsonism Relat Disord 2023; 114:105488. [PMID: 37407343 DOI: 10.1016/j.parkreldis.2023.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND A critical challenge for Huntington's disease (HD) clinical trials in disease modification is the definition of endpoints that can capture change when clinical signs are subtle/non-existent. Reliable biomarkers are therefore urgently needed to facilitate drug development by allowing the enrichment of clinical trial populations and providing measures of benefit that can support the establishment of efficacy. METHODS By systematically examining the published literature on HD neuroimaging biomarker studies, we sought to advance knowledge to guide the validation of neuroimaging biomarkers. We started by reviewing both cross-sectional and longitudinal studies and then conducted an in-depth review to make quantitative comparisons between biomarkers using data only from longitudinal studies with samples sizes larger than ten participants in PET studies or 30 participants in MRI studies. RESULTS From a total of 2202 publications initially identified, we included 32 studies, 19 of which underwent in-depth comparative review. The majority of included studies used various MRI-based methods (manual to automatic) to longitudinally assess either the volume of the putamen or the caudate, which have been shown to undergo significant structural change during HD natural history. CONCLUSION Despite the impressively large number of neuroimaging biomarker studies, only a small number of adequately designed studies met our criteria. Among these various biomarkers, MRI-based volumetric analyses of the caudate and putamen are currently the best validated for use in the disease phase before clinical motor diagnosis. A biomarker that can be used to demonstrate a disease-modifying effect is still missing.
Collapse
Affiliation(s)
- Thilo van Eimeren
- University of Cologne, Faculty of Medicine, Department of Nuclear Medicine, Cologne, Germany; University of Cologne, Faculty of Medicine, Department of Neurology, Cologne, Germany.
| | - Kathrin Giehl
- University of Cologne, Faculty of Medicine, Department of Nuclear Medicine, Cologne, Germany; Research Center Jülich, Institute for Neuroscience and Medicine (INM-2), Jülich, Germany
| | - Kathrin Reetz
- University of Aachen, Department of Neurology, Aachen, Germany
| | | | - Tiago A Mestre
- University of Ottawa, Department of Medicine, Division of Neurology, The Ottawa Hospital Research Institute, Parkinson's Disease and Movement Disorders Center, Canada
| |
Collapse
|
36
|
Le Stanc L, Youssov K, Giavazzi M, Sliwinski A, Bachoud-Lévi AC, Jacquemot C. Language disorders in patients with striatal lesions: Deciphering the role of the striatum in language performance. Cortex 2023; 166:91-106. [PMID: 37354871 DOI: 10.1016/j.cortex.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 06/26/2023]
Abstract
The classical neural model of language refers to a cortical network involving frontal, parietal and temporal regions. However, patients with subcortical lesions of the striatum have language difficulties. We investigated whether the striatum is directly involved in language or whether its role in decision-making has an indirect effect on language performance, by testing carriers of Huntington's disease (HD) mutations and controls. HD is a genetic neurodegenerative disease primarily affecting the striatum and causing language disorders. We asked carriers of the HD mutation in the premanifest (before clinical diagnosis) and early disease stages, and controls to perform two discrimination tasks, one involving linguistic and the other non-linguistic stimuli. We used the hierarchical drift diffusion model (HDDM) to analyze the participants' responses and to assess the decision and non-decision parameters separately. We hypothesized that any language deficits related to decision-making impairments would be reflected in the decision parameters of linguistic and non-linguistic tasks. We also assessed the relative contributions of both HDDM decision and non-decision parameters to the participants' behavioral data (response time and discriminability). Finally, we investigated whether the decision and non-decision parameters of the HDDM were correlated with brain atrophy. The HDDM analysis showed that patients with early HD have impaired decision parameters relative to controls, regardless of the task. In both tasks, decision parameters better explained the variance of response time and discriminability performance than non-decision parameters. In the linguistic task, decision parameters were positively correlated with gray matter volume in the ventral striatum and putamen, whereas non-decision parameters were not. Language impairment in patients with striatal atrophy is better explained by a deficit of decision-making than by a deficit of core linguistic processing. These results suggest that the striatum is involved in language through the modulation of decision-making, presumably by regulating the process of choice between linguistic alternatives.
Collapse
Affiliation(s)
- Lorna Le Stanc
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France; Université Paris Cité, LaPsyDÉ, CNRS, Paris, France
| | - Katia Youssov
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France; AP-HP, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Maria Giavazzi
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
| | - Agnès Sliwinski
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France; AP-HP, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Anne-Catherine Bachoud-Lévi
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France; AP-HP, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Charlotte Jacquemot
- Département d'Études Cognitives, École Normale Supérieure-PSL, Paris, France; Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; Université Paris-Est Créteil, Faculté de Médecine, Créteil, France.
| |
Collapse
|
37
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
38
|
Velissaris S, Davis MC, Fisher F, Gluyas C, Stout JC. A pilot evaluation of an 8-week mindfulness-based stress reduction program for people with pre-symptomatic Huntington's disease. J Community Genet 2023; 14:395-405. [PMID: 37458974 PMCID: PMC10444936 DOI: 10.1007/s12687-023-00651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/02/2023] [Indexed: 08/23/2023] Open
Abstract
People with Huntington's disease (HD) face difficult emotional and practical challenges throughout their illness, including in the pre-symptomatic stage. There are, however, extremely limited psychosocial interventions adapted to or researched for HD. We adapted and piloted an 8-week mindfulness-based stress reduction (MBSR) program in people with pre-symptomatic HD to determine if the program (i) was feasible and acceptable to participants, (ii) resulted in increased mindfulness understanding and skills, and (iii) led to improved psychological adjustment. Quantitative measures of mindfulness, emotion regulation, mood, and quality of life were administered pre and post the MBSR program and at 3-month follow-up. Measures of mindfulness practice and session clarity were administered weekly. Qualitative participant feedback was collected with a post-program interview conducted by independent clinicians. Seven participants completed the 8-week course. The program's feasibility and acceptability was supported by excellent retention and participation rates and acceptable rates of home practice completion. In addition, qualitative feedback indicated participant satisfaction with the program structure and content. Two core mindfulness skills (observing and non-judgment) showed significant improvement from pre- to post-assessment. Participant qualitative feedback indicated increased confidence and capacity to use mindfulness techniques, particularly in emotionally challenging situations. Participant questionnaire data showed good psychological adjustment at baseline, which did not change after treatment. Psychological benefits of the program identified in qualitative data included fewer ruminations about HD, reduced isolation and stigma, and being seen by others as calmer. These findings justify expansion of the program to determine its efficacy in a larger, controlled study.
Collapse
Affiliation(s)
- Sarah Velissaris
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, 476 Kooyong Rd., South Caulfield, 3162, VIC, Australia.
| | - Marie-Claire Davis
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, 476 Kooyong Rd., South Caulfield, 3162, VIC, Australia
| | - Fiona Fisher
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, 476 Kooyong Rd., South Caulfield, 3162, VIC, Australia
| | - Cathy Gluyas
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, 476 Kooyong Rd., South Caulfield, 3162, VIC, Australia
| | - Julie C Stout
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
39
|
Sierra LA, Hughes SB, Ullman CJ, Hall A, Pandeya SR, Schubert R, Frank SA, Halko MA, Corey-Bloom J, Laganiere S. LASSI-L detects early cognitive changes in pre-motor manifest Huntington's disease: a replication and validation study. Front Neurol 2023; 14:1191718. [PMID: 37533473 PMCID: PMC10393264 DOI: 10.3389/fneur.2023.1191718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Background and objectives Cognitive decline is an important early sign in pre-motor manifest Huntington's disease (preHD) and is characterized by deficits across multiple domains including executive function, psychomotor processing speed, and memory retrieval. Prior work suggested that the Loewenstein-Acevedo Scale for Semantic Interference and Learning (LASSI-L)-a verbal learning task that simultaneously targets these domains - could capture early cognitive changes in preHD. The current study aimed to replicate, validate and further analyze the LASSI-L in preHD using larger datasets. Methods LASSI-L was administered to 50 participants (25 preHD and 25 Healthy Controls) matched for age, education, and sex in a longitudinal study of disease progression and compared to performance on MMSE, Trail A & B, SCWT, SDMT, Semantic Fluency (Animals), and CVLT-II. Performance was then compared to a separate age-education matched-cohort of 25 preHD participants. Receiver operating curve (ROC) and practice effects (12 month interval) were investigated. Group comparisons were repeated using a preHD subgroup restricted to participants predicted to be far from diagnosis (Far subgroup), based on CAG-Age-Product scaled (CAPs) score. Construct validity was assessed through correlations with previously established measures of subcortical atrophy. Results PreHD performance on all sections of the LASSI-L was significantly different from controls. The proactive semantic interference section (PSI) was sensitive (p = 0.0001, d = 1.548), similar across preHD datasets (p = 1.0), reliable on test-retest over 12 months (spearman rho = 0.88; p = <0.00001) and associated with an excellent area under ROC (AUROC) of 0.855. In the preHD Far subgroup comparison, PSI was the only cognitive assessment to survive FDR < 0.05 (p = 0.03). The number of intrusions on PSI was negatively correlated with caudate volume. Discussion The LASSI-L is a sensitive, reliable, efficient tool for detecting cognitive decline in preHD. By using a unique verbal learning test paradigm that simultaneously targets executive function, processing speed and memory retrieval, the LASSI-L outperforms many other established tests and captures early signs of cognitive impairment. With further longitudinal validation, the LASSI-L could prove to be a useful biomarker for clinical research in preHD.
Collapse
Affiliation(s)
- Luis A. Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Shelby B. Hughes
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Clementina J. Ullman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Andrew Hall
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
| | - Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Samuel A. Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Mark A. Halko
- Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Belmont, MA, United States
| | - Jody Corey-Bloom
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
| | - Simon Laganiere
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Li XY, Bao YF, Xie JJ, Gao B, Qian SX, Dong Y, Wu ZY. Application Value of Serum Neurofilament Light Protein for Disease Staging in Huntington's Disease. Mov Disord 2023. [PMID: 37148558 DOI: 10.1002/mds.29430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Neurofilament light protein (NfL) has been proven to be a sensitive biomarker for Huntington's disease (HD). However, these studies did not include HD patients at advanced stages or with larger CAG repeats (>50), leading to a knowledge gap of the characteristics of NfL. METHODS Serum NfL (sNfL) levels were quantified using an ultrasensitive immunoassay. Participants were assessed by clinical scales and 7.0 T magnetic resonance imaging. Longitudinal samples and clinical data were obtained. RESULTS Baseline samples were available from 110 controls, 90 premanifest HD (pre-HD) and 137 HD individuals. We found levels of sNfL significantly increased in HD compared to pre-HD and controls (both P < 0.0001). The increase rates of sNfL were differed by CAG repeat lengths. However, there was no difference in sNfL levels in manifest HD from early to late stages. In addition, sNfL levels were associated with cognitive measures in pre-HD and manifest HD group, respectively. The increased levels of sNfL were also closely related to microstructural changes in white matter. In the longitudinal analysis, baseline sNfL did not correlate with subsequent clinical function decline. Random forest analysis revealed that sNfL had good power for predicting disease onset. CONCLUSIONS Although sNfL levels are independent of disease stages in manifest HD, it is still an optimal indicator for predicting disease onset and has potential use as a surrogate biomarker of treatment effect in clinical trials. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
41
|
Darpo B, Geva M, Ferber G, Goldberg YP, Cruz-Herranz A, Mehra M, Kovacs R, Hayden MR. Pridopidine Does Not Significantly Prolong the QTc Interval at the Clinically Relevant Therapeutic Dose. Neurol Ther 2023; 12:597-617. [PMID: 36811812 PMCID: PMC10043059 DOI: 10.1007/s40120-023-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in development for the treatment of Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Pridopidine's activation of S1R enhances cellular processes that are crucial for neuronal function and survival but are impaired in neurodegenerative diseases. Human brain positron emission tomography (PET) imaging studies show that at the therapeutic dose of 45 mg twice daily (bid), pridopidine selectively and robustly occupies the S1R. We conducted concentration-QTc (C-QTc) analyses to assess pridopidine's effect on the QT interval and investigated its cardiac safety profile. METHODS C-QTc analysis was conducted using data from PRIDE-HD, a phase 2, placebo-controlled trial evaluating four pridopidine doses (45, 67.5, 90, 112.5 mg bid) or placebo over 52 weeks in HD patients. Triplicate electrocardiograms (ECGs) with simultaneous plasma drug concentrations were determined in 402 patients with HD. The effect of pridopidine on the Fridericia-corrected QT interval (QTcF) was evaluated. Cardiac-related adverse events (AEs) were analyzed from PRIDE-HD alone and from pooled safety data of three double-blind, placebo-controlled trials with pridopidine in HD (HART, MermaiHD, and PRIDE-HD). RESULTS A concentration-dependent effect of pridopidine on the change from baseline in the Fridericia-corrected QT interval (ΔQTcF) was observed, with a slope of 0.012 ms (ms) per ng/mL (90% confidence interval (CI), 0.0109-0.0127). At the therapeutic dose of 45 mg bid, the predicted placebo-corrected ΔQTcF (ΔΔQTcF) was 6.6 ms (upper bound 90% CI, 8.0 ms), which is below the level of concern and not clinically relevant. Analysis of pooled safety data from three HD trials demonstrates that at 45 mg bid, pridopidine cardiac-related AE frequencies are similar to those with placebo. No patients reached a QTcF of 500 ms and no patients experienced torsade de pointes (TdP) at any pridopidine dose. CONCLUSIONS At the 45 mg bid therapeutic dose, pridopidine demonstrates a favorable cardiac safety profile, with an effect on the QTc interval that is below the level of concern and not clinically relevant. TRIAL REGISTRATION PRIDE-HD (TV7820-CNS-20002) trial registration: ClinicalTrials.gov identifier, NCT02006472, EudraCT 2013-001888-23; HART (ACR16C009) trial registration: ClinicalTrials.gov identifier, NCT00724048; MermaiHD (ACR16C008) trial registration: ClinicalTrials.gov identifier, NCT00665223, EudraCT No. 2007-004988-22.
Collapse
Affiliation(s)
| | - Michal Geva
- Prilenia Therapeutics B.V., Naarden, The Netherlands.
| | - Georg Ferber
- Statistik Georg Ferber GmbH, Riehen, Switzerland
| | | | | | - Munish Mehra
- Biometrics Department, Tigermed-BDM Inc., Somerset, NJ, USA
| | - Richard Kovacs
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael R Hayden
- Prilenia Therapeutics B.V., Naarden, The Netherlands.
- Department of Medical Genetics, CMMT, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Abstract
Huntington's disease (HD) is a fatal, monogenic, autosomal dominant neurodegenerative disease caused by a polyglutamine-encoding CAG expansion in the huntingtin (HTT) gene that results in mutant huntingtin proteins (mHTT) in cells throughout the body. Although large parts of the central nervous system (CNS) are affected, the striatum is especially vulnerable and undergoes marked atrophy. Astrocytes are abundant within the striatum and contain mHTT in HD, as well as in mouse models of the disease. We focus on striatal astrocytes and summarize how they participate in, and contribute to, molecular pathophysiology and disease-related phenotypes in HD model mice. Where possible, reference is made to pertinent astrocyte alterations in human HD. Astrocytic dysfunctions related to cellular morphology, extracellular ion and neurotransmitter homeostasis, and metabolic support all accompany the development and progression of HD, in both transgenic mouse and human cellular and chimeric models of HD. These findings reveal the potential for the therapeutic targeting of astrocytes so as to restore synaptic as well as tissue homeostasis in HD. Elucidation of the mechanisms by which astrocytes contribute to HD pathogenesis may inform a broader understanding of the role of glial pathology in neurodegenerative disorders and, by so doing, enable new strategies of glial-directed therapeutics.
Collapse
Affiliation(s)
- Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
43
|
Horta-Barba A, Martinez-Horta S, Sampedro F, Pérez-Pérez J, Pagonabarraga J, Kulisevsky J. Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington's disease. J Neurosci Res 2023; 101:990-999. [PMID: 36807154 DOI: 10.1002/jnr.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Individuals with pre-manifest and early symptomatic Huntington's disease (HD) have shown deficits in solving arithmetic word-problems. However, the neural correlates of these deficits in HD are poorly understood. We explored the structural (gray-matter volume; GMV) and metabolic (18F-FDG PET; SUVr) brain correlates of arithmetic performance using the recently developed HD-word problem arithmetic task (HD-WPA) in seventeen preHD and sixteen HD individuals. Symptomatic participants showed significantly lower scores in the HD-WPA than preHD participants. Lower performance in the HD-WPA was associated with reduced GMV in subcortical, medial frontal, and several posterior-cortical clusters in HD participants. No significant GMV loss was found in preHD participants. 18F-FDG data revealed a widespread pattern of hypometabolism in association with lower arithmetic performance in all participants. In preHD participants, this pattern was restricted to the ventrolateral and orbital prefrontal cortex, the insula, and the precentral gyrus. In HD participants, the pattern extended to several parietal-temporal regions. Word-problem solving arithmetic deficits in HD is subserved by a pattern of asynchronous metabolic and structural compromise across the cerebral cortex as a function of disease stage. In preHD individuals, arithmetic deficits were associated with prefrontal alterations, whereas in symptomatic HD patients, more severe arithmetic deficits are associated with the compromise of several frontal-subcortical and temporo-parietal regions. Our results support the hypothesis that cognitive deficits in HD are not exclusively dominated by frontal-striatal dysfunctions but also involve fronto-temporal and parieto-occipital damage.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| |
Collapse
|
44
|
Zhang Z, Xu C, Wen G, Dong M, Shen X, Gong B, Sun B, Qi M, Tian Y, Liu Y, Yuan W. Postoperative hematoma in cervical spondylosis patient complicated with Huntington's disease: Case report and literature review. SAGE Open Med Case Rep 2023; 11:2050313X221147191. [PMID: 36643711 PMCID: PMC9834929 DOI: 10.1177/2050313x221147191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Hematoma is a life-threatening complication of anterior surgery in cervical spondylosis patients. Herein, we report a cervical spondylosis patient complicated with Huntington's disease, who developed unexpected neck hematoma after anterior cervical discectomy and fusion (ACDF) surgical treatment. During the debridement, we found no noticeable vessel lesions and concluded that the occurrence of postoperative hematoma might be due to the drainage displacement caused by excessive uncontrolled movements of the neck after the operation. The patient recovered well, and further literature review suggests that chorea secondary to Huntington's disease likely increases mechanical stress on the cervical spine, indicating an internal relationship between degenerative cervical spondylosis and Huntington's disease. Cervical spondylotic patients complicated with Huntington's disease can be treated with surgical intervention but need to be immobilized and under close observation.
Collapse
Affiliation(s)
- Zifan Zhang
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Chen Xu
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Guoqing Wen
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Minjie Dong
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Xiaolong Shen
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Baofeng Gong
- Department of Neurology, Shanghai
Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Baifeng Sun
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Min Qi
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Ye Tian
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Yang Liu
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China
| | - Wen Yuan
- Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China,Wen Yuan, Spine Center, Department of
Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, 415th
Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
45
|
Xie JJ, Li XY, Dong Y, Chen C, Qu BY, Wang S, Xu H, Roe AW, Lai HY, Wu ZY. Local and Global Abnormalities in Pre-symptomatic Huntington's Disease Revealed by 7T Resting-state Functional MRI. Neurosci Bull 2023; 39:94-98. [PMID: 36036300 PMCID: PMC9849632 DOI: 10.1007/s12264-022-00943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Juan-Juan Xie
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiao-Yan Li
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cong Chen
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bo-Yi Qu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China
| | - Shuang Wang
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Han Xu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China.
| | - Hsin-Yi Lai
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China.
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Fitzgerald ES, Stout JC, Glikmann-Johnston Y, Anderson C, Jackson ML. Sleep, Circadian Rhythms, and Cognitive Dysfunction in Huntington's Disease. J Huntingtons Dis 2023; 12:293-304. [PMID: 37599535 DOI: 10.3233/jhd-230578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND In healthy people, sleep and circadian disruption are linked to cognitive deficits. People with Huntington's disease (HD), who have compromised brain function and sleep and circadian disturbances, may be even more susceptible to these cognitive effects. OBJECTIVE To conduct a comprehensive review and synthesis of the literature in HD on the associations of cognitive dysfunction with disturbed sleep and circadian rhythms. METHODS We searched MEDLINE via OVID, CINAHL Plus, EMBASE via OVID, and PubMed in May 2023. The first author then screened by title and abstract and conducted a full review of remaining articles. RESULTS Eight studies investigating the influence of sleep and/or circadian rhythms on cognitive function in HD were found. In manifest HD, poorer sleep was associated with worse cognitive function. For behavioral 24-hour (circadian) rhythms, two studies indicated that later wake times correlated with poorer cognitive function. No reported studies in HD examined altered physiological 24-hour (circadian) rhythms and cognitive impairment. CONCLUSION Some associations exist between poor sleep and cognitive dysfunction in manifest HD, yet whether these associations are present before clinical diagnosis is unknown. Whether circadian disturbances relate to cognitive impairment in HD also remains undetermined. To inform sleep and circadian interventions aimed at improving cognitive symptoms in HD, future research should include a range of disease stages, control for external factors, and utilize robust cognitive batteries targeted to the aspects of cognitive function known to be adversely affected in HD.
Collapse
Affiliation(s)
- Emily S Fitzgerald
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Julie C Stout
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Clare Anderson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Melinda L Jackson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
48
|
Taghian T, Gallagher J, Batcho E, Pullan C, Kuchel T, Denney T, Perumal R, Moore S, Muirhead R, Herde P, Johns D, Christou C, Taylor A, Passler T, Pulaparthi S, Hall E, Chandra S, O’Neill CA, Gray-Edwards H. Brain Alterations in Aged OVT73 Sheep Model of Huntington's Disease: An MRI Based Approach. J Huntingtons Dis 2022; 11:391-406. [PMID: 36189602 PMCID: PMC9837686 DOI: 10.3233/jhd-220526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Batcho
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Caitlin Pullan
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Shamika Moore
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Robb Muirhead
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Daniel Johns
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Amanda Taylor
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - Thomas Passler
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Sanjana Pulaparthi
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Hall
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sundeep Chandra
- Sana Biotechnology, South San Francisco, CA, USA,Bio Marin Pharmaceutical Inc., San Rafael, CA, USA
| | | | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,Correspondence to: Heather L. Gray-Edwards, DVM, PhD, University of Massachusetts Medical School, Department of Radiology and Horae Gene Therapy Center, 368 Plantation Street, ASC6-2055, Worcester, MA 01605, USA. Tel.: +1 508 856 4051; Fax: +1 508 856 1552; E-mail:
| |
Collapse
|
49
|
Li XY, Bao YF, Xie JJ, Qian SX, Gao B, Xu M, Dong Y, Burgunder JM, Wu ZY. The Chinese Version of UHDRS in Huntington's Disease: Reliability and Validity Assessment. J Huntingtons Dis 2022; 11:407-413. [PMID: 36120787 DOI: 10.3233/jhd-220542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Unified Huntington's Disease Rating Scale (UHDRS) is a universal scale assessing disease severity of Huntington's disease (HD). However, the English version cannot be widely used in China, and the reliability and validity of the Chinese UHDRS have not yet been confirmed. OBJECTIVE To test the reliability and validity of Chinse UHDRS in patients with HD. METHODS Between August 2013 and August 2021, 159 HD patients, 40 premanifest HD, and 64 healthy controls were consecutively recruited from two medical centers in China and assessed by Chinese UHDRS. Internal consistency and interrater reliability of the scale were examined. Intercorrelation was performed to analyze the convergent and divergent validity of the scale. A receiver operating characteristic analysis was conducted to explore the optimal cutoff point of each cognitive test. RESULTS High internal consistency was found in Chinese UHDRS, and its Cronbach's alpha values of the motor, cognitive, behavioral and functional subscales were 0.954, 0.826, 0.804, and 0.954, respectively. The interrater reliability of the total motor score was 0.960. The convergent and divergent validity revealed that motor, cognitive and functional subscales strongly related to each other except for Problem Behavior Assessment. Furthermore, we not only provided the normal level of each cognitive test in controls, but also gave the optimal cutoff points of cognitive tests between controls and HD patients. CONCLUSION We demonstrate for the first time that the translated version of UHDRS is reliable for assessing HD patients in China. This can promote the universal use of UHDRS in clinical practice.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Xu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jean-Marc Burgunder
- Swiss Huntington's Disease Centre, Siloah, Gümligen and, Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,CAS Center for Excellence in Brain Scienceand Intelligence Technology, Shanghai, China
| |
Collapse
|
50
|
Tan B, Shishegar R, Oldham S, Fornito A, Poudel G, Georgiou-Karistianis N. Investigating longitudinal changes to frontal cortico-striatal tracts in Huntington's disease: the IMAGE-HD study. Brain Imaging Behav 2022; 16:2457-2466. [PMID: 35768755 PMCID: PMC9712302 DOI: 10.1007/s11682-022-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The striatum is the principal site of disease pathology in Huntington's disease and contains neural connections to numerous cortical brain regions. Studies examining abnormalities to neural connections find that white matter integrity is compromised in HD; however, further regional, and longitudinal investigation is required. This paper is the first longitudinal investigation into region-based white-matter integrity changes in Huntington's Disease. The aim of this study was to better understand how disease progression impacts white matter tracts connecting the striatum to the prefrontal and motor cortical regions in HD. We used existing neuroimaging data from IMAGE-HD, comprised of 25 pre-symptomatic, 27 symptomatic, and 25 healthy controls at three separate time points (baseline, 18-months, 30-months). Fractional anisotropy, axial diffusivity and radial diffusivity were derived as measures of white matter microstructure. The anatomical regions of interest were identified using the Desikan-Killiany brain atlas. A Group by Time repeated measures ANCOVA was conducted for each tract of interest and for each measure. We found significantly lower fractional anisotropy and significantly higher radial diffusivity in the symptomatic group, compared to both the pre-symptomatic group and controls (the latter two groups did not differ from each other), in the rostral middle frontal and superior frontal tracts; as well as significantly higher axial diffusivity in the rostral middle tracts only. We did not find a Group by Time interaction for any of the white matter integrity measures. These findings demonstrate that whilst the microstructure of white matter tracts, extending from the striatum to these regions of interest, are compromised during the symptomatic stages of Huntington's disease, 36-month follow-up did not show progressive changes in these measures. Additionally, no correlations were found between clinical measures and tractography changes, indicating further investigations into the relationship between tractography changes and clinical symptoms in Huntington's disease are required.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| | - Rosita Shishegar
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- The Australian E-Health Research Centre, CSIRO, Melbourne, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Stuart Oldham
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Alex Fornito
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Govinda Poudel
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Sydney Imaging, Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, 2050, Australia
- The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|