1
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity and category-selectivity from birth. Nat Hum Behav 2025; 9:955-970. [PMID: 40097802 DOI: 10.1038/s41562-025-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, parietal and somatosensory cortex, and increases in connectivity to lateral prefrontal cortex. In addition, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and capacity for white matter connections to change over development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Sarah Tung
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg, Giessen and Darmstadt, Marburg, Germany
| | - Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg, Giessen and Darmstadt, Marburg, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford, CA, USA
| |
Collapse
|
2
|
Dubois J, Grotheer M, Yang JYM, Tournier JD, Beaulieu C, Lebel C. Small brains but big challenges: white matter tractography in early life samples. Brain Struct Funct 2025; 230:58. [PMID: 40293528 DOI: 10.1007/s00429-025-02922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
In the human brain, white matter development is a complex and long-lasting process involving intermingling micro- and macrostructural mechanisms, such as fiber growth, pruning and myelination. Did you know that all these neurodevelopmental changes strongly affect MRI signals, with consequences on tractography performances and reliability? This communication aims to elaborate on these aspects, highlighting the importance of tracking and studying the developing connections with dedicated approaches.
Collapse
Affiliation(s)
- Jessica Dubois
- Université Paris Cité, Inserm, Paris, F-75019, NeuroDiderot, France.
- Université Paris-Saclay, CEA, UNIACT, Gif-sur-Yvette, F-91191, NeuroSpin, France.
| | - Mareike Grotheer
- Department of Psychology, Phillips-Universität Marburg, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, Phillips-Universität Marburg, Justus-Liebig Universität Giessen, Technische Universität Darmstadt, 35039, Marburg, Germany
| | - Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacques-Donald Tournier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Christian Beaulieu
- Departments of Radiology and Diagnostic Imaging & Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Risk B, Li L, Jones W, Shultz S. Dynamics of infant white matter maturation from birth to 6 months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638114. [PMID: 39990497 PMCID: PMC11844443 DOI: 10.1101/2025.02.13.638114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The first months after a baby's birth encompass the most rapid period of postnatal change in the human lifespan, but longitudinal trajectories of white matter maturation in this period remain uncharted. Using densely sampled diffusion tensor images collected longitudinally at a mean rate of 1 scan per 1.55 days, we measured non-linear growth and growth rate trajectories of major white matter tracts from birth to 6 months. Growth rates at birth were 6 to 11 times faster than at 6 months, with tracts less mature at birth developing fastest. When matched on chronological age, shorter gestation infants had less mature white matter at birth but faster growth rates than their longer gestation peers; however, growth trajectories were highly similar when corrected for gestational age. This is the first study to estimate white matter trajectories using dense sampling in the first 6 post-natal months, which can inform the study of neurodevelopmental disorders beginning in infancy.
Collapse
Affiliation(s)
- Benjamin Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Warren Jones
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Shultz
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2025; 97:880-897. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity, and category-selectivity from birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605705. [PMID: 39131283 PMCID: PMC11312531 DOI: 10.1101/2024.07.29.605705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here, we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity, and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, and parietal, and somatosensory cortex, and increases to lateral prefrontal cortex. Additionally, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and the capacity for white matter connections to change over development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Sarah Tung
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, 40 Woodlands Way, Princeton, NJ 08544, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Frankfurter Str. 35, Marburg 35037, Germany
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
| | - Vaidehi S. Natu
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Baldinger Str., Marburg 35043, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, 288 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
6
|
Ercolani G, Capuani S, Celli V, Ciulla S, Ninkova R, Gennarini M, Miceli V, Grimm R, Di Mascio D, Porpora MG, Giancotti A, Catalano C, Manganaro L. Intravoxel incoherent motion MRI to assess feto-placental diffusion and perfusion properties in small fetuses. LA RADIOLOGIA MEDICA 2025; 130:81-95. [PMID: 39541066 DOI: 10.1007/s11547-024-01918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To investigate the use of intravoxel incoherent motion (IVIM) to study microperfusion and microstructural characteristics of lungs, brain, and placenta in normal and small fetuses. METHODS We retrospectively enrolled 30 small fetuses and 82 normal pregnancies who underwent a 1.5-T MRI examination using an IVIM-DWI. Small fetuses were distinguished in small for gestational age (SGA) and "true" fetal growth restriction (FGR). ROIs were placed on the brain parenchyma, lungs, and fetal/maternal placental sides. Differences in perfusion fraction f, diffusion coefficient D, and pseudo-diffusion coefficient D* and their correlation with gestational age (GA) and birth weight (BW) were investigated. RESULTS LUNG: f showed significantly lower values (p = 2·10-7) in small fetuses (SGA + FGR); f discriminates SGA and FGR from normal (p = 0.001; p = 1·10-6). f increases with GA (p < 0.0001) in the control group; a positive correlation was also obtained in small fetuses, although less significant. PLACENTA FGR showed lower f values than normal ones, in both the fetal (p = 1.4·10-7) and maternal side (p = 0.001); f discriminates between SGA and FGR (p = 0.03). In small fetuses (SGA + FGR), f correlates positively with BW. BRAIN D values in supratentorial white matter (WM) were significantly higher compared to other regions, in both normal and small fetuses. Small fetuses showed higher D values in occipital WM and pons (p = 0.041; p = 0.027) than in normal. D correlates negatively with GA in the healthy group. No correlation between D and GA was found in SGA + FGR group. CONCLUSIONS In our study, IVIM-MRI allowed us to detect microstructural and microperfusion changes in the placenta, brain, and lung of small fetuses, noninvasively.
Collapse
Affiliation(s)
- Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Capuani
- CNR ISC, Physics Department, "Sapienza" University of Rome, Rome, Italy
| | - Veronica Celli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Sandra Ciulla
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Ninkova
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Miceli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | | | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Le Bihan D. From Brownian motion to virtual biopsy: a historical perspective from 40 years of diffusion MRI. Jpn J Radiol 2024; 42:1357-1371. [PMID: 39289243 PMCID: PMC11588775 DOI: 10.1007/s11604-024-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
- Human Brain Research Center, Kyoto University, Kyoto, Japan.
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
8
|
Heo JS, Kim EK. Strategies to support language development in neonatal intensive care unit: a narrative review. Clin Exp Pediatr 2024; 67:651-663. [PMID: 39533738 PMCID: PMC11621733 DOI: 10.3345/cep.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/18/2024] [Accepted: 06/23/2024] [Indexed: 11/16/2024] Open
Abstract
Despite neonatal intensive care advancements and quality improvements, preterm infants often experience delays in speech and language development during early childhood. The etiological pathway of language delays is multifactorial, including younger gestational age at birth, male sex, pregnancy complications including gestational diabetes mellitus and preeclampsia, organic pathology from neonatal morbidities, environmental factors of the neonatal intensive care unit (NICU) and prolonged hospitalization, home environment including socioeconomic status and parental education, and parent-infant interactions. As early language experiences and environments are crucial for the development of language processing, strategies to support language development should be implemented from the NICU onward. This study aimed to summarize evidence- based strategies for language development through an extensive review of nutrition, NICU environment, language and sound exposure, developmental care interventions, and family-centered care. Promoting breastfeeding, increasing parent-infant interactions in a single-family room setting, nurturing the language environment via parental book reading and language interventions, and parent-integrated interventions in the NICU could potentially enhance language development among preterm infants. These supportive strategies can be integrated through family-centered care, which recognizes parents as primary caregivers and collaborative partners.
Collapse
Affiliation(s)
- Ju Sun Heo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Ee-Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| |
Collapse
|
9
|
Ouyang M, Whitehead MT, Mohapatra S, Zhu T, Huang H. Machine-learning based prediction of future outcome using multimodal MRI during early childhood. Semin Fetal Neonatal Med 2024; 29:101561. [PMID: 39528363 DOI: 10.1016/j.siny.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The human brain undergoes rapid changes from the fetal stage to two years postnatally, during which proper structural and functional maturation lays the foundation for later cognitive and behavioral development. Multimodal magnetic resonance imaging (MRI) techniques, especially structural MRI (sMRI), diffusion MRI (dMRI), functional MRI (fMRI), and perfusion MRI (pMRI), provide unprecedented opportunities to non-invasively quantify these early brain changes at whole brain and regional levels. Each modality offers unique insights into the complex processes of both typical neurodevelopment and the pathological mechanisms underlying psychiatric and neurological disorders. Compared to a single modality, multimodal MRI enhances discriminative power and provides more comprehensive insights for understanding and improving neurodevelopmental and mental health outcomes, particularly in high-risk populations. Machine learning- and deep learning-based methods have demonstrated significant potential for predicting future outcomes using multimodal brain MRI acquired during early childhood. Here, we review the unique characteristics of various MRI techniques for imaging early brain development and describe the common approaches to analyze these modalities. We then discuss machine learning approaches in predicting future neurodevelopmental and clinical outcomes using multimodal MRI information during early childhood, highlighting the potential of identifying biomarkers for early detection and personalized interventions in atypical development.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Matthew T Whitehead
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sovesh Mohapatra
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Feczko E, Stoyell SM, Moore LA, Alexopoulos D, Bagonis M, Barrett K, Bower B, Cavender A, Chamberlain TA, Conan G, Day TK, Goradia D, Graham A, Heisler-Roman L, Hendrickson TJ, Houghton A, Kardan O, Kiffmeyer EA, Lee EG, Lundquist JT, Lucena C, Martin T, Mummaneni A, Myricks M, Narnur P, Perrone AJ, Reiners P, Rueter AR, Saw H, Styner M, Sung S, Tiklasky B, Wisnowski JL, Yacoub E, Zimmermann B, Smyser CD, Rosenberg MD, Fair DA, Elison JT. Baby Open Brains: An Open-Source Repository of Infant Brain Segmentations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616147. [PMID: 39464007 PMCID: PMC11507744 DOI: 10.1101/2024.10.02.616147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Reproducibility of neuroimaging research on infant brain development remains limited due to highly variable protocols and processing approaches. Progress towards reproducible pipelines is limited by a lack of benchmarks such as gold standard brain segmentations. Addressing this core limitation, we constructed the Baby Open Brains (BOBs) Repository, an open source resource comprising manually curated and expert-reviewed infant brain segmentations. Markers and expert reviewers manually segmented anatomical MRI data from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Anatomical images showed dramatic differences in myelination and intensities across the 1 to 9 month age range, emphasizing the need for densely sampled gold standard manual segmentations in these ages. The BOBs repository is publicly available through the Masonic Institute for the Developing Brain (MIDB) Open Data Initiative, which links S3 storage, Datalad for version control, and BrainBox for visualization. This repository represents an open-source paradigm, where new additions and changes can be added, enabling a community-driven resource that will improve over time and extend into new ages and protocols. These manual segmentations and the ongoing repository provide a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this repository provides a vitally needed foundation for early-life large-scale studies such as HBCD.
Collapse
Affiliation(s)
- Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
| | - Sally M Stoyell
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | | | | | | | | | | | - Greg Conan
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Trevor Km Day
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | | | | | | | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota
- Minnesota Supercomputing Institute, University of Minnesota
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | | | - Erik G Lee
- Masonic Institute for the Developing Brain, University of Minnesota
- Minnesota Supercomputing Institute, University of Minnesota
| | | | | | | | | | | | | | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Paul Reiners
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Amanda R Rueter
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Hteemoo Saw
- Institute of Child Development, University of Minnesota
| | | | - Sooyeon Sung
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Barry Tiklasky
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota
| | | | | | | | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Jed T Elison
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
- Institute of Child Development, University of Minnesota
| |
Collapse
|
11
|
Dehaene-Lambertz G. Perceptual Awareness in Human Infants: What is the Evidence? J Cogn Neurosci 2024; 36:1599-1609. [PMID: 38527095 DOI: 10.1162/jocn_a_02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Perceptual awareness in infants during the first year of life is understudied, despite the philosophical, scientific, and clinical importance of understanding how and when consciousness emerges during human brain development. Although parents are undoubtedly convinced that their infant is conscious, the lack of adequate experimental paradigms to address this question in preverbal infants has been a hindrance to research on this topic. However, recent behavioral and brain imaging studies have shown that infants are engaged in complex learning from an early age and that their brains are more structured than traditionally thought. I will present a rapid overview of these results, which might provide indirect evidence of early perceptual awareness and then describe how a more systematic approach to this question could stand within the framework of global workspace theory, which identifies specific signatures of conscious perception in adults. Relying on these brain signatures as a benchmark for conscious perception, we can deduce that it exists in the second half of the first year, whereas the evidence before the age of 5 months is less solid, mainly because of the paucity of studies. The question of conscious perception before term remains open, with the possibility of short periods of conscious perception, which would facilitate early learning. Advances in brain imaging and growing interest in this subject should enable us to gain a better understanding of this important issue in the years to come.
Collapse
|
12
|
Gerussi T, Graïc JM, Cozzi B, Schlaffke L, Güntürkün O, Behroozi M. Constrained spherical deconvolution on diffusion-weighted images of dolphin brains. Magn Reson Imaging 2024; 108:104-110. [PMID: 38336113 DOI: 10.1016/j.mri.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time. This currently is a problem, especially for detecting crossing fibers. We applied a state-of-the-art algorithm of Diffusion-weighted imaging called Constrained Spherical Deconvolution on diffusion data of three fixed brains of bottlenose dolphins using clinical human MRI parameters and were able to identify complex fiber patterns within a voxel. Our findings indicate that in order to maintain the structural integrity of the tissue, short-term post-mortem fixation is necessary. Furthermore, pre-processing steps are essential to remove the classical Diffusion-weighted imaging artifacts from images: however, the algorithm is still able to resolve fiber tracking in regions with various signal intensities. The described imaging technique reveals complex fiber patterns in cetacean brains that have been preserved in formalin for extended periods of time and thus opens a new window into our understanding of cetacean neuroanatomy.
Collapse
Affiliation(s)
- Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy.
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801 Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
13
|
Magondo N, Meintjes EM, Warton FL, Little F, van der Kouwe AJW, Laughton B, Jankiewicz M, Holmes MJ. Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected. Sci Rep 2024; 14:8822. [PMID: 38627570 PMCID: PMC11021525 DOI: 10.1038/s41598-024-58339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.
Collapse
Affiliation(s)
- Ndivhuwo Magondo
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa.
| | - Fleur L Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J W van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MI, USA
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| | - Martha J Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
14
|
Suzuki Y, Ueyama T, Sakata K, Kasahara A, Iwanaga H, Yasaka K, Abe O. High-angular resolution diffusion imaging generation using 3d u-net. Neuroradiology 2024; 66:371-387. [PMID: 38236423 PMCID: PMC11399202 DOI: 10.1007/s00234-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE To investigate the effects on tractography of artificial intelligence-based prediction of motion-probing gradients (MPGs) in diffusion-weighted imaging (DWI). METHODS The 251 participants in this study were patients with brain tumors or epileptic seizures who underwent MRI to depict tractography. DWI was performed with 64 MPG directions and b = 0 s/mm2 images. The dataset was divided into a training set of 191 (mean age 45.7 [± 19.1] years), a validation set of 30 (mean age 41.6 [± 19.1] years), and a test set of 30 (mean age 49.6 [± 18.3] years) patients. Supervised training of a convolutional neural network was performed using b = 0 images and the first 32 axes of MPG images as the input data and the second 32 axes as the reference data. The trained model was applied to the test data, and tractography was performed using (a) input data only; (b) input plus prediction data; and (c) b = 0 images and the 64 MPG data (as a reference). RESULTS In Q-ball imaging tractography, the average dice similarity coefficient (DSC) of the input plus prediction data was 0.715 (± 0.064), which was significantly higher than that of the input data alone (0.697 [± 0.070]) (p < 0.05). In generalized q-sampling imaging tractography, the average DSC of the input plus prediction data was 0.769 (± 0.091), which was also significantly higher than that of the input data alone (0.738 [± 0.118]) (p < 0.01). CONCLUSION Diffusion tractography is improved by adding predicted MPG images generated by an artificial intelligence model.
Collapse
Affiliation(s)
- Yuichi Suzuki
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Kentarou Sakata
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihiro Kasahara
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideyuki Iwanaga
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan.
| | - Osamu Abe
- Radiology Center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Sanders AFP, Tirado B, Seider NA, Triplett RL, Lean RE, Neil JJ, Miller JP, Tillman R, Smyser TA, Barch DM, Luby JL, Rogers CE, Smyser CD, Warner BB, Chen E, Miller GE. Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure. Transl Psychiatry 2024; 14:72. [PMID: 38307841 PMCID: PMC10837200 DOI: 10.1038/s41398-024-02782-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Prenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear. In the current study, we investigated associations between socioeconomic disadvantage, gestational inflammation, and neonatal white matter microstructure in 320 mother-infant dyads over-sampled for poverty. We analyzed maternal serum levels of four cytokines (IL-6, IL-8, IL-10, TNF-α) over the course of pregnancy in relation to offspring white matter microstructure and socioeconomic disadvantage. Higher average maternal IL-6 was associated with very low socioeconomic status (SES; INR < 200% poverty line) and lower neonatal corticospinal fractional anisotropy (FA) and lower uncinate axial diffusivity (AD). No other cytokine was associated with SES. Higher average maternal IL-10 was associated with lower FA and higher radial diffusivity (RD) in corpus callosum and corticospinal tracts, higher optic radiation RD, lower uncinate AD, and lower FA in inferior fronto-occipital fasciculus and anterior limb of internal capsule tracts. SES moderated the relationship between average maternal TNF-α levels during gestation and neonatal white matter diffusivity. When these interactions were decomposed, the patterns indicated that this association was significant and positive among very low SES neonates, whereby TNF-α was inversely and significantly associated with inferior cingulum AD. By contrast, among the more advantaged neonates (lower-to-higher SES [INR ≥ 200% poverty line]), TNF-α was positively and significantly associated with superior cingulum AD. Taken together, these findings suggest that the relationship between prenatal cytokine exposure and white matter microstructure differs as a function of SES. These patterns are consistent with a scenario where gestational inflammation's effects on white matter development diverge depending on the availability of foundational resources in utero.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Brian Tirado
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Regina L Triplett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Division of Biostatistics, Institute for Informatics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Newborn Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Edith Chen
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Gregory E Miller
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
16
|
Magondo N, Meintjes EM, Warton FL, Little F, van der Kouwe AJ, Laughton B, Jankiewicz M, Holmes MJ. Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575169. [PMID: 38260347 PMCID: PMC10802593 DOI: 10.1101/2024.01.11.575169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.
Collapse
Affiliation(s)
- Ndivhuwo Magondo
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Fleur L. Warton
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J.W. van der Kouwe
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,USA
- Department of Radiology, Harvard Medical School, Boston, MI, USA
| | - Barbara Laughton
- Family Centre for Research with Ubuntu, Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch,South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| | - Martha J. Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
17
|
Sappler M, Volleritsch N, Hammerl M, Pellkofer Y, Griesmaier E, Gizewski ER, Kaser S, Kiechl-Kohlendorfer U, Neubauer V. Microstructural Brain Development and Neurodevelopmental Outcome of Very Preterm Infants of Mothers with Gestational Diabetes Mellitus. Neonatology 2023; 120:768-775. [PMID: 37643585 DOI: 10.1159/000533335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION There are data linking gestational diabetes mellitus (GDM) with adverse neurodevelopmental outcome in the offspring. We investigated the effect of GDM on microstructural brain development and neurodevelopmental outcome of very preterm infants. MATERIALS AND METHODS Preterm infants <32 gestational weeks of mothers with GDM obtained cerebral magnetic resonance imaging (MRI) including diffusion-tensor imaging at term-equivalent age. For every infant, two gestational age-, sex-, and MRI scanner type-matched controls were included. Brain injury was assessed and fractional anisotropy (FA) and apparent diffusion coefficient (ADC) measured in 14 defined cerebral regions. Neurodevelopmental outcome was quantified at the corrected age of 24 months using the Bayley Scales of Infant Development. RESULTS We included 47 infants of mothers with GDM and 94 controls. There were no differences in neonatal morbidity between the groups, nor in any type of brain injury. The GDM group showed significantly higher FA values in the centrum semiovale, the posterior limb of the internal capsule and the pons bilaterally, in the corpus callosum and the right occipital white matter, as well as lower ADC values in the right centrum semiovale, the right occipital white matter and the corpus callosum. Neurodevelopmental outcome did not differ between the groups. CONCLUSION We found no impairment of brain development in GDM-exposed infants compared to matched controls, but differences in white matter microstructure in specific regions indicating an enhanced maturation. However, neurodevelopmental outcome was equal in both groups. Further studies are needed to better understand brain maturation in preterm infants exposed to GDM.
Collapse
Affiliation(s)
- Maria Sappler
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria,
| | - Nina Volleritsch
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlene Hammerl
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yasmin Pellkofer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Kaser
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vera Neubauer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Pellkofer Y, Hammerl M, Griesmaier E, Sappler M, Gizewski ER, Kiechl-Kohlendorfer U, Neubauer V. The Effect of Postnatal Cytomegalovirus Infection on (Micro)structural Cerebral Development in Very Preterm Infants at Term-Equivalent Age. Neonatology 2023; 120:727-735. [PMID: 37634498 DOI: 10.1159/000532084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION There are some data indicating a negative impact of postnatal cytomegalovirus (CMV) infection on long-term neurodevelopmental outcome of preterm infants. So far, there is only little knowledge about a cerebral imaging correlate of these neurodevelopmental alterations induced by postnatal CMV infection in preterm infants. The aim of the current study was to investigate the effect of postnatal CMV infection on the incidence of brain injury and on microstructural brain maturation in very preterm infants at term-equivalent age. METHODS Infants <32 gestational weeks (02/2011-11/2018) received cerebral MRI including axial diffusion-weighted images at term-equivalent age. All infants were screened for CMV infection using urine/saliva samples, and infection was regarded as acquired postnatal if a sample became positive >5 postnatal days. We compared brain injury as well as fractional anisotropy and apparent diffusion coefficient in 14 defined cerebral regions between infants with and without postnatal CMV infection. RESULTS 401 infants were eligible, of whom 18 (4.5%) infants had a postnatal CMV infection. There were no significant differences in rates of brain injury or in microstructural brain development between both groups. This applied equally to the subgroup of infants <28 gestational weeks. CONCLUSION Although infants with postnatal CMV infection were born more immature and more frequently suffered from complications related to immaturity, we neither observed a higher rate of preterm brain injury nor disadvantageous alterations in microstructural brain maturation at term-equivalent age.
Collapse
Affiliation(s)
- Yasmin Pellkofer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlene Hammerl
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Sappler
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vera Neubauer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
20
|
Yuan S, Liu M, Kim S, Yang J, Barkovich AJ, Xu D, Kim H. Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early neurodevelopment: multimodal MRI study in preterm neonates. Cereb Cortex 2022; 33:357-373. [PMID: 35235643 PMCID: PMC9837610 DOI: 10.1093/cercor/bhac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/19/2023] Open
Abstract
The cerebral cortex undergoes rapid microstructural changes throughout the third trimester. Recently, there has been growing interest on imaging features that represent cyto/myeloarchitecture underlying intracortical myelination, cortical gray matter (GM), and its adjacent superficial whitematter (sWM). Using 92 magnetic resonance imaging scans from 78 preterm neonates, the current study used combined T1-weighted/T2-weighted (T1w/T2w) intensity ratio and diffusion tensor imaging (DTI) measurements, including fractional anisotropy (FA) and mean diffusivity (MD), to characterize the developing cyto/myeloarchitectural architecture. DTI metrics showed a linear trajectory: FA decreased in GM but increased in sWM with time; and MD decreased in both GM and sWM. Conversely, T1w/T2w measurements showed a distinctive parabolic trajectory, revealing additional cyto/myeloarchitectural signature inferred. Furthermore, the spatiotemporal courses were regionally heterogeneous: central, ventral, and temporal regions of GM and sWM exhibited faster T1w/T2w changes; anterior sWM areas exhibited faster FA increases; and central and cingulate areas in GM and sWM exhibited faster MD decreases. These results may explain cyto/myeloarchitectural processes, including dendritic arborization, synaptogenesis, glial proliferation, and radial glial cell organization and apoptosis. Finally, T1w/T2w values were significantly associated with 1-year language and cognitive outcome scores, while MD significantly decreased with intraventricular hemorrhage.
Collapse
Affiliation(s)
- Shiyu Yuan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sharon Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingda Yang
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anthony James Barkovich
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Corroenne R, Arthuis C, Kasprian G, Mahallati H, Ville Y, Millischer Bellaiche AE, Henry C, Grevent D, Salomon LJ. Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:470-476. [PMID: 35561129 DOI: 10.1002/uog.24935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Human brain development is a complex process that begins in the third week of gestation. During early development, the fetal brain undergoes dynamic morphological changes. These changes result from events such as neurogenesis, neuronal migration, synapse formation, axonal growth and myelination. Disruption of any of these processes is thought to be responsible for a wide array of different pathologies. Recent advances in magnetic resonance imaging, especially diffusion-weighted imaging and diffusion tensor imaging (DTI), have enabled characterization and evaluation of brain development in utero. In this review, aimed at practitioners involved in fetal medicine and high-risk pregnancies, we provide a comprehensive overview of fetal DTI studies focusing on characterization of early normal brain development as well as evaluation of brain pathology in utero. We also discuss the reliability and limitations of fetal brain DTI. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Corroenne
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - C Arthuis
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Obstetrics, University Hospital of Nantes, Nantes, France
| | - G Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Y Ville
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
| | | | - C Henry
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Radiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - L J Salomon
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| |
Collapse
|
22
|
Liu T, Wu J, Zhao Z, Li M, Lv Y, Li M, Gao F, You Y, Zhang H, Ji C, Wu D. Developmental pattern of association fibers and their interaction with associated cortical microstructures in 0-5-month-old infants. Neuroimage 2022; 261:119525. [PMID: 35908606 DOI: 10.1016/j.neuroimage.2022.119525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Li
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
23
|
de Planque CA, Gaillard L, Vrooman HA, Li B, Bron EE, van Veelen MLC, Mathijssen IMJ, Dremmen MHG. A Diffusion Tensor Imaging Analysis of Frontal Lobe White Matter Microstructure in Trigonocephaly Patients. Pediatr Neurol 2022; 131:42-48. [PMID: 35483131 DOI: 10.1016/j.pediatrneurol.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Children with trigonocephaly are at risk for neurodevelopmental disorders. The aim of this study is to investigate white matter properties of the frontal lobes in young, unoperated patients with metopic synostosis as compared to healthy controls using diffusion tension imaging (DTI). METHODS Preoperative DTI data sets of 46 patients with trigonocephaly with a median age of 0.49 (interquartile range: 0.38) years were compared with 21 controls with a median age of 1.44 (0.98) years. White matter metrics of the tracts in the frontal lobe were calculated using FMRIB Software Library (FSL). The mean value of tract-specific fractional anisotropy (FA) and mean diffusivity (MD) were estimated for each subject and compared to healthy controls. By linear regression, FA and MD values per tract were assessed by trigonocephaly, sex, and age. RESULTS The mean FA and MD values in the frontal lobe tracts of untreated trigonocephaly patients, younger than 3 years, were not significantly different in comparison to controls, where age showed to be a significant associated factor. CONCLUSIONS Microstructural parameters of white matter tracts of the frontal lobe of patients with trigonocephaly are comparable to those of controls aged 0-3 years.
Collapse
Affiliation(s)
- Catherine A de Planque
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Linda Gaillard
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henri A Vrooman
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bo Li
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-Lise C van Veelen
- Department of Neurosurgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Marjolein H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Borge Blystad J, van der Meer ALH. Longitudinal study of infants receiving extra motor stimulation, full‐term control infants, and infants born preterm: High‐density EEG analyses of cortical activity in response to visual motion. Dev Psychobiol 2022; 64:e22276. [PMID: 35603414 PMCID: PMC9325384 DOI: 10.1002/dev.22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
Electroencephalography was used to investigate the effects of extrastimulation and preterm birth on the development of visual motion perception during early infancy. Infants receiving extra motor stimulation in the form of baby swimming, a traditionally raised control group, and preterm born infants were presented with an optic flow pattern simulating forward and reversed self‐motion and unstructured random visual motion before and after they achieved self‐produced locomotion. Extrastimulated infants started crawling earlier and displayed significantly shorter N2 latencies in response to visual motion than their full‐term and preterm peers. Preterm infants could not differentiate between visual motion conditions, nor did they significantly decrease their latencies with age and locomotor experience. Differences in induced activities were also observed with desynchronized theta‐band activity in all infants, but with more mature synchronized alpha–beta band activity only in extrastimulated infants after they had become mobile. Compared with the other infants, preterm infants showed more widespread desynchronized oscillatory activities at lower frequencies at the age of 1 year (corrected for prematurity). The overall advanced performance of extrastimulated infants was attributed to their enriched motor stimulation. The poorer responses in the preterm infants could be related to impairment of the dorsal visual stream that is specialized in the processing of visual motion.
Collapse
Affiliation(s)
- Julie Borge Blystad
- Developmental Neuroscience Laboratory Department of Psychology Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Audrey L. H. van der Meer
- Developmental Neuroscience Laboratory Department of Psychology Norwegian University of Science and Technology (NTNU) Trondheim Norway
| |
Collapse
|
25
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
26
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Rootman M, Kornreich L, Osherov A, Konen O. DWI Hyperintensity in the Fornix Fimbria on MRI in Children. AJNR Am J Neuroradiol 2022; 43:480-485. [PMID: 35210274 PMCID: PMC8910804 DOI: 10.3174/ajnr.a7437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The fornix-fimbria complex is mainly involved in emotions and memory. In brain MR imaging studies of young children, we have occasionally noted DWI hyperintensity in this region. The significance of this finding remains unclear. This study evaluated the DWI signal in the fornix-fimbria complex of children 0-2 years of age, including the frequency of signal hyperintensity and clinical context. MATERIALS AND METHODS Brain MR imaging of 714 children 0-2 years of age (mean, 11 months), performed between September 2018 and May 2021, was reviewed and evaluated for DWI signal changes in the fornix-fimbria. All children with available MR imaging studies including DWI were included. Children with poor image quality, poor visualization of the fornix-fimbria region, and missing medical data were excluded. Additional imaging findings were also evaluated. Demographic data were retrieved from the medical files. We compared the ADC values of the fimbria and fornix between children with and without signal changes. The unpaired 2-tailed Student t test and χ2 test were used for statistical analysis. RESULTS DWI signal hyperintensity of the Fornix-fimbria complex was noted in 53 (7.4%) children (mean age, 10 months). Their mean ADC values were significantly lower than those of the children with normal DWI findings (P < .05). About half of the children had otherwise normal MR imaging findings. When detected, the most common abnormality was parenchymal volume loss (15%). The most common indication for imaging was seizures (26.5%). CONCLUSIONS DWI hyperintensity in the fornix-fimbria complex was detected in 7.4% of children 0-2 years of age. The etiology is not entirely clear, possibly reflecting a transient phenomenon.
Collapse
Affiliation(s)
- M.S. Rootman
- From the Department of Radiology (M.S.R., L.K., A.N.O., O.K.), Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel,The Sackler Faculty of Medicine (M.S.R., L.K., A.N.O., O.K.), Tel Aviv University, Tel Aviv, Israel
| | - L. Kornreich
- From the Department of Radiology (M.S.R., L.K., A.N.O., O.K.), Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel,The Sackler Faculty of Medicine (M.S.R., L.K., A.N.O., O.K.), Tel Aviv University, Tel Aviv, Israel
| | - A.N. Osherov
- From the Department of Radiology (M.S.R., L.K., A.N.O., O.K.), Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel,The Sackler Faculty of Medicine (M.S.R., L.K., A.N.O., O.K.), Tel Aviv University, Tel Aviv, Israel
| | - O. Konen
- From the Department of Radiology (M.S.R., L.K., A.N.O., O.K.), Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel,The Sackler Faculty of Medicine (M.S.R., L.K., A.N.O., O.K.), Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Love SA, Haslin E, Bellardie M, Andersson F, Barantin L, Filipiak I, Adriaensen H, Fazekas CL, Leroy L, Zelena D, Morisse M, Elleboudt F, Moussu C, Lévy F, Nowak R, Chaillou E. Maternal deprivation and milk replacement affect the integrity of gray and white matter in the developing lamb brain. Dev Neurobiol 2022; 82:214-232. [DOI: 10.1002/dneu.22869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Scott A. Love
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | | | | | | | | | - Csilla L. Fazekas
- Institute of Experimental Medicine Budapest Hungary
- János Szentágothai Doctoral School of Neurosciences Semmelweis University Budapest Hungary
| | - Laurène Leroy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Dóra Zelena
- Institute of Experimental Medicine Budapest Hungary
- Centre for Neuroscience, Szentágothai Research Centre Institute of Physiology Medical School University of Pécs Pécs Hungary
| | - Mélody Morisse
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | - Frédéric Lévy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Raymond Nowak
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | |
Collapse
|
29
|
White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat Commun 2022; 13:997. [PMID: 35194018 PMCID: PMC8863985 DOI: 10.1038/s41467-022-28326-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain function. Myelination during infancy has been studied with histology, but postmortem data cannot evaluate the longitudinal trajectory of white matter development. Here, we obtained longitudinal diffusion MRI and quantitative MRI measures of longitudinal relaxation rate (R1) of white matter in 0, 3 and 6 months-old human infants, and developed an automated method to identify white matter bundles and quantify their properties in each infant's brain. We find that R1 increases from newborns to 6-months-olds in all bundles. R1 development is nonuniform: there is faster development in white matter that is less mature in newborns, and development rate increases along inferior-to-superior as well as anterior-to-posterior spatial gradients. As R1 is linearly related to myelin fraction in white matter bundles, these findings open new avenues to elucidate typical and atypical white matter myelination in early infancy.
Collapse
|
30
|
Korom M, Camacho MC, Filippi CA, Licandro R, Moore LA, Dufford A, Zöllei L, Graham AM, Spann M, Howell B, Shultz S, Scheinost D. Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Dev Cogn Neurosci 2022; 53:101055. [PMID: 34974250 PMCID: PMC8733260 DOI: 10.1016/j.dcn.2021.101055] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023] Open
Abstract
The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| | - M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University School of Medicine, St. Louis, MO, USA.
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Roxane Licandro
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Vienna, Austria
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Dufford
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Marisa Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Sarah Shultz
- Division of Autism & Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Sappler M, Hammerl M, Pellkofer Y, Griesmaier E, Höck M, Janjic T, Gizewski ER, Kiechl-Kohlendorfer U, Neubauer V. Prophylactic Low-Dose Paracetamol Administration for Ductal Closure and Microstructural Brain Development in Preterm Infants. Neonatology 2022; 119:361-369. [PMID: 35176741 DOI: 10.1159/000521948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Prophylactic low-dose paracetamol administration is used to induce closure of the ductus arteriosus. Effects on the neurological outcome in preterm infants remain unknown. We compared microstructural brain development in very preterm infants with and without exposure to prophylactic paracetamol by using MR-based diffusion tensor imaging. MATERIALS AND METHODS Infants aged <32 gestational weeks born between October 2014 and December 2018 received prophylactic paracetamol (10 mg/kg intravenously every 8 h until echocardiography after at least 72 h) and form the paracetamol group; infants born between February 2011 and September 2014 form the control group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) at term-equivalent age were measured in 14 defined cerebral regions and compared between the groups. RESULTS Included in the study were 340 infants, of whom 217 received prophylactic paracetamol, and 123 formed the control group. The paracetamol group showed significantly higher FA values and lower ADC values in the splenium of the corpus callosum, as well as higher FA values in the pons bilaterally, the left middle cerebellar peduncle, the right occipital white matter, and the right posterior limb of the internal capsule (p ≤ 0.02). CONCLUSION The perceived safety of prenatal paracetamol exposure has been questioned in recent years. We found no impairment on microstructural maturation processes in the brain of preterm infants at term-equivalent age following early paracetamol administration. The clinical relevance of these imaging findings has to be determined in long-term follow-up studies on neurodevelopmental outcome.
Collapse
Affiliation(s)
- Maria Sappler
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria,
| | - Marlene Hammerl
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yasmin Pellkofer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Höck
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vera Neubauer
- Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Han X, Geng Z, Zhu Q, Song Z, Lv H. Diffusion kurtosis imaging: An efficient tool for evaluating age-related changes in rat brains. Brain Behav 2021; 11:e02136. [PMID: 34559478 PMCID: PMC8613443 DOI: 10.1002/brb3.2136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate and determine age-related changes in rat brains by studying the diffusion kurtosis imaging results among different age groups of rats. METHODS Sprague-Dawley (SD) rats underwent conventional magnetic resonance imaging (MRI) and diffusion Kurtosis Imaging (DKI). Two diffusion values of mean kurtosis (MK) and kurtosis (K⊥ ) were measured and analyzed based on laterality, brain regions and age groups. The MK and K⊥ data were plotted against different age groups. RESULTS No laterality was found for the MK or K⊥ values in the cerebral cortex (CT), external capsule (EC), or caudate putamen (CPu) regions. In contrast, significant changes in these values were observed among different age groups. Changes of the MK and K⊥ values were significant in both hemispheres in the EC, the CT, and the CPu brain regions. The changes in the MK and K⊥ values showed a parabolic relationship with ages in all the brain regions. CONCLUSION No laterality in the MK and K⊥ values was observed for the EC, CT, or CPu regions of the rat brain. Significant changes in MK and K⊥ values were both observed among different age groups, thus suggesting diffusion kurtosis imaging as an efficient tool for studying brain aging in rats.
Collapse
Affiliation(s)
- Xue‐Fang Han
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Zuo‐Jun Geng
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Qing‐Feng Zhu
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Zhen‐Hu Song
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Huan‐Di Lv
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| |
Collapse
|
33
|
Rasulo S, Vilhelmsen K, van der Weel FRR, van der Meer ALH. Development of motion speed perception from infancy to early adulthood: a high-density EEG study of simulated forward motion through optic flow. Exp Brain Res 2021; 239:3143-3154. [PMID: 34420060 PMCID: PMC8536648 DOI: 10.1007/s00221-021-06195-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
This study investigated evoked and oscillatory brain activity in response to forward visual motion at three different ecologically valid speeds, simulated through an optic flow pattern consisting of a virtual road with moving poles at either side of it. Participants were prelocomotor infants at 4–5 months, crawling infants at 9–11 months, primary school children at 6 years, adolescents at 12 years, and young adults. N2 latencies for motion decreased significantly with age from around 400 ms in prelocomotor infants to 325 ms in crawling infants, and from 300 and 275 ms in 6- and 12-year-olds, respectively, to 250 ms in adults. Infants at 4–5 months displayed the longest latencies and appeared unable to differentiate between motion speeds. In contrast, crawling infants at 9–11 months and 6-year-old children differentiated between low, medium and high speeds, with shortest latency for low speed. Adolescents and adults displayed similar short latencies for the three motion speeds, indicating that they perceived them as equally easy to detect. Time–frequency analyses indicated that with increasing age, participants showed a progression from low- to high-frequency desynchronized oscillatory brain activity in response to visual motion. The developmental differences in motion speed perception are interpreted in terms of a combination of neurobiological development and increased experience with self-produced locomotion. Our findings suggest that motion speed perception is not fully developed until adolescence, which has implications for children’s road traffic safety.
Collapse
Affiliation(s)
- Stefania Rasulo
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kenneth Vilhelmsen
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - F R Ruud van der Weel
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Audrey L H van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
34
|
Yu Q, Peng Y, Kang H, Peng Q, Ouyang M, Slinger M, Hu D, Shou H, Fang F, Huang H. Differential White Matter Maturation from Birth to 8 Years of Age. Cereb Cortex 2021; 30:2673-2689. [PMID: 31819951 PMCID: PMC7175013 DOI: 10.1093/cercor/bhz268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Comprehensive delineation of white matter (WM) microstructural maturation from birth to childhood is critical for understanding spatiotemporally differential circuit formation. Without a relatively large sample of datasets and coverage of critical developmental periods of both infancy and early childhood, differential maturational charts across WM tracts cannot be delineated. With diffusion tensor imaging (DTI) of 118 typically developing (TD) children aged 0–8 years and 31 children with autistic spectrum disorder (ASD) aged 2–7 years, the microstructure of every major WM tract and tract group was measured with DTI metrics to delineate differential WM maturation. The exponential model of microstructural maturation of all WM was identified. The WM developmental curves were separated into fast, intermediate, and slow phases in 0–8 years with distinctive time period of each phase across the tracts. Shorter periods of the fast and intermediate phases in certain tracts, such as the commissural tracts, indicated faster earlier development. With TD WM maturational curves as the reference, higher residual variance of WM microstructure was found in children with ASD. The presented comprehensive and differential charts of TD WM microstructural maturation of all major tracts and tract groups in 0–8 years provide reference standards for biomarker detection of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qinlin Yu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huiying Kang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michelle Slinger
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Di Hu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Haochang Shou
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.,Key Laboratory of Machine Perception, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
36
|
Brenner RG, Smyser CD, Lean RE, Kenley JK, Smyser TA, Cyr PEP, Shimony JS, Barch DM, Rogers CE. Microstructure of the Dorsal Anterior Cingulum Bundle in Very Preterm Neonates Predicts the Preterm Behavioral Phenotype at 5 Years of Age. Biol Psychiatry 2021; 89:433-442. [PMID: 32828528 PMCID: PMC8064762 DOI: 10.1016/j.biopsych.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cingulum bundle (CB), specifically the dorsal anterior portion of the CB, plays an important role in psychiatric illnesses; however, its role during early development is unclear. This study investigated whether neonatal white matter microstructure in the CB and its subregions is associated with subsequent preterm behavioral phenotype symptoms (internalizing, inattention, and social deficits) in very preterm (VPT) children. METHODS Diffusion magnetic resonance imaging data were obtained on a 3T scanner in 138 sleeping nonsedated neonates: 55 full-term neonates (gestational age ≥ 36 weeks) and 83 VPT neonates (gestational age < 30 weeks). The CB was tracked using probabilistic tractography and split into anterior and posterior portions. When children were 5 years of age, parents (n = 80) and teachers (n = 63) of VPT children completed questionnaires of preterm behavioral phenotype symptoms. Linear regression models were used to relate measures of neonatal CB microstructure and childhood preterm behavioral phenotype symptoms (n = 56 parent report, n = 45 teacher report). RESULTS Mean diffusivity in the anterior and posterior CB was increased in VPT neonates compared with full-term neonates. Increased fractional anisotropy and decreased mean diffusivity in the right anterior CB, but not in the posterior CB, were related to increased preterm behavioral phenotype symptoms in VPT children as reported by parents and teachers. CONCLUSIONS Aberrations in the anterior portion of the right CB may underlie the early development of the preterm behavioral phenotype. This finding provides the foundation for future mechanistic and therapeutic investigations into the role of the anterior cingulum in the development of psychopathology in VPT infants.
Collapse
Affiliation(s)
- Rebecca G Brenner
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Jeanette K Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Peppar E P Cyr
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua S Shimony
- Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deanna M Barch
- Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia E Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Choi YH, Lee JM, Lee JY, Lee JY, Lee YJ, Ahn JH, Lee HJ. Delayed Maturation of the Middle Cerebellar Peduncles at Near-Term Age Predicts Abnormal Neurodevelopment in Preterm Infants. Neonatology 2021; 118:37-46. [PMID: 33503618 PMCID: PMC8117383 DOI: 10.1159/000512921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The infant brain grows quickly with elaborate microstructural development during the neonatal period. The white matter, during critical periods of development, is selectively vulnerable to altered maturation and impaired growth in very-low-birth-weight (VLBW) infants. OBJECTIVE To evaluate whether abnormal white matter maturation in VLBW infants is associated with poor neurodevelopmental outcomes at 18 months of corrected age. METHODS Between 2015 and 2017, we recruited 60 VLBW infants at 24-32 weeks of gestational age and 15 full-term controls. All participants underwent magnetic resonance imaging at near-term age and were assessed at 18 months of corrected age with the Bayley Scales of Infant and Toddler Development, Third Edition. The associations between regional white matter fractional anisotropy (FA) and mean diffusivity on diffusion tensor imaging (DTI) and developmental outcomes were explored using multivariable linear regression after correcting for gestational age, postmenstrual age at DTI scan, and maternal education level. RESULTS The FA values of the splenium of the corpus callosum (p = 0.032), corticospinal tract (p = 0.025), middle cerebellar peduncle (MCP) (p < 0.001), and cingulum (p = 0.043) were significantly related to cognitive scores; however, only the association corresponding to the MCP remained significant after correcting for multiple comparisons. The MCP FA (p = 0.008) was associated with motor scores after correction for multiple comparisons (p = 0.008). Cognitive impairment (area under the curve [AUC] = 0.823, 95% confidence interval [CI] = 0.722-0.911) and motor impairment (AUC = 0.776, 95% CI = 0.656-0.899) were predicted by MCP FA. CONCLUSIONS The FA of MCP at near-term age may predict developmental outcomes of VLBW infants at 18 months of corrected age.
Collapse
Affiliation(s)
- Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young-Jun Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ja Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea, .,Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea,
| |
Collapse
|
38
|
Sotardi S, Gollub RL, Bates SV, Weiss R, Murphy SN, Grant PE, Ou Y. Voxelwise and Regional Brain Apparent Diffusion Coefficient Changes on MRI from Birth to 6 Years of Age. Radiology 2020; 298:415-424. [PMID: 33289612 DOI: 10.1148/radiol.2020202279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background A framework for understanding rapid diffusion changes from 0 to 6 years of age is important in the detection of neurodevelopmental disorders. Purpose To quantify patterns of normal apparent diffusion coefficient (ADC) development from 0 to 6 years of age. Materials and Methods Previously constructed age-specific ADC atlases from 201 healthy full-term children (108 male; age range, 0-6 years) with MRI scans acquired from 2006 to 2013 at one large academic hospital were analyzed to quantify four patterns: ADC trajectory, rate of ADC change, age of ADC maturation, and hemispheric asymmetries of maturation ages. Patterns were quantified in whole-brain, segmented regional, and voxelwise levels by fitting a two-term exponential model. Hemispheric asymmetries in ADC maturation ages were assessed using t tests with Bonferroni correction. Results The posterior limb of the internal capsule (mean ADC: left hemisphere, 1.18 ×103μm2/sec; right hemisphere, 1.17 ×103μm2/sec), anterior limb of the internal capsule (left, 1.11 ×103μm2/sec; right, 1.09 ×103μm2/sec), vermis (1.26 ×103μm2/sec), thalami (left, 1.17 ×103μm2/sec; right, 1.15 ×103μm2/sec), and basal ganglia (left, 1.26 ×103μm2/sec; right, 1.23 ×103μm2/sec) demonstrate low initial ADC values, indicating an earlier prenatal time course of development. ADC maturation was completed between 1.3 and 2.4 years of age, depending on the region. The vermis and left thalamus matured earliest (1.3 years). The frontolateral gray matter matured latest (right, 2.3 years; left, 2.4 years). ADC maturation occurred earlier in the left hemisphere (P < .001) in several regions, including the frontal (mean ± standard deviation) (left, 2.16 years ± 0.29; right, 2.19 years ± 0.31), temporal (left, 1.93 years ± 0.22; right, 1.99 years ± 0.22), and parietal (left, 1.92 years ± 0.30; right, 2.03 years ± 0.28) white matter. Maturation occurred earlier in the right hemisphere (P < .001) in several regions, including the thalami (left, 1.63 years ± 0.32; right, 1.45 years ± 0.33), basal ganglia (left, 1.79 years ± 0.31; right, 1.70 years ± 0.37), and hippocampi (left, 1.93 years ± 0.34; right, 1.78 years ± 0.33). Conclusion Normative apparent diffusion coefficient developmental patterns on diffusion-weighted MRI scans were quantified in children aged 0 to 6 years. This work provides knowledge about early brain development and may guide the detection of abnormal patterns of maturation. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Rollins in this issue.
Collapse
Affiliation(s)
- Susan Sotardi
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Randy L Gollub
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Sara V Bates
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Rebecca Weiss
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Shawn N Murphy
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - P Ellen Grant
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Yangming Ou
- From the Departments of Radiology (S.S.) and Psychiatry (R.L.G.), Athinoula A. Martinos Center for Biomedical Imaging (R.L.G.), Division of Newborn Medicine, Department of Pediatrics (S.V.B., R.W.), and Laboratory of Computer Science (S.N.M.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.S.); and Fetal-Neonatal Neuroimaging and Developmental Science Center (P.E.G., Y.O.), Computational Health Informatics Program (Y.O.), Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
39
|
Huynh KM, Xu T, Wu Y, Wang X, Chen G, Wu H, Thung KH, Lin W, Shen D, Yap PT. Probing Tissue Microarchitecture of the Baby Brain via Spherical Mean Spectrum Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3607-3618. [PMID: 32746109 PMCID: PMC7688284 DOI: 10.1109/tmi.2020.3001175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, invo- lving differentiation of neuronal types, dendritic arbori- zation, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To better quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a set of diffusion weightings (i.e., b -values). We decompose the spherical mean profile at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion proce- sses, characterizing restricted and hindered diffusion stemming respectively from intra- and extra-cellular water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ( μ FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show that these indices can be computed for the developing brain for greater sensitivity and specificity to development related changes in tissue microstructure. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.
Collapse
|
40
|
|
41
|
Coll G, de Schlichting E, Sakka L, Garcier JM, Peyre H, Lemaire JJ. Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study. AJNR Am J Neuroradiol 2020; 41:1726-1732. [PMID: 32816761 DOI: 10.3174/ajnr.a6709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Anisotropy is a good indicator of white matter fascicle macrostructure and organization but the interpretation of its changes with age remains difficult. The increase of WM fascicle fractional anisotropy with time and its relationship with WM fascicle volume have never been examined during childhood. We studied the maturation of associative WM fascicles during childhood using MR imaging-based DTI. We explored whether the fractional anisotropy increase of the main WM fascicles persists beyond the period of brain growth and is related to WM fascicle volume increase. MATERIALS AND METHODS In a series of 25 healthy children, the fractional anisotropy and volume of 15 associative WM fascicles were calculated. Several regression linear mixed models were used to study maturation parameters (fractional anisotropy, volume, and total telencephalon volume) considered as dependent variables, while age and sex were independent variables (the variable identifying the different WM fascicles was considered as a repeated measure). RESULTS In children older than 8 years of age, WM fascicle fractional anisotropy increased with age (P value = .045) but not its volume (P value = .7) or the telencephalon volume (P value = .16). The time course of WM fascicle fractional anisotropy and volume suggested that each WM fascicle might follow a specific pattern of maturation. CONCLUSIONS The fractional anisotropy increase of several WM fascicles after 8 years of age may not result from an increase in WM fascicle volume. It might be the consequence of other developmental processes such as myelination.
Collapse
Affiliation(s)
- G Coll
- Service de Neurochirurgie (G.C.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France .,Centre National de la Recherche Scientifique (G.C.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - E de Schlichting
- Service de Neurochirurgie (E.d.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - L Sakka
- Service de Neurochirurgie (L.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Laboratoire d'anatomie et d'organogenèse, laboratoire de biophysique sensorielle (L.S.), NeuroDol, faculté de médecine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - J-M Garcier
- Service de Radiologie Pédiatrique (J.M.-G.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle (J.M.G.), NeuroDol, Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - H Peyre
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré (H.P.), Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J-J Lemaire
- Service de Neurochirurgie (J.-J.L.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Centre National de la Recherche Scientifique (J.-J.L.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
42
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
43
|
England-Mason G, Grohs MN, Reynolds JE, MacDonald A, Kinniburgh D, Liu J, Martin JW, Lebel C, Dewey D. White matter microstructure mediates the association between prenatal exposure to phthalates and behavior problems in preschool children. ENVIRONMENTAL RESEARCH 2020; 182:109093. [PMID: 32069753 PMCID: PMC7050961 DOI: 10.1016/j.envres.2019.109093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/26/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Previous research reports associations between prenatal exposure to phthalates and childhood behavior problems; however, the neural mechanisms that may underlie these associations are relatively unexplored. OBJECTIVE This study examined microstructural white matter as a possible mediator of the associations between prenatal phthalate exposure and behavior problems in preschool-aged children. METHODS Data are from a subsample of a prospective pregnancy cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study (n = 76). Mother-child pairs were included if mothers provided a second trimester urine sample, if the child completed a successful magnetic resonance imaging (MRI) scan at age 3-5 years, and if the Child Behavior Checklist was completed within 6 months of the MRI scan. Molar sums of high (HMWP) and low molecular weight phthalates (LMWP) were calculated from levels in urine samples. Associations between prenatal phthalate concentrations, fractional anisotropy (FA) and mean diffusivity (MD) in 10 major white matter tracts, and preschool behavior problems were investigated. RESULTS Maternal prenatal phthalate concentrations were associated with MD of the right inferior fronto-occipital fasciculus (IFO), right pyramidal fibers, left and right uncinate fasciculus (UF), and FA of the left inferior longitudinal fasciculus (ILF). Mediation analyses showed that prenatal exposure to HMWP was indirectly associated with Internalizing (path ab = 0.09, CI.95 = 0.02, 0.20) and Externalizing Problems (path ab = 0.09, CI.95 = 0.01, 0.19) through MD of the right IFO, and to Internalizing Problems (path ab = 0.11, CI.95 = 0.01, 0.23) through MD of the right pyramidal fibers. DISCUSSION This study provides the first evidence of childhood neural correlates of prenatal phthalate exposure. Results suggest that prenatal phthalate exposure may be related to microstructural white matter in the IFO, pyramidal fibers, UF, and ILF. Further, MD of the right IFO and pyramidal fibers may transmit childhood risk for behavioral problems.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada
| | - Amy MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | - David Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
44
|
Bruchhage MMK, Ngo GC, Schneider N, D'Sa V, Deoni SCL. Functional connectivity correlates of infant and early childhood cognitive development. Brain Struct Funct 2020; 225:669-681. [PMID: 32060640 PMCID: PMC7046571 DOI: 10.1007/s00429-020-02027-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022]
Abstract
Childhood is defined by the development of cognitive abilities as well as brain growth and function. While prior neuroimaging studies have investigated early development fragmentally, we studied the typical development of functional network connectivity continuously from infancy to childhood (average of 24 months) in 196 singleton term born children, as well as their emergence with age and visual, motor, and language abilities as assessed using the Mullen Scales of Early Learning. We demonstrate a cross-age shift to networks linked to higher-order cognitive processes, paralleling previous findings about developmental courses of functional connectivity networks. When investigating skill associations with functional connectivity independent of age, we revealed distinct network connectivity patterns for visual, motor, and language skills as each of them become more and more refined along childhood development. Specifically, the amount of functional networks recruited increases with skill complexity, with an exceeding involvement of higher order networks enabling daily maintenance and coordination of cognitive functions. Further, both motor and language network connectivity patterns overlapped in network connectivity patterns for the default mode, visual, salience, and dorsal attention networks, possibly implicating their overarching contribution to each other’s and higher cognitive development.
Collapse
Affiliation(s)
- Muriel M K Bruchhage
- Advanced Baby Imaging Lab, Women & Infants Hospital of RI, 555 Prospect St, Pawtucket, Providence, RI, 20860, USA. .,Department of Pediatrics, Warren Alpert Medical School at Brown University, 222 Richmond St, Providence, RI, 02903, USA. .,Centre for Neuroimaging Science, Department for Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Giang-Chau Ngo
- Advanced Baby Imaging Lab, Women & Infants Hospital of RI, 555 Prospect St, Pawtucket, Providence, RI, 20860, USA.,Department of Pediatrics, Warren Alpert Medical School at Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Nora Schneider
- Nestlé Research, Vers-chez-les-Blanc, 1000, Lausanne, Switzerland
| | - Viren D'Sa
- Advanced Baby Imaging Lab, Women & Infants Hospital of RI, 555 Prospect St, Pawtucket, Providence, RI, 20860, USA.,Department of Pediatrics, Warren Alpert Medical School at Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Women & Infants Hospital of RI, 555 Prospect St, Pawtucket, Providence, RI, 20860, USA.,Department of Pediatrics, Warren Alpert Medical School at Brown University, 222 Richmond St, Providence, RI, 02903, USA.,Department of Radiology, Warren Alpert Medical School at Brown University, 222 Richmond St, Providence, RI, 02912, USA
| |
Collapse
|
45
|
Adibpour P, Lebenberg J, Kabdebon C, Dehaene-Lambertz G, Dubois J. Anatomo-functional correlates of auditory development in infancy. Dev Cogn Neurosci 2020; 42:100752. [PMID: 32072930 PMCID: PMC6992933 DOI: 10.1016/j.dcn.2019.100752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 10/29/2022] Open
Abstract
Infant brain development incorporates several intermingled mechanisms leading to intense and asynchronous maturation across cerebral networks and functional modalities. Combining electroencephalography (EEG) and diffusion magnetic resonance imaging (MRI), previous studies in the visual modality showed that the functional maturation of the event-related potentials (ERP) during the first postnatal semester relates to structural changes in the corresponding white matter pathways. Here investigated similar issues in the auditory modality. We measured ERPs to syllables in 1- to 6-month-old infants and related them to the maturational properties of underlying neural substrates measured with diffusion tensor imaging (DTI). We first observed a decrease in the latency of the auditory P2, and in the diffusivities in the auditory tracts and perisylvian regions with age. Secondly, we highlighted some of the early functional and structural substrates of lateralization. Contralateral responses to monoaural syllables were stronger and faster than ipsilateral responses, particularly in the left hemisphere. Besides, the acoustic radiations, arcuate fasciculus, middle temporal and angular gyri showed DTI asymmetries with a more complex and advanced microstructure in the left hemisphere, whereas the reverse was observed for the inferior frontal and superior temporal gyri. Finally, after accounting for the age-related variance, we correlated the inter-individual variability in P2 responses and in the microstructural properties of callosal fibers and inferior frontal regions. This study combining dedicated EEG and MRI approaches in infants highlights the complex relation between the functional responses to auditory stimuli and the maturational properties of the corresponding neural network.
Collapse
Affiliation(s)
- Parvaneh Adibpour
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, Gif/Yvette, France.
| | - Jessica Lebenberg
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, Gif/Yvette, France; UNATI, CEA DRF Institut Joliot, Gif/Yvette, France
| | - Claire Kabdebon
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, Gif/Yvette, France
| | | | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, Gif/Yvette, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| |
Collapse
|
46
|
Abstract
Characterizing the neuroanatomical correlates of brain development is essential in understanding brain-behavior relationships and neurodevelopmental disorders. Advances in brain MRI acquisition protocols and image processing techniques have made it possible to detect and track with great precision anatomical brain development and pediatric neurologic disorders. In this chapter, we provide a brief overview of the modern neuroimaging techniques for pediatric brain development and review key normal brain development studies. Characteristic disorders affecting neurodevelopment in childhood, such as prematurity, attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), epilepsy, and brain cancer, and key neuroanatomical findings are described and then reviewed. Large datasets of typically developing children and children with various neurodevelopmental conditions are now being acquired to help provide the biomarkers of such impairments. While there are still several challenges in imaging brain structures specific to the pediatric populations, such as subject cooperation and tissues contrast variability, considerable imaging research is now being devoted to solving these problems and improving pediatric data analysis.
Collapse
Affiliation(s)
- Natacha Paquette
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Niharika Gajawelli
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
47
|
Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW. Age-Dependent White Matter Characteristics of the Cerebellar Peduncles from Infancy Through Adolescence. THE CEREBELLUM 2019; 18:372-387. [PMID: 30637673 DOI: 10.1007/s12311-018-1003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebellum-cerebrum connections are essential for many motor and cognitive functions and cerebellar disorders are prevalent in childhood. The middle (MCP), inferior (ICP), and superior cerebellar peduncles (SCP) are the major white matter pathways that permit communication between the cerebellum and the cerebrum. Knowledge about the microstructural properties of these cerebellar peduncles across childhood is limited. Here, we report on a diffusion magnetic resonance imaging tractography study to describe age-dependent characteristics of the cerebellar peduncles in a cross-sectional sample of infants, children, and adolescents from newborn to 17 years of age (N = 113). Scans were collected as part of clinical care; participants were restricted to those whose scans showed no abnormal findings and whose history and exam had no risk factors for cerebellar abnormalities. A novel automated tractography protocol was applied. Results showed that mean tract-FA increased, while mean tract-MD decreased from infancy to adolescence in all peduncles. Rapid changes were observed in both diffusion measures in the first 24 months of life, followed by gradual change at older ages. The shape of the tract profiles was similar across ages for all peduncles. These data are the first to characterize the variability of diffusion properties both across and within cerebellar white matter pathways that occur from birth through later adolescence. The data represent a rich normative data set against which white matter alterations seen in children with posterior fossa conditions can be compared. Ultimately, the data will facilitate the identification of sensitive biomarkers of cerebellar abnormalities.
Collapse
Affiliation(s)
- Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katie Shpanskaya
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily S McKenna
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren R Borchers
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maya Yablonski
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Tal Blecher
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
48
|
Cahill-Rowley K, Schadl K, Vassar R, Yeom KW, Stevenson DK, Rose J. Prediction of Gait Impairment in Toddlers Born Preterm From Near-Term Brain Microstructure Assessed With DTI, Using Exhaustive Feature Selection and Cross-Validation. Front Hum Neurosci 2019; 13:305. [PMID: 31619977 PMCID: PMC6760000 DOI: 10.3389/fnhum.2019.00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
AIM To predict gait impairment in toddlers born preterm with very-low-birth-weight (VLBW), from near-term white-matter microstructure assessed with diffusion tensor imaging (DTI), using exhaustive feature selection, and cross-validation. METHODS Near-term MRI and DTI of 48 bilateral and corpus callosum regions were assessed in 66 VLBW preterm infants; at 18-22 months adjusted-age, 52/66 participants completed follow-up gait assessment of velocity, step length, step width, single-limb support and the Toddle Temporal-spatial Deviation Index (TDI). Multiple linear models with exhaustive feature selection and leave-one-out cross-validation were employed in this prospective cohort study: linear and logistic regression identified three brain regions most correlated with gait outcome. RESULTS Logistic regression of near-term DTI correctly classified infants high-risk for impaired gait velocity (93% sensitivity, 79% specificity), right and left step length (91% and 93% sensitivity, 85% and 76% specificity), single-limb support (100% and 100% sensitivity, 100% and 100% specificity), step width (85% sensitivity, 80% specificity), and Toddle TDI (85% sensitivity, 75% specificity). Linear regression of near-term brain DTI and toddler gait explained 32%-49% variance in gait temporal-spatial parameters. Traditional MRI methods did not predict gait in toddlers. INTERPRETATION Near-term brain microstructure assessed with DTI and statistical learning methods predicted gait impairment, explaining substantial variance in toddler gait. Results indicate that at near term age, analysis of a set of brain regions using statistical learning methods may offer more accurate prediction of outcome at toddler age. Infants high risk for single-limb support impairment were most accurately predicted. As a fundamental element of biped gait, single-limb support may be a sensitive marker of gait impairment, influenced by early neural correlates that are evolutionarily and developmentally conserved. For infants born preterm, early prediction of gait impairment can help guide early, more effective intervention to improve quality of life. WHAT THIS PAPER ADDS • Accurate prediction of toddler gait from near-term brain microstructure on DTI.• Use of machine learning analysis of neonatal neuroimaging to predict gait.• Early prediction of gait impairment to guide early treatment for children born preterm.
Collapse
Affiliation(s)
- Katelyn Cahill-Rowley
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, United States
- Motion & Gait Analysis Laboratory, Lucile Packard Children’s Hospital, Stanford, CA, United States
| | - Kornél Schadl
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, United States
- Neonatal Neuroimaging Research Lab, Stanford University School of Medicine, Stanford, CA, United States
| | - Rachel Vassar
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, United States
- Neonatal Neuroimaging Research Lab, Stanford University School of Medicine, Stanford, CA, United States
| | - Kristen W. Yeom
- Department of Radiology, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, CA, United States
| | - David K. Stevenson
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford CA, United States
| | - Jessica Rose
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, United States
- Motion & Gait Analysis Laboratory, Lucile Packard Children’s Hospital, Stanford, CA, United States
- Neonatal Neuroimaging Research Lab, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
49
|
Reynolds JE, Grohs MN, Dewey D, Lebel C. Global and regional white matter development in early childhood. Neuroimage 2019; 196:49-58. [DOI: 10.1016/j.neuroimage.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
|
50
|
Vasung L, Charvet CJ, Shiohama T, Gagoski B, Levman J, Takahashi E. Ex vivo fetal brain MRI: Recent advances, challenges, and future directions. Neuroimage 2019; 195:23-37. [PMID: 30905833 PMCID: PMC6617515 DOI: 10.1016/j.neuroimage.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
During early development, the fetal brain undergoes dynamic morphological changes. These changes result from neurogenic events, such as neuronal proliferation, migration, axonal elongation, retraction, and myelination. The duration and intensity of these events vary across species. Comparative assessments of these neurogenic events give us insight into evolutionary changes and the complexity of human brain development. Recent advances in magnetic resonance imaging (MRI), especially ex vivo MRI, permit characterizing and comparing fetal brain development across species. Comparative ex vivo MRI studies support the detection of species-specific differences that occur during early brain development. In this review, we provide a comprehensive overview of ex vivo MRI studies that characterize early brain development in humans, monkeys, cats, as well as rats/mice. Finally, we discuss the current advantages and limitations of ex vivo fetal brain MRI.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Christine J Charvet
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY, 14850, USA; Department of Psychology, Delaware State University, Dover, DE, 19901, USA
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Pediatrics, Chiba University Hospital, Inohana 1-8-1, Chiba-shi, Chiba, 2608670, Japan
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA.
| |
Collapse
|