1
|
Farag M, Knights H, Scahill RI, McColgan P, Estevez-Fraga C. Neuroimaging Techniques in Huntington's Disease: A Critical Review. Mov Disord Clin Pract 2025. [PMID: 39976324 DOI: 10.1002/mdc3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by cognitive, neuropsychiatric and motor symptoms caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Imaging techniques are crucial for understanding HD pathophysiology and monitoring disease progression. OBJECTIVES This review is targeted at general neurologists and movement disorders specialists with an interest in HD and aims to bring complex imaging, including new experimental techniques, closer to the practicing clinician. METHODS We provide a summary of findings from conventional structural, diffusion and functional imaging in HD studies, together with an update on emerging novel techniques, including multiparametric mapping, multi-shell diffusion techniques, ultra-high field 7-Tesla MRI, positron emission tomography and magnetoencephalography. RESULTS Conventional imaging techniques have deepened our understanding of neuropathological progression in HD, from striatal atrophy to widespread cortical and white matter changes. The integration of novel imaging techniques reviewed has further improved our ability to interrogate, quantify and visualize disease-specific alterations with high precision. CONCLUSIONS Novel imaging techniques have promising roles to further our understanding of HD pathology and as imaging markers for clinical trials, disease staging and therapeutic monitoring. Additionally, the synergistic potential of combining imaging modalities with molecular and genetic data, along with wet biomarkers and clinical data, will help provide a complete and comprehensive view of HD pathology and progression.
Collapse
Affiliation(s)
- Mena Farag
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harry Knights
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter McColgan
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| |
Collapse
|
2
|
Back AM, Connor B, McCaughey-Chapman A. Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease. J Neurosci Res 2024; 102:e70010. [PMID: 39714111 DOI: 10.1002/jnr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons. Myelin is a lipid-rich sheath that wraps around axons, facilitating signal conduction and neuronal viability. The degeneration of myelin hinders effective communication and leaves neurons vulnerable to external damage and subsequent degeneration. Abnormalities in oligodendrocyte maturation have been established in the HD human brain, however, investigations into the underlying dysfunction of human oligodendrocytes in HD are limited. This review will detail the involvement of oligodendrocytes and white matter damage in HD. Recent developments in modeling human-specific oligodendrocyte pathology in HD will be discussed, with a particular focus on emerging somatic cell reprogramming approaches.
Collapse
Affiliation(s)
- Amelie Marie Back
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Bøstrand SMK, Seeker LA, Bestard-Cuche N, Kazakou NL, Jäkel S, Kenkhuis B, Henderson NC, de Bot ST, van Roon-Mom WMC, Priller J, Williams A. Mapping the glial transcriptome in Huntington's disease using snRNAseq: selective disruption of glial signatures across brain regions. Acta Neuropathol Commun 2024; 12:165. [PMID: 39428482 PMCID: PMC11492505 DOI: 10.1186/s40478-024-01871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with a fatal outcome. There is accumulating evidence of a prominent role of glia in the pathology of HD, and we investigated this by conducting single nuclear RNA sequencing (snRNAseq) of human post mortem brain in four differentially affected regions; caudate nucleus, frontal cortex, hippocampus and cerebellum. Across 127,205 nuclei from donors with HD and age/sex matched controls, we found heterogeneity of glia which is altered in HD. We describe prominent changes in the abundance of certain subtypes of astrocytes, microglia, oligodendrocyte precursor cells and oligodendrocytes between HD and control samples, and these differences are widespread across brain regions. Furthermore, we highlight possible mechanisms that characterise the glial contribution to HD pathology including depletion of myelinating oligodendrocytes, an oligodendrocyte-specific upregulation of the calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1 A (PDE1A) and an upregulation of molecular chaperones as a cross-glial signature and a potential adaptive response to the accumulation of mutant huntingtin (mHTT). Our results support the hypothesis that glia have an important role in the pathology of HD, and show that all types of glia are affected in the disease.
Collapse
Affiliation(s)
- Sunniva M K Bøstrand
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nina-Lydia Kazakou
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, LMU Hospital, Munich, Germany
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josef Priller
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, TU Munich, Munich, Germany.
- Neuropsychiatry and DZNE, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Anna Williams
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Singer R, Oganezova I, Hu W, Ding Y, Papaioannou A, de Groot HJM, Spaink HP, Alia A. Unveiling the Exquisite Microstructural Details in Zebrafish Brain Non-Invasively Using Magnetic Resonance Imaging at 28.2 T. Molecules 2024; 29:4637. [PMID: 39407567 PMCID: PMC11477492 DOI: 10.3390/molecules29194637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Zebrafish (Danio rerio) is an important animal model for a wide range of neurodegenerative diseases. However, obtaining the cellular resolution that is essential for studying the zebrafish brain remains challenging as it requires high spatial resolution and signal-to-noise ratios (SNR). In the current study, we present the first MRI results of the zebrafish brain at the state-of-the-art magnetic field strength of 28.2 T. The performance of MRI at 28.2 T was compared to 17.6 T. A 20% improvement in SNR was observed at 28.2 T as compared to 17.6 T. Excellent contrast, resolution, and SNR allowed the identification of several brain structures. The normative T1 and T2 relaxation values were established over different zebrafish brain structures at 28.2 T. To zoom into the white matter structures, we applied diffusion tensor imaging (DTI) and obtained axial, radial, and mean diffusivity, as well as fractional anisotropy, at a very high spatial resolution. Visualisation of white matter structures was achieved by short-track track-density imaging by applying the constrained spherical deconvolution method (stTDI CSD). For the first time, an algorithm for stTDI with multi-shell multi-tissue (msmt) CSD was tested on zebrafish brain data. A significant reduction in false-positive tracks from grey matter signals was observed compared to stTDI with single-shell single-tissue (ssst) CSD. This allowed the non-invasive identification of white matter structures at high resolution and contrast. Our results show that ultra-high field DTI and tractography provide reproducible and quantitative maps of fibre organisation from tiny zebrafish brains, which can be implemented in the future for a mechanistic understanding of disease-related microstructural changes in zebrafish models of various brain diseases.
Collapse
Affiliation(s)
- Rico Singer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Ina Oganezova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Wanbin Hu
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - Yi Ding
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | | | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
5
|
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O’Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, Nestrašil I. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591421. [PMID: 38746371 PMCID: PMC11092490 DOI: 10.1101/2024.04.29.591421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Monica T. Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Amy L. Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicole T Atcheson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Laura R. Barlow
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Markus Barth
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veteran’s Affairs Medical Center, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna Combes
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam V. Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jürgen Finsterbusch
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - GianCarlo Germani
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Haleh Karbasforoushan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Joo-won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Nawal Kinany
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Petr Kudlička
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, China
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Allan R. Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Geneva, Genève, Switzerland
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, University College London, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele (MI), Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano (MI), Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alex K. Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Yuichi Suzuki
- The University of Tokyo Hospital, Radiology Center, Tokyo, Japan
| | - George W Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Kenneth A. Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Patrik O. Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Yin JH, Liu YO, Li HL, Burgunder JM, Huang Y. White Matter Microstructure Changes Revealed by Diffusion Kurtosis and Diffusion Tensor Imaging in Mutant Huntingtin Gene Carriers. J Huntingtons Dis 2024; 13:301-313. [PMID: 38905054 PMCID: PMC11494636 DOI: 10.3233/jhd-240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Background Diffusion magnetic resonance imaging (dMRI) has revealed microstructural changes in white matter (WM) in Huntington's disease (HD). Objective To compare the validities of different dMRI, i.e., diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in HD. Methods 22 mutant huntingtin (mHTT) carriers and 14 controls were enrolled. Clinical assessments and dMRI were conducted. Based on CAG-Age Product (CAP) score, mHTT carriers were categorized into high CAP (hCAP) and medium and low CAP (m& lCAP) groups. Spearman analyses were used to explore correlations between imaging parameters in brain regions and clinical assessments. Receiver operating characteristic (ROC) was used to distinguish mHTT carriers from control, and define the HD patients at advanced stage. Results Compared to controls, mHTT carriers exhibited WM changes in DKI and DTI. There were 22 more regions showing significant differences in HD detected by MK than FA. Only MK in five brain regions showed significantly difference between any two group, and negatively correlated with the disease burden (r = -0.80 to -0.71). ROC analysis revealed that MK was more sensitive and FA was more specific, while Youden index showed that the integration of FA and MK gave rise to higher authenticities, in distinguishing m& lCAP from controls (Youden Index = 0.786), and discerning different phase of HD (Youden Index = 0.804). Conclusions Microstructural changes in WM occur at early stage of HD and deteriorate over the disease progression. Integrating DKI and DTI would provide the best accuracies for differentiating early HD from control and identifying advanced HD.
Collapse
Affiliation(s)
- Jin-Hui Yin
- Human Brain & Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Neurology, Aviation General Hospital, Beijing, China
| | - Jean Marc Burgunder
- Department of Neurology, Swiss Huntington’s Disease Centre, Siloah, and Department of Neurology, University Hospital, Gümligen (Muri bei Bern), Switzerland
| | - Yue Huang
- Human Brain & Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Pharmacology Department, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
7
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
8
|
Pradhan SS, R SS, Kanikaram SP, V M DD, Pargaonkar A, Dandamudi RB, Sivaramakrishnan V. Metabolic deregulation associated with aging modulates protein aggregation in the yeast model of Huntington's disease. J Biomol Struct Dyn 2023; 42:10521-10538. [PMID: 37732342 DOI: 10.1080/07391102.2023.2257322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Huntington's disease is associated with increased CAG repeat resulting in an expanded polyglutamine tract in the protein Huntingtin (HTT) leading to its aggregation resulting in neurodegeneration. Previous studies have shown that N-terminal HTT with 46Q aggregated in the stationary phase but not the logarithmic phase in the yeast model of HD. We carried out a metabolomic analysis of logarithmic and stationary phase yeast model of HD expressing different polyQ lengths attached to N-terminal HTT tagged with enhanced green fluorescent protein (EGFP). The results show significant changes in the metabolic profile and deregulated pathways in stationary phase cells compared to logarithmic phase cells. Comparison of metabolic pathways obtained from logarithmic phase 46Q versus 25Q with those obtained for presymptomatic HD patients from our previous study and drosophila model of HD showed considerable overlap. The arginine biosynthesis pathway emerged as one of the key pathways that is common in stationary phase yeast compared to logarithmic phase and HD patients. Treatment of yeast with arginine led to a significant decrease, while transfer to arginine drop-out media led to a significant increase in the size of protein aggregates in both logarithmic and stationary phase yeast model of HD. Knockout of arginine transporters in the endoplasmic reticulum and vacuole led to a significant decrease in mutant HTT aggregation. Overall our results highlight arginine as a critical metabolite that modulates the aggregation of mutant HTT and disease progression in HD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Swaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Phalguna Kanikaram
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru, Karnataka, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
9
|
Liu CF, Younes L, Tong XJ, Hinkle JT, Wang M, Phatak S, Xu X, Bu X, Looi V, Bang J, Tabrizi SJ, Scahill RI, Paulsen JS, Georgiou-Karistianis N, Faria AV, Miller MI, Ratnanather JT, Ross CA. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease. Brain Commun 2023; 5:fcad214. [PMID: 37744022 PMCID: PMC10516592 DOI: 10.1093/braincomms/fcad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Huntington's disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin protein, with longer CAG repeats causing earlier age of onset. The variable 'Age' × ('CAG'-L), where 'Age' is the current age of the individual, 'CAG' is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the 'CAG Age Product' (CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any variable and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal atrophy begins many years prior to the onset of diagnosable motor Huntington's disease, confirmed by longitudinal multicentre studies on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the relationship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed characterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in the basal ganglia circuit-caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based spread of pathology in Huntington's disease, possibly due to spread of mutant Htt protein, though other connection-based mechanisms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra and the globus pallidus.
Collapse
Affiliation(s)
- Chin-Fu Liu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jared T Hinkle
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maggie Wang
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanika Phatak
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Xu
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuan Bu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Vivian Looi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jee Bang
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah J Tabrizi
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Rachael I Scahill
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Andreia V Faria
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Hu B, Younes L, Bu X, Liu CF, Ratnanather JT, Paulsen J, Georgiou-Karistianis N, Miller MI, Ross C, Faria AV. Mixed longitudinal and cross-sectional analyses of deep gray matter and white matter using diffusion weighted images in premanifest and manifest Huntington's disease. Neuroimage Clin 2023; 39:103493. [PMID: 37582307 PMCID: PMC10448214 DOI: 10.1016/j.nicl.2023.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Changes in the brain of patients with Huntington's disease (HD) begin years before clinical onset, so it remains critical to identify biomarkers to track these early changes. Metrics derived from tensor modeling of diffusion-weighted MRIs (DTI), that indicate the microscopic brain structure, can add important information to regional volumetric measurements. This study uses two large-scale longitudinal, multicenter datasets, PREDICT-HD and IMAGE-HD, to trace changes in DTI of HD participants with a broad range of CAP scores (a product of CAG repeat expansion and age), including those with pre-manifest disease (i.e., prior to clinical onset). Utilizing a fully automated data-driven approach to study the whole brain divided in regions of interest, we traced changes in DTI metrics (diffusivity and fractional anisotropy) versus CAP scores, using sigmoidal and linear regression models. We identified points of inflection in the sigmoidal regression using change-point analysis. The deep gray matter showed more evident and earlier changes in DTI metrics over CAP scores, compared to the deep white matter. In the deep white matter, these changes were more evident and occurred earlier in superior and posterior areas, compared to anterior and inferior areas. The curves of mean diffusivity vs. age of HD participants within a fixed CAP score were different from those of controls, indicating that the disease has an additional effect to age on the microscopic brain structure. These results show the regional and temporal vulnerability of the white matter and deep gray matter in HD, with potential implications for experimental therapeutics.
Collapse
Affiliation(s)
- Beini Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Xuan Bu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chin-Fu Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Paulsen
- Department of Psychiatry, Neurology, Psychological Brain Sciences, University of Iowa, USA; Department Neurology, University of Wisconsin-Madison, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute of Brain and Mental Health, Monash University, Australia
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Ross
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Pepe G, Lenzi P, Capocci L, Marracino F, Pizzati L, Scarselli P, Di Pardo A, Fornai F, Maglione V. Treatment with the Glycosphingolipid Modulator THI Rescues Myelin Integrity in the Striatum of R6/2 HD Mice. Int J Mol Sci 2023; 24:ijms24065956. [PMID: 36983032 PMCID: PMC10053002 DOI: 10.3390/ijms24065956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2', 3' Cyclic Nucleotide 3'-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease.
Collapse
Affiliation(s)
- Giuseppe Pepe
- IRCCS Neuromed, Via Dell'elettronica, 86077 Pozzilli, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Luca Capocci
- IRCCS Neuromed, Via Dell'elettronica, 86077 Pozzilli, Italy
| | | | | | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'elettronica, 86077 Pozzilli, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Via Dell'elettronica, 86077 Pozzilli, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | |
Collapse
|
12
|
Warner JH, Long JD, Mills JA, Langbehn DR, Ware J, Mohan A, Sampaio C. Standardizing the CAP Score in Huntington's Disease by Predicting Age-at-Onset. J Huntingtons Dis 2022; 11:153-171. [PMID: 35466943 DOI: 10.3233/jhd-210475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant, neurological disease caused by an expanded CAG repeat near the N-terminus of the huntingtin (HTT) gene. A leading theory concerning the etiology of HD is that both onset and progression are driven by cumulative exposure to the effects of mutant (or CAG expanded) huntingtin (mHTT). The CAG-Age-Product (CAP) score (i.e., the product of excess CAG length and age) is a commonly used measure of this cumulative exposure. CAP score has been widely used as a predictor of a variety of disease state variables in HD. The utility of the CAP score has been somewhat diminished, however, by a lack of agreement on its precise definition. The most commonly used forms of the CAP score are highly correlated so that, for purposes of prediction, it makes little difference which is used. However, reported values of CAP scores, based on commonly used definitions, differ substantially in magnitude when applied to the same data. This complicates the process of inter-study comparison. OBJECTIVE In this paper, we propose a standardized definition for the CAP score which will resolve this difficulty. Our standardization is chosen so that CAP = 100 at the expected age of diagnosis. METHODS Statistical methods include novel survival analysis methodology applied to the 13 disease landmarks taken from the Enroll-HD database (PDS 5) and comparisons with the existing, gold standard, onset model. RESULTS Useful by-products of our work include up-to-date, age-at-onset (AO) results and a refined AO model suitable for use in other contexts, a discussion of several useful properties of the CAP score that have not previously been noted in the literature and the introduction of the concept of a toxicity onset model. CONCLUSION We suggest that taking L = 30 and K = 6.49 provides a useful standardization of the CAP score, suitable for use in the routine modeling of clinical data in HD.
Collapse
Affiliation(s)
| | - Jeffrey D Long
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | - James A Mills
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Douglas R Langbehn
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - Amrita Mohan
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | |
Collapse
|
13
|
Petersen MH, Willert CW, Andersen JV, Madsen M, Waagepetersen HS, Skotte NH, Nørremølle A. Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. J Huntingtons Dis 2022; 11:121-140. [PMID: 35311711 DOI: 10.3233/jhd-210518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder characterized by synaptic dysfunction and loss of white matter volume especially in the striatum of the basal ganglia and to a lesser extent in the cerebral cortex. Studies investigating heterogeneity between synaptic and non-synaptic mitochondria have revealed a pronounced vulnerability of synaptic mitochondria, which may lead to synaptic dysfunction and loss. OBJECTIVE As mitochondrial dysfunction is a hallmark of HD pathogenesis, we investigated synaptic mitochondrial function from striatum and cortex of the transgenic R6/2 mouse model of HD. METHODS We assessed mitochondrial volume, ROS production, and antioxidant levels as well as mitochondrial respiration at different pathological stages. RESULTS Our results reveal that striatal synaptic mitochondria are more severely affected by HD pathology than those of the cortex. Striatal synaptosomes of R6/2 mice displayed a reduction in mitochondrial mass coinciding with increased ROS production and antioxidants levels indicating prolonged oxidative stress. Furthermore, synaptosomal oxygen consumption rates were significantly increased during depolarizing conditions, which was accompanied by a marked increase in mitochondrial proton leak of the striatal synaptosomes, indicating synaptic mitochondrial stress. CONCLUSION Overall, our study provides new insight into the gradual changes of synaptic mitochondrial function in HD and suggests compensatory mitochondrial actions to maintain energy production in the HD brain, thereby supporting that mitochondrial dysfunction do indeed play a central role in early disease progression of HD.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Henning Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Classification of Huntington's Disease Stage with Features Derived from Structural and Diffusion-Weighted Imaging. J Pers Med 2022; 12:jpm12050704. [PMID: 35629126 PMCID: PMC9143912 DOI: 10.3390/jpm12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to classify Huntington’s disease (HD) stage using support vector machines and measures derived from T1- and diffusion-weighted imaging. The effects of feature selection approach and combination of imaging modalities are assessed. Fourteen premanifest-HD individuals (Pre-HD; on average > 20 years from estimated disease onset), eleven early-manifest HD (Early-HD) patients, and eighteen healthy controls (HC) participated in the study. We compared three feature selection approaches: (i) whole-brain segmented grey matter (GM; voxel-based measure) or fractional anisotropy (FA) values; (ii) GM or FA values from subcortical regions-of-interest (caudate, putamen, pallidum); and (iii) automated selection of GM or FA values with the algorithm Relief-F. We assessed single- and multi-kernel approaches to classify combined GM and FA measures. Significant classifications were achieved between Early-HD and Pre-HD or HC individuals (accuracy: generally, 85% to 95%), and between Pre-HD and controls for the feature FA of the caudate ROI (74% accuracy). The combination of GM and FA measures did not result in higher performances. We demonstrate evidence on the high sensitivity of FA for the classification of the earliest Pre-HD stages, and successful distinction between HD stages.
Collapse
|
15
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
16
|
Barry J, Bui MTN, Levine MS, Cepeda C. Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway. Neurobiol Dis 2022; 162:105574. [PMID: 34848336 PMCID: PMC9328779 DOI: 10.1016/j.nbd.2021.105574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a heritable, fatal neurodegenerative disorder caused by a mutation in the Huntingtin gene. It is characterized by chorea, as well as cognitive and psychiatric symptoms. Histopathologically, there is a massive loss of striatal projection neurons and less but significant loss in other areas throughout the cortico-basal ganglia-thalamocortical (CBGTC) loop. The mutant huntingtin protein has been implicated in numerous functions, including an important role in synaptic transmission. Most studies on anatomical and physiological alterations in HD have focused on striatum and cerebral cortex. However, based on recent CBGTC projectome evidence, the need to study other pathways has become increasingly clear. In this review, we examine the current status of our knowledge of morphological and electrophysiological alterations of those pathways in animal models of HD. Based on recent studies, there is accumulating evidence that synaptic disconnection, particularly along excitatory pathways, is pervasive and almost universal in HD, thus supporting a critical role of the huntingtin protein in synaptic transmission.
Collapse
Affiliation(s)
- Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Minh T N Bui
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
18
|
Ferrari Bardile C, Sidik H, Quek R, Yusof NABM, Garcia-Miralles M, Pouladi MA. Abnormal Spinal Cord Myelination due to Oligodendrocyte Dysfunction in a Model of Huntington's Disease. J Huntingtons Dis 2021; 10:377-384. [PMID: 34366364 DOI: 10.3233/jhd-210495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington's disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. OBJECTIVE We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. METHODS Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. RESULTS We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. CONCLUSION Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore.,Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Harwin Sidik
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | - Reynard Quek
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | | | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore.,Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Grosso Jasutkar H, Yamamoto A. Do Changes in Synaptic Autophagy Underlie the Cognitive Impairments in Huntington's Disease? J Huntingtons Dis 2021; 10:227-238. [PMID: 33780373 PMCID: PMC8293641 DOI: 10.3233/jhd-200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Huntington's disease (HD) is classically considered from the perspective of the motor syndrome, the cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review, we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease.
Collapse
Affiliation(s)
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Bøstrand SMK, Williams A. Oligodendroglial Heterogeneity in Neuropsychiatric Disease. Life (Basel) 2021; 11:life11020125. [PMID: 33562031 PMCID: PMC7914430 DOI: 10.3390/life11020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Oligodendroglia interact with neurons to support their health and maintain the normal functioning of the central nervous system (CNS). Human oligodendroglia are a highly heterogeneous population characterised by distinct developmental origins and regional differences, as well as variation in cellular states, as evidenced by recent analysis at single-nuclei resolution. Increasingly, there is evidence to suggest that the highly heterogeneous nature of oligodendroglia might underpin their role in a range of CNS disorders, including those with neuropsychiatric symptoms. Understanding the role of oligodendroglial heterogeneity in this group of disorders might pave the way for novel approaches to identify biomarkers and develop treatments.
Collapse
|
21
|
Tan B, Shishegar R, Poudel GR, Fornito A, Georgiou-Karistianis N. Cortical morphometry and neural dysfunction in Huntington's disease: a review. Eur J Neurol 2020; 28:1406-1419. [PMID: 33210786 DOI: 10.1111/ene.14648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
Numerous neuroimaging techniques have been used to identify biomarkers of disease progression in Huntington's disease (HD). To date, the earliest and most sensitive of these is caudate volume; however, it is becoming increasingly evident that numerous changes to cortical structures, and their interconnected networks, occur throughout the course of the disease. The mechanisms by which atrophy spreads from the caudate to these cortical regions remains unknown. In this review, the neuroimaging literature specific to T1-weighted and diffusion-weighted magnetic resonance imaging is summarized and new strategies for the investigation of cortical morphometry and the network spread of degeneration in HD are proposed. This new avenue of research may enable further characterization of disease pathology and could add to a suite of biomarker/s of disease progression for patient stratification that will help guide future clinical trials.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Govinda R Poudel
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Sydney Imaging, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Gatto RG, Weissmann C. Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far? Curr Med Imaging 2020; 15:521-542. [PMID: 32008561 DOI: 10.2174/1573405614666181115113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.
Collapse
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Carina Weissmann
- Insituto de Fisiología Biologia Molecular y Neurociencias-IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Estevez-Fraga C, Scahill R, Rees G, Tabrizi SJ, Gregory S. Diffusion imaging in Huntington's disease: comprehensive review. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-324377. [PMID: 33033167 PMCID: PMC7803908 DOI: 10.1136/jnnp-2020-324377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a monogenic disorder with 100% penetrance. With the advent of genetic testing in adults, disease-related, structural brain changes can be investigated from the earliest, premorbid stages of HD. While examining macrostructural change characterises global neuronal damage, investigating microstructural alterations provides information regarding brain organisation and its underlying biological properties. Diffusion MRI can be used to track the progression of microstructural anomalies in HD decades prior to clinical disease onset, providing a greater understanding of neurodegeneration. Multiple approaches, including voxelwise, region of interest and tractography, have been used in HD cohorts, showing a centrifugal pattern of white matter (WM) degeneration starting from deep brain areas, which is consistent with neuropathological studies. The corpus callosum, longer WM tracts and areas that are more densely connected, in particular the sensorimotor network, also tend to be affected early during premanifest stages. Recent evidence supports the routine inclusion of diffusion analyses within clinical trials principally as an additional measure to improve understanding of treatment effects, while the advent of novel techniques such as multitissue compartment models and connectomics can help characterise the underpinnings of progressive functional decline in HD.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
24
|
Casella C, Lipp I, Rosser A, Jones DK, Metzler‐Baddeley C. A Critical Review of White Matter Changes in Huntington's Disease. Mov Disord 2020; 35:1302-1311. [PMID: 32537844 PMCID: PMC9393936 DOI: 10.1002/mds.28109] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease is a genetic neurodegenerative disorder. White matter alterations have recently been identified as a relevant pathophysiological feature of Huntington's disease, but their etiology and role in disease pathogenesis and progression remain unclear. Increasing evidence suggests that white matter changes in this disorder are attributed to alterations in myelin-associated biological processes. This review first discusses evidence from neurochemical studies lending support to the demyelination hypothesis of Huntington's disease, demonstrating aberrant myelination and changes in oligodendrocytes in the Huntington's brain. Next, evidence from neuroimaging studies is reviewed, the limitations of the described methodologies are discussed, and suggested interpretations of findings from published studies are challenged. Although our understanding of Huntington's associated pathological changes in the brain will increasingly rely on neuroimaging techniques, the shortcomings of these methodologies must not be forgotten. Advances in magnetic resonance imaging techniques and tissue modeling will enable a better in vivo, longitudinal characterization of the biological properties of white matter microstructure. This in turn will facilitate identification of disease-related biomarkers and the specification of outcome measures in clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging CentreSchool of Psychology, Cardiff UniversityCardiffUnited Kingdom
| | - Ilona Lipp
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Anne Rosser
- School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging CentreSchool of Psychology, Cardiff UniversityCardiffUnited Kingdom
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging CentreSchool of Psychology, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
25
|
Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. J Neurosci Res 2019; 97:1624-1635. [PMID: 31353533 PMCID: PMC6801077 DOI: 10.1002/jnr.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D. Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Damian Cummings
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dickson T. Chen
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Janelle Asai
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Johnson EB, Gregory S. Huntington's disease: Brain imaging in Huntington's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:321-369. [PMID: 31481169 DOI: 10.1016/bs.pmbts.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) gene-carriers show prominent neuronal loss by end-stage disease, and the use of magnetic resonance imaging (MRI) has been increasingly used to quantify brain changes during earlier stages of the disease. MRI offers an in vivo method of measuring structural and functional brain change. The images collected via MRI are processed to measure different anatomical features, such as brain volume, macro- and microstructural changes within white matter and functional brain activity. Structural imaging has demonstrated significant volume loss across multiple white and gray matter regions in HD, particularly within subcortical structures. There also appears to be increasing disorganization of white matter tracts and between-region connectivity with increasing disease progression. Finally, functional changes are thought to represent changes in brain activity underlying compensatory mechanisms in HD. This chapter will provide an overview of the principles of MRI and practicalities associated with using MRI in HD studies, and summarize findings from MRI studies investigating brain structure and function in HD.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc Natl Acad Sci U S A 2019; 116:9622-9627. [PMID: 31015293 DOI: 10.1073/pnas.1818042116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.
Collapse
|
29
|
Teo RTY, Ferrari Bardile C, Tay YL, Yusof NABM, Kreidy CA, Tan LJ, Pouladi MA. Impaired Remyelination in a Mouse Model of Huntington Disease. Mol Neurobiol 2019; 56:6873-6882. [PMID: 30937636 DOI: 10.1007/s12035-019-1579-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 01/26/2023]
Abstract
White matter (WM) abnormalities are a well-established feature of Huntington disease (HD), although their nature is not fully understood. Here, we asked whether remyelination as a measure of WM plasticity is impaired in a model of HD. Using the cuprizone assay, we examined demyelination and remyelination responses in YAC128 HD mice. Treatment with 0.2% cuprizone (CPZ) for 6 weeks resulted in significant reduction in mature (GSTπ-positive) oligodendrocyte counts and FluoroMyelin staining in the corpus callosum, leading to similar demyelination states in YAC128 and wild-type (WT) mice. Six weeks following cessation of CPZ, we observed robust remyelination in WT mice as indicated by an increase in mature oligodendrocyte counts and FluoroMyelin staining. In contrast, YAC128 mice exhibited an impaired remyelination response. The increase in mature oligodendrocyte counts in YAC128 HD mice following CPZ cessation was lower than that of WT. Furthermore, there was no increase in FluoroMyelin staining compared to the demyelinated state in YAC128 mice. We confirmed these findings using electron microscopy where the CPZ-induced reduction in myelinated axons was reversed following CPZ cessation in WT but not YAC128 mice. Our findings demonstrate that remyelination is impaired in YAC128 mice and suggest that WM plasticity may be compromised in HD.
Collapse
Affiliation(s)
- Roy Tang Yi Teo
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Yi Lin Tay
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Charbel A Kreidy
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
- Department of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
30
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
31
|
Structural Magnetic Resonance Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:335-380. [PMID: 30409258 DOI: 10.1016/bs.irn.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by expansion of the CAG repeat in the huntingtin gene. HD is characterized clinically by progressive motor, cognitive and neuropsychiatric symptoms. There are currently no disease modifying treatments available for HD, and there is a great need for biomarkers to monitor disease progression and identify new targets for therapeutic intervention. Neuroimaging techniques provide a powerful tool for assessing disease pathology and progression in premanifest stages, before the onset of overt motor symptoms. Structural magnetic resonance imaging (MRI) is non-invasive imaging techniques which have been employed to study structural and microstructural changes in premanifest and manifest HD gene carriers. This chapter described structural imaging techniques and analysis methods employed across HD MRI studies. Current evidence for structural MRI abnormalities in HD, and associations between atrophy, structural white matter changes, iron deposition and clinical performance are discussed; together with the use of structural MRI measures as a diagnostic tool, to assess longitudinal changes, and as potential biomarkers and endpoints for clinical trials.
Collapse
|
32
|
|
33
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
34
|
Garcia‐Gorro C, de Diego‐Balaguer R, Martínez‐Horta S, Pérez‐Pérez J, Kulisevsky J, Rodríguez‐Dechicha N, Vaquer I, Subira S, Calopa M, Muñoz E, Santacruz P, Ruiz‐Idiago J, Mareca C, Caballol N, Camara E. Reduced striato-cortical and inhibitory transcallosal connectivity in the motor circuit of Huntington's disease patients. Hum Brain Mapp 2018; 39:54-71. [PMID: 28990240 PMCID: PMC6866479 DOI: 10.1002/hbm.23813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder which is primarily associated with striatal degeneration. However, the alterations in connectivity of this structure in HD have been underinvestigated. In this study, we analyzed the functional and structural connectivity of the left putamen, while participants performed a finger-tapping task. Using fMRI and DW-MRI, 30 HD gene expansion carriers (HDGEC) and 29 healthy participants were scanned. Psychophysiological interaction analysis and DTI-based tractography were employed to examine functional and structural connectivity, respectively. Manifest HDGEC exhibited a reduced functional connectivity of the left putamen with the left and the right primary sensorimotor areas (SM1). Based on this result, the inhibitory functional connectivity between the left SM1 and the right SM1 was explored, appearing to be also decreased. In addition, the tract connecting these areas (motor corpus callosum), and the tract connecting the left putamen with the left SM1 appeared disrupted in HDGEC compared to controls. Significant correlations were found between measures of functional and structural connectivity of the motor corpus callosum, showing a coupling of both types of alterations in this tract. The observed reduction of functional and structural connectivity was associated with worse motor scores, which highlights the clinical relevance of these results. Hum Brain Mapp 39:54-71, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Garcia‐Gorro
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| | - Ruth de Diego‐Balaguer
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
- The Institute of Neurosciences of the University of BarcelonaBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Saul Martínez‐Horta
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jesus Pérez‐Pérez
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
- Universidad Autónoma de BarcelonaBarcelonaSpain
| | | | - Irene Vaquer
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Susana Subira
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Department of Clinical and Health PsychologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, L'Hospitalet de LlobregatBarcelonaSpain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer)BarcelonaSpain
- Facultat de medicina, University of BarcelonaBarcelonaSpain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
| | | | | | - Nuria Caballol
- Hospital de Sant Joan Despí Moisès Broggi, Sant Joan DespíBarcelonaSpain
| | - Estela Camara
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
35
|
Wu D, Faria AV, Younes L, Mori S, Brown T, Johnson H, Paulsen JS, Ross CA, Miller MI. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease. Hum Brain Mapp 2017; 38:5035-5050. [PMID: 28657159 PMCID: PMC5766002 DOI: 10.1002/hbm.23713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreMaryland
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreMaryland
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
| | - Hans Johnson
- Department of Electrical and Computer EngineeringUniversity of IowaIowa CityIowa
| | - Jane S. Paulsen
- Departments of Psychiatry, Neurology, Psychology and NeurosciencesUniversity of IowaIowa CityIowa
| | - Christopher A. Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael I. Miller
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | | |
Collapse
|
36
|
Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017; 44:125-134. [PMID: 28365506 PMCID: PMC5951168 DOI: 10.1016/j.gde.2017.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Since the discovery of repeat-associated non-ATG (RAN) translation, and more recently its association with amyotrophic lateral sclerosis/frontotemporal dementia, there has been an intense focus to understand how this process works and the downstream effects of these novel proteins. RAN translation across several different types of repeat expansions mutations (CAG, CTG, CCG, GGGGCC, GGCCCC) results in the production of proteins in all three reading frames without an ATG initiation codon. The combination of bidirectional transcription and RAN translation has been shown to result in the accumulation of up to six mutant expansion proteins in a growing number of diseases. This process is complex mechanistically and also complex from the perspective of the downstream consequences in disease. Here we review recent developments in RAN translation and their implications on our basic understanding of neurodegenerative disease and gene expression.
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Steventon JJ, Trueman RC, Ma D, Yhnell E, Bayram-Weston Z, Modat M, Cardoso J, Ourselin S, Lythgoe M, Stewart A, Rosser AE, Jones DK. Longitudinal in vivo MRI in a Huntington's disease mouse model: Global atrophy in the absence of white matter microstructural damage. Sci Rep 2016; 6:32423. [PMID: 27581950 PMCID: PMC5007531 DOI: 10.1038/srep32423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and a selective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease.
Collapse
Affiliation(s)
- Jessica J Steventon
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.,Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Experimental MRI Centre, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Rebecca C Trueman
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,School of Life Sciences, Queen's Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK
| | - Da Ma
- Centre for Medical Imaging Computing, University College London, London, UK.,Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Emma Yhnell
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Zubeyde Bayram-Weston
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Marc Modat
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Jorge Cardoso
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Sebastian Ourselin
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Andrew Stewart
- Experimental MRI Centre, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Anne E Rosser
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Institute of Psychological Medicine and Neurology, School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| |
Collapse
|
38
|
Deng YP, Reiner A. Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input. J Comp Neurol 2016; 524:3518-3529. [PMID: 27219491 DOI: 10.1002/cne.24013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/19/2022]
Abstract
We have previously found that thalamostriatal axodendritic terminals are reduced as early as 1 month of age in heterozygous Q140 HD mice (Deng et al. [] Neurobiol Dis 60:89-107). Because cholinergic interneurons are a major target of thalamic axodendritic terminals, we examined the VGLUT2-immunolabeled thalamic input to striatal cholinergic interneurons in heterozygous Q140 males at 1 and 4 months of age, using choline acetyltransferase (ChAT) immunolabeling to identify cholinergic interneurons. Although blinded neuron counts showed that ChAT+ perikarya were in normal abundance in Q140 mice, size measurements indicated that they were significantly smaller. Sholl analysis further revealed the dendrites of Q140 ChAT+ interneurons were significantly fewer and shorter. Consistent with the light microscopic data, ultrastructural analysis showed that the number of ChAT+ dendritic profiles per unit area of striatum was significantly decreased in Q140 striata, as was the abundance of VGLUT2+ axodendritic terminals making synaptic contact with ChAT+ dendrites per unit area of striatum. The density of thalamic terminals along individual cholinergic dendrites was, however, largely unaltered, indicating that the reduction in the areal striatal density of axodendritic thalamic terminals on cholinergic neurons was due to their dendritic territory loss. These results show that the abundance of thalamic input to individual striatal cholinergic interneurons is reduced early in the life span of Q140 mice, raising the possibility that this may occur in human HD as well. Because cholinergic interneurons differentially affect striatal direct vs. indirect pathway spiny projection neurons, their reduced thalamic excitatory drive may contribute to early abnormalities in movement in HD. J. Comp. Neurol. 524:3518-3529, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163.
| |
Collapse
|
39
|
Phillips OR, Joshi SH, Squitieri F, Sanchez-Castaneda C, Narr K, Shattuck DW, Caltagirone C, Sabatini U, Di Paola M. Major Superficial White Matter Abnormalities in Huntington's Disease. Front Neurosci 2016; 10:197. [PMID: 27242403 PMCID: PMC4876130 DOI: 10.3389/fnins.2016.00197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/21/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. METHODS Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. RESULTS There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). CONCLUSIONS This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease.
Collapse
Affiliation(s)
- Owen R. Phillips
- Morphology and Morphometry for NeuroImaging Lab, Clinical and Behavioural Neurology Department, IRCCS Fondazione Santa LuciaRome, Italy
- Neuroscience Department, University of Rome “Tor Vergata”Rome, Italy
| | - Shantanu H. Joshi
- Ahmanson Lovelace Brain Mapping Center, Neurology, University of California Los AngelesLos Angeles, CA, USA
| | - Ferdinando Squitieri
- IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo, Italy
- CSS-MendelRome, Italy
- Lega Italiana Ricerca Huntington FoundationRome, Italy
| | - Cristina Sanchez-Castaneda
- Radiology Department, IRCCS Santa Lucia FoundationRome, Italy
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPSBarcelona, Spain
| | - Katherine Narr
- Ahmanson Lovelace Brain Mapping Center, Neurology, University of California Los AngelesLos Angeles, CA, USA
| | - David W. Shattuck
- Ahmanson Lovelace Brain Mapping Center, Neurology, University of California Los AngelesLos Angeles, CA, USA
| | - Carlo Caltagirone
- Neuroscience Department, University of Rome “Tor Vergata”Rome, Italy
- Clinical and Behavioural Neurology Department, IRCCS Fondazione Santa LuciaRome, Italy
| | - Umberto Sabatini
- Radiology Department, IRCCS Santa Lucia FoundationRome, Italy
- Neuroradiology, University of Magna GraeciaCatanzaro, Italy
| | - Margherita Di Paola
- Morphology and Morphometry for NeuroImaging Lab, Clinical and Behavioural Neurology Department, IRCCS Fondazione Santa LuciaRome, Italy
- Human Studies Department, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| |
Collapse
|
40
|
Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LPW. RAN Translation in Huntington Disease. Neuron 2016; 88:667-77. [PMID: 26590344 DOI: 10.1016/j.neuron.2015.10.038] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/05/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
Abstract
Huntington disease (HD) is caused by a CAG ⋅ CTG expansion in the huntingtin (HTT) gene. While most research has focused on the HTT polyGln-expansion protein, we demonstrate that four additional, novel, homopolymeric expansion proteins (polyAla, polySer, polyLeu, and polyCys) accumulate in HD human brains. These sense and antisense repeat-associated non-ATG (RAN) translation proteins accumulate most abundantly in brain regions with neuronal loss, microglial activation and apoptosis, including caudate/putamen, white matter, and, in juvenile-onset cases, also the cerebellum. RAN protein accumulation and aggregation are length dependent, and individual RAN proteins are toxic to neural cells independent of RNA effects. These data suggest RAN proteins contribute to HD and that therapeutic strategies targeting both sense and antisense genes may be required for efficacy in HD patients. This is the first demonstration that RAN proteins are expressed across an expansion located in an open reading frame and suggests RAN translation may also contribute to other polyglutamine diseases.
Collapse
Affiliation(s)
- Monica Bañez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Fatma Ayhan
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Alex D Tarabochia
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Tao Zu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Barbara A Perez
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Olga Pletnikova
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Borchelt
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Christopher A Ross
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Russell L Margolis
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juan C Troncoso
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
41
|
Faria AV, Ratnanather JT, Tward DJ, Lee DS, van den Noort F, Wu D, Brown T, Johnson H, Paulsen JS, Ross CA, Younes L, Miller MI. Linking white matter and deep gray matter alterations in premanifest Huntington disease. Neuroimage Clin 2016; 11:450-460. [PMID: 27104139 PMCID: PMC4827723 DOI: 10.1016/j.nicl.2016.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay the onset or slow the disease progression.
Collapse
Affiliation(s)
- Andreia V Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - J Tilak Ratnanather
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Tward
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - David Soobin Lee
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Frieda van den Noort
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA
| | - Hans Johnson
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jane S Paulsen
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
42
|
Gregory S, Cole JH, Farmer RE, Rees EM, Roos RA, Sprengelmeyer R, Durr A, Landwehrmeyer B, Zhang H, Scahill RI, Tabrizi SJ, Frost C, Hobbs NZ. Longitudinal Diffusion Tensor Imaging Shows Progressive Changes in White Matter in Huntington’s Disease. J Huntingtons Dis 2015; 4:333-46. [DOI: 10.3233/jhd-150173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sarah Gregory
- Wellcome Trust Centre for Neuroimaging, UCL, London, WC1N 3BG, UK
| | - James H. Cole
- UCL Institute of Neurology, University College London, UK
- Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, UK
| | - Ruth E. Farmer
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine London, UK
| | - Elin M. Rees
- UCL Institute of Neurology, University College London, UK
| | - Raymund A.C. Roos
- Department of Neurology, Leiden University Medical Centre, 2300RC Leiden, The Netherlands
| | | | - Alexandra Durr
- Department of Genetics and Cytogenetics, INSERM UMR S679, APHP Hôpital de la Salpêtrière, Paris, France
| | | | - Hui Zhang
- Centre for Medical Image Computing, University College London, UK
| | | | | | - Chris Frost
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine London, UK
| | - Nicola Z. Hobbs
- UCL Institute of Neurology, University College London, UK
- IXICO Plc., London, UK
| |
Collapse
|
43
|
Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors. Neuroimage 2015; 127:277-286. [PMID: 26717853 DOI: 10.1016/j.neuroimage.2015.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/23/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
We consider the problem of reconstructing white-matter pathways in a longitudinal study, where diffusion-weighted and T1-weighted MR images have been acquired at multiple time points for the same subject. We propose a method for joint reconstruction of a subject's pathways at all time points given the subject's entire set of longitudinal data. We apply a method for unbiased within-subject registration to generate a within-subject template from the T1-weighted images of the subject at all time points. We follow a global probabilistic tractography approach, where the unknown pathway is represented in the space of this within-subject template and propagated to the native space of the diffusion-weighted images at all time points to compute its posterior probability given the images. This ensures spatial correspondence of the reconstructed pathway among time points, which in turn allows longitudinal changes in diffusion measures to be estimated consistently along the pathway. We evaluate the reliability of the proposed method on data from healthy controls scanned twice within a month, where no changes in white-matter microstructure are expected between scans. We evaluate the sensitivity of the method on data from Huntington's disease patients scanned repeatedly over the course of several months, where changes are expected between scans. We show that reconstructing white-matter pathways jointly using the data from all time points leads to improved reliability and sensitivity, when compared to reconstructing the pathways at each time point independently.
Collapse
|
44
|
Matsui JT, Vaidya JG, Wassermann D, Kim RE, Magnotta VA, Johnson HJ, Paulsen JS. Prefrontal cortex white matter tracts in prodromal Huntington disease. Hum Brain Mapp 2015; 36:3717-32. [PMID: 26179962 PMCID: PMC4583330 DOI: 10.1002/hbm.22835] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023] Open
Abstract
Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joy T. Matsui
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
- John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaii
| | - Jatin G. Vaidya
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
| | | | - Regina Eunyoung Kim
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
| | - Vincent A. Magnotta
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
- Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityIowa
- Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityIowa
| | - Hans J. Johnson
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
- Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityIowa
- Department of Electrical and Computer Engineering, College of EngineeringUniversity of IowaIowa CityIowa
| | - Jane S. Paulsen
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowa
- Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityIowa
- Department of PsychologyUniversity of IowaIowa CityIowa
| | | |
Collapse
|
45
|
Collins LM, Begeti F, Panin F, Lazar AS, Cruickshank T, Ziman M, Mason SL, Barker RA. Novel Nut and Bolt Task Quantifies Motor Deficits in Premanifest and Manifest Huntington's Disease. PLOS CURRENTS 2015; 7. [PMID: 26421223 PMCID: PMC4570842 DOI: 10.1371/currents.hd.ded251617ae62a1364506b0521bd3761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: We investigated the use of a simple novel nut and bolt task in premanifest and manifest Huntington’s disease (HD) patients to detect and quantify motor impairments at all stages of the disease. Methods: Premanifest HD (n=24), manifest HD (n=27) and control (n=32) participants were asked to screw a nut onto a bolt in one direction, using three different sized bolts with their left and right hand in turn. Results: We identified some impairments at all stages of HD and in the premanifest individuals, deficits in the non-dominant hand correlated with disease burden scores. Conclusion: This simple, cheap motor task was able to detect motor impairments in both premanifest and manifest HD and as such might be a useful quantifiable measure of motor function for use in clinical studies.
Collapse
Affiliation(s)
| | | | - Francesca Panin
- John van Geest Centre for Brain Repair, Cambridge, United Kingdom; Faculty of Medical Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Alpar S Lazar
- John van Geest Centre for Brain Repair, Cambridge, United Kingdom
| | - Travis Cruickshank
- School of Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Sarah L Mason
- John van Geest Centre for Brain Repair, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Cambridge, United Kingdom; School of Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
46
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
47
|
Novak MJU, Seunarine KK, Gibbard CR, McColgan P, Draganski B, Friston K, Clark CA, Tabrizi SJ. Basal ganglia-cortical structural connectivity in Huntington's disease. Hum Brain Mapp 2015; 36:1728-40. [PMID: 25640796 DOI: 10.1002/hbm.22733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 11/07/2022] Open
Abstract
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity.
Collapse
Affiliation(s)
- Marianne J U Novak
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JPG, Faull RLM. The Neuropathology of Huntington's Disease. Curr Top Behav Neurosci 2015; 22:33-80. [PMID: 25300927 DOI: 10.1007/7854_2014_354] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The basal ganglia are a highly interconnected set of subcortical nuclei and major atrophy in one or more regions may have major effects on other regions of the brain. Therefore, the striatum which is preferentially degenerated and receives projections from the entire cortex also affects the regions to which it targets, especially the globus pallidus and substantia nigra pars reticulata. Additionally, the cerebral cortex is itself severely affected as are many other regions of the brain, especially in more advanced cases. The cell loss in the basal ganglia and the cerebral cortex is extensive. The most important new findings in Huntington's disease pathology is the highly variable nature of the degeneration in the brain. Most interestingly, this variable pattern of pathology appears to reflect the highly variable symptomatology of cases with Huntington's disease even among cases possessing the same number of CAG repeats.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand,
| | | | | | | | | |
Collapse
|
49
|
Deng YP, Wong T, Wan JY, Reiner A. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington's disease. Front Syst Neurosci 2014; 8:198. [PMID: 25360089 PMCID: PMC4197654 DOI: 10.3389/fnsys.2014.00198] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Motor slowing and forebrain white matter loss have been reported in premanifest Huntington's disease (HD) prior to substantial striatal neuron loss. These findings raise the possibility that early motor defects in HD may be related to loss of excitatory input to striatum. In a prior study, we showed that in the heterozygous Q140 knock-in mouse model of HD that loss of thalamostriatal axospinous terminals is evident by 4 months, and loss of corticostriatal axospinous terminals is evident at 12 months, before striatal projection neuron pathology. In the present study, we specifically characterized the loss of thalamostriatal and corticostriatal terminals on direct (dSPN) and indirect (iSPN) pathway striatal projection neurons, using immunolabeling to identify thalamostriatal (VGLUT2+) and corticostriatal (VGLUT1+) axospinous terminals, and D1 receptor immunolabeling to distinguish dSPN (D1+) and iSPN (D1-) synaptic targets. We found that the loss of corticostriatal terminals at 12 months of age was preferential for D1+ spines, and especially involved smaller terminals, presumptively of the intratelencephalically projecting (IT) type. By contrast, indirect pathway D1- spines showed little loss of axospinous terminals at the same age. Thalamostriatal terminal loss was comparable for D1+ and D1- spines at both 4 and 12 months. Regression analysis showed that the loss of VGLUT1+ terminals on D1+ spines was correlated with a slight decline in open field motor parameters at 12 months. Our overall results raise the possibility that differential thalamic and cortical input loss to SPNs is an early event in human HD, with cortical loss to dSPNs in particular contributing to premanifest motor slowing.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Ting Wong
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Jim Y Wan
- Department of Preventive Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
50
|
Marangoni M, Adalbert R, Janeckova L, Patrick J, Kohli J, Coleman MP, Conforti L. Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington's disease. Neurobiol Aging 2014; 35:2382-93. [DOI: 10.1016/j.neurobiolaging.2014.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 11/28/2022]
|