1
|
Lim CY, Seo Y, Sohn B, Seong M, Kim ST, Hong S, Youn J, Kim EY. The Inferior Cerebellar Peduncle Sign: A Novel Imaging Marker for Differentiating Multiple System Atrophy Cerebellar Type from Spinocerebellar Ataxia. AJNR Am J Neuroradiol 2025:ajnr.A8623. [PMID: 39674591 DOI: 10.3174/ajnr.a8623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND PURPOSE The hot cross bun (HCB) sign is a hallmark feature of multiple system atrophy with predominant cerebellar ataxia (MSA-C), typically observed in advanced stages of the disease; however, it can also present in other conditions such as spinocerebellar ataxia (SCA), making the differentiation challenging. The middle cerebellar peduncle (MCP) sign may be observed in various medical conditions and in healthy individuals. We hypothesized that the inferior cerebellar peduncle (ICP), known to be affected in MSA-C, may exhibit hyperintensity on FLAIR imaging, potentially aiding in differentiating MSA-C from SCA. MATERIALS AND METHODS Medical records of 153 patients with probable MSA-C and 72 genetically confirmed SCAs from a single institution were reviewed retrospectively between January 2012 and June 2023. MRI was performed using 3T scanners. The ICP sign was deemed positive when the bilateral ICP signal intensity exceeded that of the medulla oblongata on axial FLAIR images. MCP and HCB signs were also evaluated. Two independent neuroradiologists evaluated all MRIs, and interobserver agreement was assessed using κ statistics. Univariable and multivariable logistic regression analyses identified predictive features, and diagnostic performance was assessed. RESULTS The ICP sign was more prevalent in patients with MSA-C (65%) compared with those with SCA (6.9%; P < .001). The HCB and MCP signs were more frequent in patients with MSA-C (n = 110 and n = 134) than in those with SCA (n = 19 and n = 30; P < .001). The ICP sign demonstrated the highest specificity (95%) for predicting MSA-C, with an area under the curve (AUC) = 0.82, respectively. The MCP sign exhibited superior sensitivity (87%) but lower specificity and AUC compared with the ICP sign. Combining the ICP and MCP signs improved the AUC to 0.86. Integrating clinical features (age, sex, and disease duration) with imaging features yielded excellent diagnostic performance, with an AUC = 0.98. CONCLUSIONS The ICP sign on FLAIR imaging has high specificity in distinguishing MSA-C from SCA. Integrating clinical and imaging features further enhances diagnostic accuracy, potentially improving the differential diagnosis in clinical settings of cerebellar ataxia.
Collapse
Affiliation(s)
- Chae Y Lim
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yujin Seo
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Beomseok Sohn
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minjung Seong
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung T Kim
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sungjun Hong
- Department of Digital Health (S.H.), Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Medical AI Research Center (S.H.) Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology (J.Y.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center (J.Y.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eung Y Kim
- From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kapteijns KCJ, van Prooije TH, Li H, Scheenen TWJ, Tuladhar AM, van de Warrenburg BP. The pattern and dynamics of white matter alterations in Spinocerebellar ataxia type 1: A diffusion-weighted magnetic resonance imaging study. Neuroimage Clin 2025; 46:103783. [PMID: 40279873 DOI: 10.1016/j.nicl.2025.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Spinocerebellar ataxia type 1 (SCA1) is a rare, neurodegenerative disease. Upcoming clinical disease-modifying trials require biomarkers sensitive to disease progression. This study aims to investigate diffusion MRI (dMRI) metrics as a possible outcome measure in such trials. METHODS 46 participants (26 SCA1, 20 matched healthy controls (HC)) underwent 3 T MRI examination and clinical assessment of ataxia severity (SARA) at three timepoints over the duration of two years, including dMRI. Diffusion metrics (fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity) were examined using tract-based spatial statistics (TBSS) and ROI-based extraction. Results were evaluated for change over time and relation to disease severity. RESULTS Cerebellar white matter, in particular all cerebellar peduncles, showed significant (p < 0.001) differences between SCA1 and HC groups at baseline in all diffusion metrics. After two years, dynamics were only observed in the inferior cerebellar peduncle (ICP). However, a sub-group of early-stage disease patients (SARA ≤ 11) showed significant change in the corticospinal tract (CST) and pontine crossing tract (PCT), indicating stage-dependent dynamics. Cortical regions did not show cross-sectional differences between groups, but did change significantly in both anterior and posterior regions in the SCA1 group (p < 0.001). CONCLUSION SCA1 patients showed ignificantly impaired white matter integrity in the cerebellar regions, when compared to HC. At the group level, diffusion metrics show dynamic effects in the ICP and in cortical regions. Patients in early disease stages furthermore show dynamic change in the CST and PCT. This indicates that white matter alterations follow a specific pattern throughout the disease and that measurements thereof are most useful in clinical trials targeting early disease stages.
Collapse
Affiliation(s)
- Kirsten C J Kapteijns
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Netherlands; Department of Medical Imaging, Radboud University Medical Center, Netherlands
| | - Teije H van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Netherlands
| | - Hao Li
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Netherlands
| | - Anil Man Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Netherlands.
| |
Collapse
|
3
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Corrigendum: Assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol 2022; 13:1038298. [PMID: 36247785 PMCID: PMC9559733 DOI: 10.3389/fneur.2022.1038298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Young Woo Park
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Christophe Lenglet
| |
Collapse
|
4
|
Toniolo S, Serra L, Olivito G, Caltagirone C, Mercuri NB, Marra C, Cercignani M, Bozzali M. Cerebellar White Matter Disruption in Alzheimer's Disease Patients: A Diffusion Tensor Imaging Study. J Alzheimers Dis 2021; 74:615-624. [PMID: 32065792 DOI: 10.3233/jad-191125] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cognitive role of the cerebellum has recently gained much attention, and its pivotal role in Alzheimer's disease (AD) has now been widely recognized. Diffusion tensor imaging (DTI) has been used to evaluate the disruption of the microstructural milieu in AD, and though several white matter (WM) tracts such as corpus callosum, inferior and superior longitudinal fasciculus, cingulum, fornix, and uncinate fasciculus have been evaluated in AD, data on cerebellar WM tracts are currently lacking. We performed a tractography-based DTI reconstruction of the middle cerebellar peduncle (MCP), and the left and right superior cerebellar peduncles separately (SCPL and SCPR) and addressed the differences in fractional anisotropy (FA), axial diffusivity (Dax), radial diffusivity (RD), and mean diffusivity (MD) in the three tracts between 50 patients with AD and 25 healthy subjects. We found that AD patients showed a lower FA and a higher RD compared to healthy subjects in MCP, SCPL, and SCPR. Moreover, higher MD was found in SCPR and SCPL and higher Dax in SCPL. This result is important as it challenges the traditional view that WM bundles in the cerebellum are unaffected in AD and might identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sofia Toniolo
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy
| | - Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Research Laboratory-Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy.,Ataxia Research Laboratory-Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Camillo Marra
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
5
|
Chougar L, Pyatigorskaya N, Degos B, Grabli D, Lehéricy S. The Role of Magnetic Resonance Imaging for the Diagnosis of Atypical Parkinsonism. Front Neurol 2020; 11:665. [PMID: 32765399 PMCID: PMC7380089 DOI: 10.3389/fneur.2020.00665] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The diagnosis of Parkinson's disease and atypical Parkinsonism remains clinically difficult, especially at the early stage of the disease, since there is a significant overlap of symptoms. Multimodal MRI has significantly improved diagnostic accuracy and understanding of the pathophysiology of Parkinsonian disorders. Structural and quantitative MRI sequences provide biomarkers sensitive to different tissue properties that detect abnormalities specific to each disease and contribute to the diagnosis. Machine learning techniques using these MRI biomarkers can effectively differentiate atypical Parkinsonian syndromes. Such approaches could be implemented in a clinical environment and improve the management of Parkinsonian patients. This review presents different structural and quantitative MRI techniques, their contribution to the differential diagnosis of atypical Parkinsonian disorders and their interest for individual-level diagnosis.
Collapse
Affiliation(s)
- Lydia Chougar
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.,Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, Bobigny, France
| | - David Grabli
- Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| |
Collapse
|
6
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI. Front Neurol 2020; 11:411. [PMID: 32581994 PMCID: PMC7287151 DOI: 10.3389/fneur.2020.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Development of imaging biomarkers for rare neurodegenerative diseases such as spinocerebellar ataxia (SCA) is important to non-invasively track progression of disease pathology and monitor response to interventions. Diffusion MRI (dMRI) has been shown to identify cross-sectional degeneration of white matter (WM) microstructure and connectivity between healthy controls and patients with SCAs, using various analysis methods. In this paper, we present dMRI data in SCAs type 1, 2, 3, and 6 and matched controls, including longitudinal acquisitions at 12-24-month intervals in a subset of the cohort, with up to 5 visits. The SCA1 cohort also contained 3 premanifest patients at baseline, with 2 showing ataxia symptoms at the time of the follow-up scans. We focused on two aspects: first, multimodal evaluation of the dMRI data in a cross-sectional approach, and second, longitudinal trends in dMRI data in SCAs. Three different pipelines were used to perform cross-sectional analyses in WM: region of interest (ROI), tract-based spatial statistics (TBSS), and fixel-based analysis (FBA). We further analyzed longitudinal changes in dMRI metrics throughout the brain using ROI-based analysis. Both ROI and TBSS analyses identified higher mean (MD), axial (AD), and radial (RD) diffusivity and lower fractional anisotropy (FA) in the cerebellum for all SCAs compared to controls, as well as some cerebral alterations in SCA1, 2, and 3. FBA showed lower fiber density (FD) and fiber crossing (FC) regions similar to those identified by ROI and TBSS analyses. FBA also highlighted corticospinal tract (CST) abnormalities, which was not detected by the other two pipelines. Longitudinal ROI-based analysis showed significant increase in AD in the middle cerebellar peduncle (MCP) for patients with SCA1, suggesting that the MCP may be a good candidate region to monitor disease progression. The patient who remained symptom-free throughout the study displayed no microstructural abnormalities. On the other hand, the two patients who were at the premanifest stage at baseline, and showed ataxia symptoms in their follow-up visits, displayed AD values in the MCP that were already in the range of symptomatic patients with SCA1 at their baseline visit, demonstrating that microstructural abnormalities are detectable prior to the onset of ataxia.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Differentiation of multiple system atrophy from Parkinson's disease by structural connectivity derived from probabilistic tractography. Sci Rep 2019; 9:16488. [PMID: 31712681 PMCID: PMC6848175 DOI: 10.1038/s41598-019-52829-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies combining diffusion tensor-derived metrics and machine learning have shown promising results in the discrimination of multiple system atrophy (MSA) and Parkinson’s disease (PD) patients. This approach has not been tested using more complex methodologies such as probabilistic tractography. The aim of this work is assessing whether the strength of structural connectivity between subcortical structures, measured as the number of streamlines (NOS) derived from tractography, can be used to classify MSA and PD patients at the single-patient level. The classification performance of subcortical FA and MD was also evaluated to compare the discriminant ability between diffusion tensor-derived metrics and NOS. Using diffusion-weighted images acquired in a 3 T MRI scanner and probabilistic tractography, we reconstructed the white matter tracts between 18 subcortical structures from a sample of 54 healthy controls, 31 MSA patients and 65 PD patients. NOS between subcortical structures were compared between groups and entered as features into a machine learning algorithm. Reduced NOS in MSA compared with controls and PD were found in connections between the putamen, pallidum, ventral diencephalon, thalamus, and cerebellum, in both right and left hemispheres. The classification procedure achieved an overall accuracy of 78%, with 71% of the MSA subjects and 86% of the PD patients correctly classified. NOS features outperformed the discrimination performance obtained with FA and MD. Our findings suggest that structural connectivity derived from tractography has the potential to correctly distinguish between MSA and PD patients. Furthermore, NOS measures obtained from tractography might be more useful than diffusion tensor-derived metrics for the detection of MSA.
Collapse
|
8
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
9
|
Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. NEUROIMAGE-CLINICAL 2019; 23:101891. [PMID: 31226621 PMCID: PMC6587071 DOI: 10.1016/j.nicl.2019.101891] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Objective Neuroanatomical differences in the cerebellum are among the most consistent findings in multiple system atrophy (MSA) patients. This study performed a detailed cerebellar morphology in MSA patients and its two subtypes: MSA-P (parkinson's symptoms predominate) and MSA-C (cerebellar symptoms predominant), and their relations to profiles of motor and cognitive deficits. Materials and methods Structure MRI data were acquired from 63 healthy controls and 61 MSA patients; voxel-based morphometry and the Spatially Unbiased Infratentorial Toolbox cerebellar atlas were performed to identify the cerebellar gray volume changes in MSA and its subtypes. Further, the gray matter changes were correlated with the clinical motor/cognitive scores. Results Patients with MSA exhibited widespread loss of cerebellar volume bilaterally, relative to healthy controls. In those with MSA-C, gray matter loss was detected from anterior (bilateral lobule IV-V) to posterior (bilateral crus I/II, bilateral lobule IX, left lobule VIII) cerebellar lobes. Lower anterior cerebellar volume negatively correlated with disease duration and motor performance, whereas posterior lobe integrity positively correlated with cognitive assessment. In patients with MSA-P, atrophy of anterior lobe (bilateral lobules IV-V) and posterior lobe in part (left lobule VI, bilateral IX) was evident; and in left cerebellar lobule IX, gray matter loss negatively correlated with motor scores. Direct comparison of MSA-P and MSA-C group outcomes showed divergence in right cerebellar crus II only. Conclusions Our data suggest that volumetric abnormalities of cerebellum contribute substantially to motor and cognitive performance in patients with MSA. In patients with MSA-P and MSA-C, affected regions of cerebellum differed.
Cerebellum atrophy contributed substantially to motor and cognitive behavior in MSA. Lower cerebellum IV-V volume was correlated with MSA-C disease duration and severity Cerebellum atrophy in one side may imply symptoms onset on contralateral
Collapse
|
10
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
11
|
Adanyeguh IM, Perlbarg V, Henry PG, Rinaldi D, Petit E, Valabregue R, Brice A, Durr A, Mochel F. Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. NEUROIMAGE-CLINICAL 2018; 19:858-867. [PMID: 29922574 PMCID: PMC6005808 DOI: 10.1016/j.nicl.2018.06.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Objective As gene-based therapies may soon arise for patients with spinocerebellar ataxia (SCA), there is a critical need to identify biomarkers of disease progression with effect sizes greater than clinical scores, enabling trials with smaller sample sizes. Methods We enrolled a unique cohort of patients with SCA1 (n = 15), SCA2 (n = 12), SCA3 (n = 20) and SCA7 (n = 10) and 24 healthy controls of similar age, sex and body mass index. We collected longitudinal clinical and imaging data at baseline and follow-up (mean interval of 24 months). We performed both manual and automated volumetric analyses. Diffusion tensor imaging (DTI) and a novel tractography method, called fixel-based analysis (FBA), were assessed at follow-up. Effect sizes were calculated for clinical scores and imaging parameters. Results Clinical scores worsened as atrophy increased over time (p < 0.05). However, atrophy of cerebellum and pons showed very large effect sizes (>1.2) compared to clinical scores (<0.8). FBA, applied for the first time to SCA, was sensitive to microstructural cross-sectional differences that were not captured by conventional DTI metrics, especially in the less studied SCA7 group. FBA also showed larger effect sizes than DTI metrics. Conclusion This study showed that volumetry outperformed clinical scores to measure disease progression in SCA1, SCA2, SCA3 and SCA7. Therefore, we advocate the use of volumetric biomarkers in therapeutic trials of autosomal dominant ataxias. In addition, FBA showed larger effect size than DTI to detect cross-sectional microstructural alterations in patients relative to controls.
Biomarkers are needed to test upcoming therapies for spinocerebellar ataxia. As spinocerebellar ataxias are rare, biomarkers with high effect sizes are needed. We identified imaging biomarkers with higher effect sizes than clinical scores.
Collapse
Key Words
- Apparent fiber density
- CCFS, composite cerebellar functional severity score
- CFE, connectivity-based fixel enhancement
- CSD, constrained spherical deconvolution
- CST, corticospinal tract
- DTI, diffusion tensor imaging
- Diffusion imaging.
- FA, fractional anisotropy
- FBA, fixel-based analysis
- FC, fiber cross-section
- FD, fiber density
- FDC, fiber density and cross-section
- FOD, fiber orientation distribution
- FOV, Field of view
- Fixel analysis
- GRAPPA, generalized autocalibrating partial parallel acquisition
- Imaging biomarkers
- MPRAGE, magnetization-prepared rapid gradient-echo
- MRI, magnetic resonance imaging
- RD, radial diffusivity
- SARA, scale for the assessment and rating of ataxia
- SCA, spinocerebellar ataxias
- SNR, signal-to-noise ratio
- Spinocerebellar ataxia
- TBSS, tract-based spatial statistics
- TE, echo time
- TR, repetition time
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Vincent Perlbarg
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Bioinformatics and Biostatistics Core Facililty, iCONICS, Institut du Ceveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Daisy Rinaldi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Elodie Petit
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Romain Valabregue
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Center for NeuroImaging Research (CENIR), Institut du Cerveau et de la Moelle épinière, 75013 Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France; University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France.
| |
Collapse
|
12
|
|
13
|
Abstract
Diffusion tensor imaging (DTI) is a noninvasive neuroimaging tool assessing the organization of white-matter tracts and brain microstructure in vivo. The technique takes into account the three-dimensional (3D) direction of diffusion of water in space, the brownian movements of water being constrained by the brain microstructure. The main direction of diffusion in the brain is extracted to obtain the principal direction of axonal projection within a given voxel. Overall, the diffusion tensor is a mathematic analysis of the magnitude/directionality (anisotropy) of the movement of water molecules in 3D space. Tracts running in the white matter are subsequently reconstructed graphically with fiber tractography. Tractography can be applied to myelinated and unmyelinated fibers or axonopathy. Decreased fractional anisotropy in white-matter tracts occurs in cases of injury with disorganized or disrupted myelin sheaths. Furthermore, high angular resolution methods enable detection of fiber crossings or convergence. DTI is a modern tool which complements conventional magnetic resonance techniques and is particularly relevant to assess the organization of cerebellar tracts. Indeed, both the afferent and efferent pathways of the cerebellar circuitry passing through the inferior, middle, and superior cerebellar peduncles can be visualized in vivo, including in children. The microanatomy of the cerebellar cortex and cerebellar nuclei is also emerging as a future assessment. Applications in the field of cerebellar disorders are multiple, ranging from developmental disorders to adult-onset cerebellar ataxias.
Collapse
|
14
|
Wu X, Liao X, Zhan Y, Cheng C, Shen W, Huang M, Zhou Z, Wang Z, Qiu Z, Xing W, Liao W, Tang B, Shen L. Microstructural Alterations in Asymptomatic and Symptomatic Patients with Spinocerebellar Ataxia Type 3: A Tract-Based Spatial Statistics Study. Front Neurol 2017; 8:714. [PMID: 29312133 PMCID: PMC5744430 DOI: 10.3389/fneur.2017.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Objective Spinocerebellar ataxia type 3 (SCA3) is the most commonly occurring type of autosomal dominant spinocerebellar ataxia. The present study aims to investigate progressive changes in white matter (WM) fiber in asymptomatic and symptomatic patients with SCA3. Methods A total of 62 participants were included in this study. Among them, 16 were asymptomatic mutation carriers (pre-SCA3), 22 were SCA3 patients with clinical symptoms, and 24 were normal controls (NC). Group comparison of tract-based spatial statistics was performed to identify microstructural abnormalities at different SCA3 disease stages. Results Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) were found in the left inferior cerebellar peduncle and superior cerebellar peduncle (SCP) in the pre-SCA3 group compared with NC. The symptomatic SCA3 group showed brain-wide WM tracts impairment in both supratentorial and infratentorial networks, and the mean FA value of the WM skeleton showed a significantly negative correlation with the International Cooperative Ataxia Rating Scale (ICARS) scores. Specifically, FA of the bilateral posterior limb of the internal capsule negatively correlated with SCA3 disease duration. We also found that FA values in the right medial lemniscus and SCP negatively correlated with ICARS scores, whereas FA in the right posterior thalamic radiation positively correlated with Montreal Cognitive Assessment scores. In addition, MD in the middle cerebellar peduncle, left anterior limb of internal capsule, external capsule, and superior corona radiate positively correlated with ICARS scores in SCA3 patients. Conclusion WM microstructural changes are present even in the asymptomatic stages of SCA3. In individuals in which the disease has progressed to the symptomatic stage, the integrity of WM fibers across the whole brain is affected. Furthermore, abnormalities in WM tracts are closely related to SCA3 disease severity, including movement disorder and cognitive dysfunction. These findings can deepen our understanding of the neural basis of SCA3 dysfunction.
Collapse
Affiliation(s)
- Xinwei Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mufang Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifan Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaboration Innovation Center for Brain Science, Shanghai, China.,Collaboration Innovation Center for Genetics and Development, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China
| |
Collapse
|
15
|
The Diagnosis and Natural History of Multiple System Atrophy, Cerebellar Type. THE CEREBELLUM 2017; 15:663-679. [PMID: 26467153 DOI: 10.1007/s12311-015-0728-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this study was to identify key features differentiating multiple system atrophy cerebellar type (MSA-C) from idiopathic late-onset cerebellar ataxia (ILOCA). We reviewed records of patients seen in the Massachusetts General Hospital Ataxia Unit between 1992 and 2013 with consensus criteria diagnoses of MSA-C or ILOCA. Twelve patients had definite MSA-C, 53 had possible/probable MSA-C, and 12 had ILOCA. Autonomic features, specifically urinary urgency, frequency, and incontinence with erectile dysfunction in males, differentiated MSA-C from ILOCA throughout the disease course (p = 0.005). Orthostatic hypotension developed later and differentiated MSA-C from ILOCA (p < 0.01). REM sleep behavior disorder (RBD) occurred early in possible/probable MSA-C (p < 0.01). Late MSA-C included pathologic laughing and crying (PLC, p < 0.01), bradykinesia (p = 0.01), and corticospinal findings (p = 0.01). MRI distinguished MSA-C from ILOCA by atrophy of the brainstem (p < 0.01) and middle cerebellar peduncles (MCP, p = 0.02). MSA-C progressed faster than ILOCA: by 6 years, MSA-C walker dependency was 100 % and ILOCA 33 %. MSA-C survival was 8.4 ± 2.5 years. Mean length of ILOCA illness to date is 15.9 ± 6.4 years. A sporadic onset, insidiously developing cerebellar syndrome in midlife, with autonomic features of otherwise unexplained bladder dysfunction with or without erectile dysfunction in males, and atrophy of the cerebellum, brainstem, and MCP points strongly to MSA-C. RBD and postural hypotension confirm the diagnosis. Extrapyramidal findings, corticospinal tract signs, and PLC are helpful but not necessary for diagnosis. Clarity in early MSA-C diagnosis can prevent unnecessary investigations and facilitate therapeutic trials.
Collapse
|
16
|
Dayan M, Olivito G, Molinari M, Cercignani M, Bozzali M, Leggio M. Impact of cerebellar atrophy on cortical gray matter and cerebellar peduncles as assessed by voxel-based morphometry and high angular resolution diffusion imaging. FUNCTIONAL NEUROLOGY 2017; 31:239-248. [PMID: 28072384 DOI: 10.11138/fneur/2016.31.4.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years the cerebellum has been attributed amore important role in higher-level functions than previously believed. We examined a cohort of patients suffering from cerebellar atrophy resulting in ataxia, with two main objectives: first to investigate which regions of the cerebrum were affected by the cerebellar degeneration, and second to assess whether diffusion magnetic resonance imaging (dMRI) metrics within the medial (MCP) and superior cerebellar peduncle (SCP) - namely fractional anisotropy (FA) and radial diffusivity (RD) - could be used as a biomarker in patients with this condition. Structural and dMRI data of seven patients with cerebellar atrophy (2 with spinocerebellar atrophy type 2, 1 with Friedreich's ataxia, 4 with idiopathic cerebellar ataxia) and no visible cortical lesions or cortical atrophy were investigated with Freesurfer and voxel-based morphometry (VBM) of gray matter (GM) as well as MCP and SCP FA maps. Correlations of MCP and SCP mean FA with ataxia scores and subscores were also evaluated. Freesurfer showed that patients had significantly reduced volume of the thalamus, ventral diencephalon and pallidum. VBM also demonstrated significantly lower local GM volumes in patients, notably in the head of the caudate nucleus, posterior cingulate gyrus and orbitofrontal cortex bilaterally, as well as in Broca's area in the left hemisphere, and a significant increase in RD in the MCP and SCP of both hemispheres. A significant correlation was found between MCP mean FA and total ataxia score (R=-0.7, p=0.03), and subscores for kinetic functions (R=-0.74, p=0.03) and oculomotor disorders (R=-0.70, p=0.04). The regions of the cerebrum found to have significantly lower local GM volumes have been described to be involved in higher-level cerebellar functions such as initiation of voluntary movements, emotional control, memory retrieval and general cognition. Our findings corroborate recent research pointing to a more extensive corticocerebellar system than previously thought. The significant difference in the MCP and SCP dMRI metrics between patients and controls as well as the significant correlation with ataxia total score and subscores support the use of dMRI metrics as an imaging biomarker for cerebellar degeneration and ataxia.
Collapse
|
17
|
Yoo YJ, Oh J. Identification of early neurodegenerative change in presymptomatic spinocerebellar ataxia type 1: A diffusion tensor imaging study. Parkinsonism Relat Disord 2017; 36:109-110. [PMID: 28073679 DOI: 10.1016/j.parkreldis.2016.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/31/2016] [Indexed: 11/30/2022]
Abstract
We report a 41-year-old man of presymptomatic spinocerebellar ataxia type 1. Diffusion tensor imaging (DTI) verified decreased fractional anisotropy of cerebellar afferent and efferent pathways compared to 5 age-matched healthy controls while conventional MRI revealed normal brain. DTI was valuable in detection of early microstructural damage of cerebellar pathways.
Collapse
Affiliation(s)
- Yeon Ji Yoo
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Jeehae Oh
- Department of Rehabilitation Medicine, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Gorges M, Maier M, Müller HP, Ludolph A, Pinkhardt E, Kassubek J. EPV 3. Regional microstructural impairment is associated with characteristic altered oculomotor performance in Parkinsonian syndromes. Clin Neurophysiol 2016. [DOI: 10.1016/j.clinph.2016.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Fiori S, Poretti A, Pannek K, Del Punta R, Pasquariello R, Tosetti M, Guzzetta A, Rose S, Cioni G, Battini R. Diffusion Tractography Biomarkers of Pediatric Cerebellar Hypoplasia/Atrophy: Preliminary Results Using Constrained Spherical Deconvolution. AJNR Am J Neuroradiol 2016; 37:917-23. [PMID: 26659337 DOI: 10.3174/ajnr.a4607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Advances in MR imaging modeling have improved the feasibility of reconstructing crossing fibers, with increasing benefits in delineating angulated tracts such as cerebellar tracts by using tractography. We hypothesized that constrained spherical deconvolution-based probabilistic tractography could successfully reconstruct cerebellar tracts in children with cerebellar hypoplasia/atrophy and that diffusion scalars of the reconstructed tracts could differentiate pontocerebellar hypoplasia, nonprogressive cerebellar hypoplasia, and progressive cerebellar atrophy. MATERIALS AND METHODS Fifteen children with cerebellar ataxia and pontocerebellar hypoplasia, nonprogressive cerebellar hypoplasia or progressive cerebellar atrophy and 7 controls were included in this study. Cerebellar and corticospinal tracts were reconstructed by using constrained spherical deconvolution. Scalar measures (fractional anisotropy and mean, axial and radial diffusivity) were calculated. A general linear model was used to determine differences among groups for diffusion MR imaging scalar measures, and post hoc pair-wise comparisons were performed. RESULTS Cerebellar and corticospinal tracts were successfully reconstructed in all subjects. Significant differences in diffusion MR imaging scalars were found among groups, with fractional anisotropy explaining the highest variability. All groups with cerebellar pathologies showed lower fractional anisotropy compared with controls, with the exception of cerebellar hypoplasia. CONCLUSIONS This study shows the feasibility of constrained spherical deconvolution to reconstruct cerebellar and corticospinal tracts in children with morphologic cerebellar pathologies. In addition, the preliminary results show the potential utility of quantitative analysis of scalars of the cerebellar white matter tracts in children with cerebellar pathologies such as cerebellar hypoplasia and atrophy. Further studies with larger cohorts of patients are needed to validate the clinical significance of our preliminary results.
Collapse
Affiliation(s)
- S Fiori
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - A Poretti
- Section of Pediatric Neuroradiology (A.P.), Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - K Pannek
- Commonwealth Scientific and Industrial Research Organization (K.P., S.R.), Centre for Computational Informatics, Brisbane, Australia Department of Computing (K.P.), Imperial College London, London, United Kingdom
| | - R Del Punta
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - R Pasquariello
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - M Tosetti
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - A Guzzetta
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy Department of Clinical and Experimental Medicine (A.G., G.C.), University of Pisa, Pisa, Italy
| | - S Rose
- Commonwealth Scientific and Industrial Research Organization (K.P., S.R.), Centre for Computational Informatics, Brisbane, Australia
| | - G Cioni
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy Department of Clinical and Experimental Medicine (A.G., G.C.), University of Pisa, Pisa, Italy
| | - R Battini
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| |
Collapse
|
20
|
Rulseh AM, Keller J, Rusz J, Syka M, Brozova H, Rusina R, Havrankova P, Zarubova K, Malikova H, Jech R, Vymazal J. Diffusion tensor imaging in the characterization of multiple system atrophy. Neuropsychiatr Dis Treat 2016; 12:2181-7. [PMID: 27616888 PMCID: PMC5008640 DOI: 10.2147/ndt.s109094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Multiple system atrophy (MSA) is a rare neurodegenerative disease that remains poorly understood, and the diagnosis of MSA continues to be challenging. We endeavored to improve the diagnostic process and understanding of in vivo characteristics of MSA by diffusion tensor imaging (DTI). MATERIALS AND METHODS Twenty MSA subjects, ten parkinsonian dominant (MSA-P), ten cerebellar dominant (MSA-C), and 20 healthy volunteer subjects were recruited. Fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps were processed using tract-based spatial statistics. Diffusion data were additionally evaluated in the basal ganglia. A support vector machine was used to assess diagnostic utility, leave-one-out cross-validation in the evaluation of classification schemes, and receiver operating characteristic analyses to determine cutoff values. RESULTS We detected widespread changes in the brain white matter of MSA subjects; however, no group-wise differences were found between MSA-C and MSA-P subgroups. Altered DTI metrics in the putamen and middle cerebellar peduncles were associated with a positive parkinsonian and cerebellar phenotype, respectively. Concerning clinical applicability, we achieved high classification performance on mean diffusivity data in the combined bilateral putamen and middle cerebellar peduncle (accuracy 90.3%±9%, sensitivity 86.5%±11%, and specificity 99.3%±4%). CONCLUSION DTI in the middle cerebellar peduncle and putamen may be used in the diagnosis of MSA with a high degree of accuracy.
Collapse
Affiliation(s)
- Aaron Michael Rulseh
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; Department of Radiology, 1st Faculty of Medicine, General University Hospital, Charles University in Prague, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| | - Jiri Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Michael Syka
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Hana Brozova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Robert Rusina
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; Thomayer Hospital, Prague, Czech Republic
| | - Petra Havrankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Katerina Zarubova
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Hana Malikova
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
21
|
Morales H, Tomsick T. Middle cerebellar peduncles: Magnetic resonance imaging and pathophysiologic correlate. World J Radiol 2015; 7:438-447. [PMID: 26751508 PMCID: PMC4697118 DOI: 10.4329/wjr.v7.i12.438] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/05/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles (MCP), offering a systematic approach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities (e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases.
Collapse
|
22
|
Schulz R, Frey BM, Koch P, Zimerman M, Bönstrup M, Feldheim J, Timmermann JE, Schön G, Cheng B, Thomalla G, Gerloff C, Hummel FC. Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke. Cereb Cortex 2015; 27:635-645. [DOI: 10.1093/cercor/bhv251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
23
|
Characteristic diffusion tensor tractography in multiple system atrophy with predominant cerebellar ataxia and cortical cerebellar atrophy. J Neurol 2015; 263:61-7. [DOI: 10.1007/s00415-015-7934-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
|
24
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
25
|
Rozenfeld MN, Nemeth AJ, Walker MT, Mohan P, Wang X, Parrish TB, Opal P. An investigation of diffusion imaging techniques in the evaluation of spinocerebellar ataxia and multisystem atrophy. J Clin Neurosci 2014; 22:166-72. [PMID: 25439745 DOI: 10.1016/j.jocn.2014.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022]
Abstract
Multisystem system atrophy and spinocerebellar ataxia are rare neurodegenerative ataxias that can be difficult to diagnose, with important prognostic and treatment implications. The purpose of this study is to evaluate various methods of diffusion imaging and tractography in their effectiveness at differentiating these diseases from control subjects. Our secondary aim is determining whether diffusion abnormalities correspond with clinical disease severity. Diffusion imaging and tractography were performed on five patients and seven age-matched controls. Fractional anisotropy, generalized fractional anisotropy, and apparent diffusion coefficient values and corticospinal tract volumes were measured within various diffusion and probabilistic tractography models, including standard diffusion tensor and Q-ball tractography. Standard diffusion based fractional anisotropy and apparent diffusion coefficient values were significantly altered in patients versus controls in the middle cerebellar peduncles and central pons. Tractography based fractional anisotropy and generalized fractional anisotropy values were significantly lower in patients versus controls when corticospinal tracts were drawn in a craniocaudal direction (bilaterally using Q-ball imaging, only on the right using diffusion tensor imaging). The right corticospinal tract volume was significantly smaller in patients versus controls when created using Q-ball imaging in a caudocranial direction. There was no correlation between diffusion alteration and clinical symptomatology. In conclusion, various diffusion-based techniques can be effective in differentiating ataxic patients from control subjects, although the selection of diffusion algorithm and tract growth technique and direction is non-trivial.
Collapse
Affiliation(s)
- Michael N Rozenfeld
- Department of Radiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | - Alexander J Nemeth
- Department of Radiology, Northwestern University, Chicago, IL, USA; Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Matthew T Walker
- Northshore University Health Systems, Department of Radiology, Evanston, IL, USA
| | - Prasoon Mohan
- St. Francis Hospital, Department of Radiology, Evanston, IL, USA
| | - Xue Wang
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Puneet Opal
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
Ciolli L, Krismer F, Nicoletti F, Wenning GK. An update on the cerebellar subtype of multiple system atrophy. CEREBELLUM & ATAXIAS 2014; 1:14. [PMID: 26331038 PMCID: PMC4552412 DOI: 10.1186/s40673-014-0014-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Multiple system atrophy is a rare and fatal neurodegenerative disorder characterized by progressive autonomic failure, ataxia and parkinsonism in any combination. The clinical manifestations reflect central autonomic and striatonigral degeneration as well as olivopontocerebellar atrophy. Glial cytoplasmic inclusions, composed of α-synuclein and other proteins are considered the cellular hallmark lesion. The cerebellar variant of MSA (MSA-C) denotes a distinctive motor subtype characterized by progressive adult onset sporadic gait ataxia, scanning dysarthria, limb ataxia and cerebellar oculomotor dysfunction. In addition, there is autonomic failure and variable degrees of parkinsonism. A range of other disorders may present with MSA-C like features and therefore the differential diagnosis of MSA-C is not always straightforward. Here we review key aspects of MSA-C including pathology, pathogenesis, diagnosis, clinical features and treatment, paying special attention to differential diagnosis in late onset sporadic cerebellar ataxias.
Collapse
Affiliation(s)
- Ludovico Ciolli
- Sapienza University, Via di Grottarossa, 1035-00189 Rome, Italy ; Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Ferdinando Nicoletti
- IRCSS NEUROMED, Pozzilli, Isernia Italy ; Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, School of Medicine and Psychology, Rome, Italy
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Abstract
Background Spinocerebellar ataxias (SCAs) are autosomal-dominant neurodegenerative diseases that are clinically and genetically heterogeneous. SCAs are characterized by a range of neurological symptoms. SCA12 is an autosomal-dominant (AD) ataxia caused by a CAG repeat expansion mutation in a presumed promoter region of the gene PPP2R2B in a non-coding region on chromosome 5q32. This study sought to determine changes in different positions in a single Uyghur SCA12 pedigree by measuring the apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Material/Methods A single Uyghur pedigree was collected and was confirmed to possess SCA12 by genetic diagnosis, among which 13 cases were patients and 54 cases were “healthy” individuals. Five patients were presymptomatic and 15 individuals selected as a control group were examination in the same time. DTI was performed on a 1.5T scanner, with b=1000 s/mm2 and 15 directions. ADC and FA were measured by regions of interest positioned in the corticospinal tract at the level of the pons (pons), superior peduncle (SCP), middle cerebellar peduncle (MCP), cerebellar cortex (CeC), cerebral cortex (CC), and cerebellar vermis (CV) white matter. Results Compared with the controls, the ADC was significantly elevated in the CeC, SCP, CC, and CV regions in SCA12 patients. The FA significantly decreased in the CC region in SCA12 patients and the CC and CV regions in SCA12 presymptomatic patients. The course of the disease, SARA score, and ADC values in CV showed highly positive correlations. Conclusions SCA12 pedigree patients exhibited microstructural damage in the brain white matter. The damage in white matter fiber may first occur in the CC and CV regions in SCA12 presymptomatic patients. The ADC values in the CV region could reflect disease severity in SCA12 patients.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, First Affiliated Hospital, Xinjiang Medical University, Urumuqi, China (mainland)
| | - Jingjing Ma
- Department of Neurology, First Affiliated Hospital, Xinjiang Medical University, Urumuqi, China (mainland)
| | - Xiaoning Zhang
- Department of Neurology, First Affiliated Hospital, Xinjiang Medical University, Urumuqi, China (mainland)
| |
Collapse
|
28
|
Sato K, Ishigame K, Ying SH, Oishi K, Miller MI, Mori S. Macro- and microstructural changes in patients with spinocerebellar ataxia type 6: assessment of phylogenetic subdivisions of the cerebellum and the brain stem. AJNR Am J Neuroradiol 2014; 36:84-90. [PMID: 25169926 DOI: 10.3174/ajnr.a4085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Site-specific degeneration patterns of the infratentorial brain in relation to phylogenetic origins may relate to symptoms in patients with spinocerebellar degeneration, but the patterns are still unclear. We investigated macro- and microstructural changes of the infratentorial brain based on phylogenetic origins and their correlation with symptoms in patients with spinocerebellar ataxia type 6. MATERIALS AND METHODS MR images of 9 patients with spinocerebellar ataxia type 6 and 9 age- and sex-matched controls were obtained. We divided the infratentorial brain on the basis of phylogenetic origins and performed an atlas-based analysis. Comparisons of the 2 groups and a correlation analysis assessed with the International Cooperative Ataxia Rating Scale excluding age effects were performed. RESULTS A significant decrease of fractional volume and an increase of mean diffusivity were seen in all subdivisions of the cerebellum and in all the cerebellar peduncles except mean diffusivity in the inferior cerebellar peduncle in patients compared with controls (P < .0001 to <.05). The bilateral anterior lobes showed the strongest atrophy. Fractional volume decreased mainly in old regions, whereas mean diffusivity increased mainly in new regions of the cerebellum. Reflecting this tendency, the International Cooperative Ataxia Rating Scale total score showed strong correlations in fractional volume in the right flocculonodular lobe and the bilateral deep structures and in mean diffusivity in the bilateral posterior lobes (r = 0.73 to ±0.87). CONCLUSIONS We found characteristic macro- and microstructural changes, depending on phylogenetic regions of the infratentorial brain, that strongly correlated with clinical symptoms in patients with spinocerebellar ataxia type 6.
Collapse
Affiliation(s)
- K Sato
- From the Russell H. Morgan Department of Radiology and Radiological Science (K.S., K.I., K.O., S.M.) Department of Radiology (K.S.), Juntendo University School of Medicine, Tokyo, Japan
| | - K Ishigame
- From the Russell H. Morgan Department of Radiology and Radiological Science (K.S., K.I., K.O., S.M.) Department of Radiology (K.I.), University of Yamanashi, Yamanashi, Japan
| | - S H Ying
- Departments of Radiology (S.H.Y.) Neurology (S.H.Y.) Ophthalmology (S.H.Y.)
| | - K Oishi
- From the Russell H. Morgan Department of Radiology and Radiological Science (K.S., K.I., K.O., S.M.)
| | - M I Miller
- Center for Imaging Science (M.I.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - S Mori
- From the Russell H. Morgan Department of Radiology and Radiological Science (K.S., K.I., K.O., S.M.) F.M. Kirby Research Center for Functional Brain Imaging (S.M.), Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
29
|
Mahoney CJ, Ridgway GR, Malone IB, Downey LE, Beck J, Kinnunen KM, Schmitz N, Golden HL, Rohrer JD, Schott JM, Rossor MN, Ourselin S, Mead S, Fox NC, Warren JD. Profiles of white matter tract pathology in frontotemporal dementia. Hum Brain Mapp 2014; 35:4163-79. [PMID: 24510641 PMCID: PMC4312919 DOI: 10.1002/hbm.22468] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022] Open
Abstract
Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies.
Collapse
Affiliation(s)
- Colin J Mahoney
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang H, Wang X, Liao W, Zhou G, Li L, Ouyang L. Application of diffusion tensor imaging in multiple system atrophy: the involvement of pontine transverse and longitudinal fibers. Int J Neurosci 2014; 125:18-24. [PMID: 24555517 DOI: 10.3109/00207454.2014.896914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Many studies have demonstrated the degeneration of pontine transverse and longitudinal tracts in multiple system atrophy (MSA). One purpose of this study was to assess whether diffusion tensor imaging (DTI) can show microstructural abnormalities in these tracts in patients with MSA cerebellar type (MSA-C). Another purpose was to determine the correlation between cross sign progress and pontine fiber degeneration in these patients. MATERIALS AND METHODS Thirty patients with MSA-C and 30 healthy volunteers underwent conventional magnetic resonance imaging (MRI) and DTI. Regions of interest were placed in both cerebral peduncles, the posterior limbs of the internal capsule and the pontine crossing tract of each subject. Quantitative indexes such as fractional anisotropy (FA) and mean diffusivity (MD) were compared between groups by analysis of variance. Cross sign was divided into three grades as follows: 0, no cross sign; 1, vertical line only; 2, clear cross sign. Spearman rank correlation analysis was used between FA, MD, and the cross grade in patients with MSA-C. RESULTS FA and MD in the MSA-C group, and each cross grade, showed statistically significant differences compared to control groups. There was a close correlation between all measures. FA decreased and MD increased, and cross grade formed gradually in the patients. CONCLUSION DTI can identify microstructural abnormalities in pontine transverse and longitudinal fibers even in patients without abnormalities on conventional MRI. Along with pontine transverse tract degeneration, the cross sign develops accompanied by the start of longitudinal tract degeneration, ultimately resulting in the complete formation of a cross sign.
Collapse
Affiliation(s)
- Haixia Yang
- Department of Radiology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | | | | | | | | | | |
Collapse
|
31
|
Tir M, Delmaire C, Besson P, Defebvre L. The value of novel MRI techniques in Parkinson-plus syndromes: diffusion tensor imaging and anatomical connectivity studies. Rev Neurol (Paris) 2014; 170:266-76. [PMID: 24656811 DOI: 10.1016/j.neurol.2013.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/13/2022]
Abstract
Conventional MRI is a well-described, highly useful tool for the differential diagnosis of degenerative parkinsonian syndromes. Nevertheless, the observed abnormalities may only appear in late-stage disease. Diffusion tensor imaging (DTI) can identify microstructural changes in brain tissue integrity and connectivity. The technique has proven value in the differential diagnosis of multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and Parkinson's disease (PD). Here, we performed a systematic review of the literature on the main corticosubcortical DTI abnormalities identified to date in the context of the diagnosis of MSA and PSP with diffusion-weighted imaging, diffusion tensor imaging and anatomical connectivity studies. In good agreement with the histological data, increased diffusivity in the putamen (in MSA and PSP), in the middle cerebellar peduncles (in MSA) and in the upper cerebellar peduncles (in PSP) has been reported. Motor pathway involvement is characterized by low fraction anisotropy (FA) in the primary motor cortex in MSA-P and PSP, a high apparent diffusion coefficient (ADC) and low FA in the supplementary motor area in PSP. We then outline the value of these techniques in differential diagnosis (especially with respect to PD). Anatomical connectivity studies have revealed a lower number of fibers in the corticospinal tract in MSA and PSP (relative to PD and controls) and fewer tracked cortical projection fibers in patients with PSP or late-stage MSA (relative to patients with early MSA or PD and controls). Lastly, we report the main literature data concerning the value of DTI parameters in monitoring disease progression. The observed correlations between DTI parameters on one hand and clinical scores and/or disease duration on the other constitute strong evidence of the value of DTI in monitoring disease progression. In MSA, the ataxia score was correlated with ADC values in the pons and the upper cerebellar peduncles, whereas both the motor score and the disease duration were correlated with putaminal ADC values. In conclusion, DTI and connectivity studies constitute promising tools for differentiating between "Parkinson-plus" syndromes.
Collapse
Affiliation(s)
- M Tir
- Service de neurologie et pathologie du mouvement, hôpital Salengro, CHRU de Lille, EA 1046, département de pharmacologie médicale, université Lille Nord de France, 1, place de Verdun, 59045 Lille cedex, France; Service de neurologie, CHU d'Amiens, EA 4559, SFR CAP-Santé (FED 4231), université de Picardie-Jules-Verne, chemin du Thil, 80000 Amiens, France.
| | - C Delmaire
- Service de neuroradiologie, hôpital Salengro, CHRU de Lille, EA 4559, université Lille Nord de France, rue Prof.-Émile-Laine, 59037 Lille cedex, France
| | - P Besson
- Service de neuroradiologie, hôpital Salengro, CHRU de Lille, EA 4559, université Lille Nord de France, rue Prof.-Émile-Laine, 59037 Lille cedex, France
| | - L Defebvre
- Service de neurologie et pathologie du mouvement, hôpital Salengro, CHRU de Lille, EA 1046, département de pharmacologie médicale, université Lille Nord de France, 1, place de Verdun, 59045 Lille cedex, France
| |
Collapse
|
32
|
Lin DJ, Hermann KL, Schmahmann JD. Multiple system atrophy of the cerebellar type: clinical state of the art. Mov Disord 2014; 29:294-304. [PMID: 24615754 DOI: 10.1002/mds.25847] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Multiple system atrophy (MSA) is a late-onset, sporadic neurodegenerative disorder clinically characterized by autonomic failure and either poorly levodopa-responsive parkinsonism or cerebellar ataxia. It is neuropathologically defined by widespread and abundant central nervous system α-synuclein-positive glial cytoplasmic inclusions and striatonigral and/or olivopontocerebellar neurodegeneration. There are two clinical subtypes of MSA distinguished by the predominant motor features: the parkinsonian variant (MSA-P) and the cerebellar variant (MSA-C). Despite recent progress in understanding the pathobiology of MSA, investigations into the symptomatology and natural history of the cerebellar variant of the disease have been limited. MSA-C presents a unique challenge to both clinicians and researchers alike. A key question is how to distinguish early in the disease course between MSA-C and other causes of adult-onset cerebellar ataxia. This is a particularly difficult question, because the clinical framework for conceptualizing and studying sporadic adult-onset ataxias continues to undergo flux. To date, several investigations have attempted to identify clinical features, imaging, and other biomarkers that may be predictive of MSA-C. This review presents a clinically oriented overview of our current understanding of MSA-C with a focus on evidence for distinguishing MSA-C from other sporadic, adult-onset ataxias.
Collapse
Affiliation(s)
- David J Lin
- Ataxia Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
33
|
Jhunjhunwala K, Netravathi M, Purushottam M, Jain S, Pal PK. Profile of extrapyramidal manifestations in 85 patients with spinocerebellar ataxia type 1, 2 and 3. J Clin Neurosci 2013; 21:1002-6. [PMID: 24602359 DOI: 10.1016/j.jocn.2013.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 12/01/2022]
Abstract
This study aimed to determine the prevalence and type of extrapyramidal signs (EPS) in spinocerebellar ataxia (SCA) type 1, 2 and 3. Eighty-five patients with genetically confirmed SCA (SCA1=40, SCA2=28, SCA3=17) were evaluated for the prevalence and types of EPS. Forty-one SCA patients (48.2%) had one or more types of EPS. The prevalence of EPS was 60.7% in SCA2, 52.9% in SCA3, and 37.5% in SCA1. Among SCA2 patients, bradykinesia was the most frequent (35.3%), followed by reduced facial expression, postural tremor and dystonia (29.4% each), rest tremor, titubation and rigidity (23.5% each), and lip/jaw tremor and chorea (11.8% each). In SCA3 the common EPS were bradykinesia (44.4%), staring look, postural tremor and dystonia (33.3% each), and reduced facial expression and rigidity (22.2% each). In SCA1, staring look was the most common (53.3%), followed by dystonia and bradykinesia (33.3% each), and postural tremor (26.7%). In all three groups, there was no significant difference in the mean length of repeat of the abnormal allele between those with and without EPS. To conclude bradykinesia, staring look, dystonia and postural tremor were the most frequent EPS observed in SCA. In SCA1, these signs were seen more often in younger patients with early onset of symptoms.
Collapse
Affiliation(s)
- Ketan Jhunjhunwala
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - M Netravathi
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
34
|
Hayhow BD, Hassan I, Looi JCL, Gaillard F, Velakoulis D, Walterfang M. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction. Tremor Other Hyperkinet Mov (N Y) 2013; 3:tre-03-175-4242-1. [PMID: 24032090 PMCID: PMC3760049 DOI: 10.7916/d8sn07pk] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. METHODS We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. CONCLUSIONS Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
Collapse
Affiliation(s)
- Bradleigh D. Hayhow
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Islam Hassan
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Jeffrey C. L. Looi
- Academic Unit of Psychiatry & Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| |
Collapse
|
35
|
Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 2013; 80:857-64. [PMID: 23439701 DOI: 10.1212/wnl.0b013e318284070c] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We performed a systematic review to assess alterations in measures of diffusion tensor imaging (DTI) in parkinsonian syndromes, exploring the potential role of DTI in diagnosis and as a candidate biomarker. METHODS We searched EMBASE and Medline databases for DTI studies comparing parkinsonian syndromes or related dementias with controls or another defined parkinsonian syndrome. Key details for each study regarding participants, imaging methods, and results were extracted. Estimates were pooled, where appropriate, by random-effects meta-analysis. RESULTS Of 333 results, we identified 43 studies suitable for inclusion (958 patients, 764 controls). DTI measures detected alterations in all parkinsonian syndromes, with distribution varying differentially with disease type. Nine studies were included in a meta-analysis of the substantia nigra in Parkinson disease. A notable effect size was found for lowered fractional anisotropy in the substantia nigra for patients with Parkinson disease vs controls (-0.639, 95% confidence interval -0.860 to -0.417, p < 0.0001). CONCLUSION DTI may be a promising biomarker in parkinsonian syndromes and have a future role in differential diagnosis. Larger cohort studies are required to investigate some encouraging preliminary findings. Given the complexity of the parkinsonian syndromes, it is likely that any potential DTI biomarker would be used in combination with other relevant biomarkers.
Collapse
Affiliation(s)
- Claire J Cochrane
- Division of Clinical Neurology and Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | | |
Collapse
|
36
|
Guimarães RP, D'Abreu A, Yasuda CL, França MC, Silva BHB, Cappabianco FAM, Bergo FPG, Lopes-Cendes IT, Cendes F. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov Disord 2013; 28:1125-32. [PMID: 23553599 DOI: 10.1002/mds.25451] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
Although white matter damage may play a major role in the pathogenesis of spinocerebellar ataxia 3 (SCA3), available data rely exclusively upon macrostructural analyses. In this setting we designed a study to investigate white matter integrity. We evaluated 38 genetically-confirmed SCA3 patients (mean age, 52.76 ± 12.70 years; 21 males) with clinical scales and brain magnetic resonance imaging (MRI) and 38 healthy subjects as a control group (mean age, 48.86 ± 12.07 years, 20 male). All individuals underwent the same protocol for high-resolution T1 and T2 images and diffusion tensor imaging acquisition (32 directions) in a 3-T scanner. We used Tract-Based Spatial Statistics (FSL 4.1.4) to analyze diffusion data and SPM8/DARTEL for voxel-based morphometry of infratentorial structures. T2-relaxometry of cerebellum was performed with in-house-developed software Aftervoxel and Interactive Volume Segmentation (IVS). Patients' mean age at onset was 40.02 ± 11.48 years and mean duration of disease was 9.3 ± 2.7 years. Mean International Cooperative Ataxia Rating Scale (ICARS) and Scale for Assessment and Rating of Ataxia (SARA) scores were 32.08 ± 4.01 and 14.65 ± 7.33, respectively. Voxel-based morphometry demonstrated a volumetric reduction of gray and white matter in cerebellum and brainstem (P <.001). We found reduced fractional anisotropy (P <.05) in the cerebellum and brainstem. There were also areas of increased radial diffusivity (P <.05) in the cerebellum, brainstem, thalamus, frontal lobes, and temporal lobes. In addition, we found decreased T2-relaxation values in the white matter of the right cerebellar hemisphere. Microstructural white matter dysfunction, not previously reported, occurs in the cerebellum and brainstem of SCA3 patients.
Collapse
Affiliation(s)
- Rachel P Guimarães
- Department of Neurology and Neuroimaging Laboratory, Faculty of Medicine, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Differential diagnosis tool for parkinsonian syndrome using multiple structural brain measures. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:571289. [PMID: 23573171 PMCID: PMC3615618 DOI: 10.1155/2013/571289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 12/03/2022]
Abstract
Clinical differentiation of parkinsonian syndromes such as the Parkinson variant of multiple system atrophy (MSA-P) and cerebellar subtype (MSA-C) from Parkinson's disease is difficult in the early stage of the disease. To identify the correlative pattern of brain changes for differentiating parkinsonian syndromes, we applied discriminant analysis techniques by magnetic resonance imaging (MRI). T1-weighted volume data and diffusion tensor images were obtained by MRI in eighteen patients with MSA-C, 12 patients with MSA-P, 21 patients with Parkinson's disease, and 21 healthy controls. They were evaluated using voxel-based morphometry and tract-based spatial statistics, respectively. Discriminant functions derived by step wise methods resulted in correct classification rates of 0.89. When differentiating these diseases with the use of three independent variables together, the correct classification rate was the same as that obtained with step wise methods. These findings support the view that each parkinsonian syndrome has structural deviations in multiple brain areas and that a combination of structural brain measures can help to distinguish parkinsonian syndromes.
Collapse
|
38
|
Rulseh AM, Keller J, Tintěra J, Kožíšek M, Vymazal J. Chasing shadows: What determines DTI metrics in gray matter regions? An in vitro and in vivo study. J Magn Reson Imaging 2013; 38:1103-10. [DOI: 10.1002/jmri.24065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 01/10/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Aaron M. Rulseh
- Department of Radiology; Na Homolce Hospital; Prague Czech Republic
| | - Jiří Keller
- Department of Radiology; Na Homolce Hospital; Prague Czech Republic
- Department of Neurology; Charles University in Prague; 3rd Faculty of Medicine; Prague Czech Republic
| | - Jaroslav Tintěra
- Department of Radiology; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Gilead Sciences and IOCB Research Center; Prague Czech Republic
| | - Josef Vymazal
- Department of Radiology; Na Homolce Hospital; Prague Czech Republic
- Department of Neurology and Center of Clinical Neuroscience; Charles University in Prague; 1st Faculty of Medicine; Prague Czech Republic
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Degenerative ataxias are a heterogeneous group of disorders that are clinically characterized by progressive ataxia. They can be subdivided into three major groups: the acquired ataxias, which are due to exogenous or endogenous nongenetic causes, the hereditary ataxias, and the nonhereditary degenerative ataxias. On the basis of a review of the literature published in 2009 and 2010, this review gives an update of the most recent developments in the field of ataxia. RECENT FINDINGS Using advanced methods of molecular genetic analysis, novel genes for recessive and dominant ataxias were identified. Recent imaging studies in dominantly inherited spinocerebellar ataxias (SCAs) focussed on the analysis of connectivity in the brain. Novel clinical assessment methods were developed and validated in large patient cohorts. Although a phase 3 trial of idebenone in Friedreich ataxia (FRDA) failed, a smaller phase 2 trial of riluzole in a mixed population of ataxia patients suggested a possible antiataxic action of this compound. SUMMARY Recent molecular advances underline the diversity of degenerative ataxias. With the progress in the development of clinical assessment methods for ataxia, the methodological requirements to run large interventional trials are now met.
Collapse
|
40
|
Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. CEREBELLUM (LONDON, ENGLAND) 2011; 10:218-32. [PMID: 20886327 PMCID: PMC3091958 DOI: 10.1007/s12311-010-0214-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. The mutational mechanism in SCA1, a dominantly inherited form of SCA, consists of an expanded trinucleotide CAG repeat. In SCA1, there is loss of Purkinje cells, neuronal loss in dentate nucleus, olives, and pontine nuclei. In the present study, we sought to apply intrinsic functional connectivity analysis combined with diffusion tensor imaging to define the state of cerebellar connectivity in SCA1. Our results on the intrinsic functional connectivity in lateral cerebellum and thalamus showed progressive organizational changes in SCA1 noted as a progressive increase in the absolute value of the correlation coefficients. In the lateral cerebellum, the anatomical organization of functional clusters seen as parasagittal bands in controls is lost, changing to a patchy appearance in SCA1. Lastly, only fractional anisotropy in the superior peduncle and changes in functional organization in thalamus showed a linear dependence to duration and severity of disease. The present pilot work represents an initial effort describing connectivity biomarkers of disease progression in SCA1. The functional changes detected with intrinsic functional analysis and diffusion tensor imaging suggest that disease progression can be analyzed as a disconnection syndrome.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Neurology, MC 2030, The University of Chicago Hospitals, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
41
|
Oz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. CEREBELLUM (LONDON, ENGLAND) 2011; 10:208-17. [PMID: 20838948 PMCID: PMC3089811 DOI: 10.1007/s12311-010-0213-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hereditary and sporadic neurodegenerative ataxias are movement disorders that affect the cerebellum. Robust and objective biomarkers are critical for treatment trials of ataxias. In addition, such biomarkers may help discriminate between ataxia subtypes because these diseases display substantial overlap in clinical presentation and conventional MRI. Profiles of 10-13 neurochemical concentrations obtained in vivo by high field proton magnetic resonance spectroscopy ((1)H MRS) can potentially provide ataxia-type specific biomarkers. We compared cerebellar and brainstem neurochemical profiles measured at 4 T from 26 patients with spinocerebellar ataxias (SCA1, N = 9; SCA2, N = 7; SCA6, N = 5) or cerebellar multiple system atrophy (MSA-C, N = 5) and 15 age-matched healthy controls. The Scale for the Assessment and Rating of Ataxia (SARA) was used to assess disease severity. The patterns of neurochemical alterations relative to controls differed between ataxia types. Myo-inositol levels in the vermis, myo-inositol, total N-acetylaspartate, total creatine, glutamate, glutamine in the cerebellar hemispheres and myo-inositol, total N-acetylaspartate, glutamate in the pons were significantly different between patient groups (Bonferroni corrected p < 0.05). The best MRS predictors were selected by a tree classification procedure and lead to 89% accurate classification of all subjects while the SARA scores overlapped considerably between patient groups. Therefore, this study demonstrated multiple neurochemical alterations in SCAs and MSA-C relative to controls and the potential for these neurochemical levels to differentiate ataxia types. Studies with higher numbers of patients and other ataxias are warranted to further investigate the clinical utility of neurochemical levels as measured by high-field MRS as ataxia biomarkers.
Collapse
Affiliation(s)
- Gülin Oz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, 2021 6th St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Gray and white matter alterations in spinocerebellar ataxia type 7: An in vivo DTI and VBM study. Neuroimage 2011; 55:1-7. [DOI: 10.1016/j.neuroimage.2010.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/11/2010] [Accepted: 12/04/2010] [Indexed: 11/20/2022] Open
|
43
|
Abstract
PURPOSE OF REVIEW A quarter century of functional neuroimaging has provided a number of insights into the function of the human cerebellum. However, progress has been relatively slow, partly because cerebellar imaging poses a number of unique challenges for functional magnetic resonance imaging (fMRI). This review provides a guide to problems and recent solutions in the design, analysis and interpretation of neuroimaging studies of the human cerebellum. RECENT FINDINGS One major problem in the interpretation of functional imaging studies is that it is still unclear what type of neural activity is reflected in the cerebellar blood-oxygenation-level-dependent signal. We summarize recent work that has provided partly contradictory insights. We then highlight some technical challenges, specifically the susceptibility to physiological artifacts, and recently developed techniques to account for them. Furthermore, the small size and functional heterogeneity of the cerebellum poses a challenge for normalization and atlas methods, which demands different analysis techniques than those used in the neocortex. Finally, we highlight some novel results assessing anatomical and functional connectivity with the neocortex. SUMMARY Although these results clearly show the limitations of current approaches, they also show the potential of anatomical and functional MRI for the study of the human cerebellum.
Collapse
|
44
|
Minnerop M, Lüders E, Specht K, Ruhlmann J, Schimke N, Thompson PM, Chou YY, Toga AW, Abele M, Wüllner U, Klockgether T. Callosal tissue loss in multiple system atrophy--a one-year follow-up study. Mov Disord 2010; 25:2613-20. [PMID: 20623690 PMCID: PMC2989455 DOI: 10.1002/mds.23318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease not only affecting the basal ganglia, brainstem, cerebellum, and intermediolateral cell columns of the spinal cord but also the cerebral cortex. Clinically, cerebellar (MSA-C) and parkinsonian variants of MSA (MSA-P) are distinguished. We investigated 14 MSA patients (10 MSA-C, 4 MSA-P, men: 7, women: 7; age: 61.1 ± 3.3 years) and 14 matched controls (men: 7, women: 7; age: 58.6 ± 5.1 years) with voxel-based morphometry (VBM) to analyze gray and white matter differences both at baseline and at follow-up, 1 year later. Baseline comparisons between patients and controls confirmed significantly less gray matter in MSA in the cerebellum and cerebral cortex, and significantly less white matter in the cerebellar peduncles and brainstem. Comparisons of tissue-loss profiles (i.e., baseline versus follow-up) between patients and controls, revealed white matter reduction in MSA along the middle cerebellar peduncles, reflecting degeneration of the ponto-cerebellar tract as a particularly prominent and progressive morphological alteration in MSA. Comparisons between baseline and follow-up, separately performed in patients and controls, revealed additional white matter reduction in MSA along the corpus callosum at follow-up. This was replicated through additional shape-based analyses indicating a reduced callosal thickness in the anterior and posterior midbody, extending posteriorly into the isthmus. Callosal atrophy may possibly reflect a disease-specific pattern of neurodegeneration and cortical atrophy, fitting well with the predominant impairment of motor functions in the MSA patients.
Collapse
Affiliation(s)
- Martina Minnerop
- Institute of Neurosciences and Medicine-1, Research Centre Jülich, Jülich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reduced Anisotropy in the Middle Cerebellar Peduncle in Chiari-II Malformation. THE CEREBELLUM 2010; 9:303-9. [DOI: 10.1007/s12311-010-0162-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|