1
|
Lin H, Jiang Q, Yang Y, Huang Q, Zhang Y, Zhang Z, Zhu Y, Lu J, Wang J, Wang M, Men J, Yang Y, Zhang H, Guan Y, Ge J, Lu J, Jiang J, Zuo C. Harmonizing Aβ deposition threshold for 18F-florbetaben PET imaging: Addressing discrepancies and calibration between PET/CT and PET/MRI. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07279-y. [PMID: 40266306 DOI: 10.1007/s00259-025-07279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Discrepancies between PET/CT and PET/MRI scanners can affect the determination of amyloid beta (Aβ) deposition thresholds in patients with cognitive impairment. This study aimed to identify these differences and propose a calibration method to standardize Aβ quantification across imaging modalities. METHODS A total of 133 patients with cognitive impairment underwent Aβ PET imaging and were divided into four groups: a head-to-head PET/CT and PET/MRI cohort (group A, n = 6), an independent PET/CT cohort (group B, n = 48), an independent PET/MRI cohort (group C, n = 79), and another independent PET/MRI cohort (group D, n = 10). Standardized uptake value ratios (SUVR) of global cortical target (CTXsuvr) and centiloid (CL) values were compared within group A and between groups B and C. A whole cerebellum (WC)-referenced SUVR method was used to calibrate CL values in group C, with verification in group D. RESULTS CTXsuvr values were significantly higher in PET/MRI than in PET/CT in both group A (P < 0.05) and group C versus group B (P < 0.001). Aβ-negative/positive cases showed mean ± variance of CTXsuvr as 1.023 ± 0.104/1.479 ± 0.203 in group B and 1.146 ± 0.100/1.743 ± 0.254 in group C, with cutoffs of 1.140 (CL = 20) and 1.401 (CL = 60), respectively. WC-referenced calibration adjusted PET/MRI cutoff to 1.132 (CL = 19) in group C, aligning it with PET/CT thresholds and validated in group D. CONCLUSION WC-referenced SUVR calibration effectively mitigates differences in Aβ thresholds between PET/CT and PET/MRI, enhancing Aβ quantification standardization in multi-modal imaging.
Collapse
Affiliation(s)
- Huamei Lin
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanling Jiang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunhao Yang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Institute of Biomedical Engineering, School of Medicine, Shanghai University, Shanghai, China
| | - Zhengwei Zhang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuhua Zhu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jianwei Men
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yufeng Yang
- Beijing Sinotau International Pharmaceutical Technology Co., Ltd, Beijing, China
| | - Huiwei Zhang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Giraudo C, Cavallin C, Pillon M, Carraro E, Fichera G, Cecchin D, Zucchetta P. Automatic assessment of body composition in children with lymphoma: results of a [ 18F]FDG-PET/MR study. Eur Radiol 2025; 35:341-350. [PMID: 39012528 PMCID: PMC11631997 DOI: 10.1007/s00330-024-10957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES To use Dixon-MR images extracted from [18F]FDG-PET/MR scans to perform an automatic, volumetric segmentation and quantification of body composition in pediatric patients with lymphoma. MATERIALS AND METHODS Pediatric patients with lymphoma examined by [18F]FDG-PET/MR at diagnosis and restaging were included. At each time point, axial fat and water Dixon T1w images of the thighs were automatically segmented and muscle volume, subcutaneous, intramuscular, and intermuscular fat volume were quantified. The metabolic activity of the largest nodal lesion and of muscles and subcutaneous fat was recorded. The paired samples t-test and Spearman's correlation coefficient were applied to evaluate potential differences between the two time points and the relationship between metabolic and body composition metrics, respectively. By logistic regression analysis, the prognostic role of the investigated variables was assessed. The applied significance level was p < 0.05 for all analyses. RESULTS Thirty-seven patients (mean age ± SD 14 ± 3-years-old; 20 females) matched the inclusion criteria. After chemotherapy (interval between the two PET/MR scans, 56-80 days; median 65 days), muscle volume significantly decreased (629 ± 259 cm3 vs 567 ± 243 cm3, p < 0.001) while subcutaneous, intramuscular and intermuscular fat increased (476 ± 255 cm3 vs 607 ± 254 cm3, p < 0.001; 63 ± 20 cm3 vs 76 ± 26 cm3, p < 0.001; 58 ± 19 cm3 vs 71 ± 23 cm3, p < 0.001); the metabolic activity of the main nodal lesion, muscles, and subcutaneous fat significantly decreased (p < 0.05, each). None of the examined variables acted as predictors of the response to treatment (p = 0.283). A strong correlation between BMI and subcutaneous fat volume at diagnosis (r = 0.675, p < 0.001) and restaging (r = 0.600, p < 0.001) emerged. CONCLUSIONS The proposed method demonstrated that pediatric patients with lymphoma undergo muscle loss and an increase of subcutaneous fat during treatment. CLINICAL RELEVANCE STATEMENT The proposed automatic and volumetric MR-based assessment of body composition in children with lymphoma can be used to monitor the effect of chemotherapy and may guide tailored exercise programs during chemotherapy. KEY POINTS T1w Dixon images can be used for the automatic segmentation and quantification of body composition. Muscle and subcutaneous fat volume do not act as predictors of the response to treatment in children with lymphoma. Chemotherapy induces changes in body composition in children with lymphoma.
Collapse
Affiliation(s)
- Chiara Giraudo
- Unit of Advanced Clinical and Translational Imaging, Department of Cardiac, Thoracic, Vascular Sciences and Public Health-DCTV, University of Padova, Padova, Italy.
| | | | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Giulia Fichera
- Pediatric Radiology Unit, Azienda Ospedale-Università Padova, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Guja KE, Behr G, Bedmutha A, Kuhn M, Nadel HR, Pandit-Taskar N. Molecular Imaging with PET-CT and PET-MRI in Pediatric Musculoskeletal Diseases. Semin Nucl Med 2024; 54:438-455. [PMID: 38688770 DOI: 10.1053/j.semnuclmed.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Molecular imaging has emerged as an integral part of oncologic imaging. Given the physiologic changes that precede anatomic changes, molecular imaging can enable early detection of disease and monitoring of response. [18F] Fluorodeoxyglucose (FDG) Positron emission tomography (PET) is the predominant molecular imaging modality used in oncologic assessment and can be performed using PET/CT or PET/MR. In pediatric patients, PET/MRI imaging is generally preferred due to low radiation exposure and PET/MRI is particularly advantageous for imaging musculoskeletal (MSK) diseases, as MRI provides superior characterization of tissue changes as compared to CT. In this article, we provide an overview of the typical role of PET CT/MRI in assessment of some common pediatric malignancies and benign MSK diseases with case examples. We also discuss the relative advantages of PET/MRI compared to PET/CT, and review published data with a primary focus on the use of PET/MR.
Collapse
Affiliation(s)
- Kip E Guja
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Weil Cornell Medical College, New York, New York
| | - Akshay Bedmutha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marlena Kuhn
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen R Nadel
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Weil Cornell Medical College, New York, New York.
| |
Collapse
|
4
|
Gurajala R, Partovi S, DiFilippo FP, Li X, Coppa C, Shah SN, Karuppasamy K, Obuchowski N, Fayazzadeh E, McLennan G, Levitin A. Prospective comparison of positron emission tomography (PET)/magnetic resonance and PET/computed tomography dosimetry in hepatic malignant neoplastic disease after 90Y radioembolization treatment. J Gastrointest Oncol 2024; 15:356-367. [PMID: 38482235 PMCID: PMC10932664 DOI: 10.21037/jgo-23-890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 09/17/2024] Open
Abstract
Background 90Y radioembolization is an established treatment modality for hepatic malignancies. Successful radioembolization requires optimal dose delivery to tumors while minimizing dosages to parenchyma. Post-treatment positron emission tomography (PET)/computed tomography (CT) dosimetry is the established benchmark, whereas PET/magnetic resonance (MR) is an emerging modality. The goal of this study was to assess the intermodality agreement between PET/MR and PET/CT 90Y dosimetry. Methods In this single-institution study, 18 patients (20 treatment sessions) with a primary or metastatic hepatic malignancy underwent both PET/MR and PET/CT after 90Y radioembolization. Patients were randomized to undergo one modality first, followed by the other. The region of interest was delineated using MR images and tumor and liver dosimetry was calculated. Intermodality agreement was assessed using the Bland-Altman method. A generalized linear model was used to assess the effect of baseline variables on intermodality dose differences. Results PET/MR underestimated tumor and liver absorbed doses when compared to PET/CT by -3.7% (P=0.042) and -5.8% (P=0.029), respectively. A coverage probability plot demonstrated that 80% and 90% of tumor dose measurements fell within intermodality differences of 11% and 18%, respectively. PET/MR underestimated tumor dose at both low (<1 GBq) and high (>3 GBq) injected activity levels (P<0.001) by -22.3 [standard deviation (SD) =13.5] and -24.3 (SD =18.7), respectively. Conclusions Although PET/MR significantly underestimated the absorbed dose when compared to PET/CT, the intermodality agreement was high and the degree of underestimation was better than previously reported. Intermodality differences were more pronounced at low and high injected doses. Additional studies are required to assess the clinical implications of these findings.
Collapse
Affiliation(s)
- Ram Gurajala
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Sasan Partovi
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Frank P. DiFilippo
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Xin Li
- Department of Radiology, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Coppa
- Section of Abdominal Imaging, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Shetal N. Shah
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
- Section of Abdominal Imaging, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Karunakaravel Karuppasamy
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Ehsan Fayazzadeh
- Department of Radiology, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Gordon McLennan
- Section of Interventional Radiology, Department of Radiology, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Abraham Levitin
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Hulsen DJW, Mitea C, Arts JJ, Loeffen D, Geurts J. Diagnostic value of hybrid FDG-PET/MR imaging of chronic osteomyelitis. Eur J Hybrid Imaging 2022; 6:15. [PMID: 35909200 PMCID: PMC9339446 DOI: 10.1186/s41824-022-00125-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) Positron Emission Tomography, paired with Computed Tomography (PET/CT) are commonly used modalities in the complicated diagnostic work-up of osteomyelitis. PET/MRI is a relatively novel hybrid modality with suggested applications in bone infection imaging, based on expert opinion and previous qualitative research. 18F-FDG PET/MRI has the advantages of reduced radiation dose, more soft tissue information, and is deemed more valuable for surgical planning compared to 18F-FDG PET/CT. The goal of this study is to quantitatively assess the diagnostic value of hybrid 18F-FDG PET/MRI for chronic osteomyelitis. Methods A retrospective analysis was performed by a nuclear medicine physician and radiologist on 36 patients with 18F-FDG PET/MRI scans for suspected osteomyelitis. Sensitivity, specificity, and accuracy were determined with the clinical assessment by the orthopaedic surgeon (based on subsequent intraoperative microbiology or long-term follow-up) as the ground truth. Standardized uptake values (SUV) were measured and analysed by means of receiver operating characteristics (ROC). Results This first study to quantitatively report the diagnostic value of 18F-FDG PET/MRI yielded a sensitivity, specificity, and accuracy of 78%, 100%, and 86% respectively. Area under the ROC curve was .736, .755, and .769 for the SUVmax, target to background ratio, and SUVmax_ratio respectively. These results are in the same range and not statistically different compared to diagnostic value for 18F-FDG PET/CT imaging of osteomyelitis in literature. Conclusions Based on the aforementioned advantages of 18F-FDG PET/MRI and the diagnostic value reported here, the authors propose 18F-FDG PET/MRI as an alternative to 18F-FDG PET/CT in osteomyelitis diagnosis, if available.
Collapse
|
6
|
Yu Y, Zhang L, Sultana B, Wang B, Sun H. Diagnostic value of integrated 18F-FDG PET/MRI for staging of endometrial carcinoma: comparison with PET/CT. BMC Cancer 2022; 22:947. [PMID: 36050751 PMCID: PMC9438318 DOI: 10.1186/s12885-022-10037-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To explore the diagnostic value of integrated positron emission tomography/magnetic resonance imaging (PET/MRI) for the staging of endometrial carcinoma and to investigate the associations between quantitative parameters derived from PET/MRI and clinicopathological characteristics of endometrial carcinoma. Methods Altogether, 57 patients with endometrial carcinoma who underwent PET/MRI and PET/computed tomography (PET/CT) preoperatively were included. Diagnostic performance of PET/MRI and PET/CT for staging was compared by three readers. Associations between PET/MRI quantitative parameters of primary tumor lesions and clinicopathological characteristics of endometrial carcinoma were analyzed. Histopathological results were used as the standard. Results The overall accuracy of the International Federation of Gynecology and Obstetrics (FIGO) staging for PET/MRI and PET/CT was 86.0% and 77.2%, respectively. PET/MRI had higher accuracy in diagnosing myometrial invasion and cervical invasion and an equivalent accuracy in diagnosing pelvic lymph node metastasis against PET/CT, although without significance. All PET/MRI quantitative parameters were significantly different between stage I and stage III tumors. Only SUVmax/ADCmin were significantly different between stage I and II tumors. No parameters were significantly different between stage II and III tumors. The SUVmax/ADCmin in the receiving operating characteristic (ROC) curve had a higher area under the ROC curve for differentiating stage I tumors and other stages of endometrial carcinoma. Conclusions PET/MRI had a higher accuracy for the staging of endometrial carcinoma, mainly for FIGO stage I tumors compared to PET/CT. PET/MRI quantitative parameters, especially SUVmax/ADCmin, were associated with tumor stage and other clinicopathological characteristics. Hence, PET/MRI may be a valuable imaging diagnostic tool for preoperative staging of endometrial carcinoma.
Collapse
Affiliation(s)
- Yang Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China.,Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Provincial Key Laboratory of Medical Imaging, Shenyang, 110004, China
| | - Le Zhang
- Department of Radiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Bilkis Sultana
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China
| | - Bo Wang
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China. .,Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Liaoning Provincial Key Laboratory of Medical Imaging, Shenyang, 110004, China.
| |
Collapse
|
7
|
Evaluating dosimetric parameters predictive of hematologic toxicity in cervical cancer patients undergoing definitive pelvic chemoradiotherapy. Strahlenther Onkol 2022; 198:773-782. [DOI: 10.1007/s00066-021-01885-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 01/09/2023]
|
8
|
Robson PM, Vergani V, Benkert T, Trivieri MG, Karakatsanis NA, Abgral R, Dweck MR, Moreno PR, Kovacic JC, Block KT, Fayad ZA. Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR. J Nucl Cardiol 2021; 28:2194-2204. [PMID: 31898004 PMCID: PMC7329599 DOI: 10.1007/s12350-019-02002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR. METHODS AND RESULTS In a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts. CONCLUSION Optimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.
Collapse
Affiliation(s)
- Philip M Robson
- Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII - 1st floor, New York, NY, 10029, USA.
| | - Vittoria Vergani
- Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII - 1st floor, New York, NY, 10029, USA
- Cardiothoracic and Vascular Department, Vita-Salute University and San Raffaele Hospital, Milan, Italy
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Maria Giovanna Trivieri
- Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII - 1st floor, New York, NY, 10029, USA
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, New York, NY, 10029, USA
| | - Nicolas A Karakatsanis
- Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII - 1st floor, New York, NY, 10029, USA
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Pedro R Moreno
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, New York, NY, 10029, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, New York, NY, 10029, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII - 1st floor, New York, NY, 10029, USA
| |
Collapse
|
9
|
Obmann VC, Grosse-Hokamp N, Alberts I, Fulton N, Rassouli N, Siegel C, Avril N, Herrmann KA. Diagnosis and staging of hepatobiliary malignancies: Potential incremental value of (18)F-FDG-PET/MRI compared to MRI of the liver. Nuklearmedizin 2021; 60:355-367. [PMID: 34102690 DOI: 10.1055/a-1486-3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of the study was to investigate the potential added value of 18F-FDG-PET/MRI (functional information derived from PET) over standard diagnostic liver MRI (excellent soft tissue characterization) in diagnosing and staging suspected primary hepatobiliary malignancies including extrahepatic cholangiocarcinoma (ECC), intrahepatic cholangiocellular carcinoma (ICC) and gallbladder cancer (GBCA). METHODS Twenty consecutive patients with suspected hepatobiliary malignancy were included in this retrospective study. All patients underwent combined whole-body (WB) 18F-FDG-PET/MRI including contrast-enhanced MRI of the liver, contrast-enhanced WB-MRI and WB 18F-FDG-PET. Two experienced readers staged hepatobiliary disease using TNM criteria: first based on MRI alone and then based on combined 18F-FDG-PET/MRI. Subsequently, the impact of FDG-PET/MRI on clinical management compared to MRI alone was recorded. Histopathologic proof served as the reference standard. RESULTS Hepatobiliary neoplasms were present in 16/20 patients (ECC n = 3, ICC n = 8, GBCA n = 5), two patients revealed benign disease, two were excluded. TNM staging with 18F-FDG-PET/MRI was identical to MRI alone in 11/18 (61.1 %) patients and correctly changed the stage in 4/18 (22.2 %), resulting in a change in management for 2/4 patients (11.1 %). 18F-FDG-PET/MRI was false-positive in 3/18 cases (16.7 %). Both MRI and 18F-FDG-PET/MRI were falsely positive in 1 case without malignancy. CONCLUSIONS A small incremental benefit of 18F-FDG-PET/MRI over standard MRI of the liver was observed. However, in some cases 18F-FDG-PET/MRI may lead to false-positive findings. Overall there is seemingly limited role of 18F-FDG-PET/MRI in patients with suspected hepatobiliary malignancy.
Collapse
Affiliation(s)
- Verena Carola Obmann
- Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Switzerland.,Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Nils Grosse-Hokamp
- Department of Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Germany.,Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Ian Alberts
- Nuclear Medicine, Inselspital University Hospital Bern, Switzerland
| | | | - Negin Rassouli
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Christopher Siegel
- Department of General Surgery, Cleveland Clinic Foundation, Hillcrest Hospital, Mayfield Heights, United States
| | - Norbert Avril
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Karin Anna Herrmann
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| |
Collapse
|
10
|
Validation of MR-Based Attenuation Correction of a Newly Released Whole-Body Simultaneous PET/MR System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8213215. [PMID: 31886254 PMCID: PMC6915003 DOI: 10.1155/2019/8213215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 11/18/2022]
Abstract
The aim of this study was to validate quantitative performance of a newly released simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) scanner, by using MR-based attenuation correction (MRAC), both in phantom study and in patient study. PET/MRI image uniformities of a phantom under different hardware configurations were tested and compared. Thirty patients were examined with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) PET/computed tomography (CT) and subsequent PET/MRI. PET images from PET/MRI were corrected with MRAC (PETMR), CT-based attenuation maps (μ-maps, PETCT), and segmented CT μ-maps (PETCTSeg) derived from PET/CT. Standardized uptake values (SUVs) were compared among the 3 sets of PET in main organs (bone, liver and lung) and in 52 FDG-avid lesions, including soft-tissue lesions and bone lesions. The result showed that PET imaging uniformities of PET/MRI under different configurations were good (<8.8%). The SUV differences among the 3 sets of PET varied with organs and lesion types. In detail, the mean relative differences of SUV between PETMR and PETCT were as follows: -18.8%, bone (SUVmean); -8.0%, liver (SUVmean); -12.2%, lung (SUVmean); -18.1%, bone lesions (SUVmean); -13.3%, bone lesions (SUVmax); -8.2%, soft-tissue lesions (SUVmean); and -7.3%, soft-tissue lesions (SUVmax). The mean relative differences between PETMR and PETCTSeg were as follows: -19.0%, bone (SUVmean); -3.5%, liver (SUVmean); -3.3%, lung (SUVmean); -19.3%, bone lesions (SUVmean); -17.5%, bone lesions (SUVmax); -5.5%, soft-tissue lesions (SUVmean); and -4.4%, soft-tissue lesions (SUVmax). The differences of SUV between PETMR and PETCT were larger than those between PETMR and PETCTSeg, in both soft tissue and soft-tissue lesions (P < 0.001), but not in bone or bone lesions. In conclusion, MRAC in the newly released PET/MR system is accurate in most tissues, with SUV deviations being generally less than 10%, compared to PET/CT. In bone, however, underestimations can be substantial, which may be partially attributed to segmentation of the MR-based μ-maps.
Collapse
|
11
|
Hulsen DJW, Geurts J, Arts JJ, Loeffen D, Mitea C, Vöö SA. Hybrid FDG-PET/MR imaging of chronic osteomyelitis: a prospective case series. Eur J Hybrid Imaging 2019; 3:7. [PMID: 34191175 PMCID: PMC8218079 DOI: 10.1186/s41824-019-0055-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography paired with computed tomography (PET/CT) are two commonly used imaging modalities in the complicated diagnostic workup of osteomyelitis. Diagnosis using these modalities relies on, respectively, anatomical (MRI) and metabolic (PET) signs. With hybrid PET/MRI being recently available, our goal is to qualitatively compare hybrid FDG PET/MRI to FDG PET/CT in the diagnosis and operative planning of chronic osteomyelitis. Methods Five patients with suspected chronic osteomyelitis in an extremity underwent an 18F-FDG single-injection/dual-imaging protocol with hybrid PET/CT and hybrid PET/MR. Images and clinical features were evaluated using a standardized assessment method. Standardized uptake value (SUV) measurements were performed on all images. Concordant and discordant findings between PET/MRI and PET/CT were analysed. Results The consensus diagnoses based on PET/MRI and PET/CT images were identical for all five patients. One discrepancy between PET/MRI and PET/CT was found in the assessment of the features in one patient. PET signal intensities and target-to-background ratios were on average highest for PET/MRI. On PET/MRI, the location of infection based on FDG uptake could clearly be correlated with certain soft tissue structures (oedema, fluid collection, or muscle), which is paramount for surgical planning. Conclusions In the presented cases, FDG PET/MRI led to the same diagnosis and provided at least the same diagnostic information as PET/CT. PET/MRI was able to provide additional soft-tissue information for the physician planning treatment. Because of this, we suggest that PET/MRI could be used for osteomyelitis diagnosis and treatment planning.
Collapse
Affiliation(s)
- Dennis Jan Willem Hulsen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands. .,MICT Department, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, The Netherlands.
| | - Jan Geurts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacobus J Arts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daan Loeffen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefan Adrian Vöö
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute of Nuclear Medicine, University College Hospital, London, UK
| |
Collapse
|
12
|
18F-FDG uptake in the normal appendix in adults: PET/CT evaluation. Ann Nucl Med 2019; 33:265-268. [PMID: 30652242 DOI: 10.1007/s12149-019-01330-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study aimed to determine the level of 18F fluorodeoxyglucose (18F-FDG) activity in the normal adult appendix using positron emission tomography/computed tomography (PET/CT). MATERIALS AND METHODS We performed a retrospective review of PET/CT images using 18F-FDG in 563 consecutive asymptomatic adult patients without appendiceal pathology. We excluded 257 patients for an undetected or obscured appendix and three patients for appendicitis found on CT imaging. FDG uptake in the appendix was qualitatively and quantitatively assessed. The maximum standardized uptake value (SUVmax) was calculated for quantitative analysis with SUVmax of the normal liver for comparison. A total of 303 patients (200 males, 103 females, mean age of 66 years) were included in this study. Medical charts and histories were evaluated for patients who showed positive FDG accumulation. Pearson's correlations between appendiceal SUVmax and age, body mass index, and blood glucose levels were analyzed. RESULTS The mean appendiceal SUVmax was 1.14 (range 0.52-5.12) with an appendix-to-liver SUVmax ratio of 0.34 (range 0.06-1.28). Three patients qualitatively showed a positive FDG accumulation with appendiceal SUVmax greater than 3.00. There were no correlations between appendiceal SUVmax and age, body mass index, or blood glucose levels. CONCLUSIONS FDG in the normal adult appendix shows a low activity level and is lower compared with normal liver. However, the normal appendix can rarely show high FDG accumulation. In such cases, differentiation from appendiceal pathology solely by PET/CT images would be difficult.
Collapse
|
13
|
Kirchner J, Sawicki LM, Nensa F, Schaarschmidt BM, Reis H, Ingenwerth M, Bogner S, Aigner C, Buchbender C, Umutlu L, Antoch G, Herrmann K, Heusch P. Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2018; 46:437-445. [PMID: 30074073 DOI: 10.1007/s00259-018-4109-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare the diagnostic performance of 18F-FDG PET/MRI and 18F-FDG PET/CT for primary and locoregional lymph node staging in non-small cell lung cancer (NSCLC). METHODS In this prospective study, a total of 84 patients (51 men, 33 women, mean age 62.5 ± 9.1 years) with histopathologically confirmed NSCLC underwent 18F-FDG PET/CT followed by 18F-FDG PET/MRI in a single injection protocol. Two readers independently assessed T and N staging in separate sessions according to the seventh edition of the American Joint Committee on Cancer staging manual for 18F-FDG PET/CT and 18F-FDG PET/MRI, respectively. Histopathology as a reference standard was available for N staging in all 84 patients and for T staging in 39 patients. Differences in staging accuracy were assessed by McNemars chi2 test. The maximum standardized uptake value (SUVmax) and longitudinal diameters of primary tumors were correlated using Pearson's coefficients. RESULTS T stage was categorized concordantly in 18F-FDG PET/MRI and 18F-FDG PET/CT in 38 of 39 (97.4%) patients. Herein, 18F-FDG PET/CT and 18F-FDG PET/MRI correctly determined the T stage in 92.3 and 89.7% of patients, respectively. N stage was categorized concordantly in 83 of 84 patients (98.8%). 18F-FDG PET/CT correctly determined the N stage in 78 of 84 patients (92.9%), while 18F-FDG PET/MRI correctly determined the N stage in 77 of 84 patients (91.7%). Differences between 18F-FDG PET/CT and 18F-FDG PET/MRI in T and N staging accuracy were not statistically significant (p > 0.5, each). Tumor size and SUVmax measurements derived from both imaging modalities exhibited excellent correlation (r = 0.963 and r = 0.901, respectively). CONCLUSION 18F-FDG PET/MRI and 18F-FDG PET/CT show an equivalently high diagnostic performance for T and N staging in patients suffering from NSCLC.
Collapse
Affiliation(s)
- Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Simon Bogner
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University of Duisburg-Essen, D-45122, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, University Hospital Essen, Ruhrlandklinik, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Philipp Heusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| |
Collapse
|
14
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
15
|
Abstract
The future clinical use of the combination of positron emission tomography (PET) with 2-Fluoro[F-18]-2-Deoxy-d-Glucose (FDG)and MRI is still unclear. If a patient requires a PET and breast DCE-MRI for staging purposes, both scans can be done in the same visit. In the breast, DCE-MRI is better at lesion detection (sensitivity), margin evaluation, and has a higher specificity than CT. The potential for multiparametric qualitative and quantitative imaging is also an advantage of PET/MRI which provides opportunity to improve tumor characterization and may ultimately lead to outcome prediction. This review discusses technical and clinical aspects of this emerging technology in breast cancer patients.
Collapse
|
16
|
Kirchner J, Sawicki LM, Suntharalingam S, Grueneisen J, Ruhlmann V, Aktas B, Deuschl C, Herrmann K, Antoch G, Forsting M, Umutlu L. Whole-body staging of female patients with recurrent pelvic malignancies: Ultra-fast 18F-FDG PET/MRI compared to 18F-FDG PET/CT and CT. PLoS One 2017; 12:e0172553. [PMID: 28225831 PMCID: PMC5321458 DOI: 10.1371/journal.pone.0172553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives To evaluate the diagnostic feasibility of an ultra-fast 18F-FDG PET/MRI protocol, including T2-w and contrast-enhanced T1-w imaging as well as metabolic assessment (PET) in comparison to 18F-FDG PET/CT and CT for whole-body staging of female patients with suspected recurrence of pelvic malignancies. Methods 43 female patients with suspected tumor recurrence were included in this study. Suspicion was based on clinical follow-up and abnormal findings on imaging follow-up. All patients underwent a PET/CT and a subsequent PET/MRI examination. Two readers were asked to evaluate ultra-fast PET/MRI, PET/CT as well as CT datasets of PET/CT separately for suspect lesions regarding lesion count, lesion localization and lesion characterization. Statistical analyses were performed both, on a per-patient and a per-lesion basis. Results Tumor relapse was present in 38 of the 43 patients. Based on CT readings 25/38 tumor relapses were correctly identified. PET/CT enabled correct identification of 37/38 patients, PET/MRI correctly identified 36 of the 38 patients with recurrent cancer. On a lesion-based analysis PET/MRI enabled the correct detection of more lesions, comprising a lesion-based sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of 50%, 58%, 76%, 31%, and 53% for CT, 97%, 83%, 93%, 94%, and 92% for PET/CT and 98%, 83%, 94%, 94%, and 94% for PET/MRI, respectively. Mean scan duration of ultra-fast PET/MRI, PET/CT and whole-body CT amounted to 18.5 ± 1 minutes, 18.2 ± 1 minutes and 3.5 minutes, respectively. Conclusion Ultra-fast PET/MRI provides equivalent diagnostic performance and examination time when compared to PET/CT and superior diagnostic performance to CT in restaging female patients suspected to have recurrent pelvic cancer.
Collapse
Affiliation(s)
- Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
- * E-mail:
| | - Lino Morris Sawicki
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
| | - Saravanabavaan Suntharalingam
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bahriye Aktas
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Partovi S, Yuh R, Pirozzi S, Lu Z, Couturier S, Grosse U, Schluchter MD, Nelson A, Jones R, O’Donnell JK, Faulhaber P. Diagnostic performance of an automated analysis software for the diagnosis of Alzheimer's dementia with 18F FDG PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2017; 7:12-23. [PMID: 28123864 PMCID: PMC5259585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to assess the ability of a quantitative software-aided approach to improve the diagnostic accuracy of 18F FDG PET for Alzheimer's dementia over visual analysis alone. Twenty normal subjects (M:F-12:8; mean age 80.6 years) and twenty mild AD subjects (M:F-12:8; mean age 70.6 years) with 18F FDG PET scans were obtained from the ADNI database. Three blinded readers interpreted these PET images first using a visual qualitative approach and then using a quantitative software-aided approach. Images were classified on two five-point scales based on normal/abnormal (1-definitely normal; 5-definitely abnormal) and presence of AD (1-definitely not AD; 5-definitely AD). Diagnostic sensitivity, specificity, and accuracy for both approaches were compared based on the aforementioned scales. The sensitivity, specificity, and accuracy for the normal vs. abnormal readings of all readers combined were higher when comparing the software-aided vs. visual approach (sensitivity 0.93 vs. 0.83 P = 0.0466; specificity 0.85 vs. 0.60 P = 0.0005; accuracy 0.89 vs. 0.72 P<0.0001). The specificity and accuracy for absence vs. presence of AD of all readers combined were higher when comparing the software-aided vs. visual approach (specificity 0.90 vs. 0.70 P = 0.0008; accuracy 0.81 vs. 0.72 P = 0.0356). Sensitivities of the software-aided and visual approaches did not differ significantly (0.72 vs. 0.73 P = 0.74). The quantitative software-aided approach appears to improve the performance of 18F FDG PET for the diagnosis of mild AD. It may be helpful for experienced 18F FDG PET readers analyzing challenging cases.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Roger Yuh
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | | | - Ziang Lu
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Spencer Couturier
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Ulrich Grosse
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Mark D Schluchter
- Department of Biostatistics and Epidemiology, Case Western Reserve UniversityCleveland, Ohio
| | | | - Robert Jones
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - James K O’Donnell
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Peter Faulhaber
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve UniversityCleveland, Ohio
| |
Collapse
|
18
|
Barajas RF, Krohn KA, Link JM, Hawkins RA, Clarke JL, Pampaloni MH, Cha S. Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine. Biomedicines 2016; 4:biomedicines4040024. [PMID: 28536391 PMCID: PMC5344267 DOI: 10.3390/biomedicines4040024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/17/2023] Open
Abstract
The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET imaging as a tool for personalized diagnosis and therapy by highlighting a case series of four patients with recurrent high grade glioma who underwent 18F-fluoromisonidazole (FMISO) PET/MR (magnetic resonance) imaging through the course of antiangiogenic therapy. Three distinct features were observed from this small cohort of patients. First, the presence of pseudoprogression was retrospectively associated with the absence of hypoxia. Second, a subgroup of patients with recurrent high grade glioma undergoing bevacizumab therapy demonstrated disease progression characterized by an enlarging nonenhancing mass with newly developed reduced diffusion, lack of hypoxia, and preserved cerebral blood volume. Finally, a reduction in hypoxic volume was observed concurrent with therapy in all patients with recurrent tumor, and markedly so in two patients that developed a nonenhancing reduced diffusion mass. This case series demonstrates how medical imaging has the potential to influence personalized medicine in several key aspects, especially involving molecular PET imaging for personalized diagnosis, patient specific disease prognosis, and therapeutic monitoring.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Kenneth A Krohn
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Jeanne M Link
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Randall A Hawkins
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Jennifer L Clarke
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| | - Miguel H Pampaloni
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| |
Collapse
|
19
|
Lairez O, Robson PM, Fayad ZA. Time to move to PET-MR for cardiovascular imaging. J Nucl Cardiol 2016; 23:1112-1113. [PMID: 26134886 DOI: 10.1007/s12350-015-0206-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Olivier Lairez
- Cardiac Imaging Center, Toulouse University Hospital, Toulouse, France
| | - Philip M Robson
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029, USA.
| |
Collapse
|
20
|
Appropriate margin thresholds for isocontour metabolic volumetry of fluorine-18 fluorodeoxyglucose PET in sarcoma. Nucl Med Commun 2016; 37:1088-94. [DOI: 10.1097/mnm.0000000000000561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Software-based PET-MR image coregistration: combined PET-MRI for the rest of us! Pediatr Radiol 2016; 46:1552-61. [PMID: 27380195 PMCID: PMC5039099 DOI: 10.1007/s00247-016-3641-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/07/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. OBJECTIVE To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. MATERIALS AND METHODS A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUVmax) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. RESULTS The coregistration execution time averaged 97±45 s. The overall relative SUVmax difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm × 0.66 mm × 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm × 3.65 mm × 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. CONCLUSION We have presented a software-based solution that achieves the many benefits of hybrid PET/MRI scanners without actually needing one. The method proved to be accurate and potentially clinically useful.
Collapse
|
22
|
Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients. Invest Radiol 2016; 51:66-71. [PMID: 26348596 DOI: 10.1097/rli.0000000000000208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. MATERIALS AND METHODS Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. RESULTS The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). CONCLUSIONS Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In addition, SUV overestimations were found for some lesions close to lung borders. This has to be taken into account when comparing PET/CT- and PET/MR-derived SUVs.
Collapse
|
23
|
Vaquero JJ, Kinahan P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng 2016; 17:385-414. [PMID: 26643024 DOI: 10.1146/annurev-bioeng-071114-040723] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Collapse
Affiliation(s)
- Juan José Vaquero
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
| | - Paul Kinahan
- Departments of Radiology, Bioengineering, and Physics, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
24
|
Goh V, Prezzi D, Mallia A, Bashir U, Stirling JJ, John J, Charles-Edwards G, MacKewn J, Cook G. Positron Emission Tomography/Magnetic Resonance Imaging of Gastrointestinal Cancers. Semin Ultrasound CT MR 2016; 37:352-7. [PMID: 27342899 DOI: 10.1053/j.sult.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As an integrated system, hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is able to provide simultaneously complementary high-resolution anatomic, molecular, and functional information, allowing comprehensive cancer phenotyping in a single imaging examination. In addition to an improved patient experience by combining 2 separate imaging examinations and streamlining the patient pathway, the superior soft tissue contrast resolution of MRI and the ability to acquire multiparametric MRI data is advantageous over computed tomography. For gastrointestinal cancers, this would improve tumor staging, assessment of neoadjuvant response, and of the likelihood of a complete (R0) resection in comparison with positron emission tomography or computed tomography.
Collapse
Affiliation(s)
- Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Department of Radiology, Guy׳s & St Thomas׳ Hospitals, London, UK.
| | - Davide Prezzi
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Department of Radiology, Guy׳s & St Thomas׳ Hospitals, London, UK
| | - Andrew Mallia
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Guys and St Thomas׳ PET Centre, St Thomas׳ Hospital, King׳s College London, London, UK
| | - Usman Bashir
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Department of Radiology, Guy׳s & St Thomas׳ Hospitals, London, UK
| | - J James Stirling
- Guys and St Thomas׳ PET Centre, St Thomas׳ Hospital, King׳s College London, London, UK
| | - Joemon John
- Guys and St Thomas׳ PET Centre, St Thomas׳ Hospital, King׳s College London, London, UK
| | - Geoff Charles-Edwards
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Medical Physics, Guy׳s and St Thomas׳ Hospitals, London, UK
| | - Jane MacKewn
- Guys and St Thomas׳ PET Centre, St Thomas׳ Hospital, King׳s College London, London, UK
| | - Gary Cook
- Cancer Imaging Department, Division of Imaging Sciences & Biomedical Engineering, King׳s College London, London, UK; Guys and St Thomas׳ PET Centre, St Thomas׳ Hospital, King׳s College London, London, UK
| |
Collapse
|
25
|
Paspulati RM, Partovi S, Herrmann KA, Krishnamurthi S, Delaney CP, Nguyen NC. Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. ACTA ACUST UNITED AC 2016; 40:1415-25. [PMID: 26112492 DOI: 10.1007/s00261-015-0474-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE We report our initial clinical experience from a pilot study to compare the diagnostic accuracy of hybrid PET/MRI with PET/CT in colorectal cancer and discuss potential PET/MRI workflow solutions for colorectal cancer. METHODS Patients underwent both FDG PET/CT and PET/MRI (Ingenuity TF PET/MRI, Philips Healthcare) for rectal cancer staging or colorectal cancer restaging. The PET acquisition of PET/MRI was similar to that of PET/CT whereas the MRI protocol was selected individually based on the patient's medical history. One nuclear medicine physician reviewed the PET/CT studies and one radiologist reviewed the PET/MRI studies independently. The diagnostic accuracy of each modality was determined in consensus, using available medical records as a reference. RESULTS Of the 12 patients enrolled, two were for initial staging and ten for restaging. The median scan delay between the two modalities was 60 min. The initial imaging was PET/CT in nine patients and PET/MRI in three patients. When PET/CT was performed first, the SUV values of the 16 FDG avid lesions were greater at PET/MRI than at PET/CT. In contrast, when PET/MRI was performed first, the SUV values of the seven FDG avid lesions were greater at PET/CT than at PET/MRI. PET/MRI provided more detailed T staging than PET/CT. On a per-patient basis, with both patient groups combined for the evaluation of N and M staging/restaging, the true positive rate was 5/7 (71%) for PET/CT and 6/7 (86%) for PET/MRI, and true negative rate was 5/5 (100%) for both modalities. On a per-lesion basis, PET/CT identified 26 of 29 (90%) tumor lesions that were correctly detected by PET/MRI. Our proposed workflow allows for comprehensive cancer staging including integrated local and whole-body assessment. CONCLUSIONS Our initial experience shows a high diagnostic accuracy of PET/MRI in T staging of rectal cancer compared with PET/CT. In addition, PET/MRI shows at least comparable accuracy in N and M staging as well as restaging to PET/CT. However, the small sample size limits the generalizability of the results. It is expected that PET/MRI would yield higher diagnostic accuracy than PET/CT considering the high soft tissue contrast provided by MRI compared with CT, but larger studies are necessary to fully assess the benefit of PET/MRI in colorectal cancer.
Collapse
Affiliation(s)
- Raj Mohan Paspulati
- Department of Radiology, UH Case Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA,
| | | | | | | | | | | |
Collapse
|
26
|
Pujara AC, Raad RA, Ponzo F, Wassong C, Babb JS, Moy L, Melsaether AN. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT. Breast J 2016; 22:264-73. [PMID: 26843433 DOI: 10.1111/tbj.12569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative standardized uptake values (SUVs) from fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) are commonly used to evaluate the extent of disease and response to treatment in breast cancer patients. Recently, PET/magnetic resonance imaging (MRI) has been shown to qualitatively detect metastases from various primary cancers with similar sensitivity to PET/CT. However, quantitative validation of PET/MRI requires assessing the reliability of SUVs from MR attenuation correction (MRAC) relative to CT attenuation correction (CTAC). The purpose of this retrospective study was to assess the utility of PET/MRI-derived SUVs in breast cancer patients by testing the hypothesis that SUVs derived from MRAC correlate well with those from CTAC. Between August 2012 and May 2013, 35 breast cancer patients (age 37-78 years, 1 man) underwent clinical 18F-FDG PET/CT followed by PET/MRI. One hundred seventy metastases were seen in 21 of 35 patients; metastases to bone in 16 patients, to liver in seven patients, and to nonaxillary lymph nodes in eight patients were sufficient for statistical analysis on an organ-specific per patient basis. SUVs in the most FDG-avid metastasis per organ per patient from PET/CT and PET/MRI were measured and compared using Pearson's correlations. Correlations between CTAC- and MRAC-derived SUVmax and SUVmean in 31 metastases to bone, liver, and nonaxillary lymph nodes were strong overall (ρ = 0.80, 0.81). SUVmax and SUVmean correlations were also strong on an organ-specific basis in 16 bone metastases (ρ = 0.76, 0.74), seven liver metastases (ρ = 0.85, 0.83), and eight nonaxillary lymph node metastases (ρ = 0.95, 0.91). These strong organ-specific correlations between SUVs from PET/CT and PET/MRI in breast cancer metastases support the use of SUVs from PET/MRI for quantitation of 18F-FDG activity.
Collapse
Affiliation(s)
- Akshat C Pujara
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Roy A Raad
- Department of Radiology, New York University School of Medicine, New York, New York.,Nuclear Medicine Section, New York University School of Medicine, New York, New York
| | - Fabio Ponzo
- Department of Radiology, New York University School of Medicine, New York, New York.,Nuclear Medicine Section, New York University School of Medicine, New York, New York
| | - Carolyn Wassong
- Department of Radiology, New York University School of Medicine, New York, New York.,Breast Imaging Section, New York University School of Medicine, New York, New York
| | - James S Babb
- Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU Department of Radiology, New York, New York
| | - Linda Moy
- Department of Radiology, New York University School of Medicine, New York, New York.,Breast Imaging Section, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU Department of Radiology, New York, New York
| | - Amy N Melsaether
- Department of Radiology, New York University School of Medicine, New York, New York.,Breast Imaging Section, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU Department of Radiology, New York, New York
| |
Collapse
|
27
|
|
28
|
Comparison of Standardized Uptake Values in Normal Structures Between PET/CT and PET/MRI in a Tertiary Pediatric Hospital: A Prospective Study. AJR Am J Roentgenol 2015; 205:1094-101. [DOI: 10.2214/ajr.15.14304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Grueneisen J, Schaarschmidt BM, Heubner M, Suntharalingam S, Milk I, Kinner S, Heubner A, Forsting M, Lauenstein T, Ruhlmann V, Umutlu L. Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: A comparison to PET/CT. Eur J Radiol 2015; 84:2097-102. [PMID: 26321491 DOI: 10.1016/j.ejrad.2015.08.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/02/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To compare the diagnostic competence of FAST-PET/MRI and PET/CT for whole-body staging of female patients suspect for a recurrence of a pelvic malignancy. METHODS 24 female patients with a suspected tumor recurrence underwent a PET/CT and subsequent PET/MRI examination. For PET/MRI readings a whole-body FAST-protocol was implemented. Two readers separately evaluated the PET/CT and FAST PET/MRI datasets regarding identification of all tumor lesions and qualitative assessment of visual lesion-to-background contrast (4-point ordinal scale). RESULTS Tumor relapse was present in 21 of the 24 patients. Both, PET/CT and PET/MRI allowed for correct identification of tumor recurrence in 20 of 21 cases. Lesion-based sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for the detection of malignant lesions were 82%, 91%, 97%, 58% and 84% for PET/CT and 85%, 87%, 96%, 63% and 86% for PET/MRI, lacking significant differences. Furthermore, no significant difference for lesion-to-background contrast of malignant and benign lesions was found. CONCLUSION FAST-PET/MRI provides a comparably high diagnostic performance for restaging gynecological cancer patients compared to PET/CT with slightly prolonged scan duration, yet enabling a markedly reduced radiation exposure.
Collapse
Affiliation(s)
- Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany.
| | - Benedikt Michael Schaarschmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Dusseldorf, University of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Martin Heubner
- Department of Obstetrics and Gynecology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Saravanabavaan Suntharalingam
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Ines Milk
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Sonja Kinner
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Antonia Heubner
- Department of Obstetrics and Gynecology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Thomas Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
30
|
Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Bremerich J, Czernin J, Drzezga A, Franzius C, Goh V, Hartenbach M, Iida H, Kjaer A, la Fougère C, Ladefoged CN, Law I, Nikolaou K, Quick HH, Sabri O, Schäfer J, Schäfers M, Wehrl HF, Beyer T. Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here: Summary Report of the 4th International Workshop on PET/MR Imaging; February 23-27, 2015, Tübingen, Germany. Mol Imaging Biol 2015; 17:595-608. [PMID: 26286794 DOI: 10.1007/s11307-015-0886-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from February 23 to 27, 2015. Specifically, we summarise the three days of invited presentations from active researchers in this and associated fields augmented by round table discussions and dialogue boards with specific topics. These include the use of PET/MRI in cardiovascular disease, paediatrics, oncology, neurology and multi-parametric imaging, the latter of which was suggested as a key promoting factor for the wider adoption of integrated PET/MRI. Discussions throughout the workshop and a poll taken on the final day demonstrated that attendees felt more strongly that PET/MRI has further advanced in both technical versatility and acceptance by clinical and research-driven users from the status quo of last year. Still, with only minimal evidence of progress made in exploiting the true complementary nature of the PET and MRI-based information, PET/MRI is still yet to achieve its potential. In that regard, the conclusion of last year's meeting "the real work has just started" still holds true.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - B Gückel
- Department of Interventional and Diagnostic Radiology, Eberhard Karls University, Tübingen, Germany
| | - H Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - A J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - J Bremerich
- Cardiothoracic Section, Department of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | - J Czernin
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA
| | - A Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - C Franzius
- Centre of Morphological and Molecular Diagnostics (ZeMoDi), MR- and PET/MRI; Centre of Nuclear Medicine and PET/CT, Bremen, Germany
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M Hartenbach
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - H Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - A Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - C la Fougère
- Department of Nuclear Medicine and Molecular Imaging, Eberhard Karls University Tübingen, Tübingen, Germany
| | - C N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - K Nikolaou
- Department of Interventional and Diagnostic Radiology, Eberhard Karls University, Tübingen, Germany
| | - H H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR-Imaging, University Hospital Essen, Essen, Germany
| | - O Sabri
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - J Schäfer
- Department of Interventional and Diagnostic Radiology, Eberhard Karls University, Tübingen, Germany
| | - M Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - H F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - T Beyer
- Center for Medical Physics and Biomedical Engineering, General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med 2015; 40:1-8. [PMID: 25489952 DOI: 10.1097/rlu.0000000000000611] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. MATERIALS AND METHODS We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. RESULTS Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. CONCLUSION The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.
Collapse
|
32
|
Mainenti PP, Romano F, Pizzuti L, Segreto S, Storto G, Mannelli L, Imbriaco M, Camera L, Maurea S. Non-invasive diagnostic imaging of colorectal liver metastases. World J Radiol 2015; 7:157-169. [PMID: 26217455 PMCID: PMC4506934 DOI: 10.4329/wjr.v7.i7.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/10/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.
Collapse
|
33
|
Shih IL, Yen RF, Chen CA, Chen BB, Wei SY, Chang WC, Sheu BC, Cheng WF, Tseng YH, Chen XJ, Chen CH, Wei LH, Chiang YC, Torng PL, Yen ML, Shih TTF. Standardized uptake value and apparent diffusion coefficient of endometrial cancer evaluated with integrated whole-body PET/MR: Correlation with pathological prognostic factors. J Magn Reson Imaging 2015; 42:1723-32. [PMID: 25919115 DOI: 10.1002/jmri.24932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To evaluate the correlation between maximum standardized uptake value (SUVmax ) and minimum apparent diffusion coefficient (ADCmin ) of endometrial cancer derived from an integrated positron emission tomography / magnetic resonance (PET/MR) system and to determine their correlation with pathological prognostic factors. MATERIALS AND METHODS This prospective study was approved by the Institutional Review Board of the hospital, and informed consent was obtained. Between April and December 2014, 47 consecutive patients with endometrial cancer were enrolled and underwent simultaneous PET/MR examinations before surgery. Thirty-six patients with measurable tumors on PET/MR were included for image analysis. Pearson's correlation coefficient was used to evaluate the correlation between SUVmax and ADCmin of the tumors. The Mann-Whitney U-test was utilized to evaluate relationships between these two imaging biomarkers and pathological prognostic factors. RESULTS The mean SUVmax and ADCmin were 14.7 ± 7.1 and 0.48 ± 0.13 × 10(-3) mm(2) /s, respectively. A significant inverse correlation was found between SUVmax and ADCmin (r = -0.53; P = 0.001). SUVmax was significantly higher in tumors with advanced stage, deep myometrial invasion, cervical invasion, lymphovascular space involvement, and lymph node metastasis (P < 0.05). ADCmin was lower in tumors with higher grade, advanced stage, and cervical invasion (P < 0.05). The ratio of SUVmax to ADCmin was higher in tumors with higher grade, advanced stage, deep myometrial invasion, cervical invasion, lymphovascular space involvement, and lymph node metastasis (P < 0.05). CONCLUSION SUVmax and ADCmin of endometrial cancer derived from integrated PET/MR are inversely correlated and are associated with pathological prognostic factors.
Collapse
Affiliation(s)
- I-Lun Shih
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bang-Bin Chen
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shwu-Yuan Wei
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chun Chang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Hui Tseng
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Xin-Jia Chen
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Hau Chen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Abstract
There have been significant recent advances in single photon emission computed tomography (SPECT) and positron emission tomography (PET) hardware. Novel collimator designs, such as multi-pinhole and locally focusing collimators arranged in geometries that are optimized for cardiac imaging have been implemented to reduce imaging time and radiation dose. These new collimators have been coupled with solid state photon detectors to further improve image quality and reduce scanner size. The new SPECT scanners demonstrate up to a 7-fold increase in photon sensitivity and up to 2 times improvement in image resolution. Although PET scanners are used primarily for oncological imaging, cardiac imaging can benefit from the improved PET sensitivity of 3D systems without inter-plane septa and implementation of the time-of-flight reconstruction. Additionally, resolution recovery techniques are now implemented by all major PET vendors. These new methods improve image contrast, image resolution, and reduce image noise. Simultaneous PET/magnetic resonance (MR) hybrid systems have been developed. Solid state detectors with avalanche photodiodes or digital silicon photomultipliers have also been utilized in PET. These new detectors allow improved image resolution, higher count rate, as well as a reduced sensitivity to electromagnetic MR fields.
Collapse
Affiliation(s)
- Piotr J Slomka
- Artificial Intelligence Program, Cedars-Sinai Medical Center, Los Angeles, California, 90048; UCLA School of Medicine, Los Angeles, California, 90048.
| | - Tinsu Pan
- University of Texas, MD Anderson Cancer Center, Houston, TX, 77030.
| | - Daniel S Berman
- Cardiac Imaging, Cedars-Sinai Medical Center, Los Angeles, California, 90048; UCLA School of Medicine, Los Angeles, California, 90048.
| | - Guido Germano
- Artificial Intelligence Program, Cedars-Sinai Medical Center, Los Angeles, California, 90048; UCLA School of Medicine, Los Angeles, California, 90048.
| |
Collapse
|
35
|
Devlin P, Sher A, Rubbert C, Jordan D, Faulhaber P, Avril N, Ros P. Management and organization of positron emission tomography/magnetic resonance imaging. Semin Roentgenol 2014; 49:271-4. [PMID: 25497911 DOI: 10.1053/j.ro.2014.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Patricia Devlin
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH.
| | - Andrew Sher
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Christian Rubbert
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - David Jordan
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Peter Faulhaber
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Norbert Avril
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Pablo Ros
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
36
|
Teixeira SR, Martinez-Rios C, Hu L, Bangert BA. Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:353-66. [PMID: 25498232 DOI: 10.1053/j.ro.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sara R Teixeira
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Division of Radiology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Claudia Martinez-Rios
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | | | - Barbara A Bangert
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
37
|
Fan L, Sher A, Kohan A, Vercher-Conejero J, Rajiah P. PET/MRI in Lung Cancer. Semin Roentgenol 2014; 49:291-303. [DOI: 10.1053/j.ro.2014.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Abstract
Lung diseases cause significant morbidity and mortality and lead to high healthcare utilization. However, few lung disease-specific biomarkers are available to accurately monitor disease activity for the purposes of clinical management or drug development. Advances in cross-modal imaging technologies, such as combined positron emission tomography (PET) and magnetic resonance (MR) imaging scanners and PET or single-photon emission computed tomography (SPECT) combined with computed tomography (CT), may aid in the development of noninvasive, molecular-based biomarkers for lung disease. However, the lungs pose particular challenges in obtaining accurate quantification of imaging data due to the low density of the organ and breathing motion. This review covers the basic physics underlying PET, SPECT, CT, and MR lung imaging and presents technical considerations for multimodal imaging with regard to PET and SPECT quantification. It also includes a brief review of the current and potential clinical applications for these hybrid imaging technologies.
Collapse
Affiliation(s)
- Delphine L Chen
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Paul E Kinahan
- Department of Radiology and Bioengineering and Physics, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
39
|
Partovi S, Kohan A, Vercher-Conejero JL, Rubbert C, Margevicius S, Schluchter MD, Gaeta C, Faulhaber P, Robbin MR. Qualitative and quantitative performance of ¹⁸F-FDG-PET/MRI versus ¹⁸F-FDG-PET/CT in patients with head and neck cancer. AJNR Am J Neuroradiol 2014; 35:1970-5. [PMID: 24924545 DOI: 10.3174/ajnr.a3993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE MR imaging and PET/CT are integrated in the work-up of head and neck cancer patients. The hybrid imaging technology (18)F-FDG-PET/MR imaging combining morphological and functional information might be attractive in this patient population. The aim of the study was to compare whole-body (18)F-FDG-PET/MR imaging and (18)F-FDG-PET/CT in patients with head and neck cancer, both qualitatively in terms of lymph node and distant metastases detection and quantitatively in terms of standardized uptake values measured in (18)F-FDG-avid lesions. MATERIALS AND METHODS Fourteen patients with head and neck cancer underwent both whole-body PET/CT and PET/MR imaging after a single injection of (18)F-FDG. Two groups of readers counted the number of lesions on PET/CT and PET/MR imaging scans. A consensus reading was performed in those cases in which the groups disagreed. Quantitative standardized uptake value measurements were performed by placing spheric ROIs over the lesions in 3 different planes. Weighted and unweighted κ statistics, correlation analysis, and the Wilcoxon signed rank test were used for statistical analysis. RESULTS κ statistics for the number of head and neck lesion lesions counted (pooled across regions) revealed interreader agreement between groups 1 and 2 of 0.47 and 0.56, respectively. Intrareader agreement was 0.67 and 0.63. The consensus reading provided an intrareader agreement of 0.63. For the presence or absence of metastasis, interreader agreement was 0.85 and 0.70. The consensus reading provided an intrareader agreement of 0.72. The correlations between the maximum standardized uptake value in (18)F-FDG-PET/MR imaging and (18)F-FDG-PET/CT for primary tumors and lymph node and metastatic lesions were very high (Spearman r = 1.00, 0.93, and 0.92, respectively). CONCLUSIONS In patients with head and neck cancer, (18)F-FDG-PET/MR imaging and (18)F-FDG-PET/CT provide comparable results in the detection of lymph node and distant metastases. Standardized uptake values derived from (18)F-FDG-PET/MR imaging can be used reliably in this patient population.
Collapse
Affiliation(s)
- S Partovi
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - A Kohan
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - J L Vercher-Conejero
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - C Rubbert
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - S Margevicius
- Department of Biostatistics and Epidemiology (S.M., M.D.S.), Case Western Reserve University, Cleveland, Ohio
| | - M D Schluchter
- Department of Biostatistics and Epidemiology (S.M., M.D.S.), Case Western Reserve University, Cleveland, Ohio
| | - C Gaeta
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - P Faulhaber
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - M R Robbin
- From the Department of Radiology (S.P., A.K., J.L.V.-C., C.R., C.G., P.F., M.R.R.), University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
40
|
Martinez-Rios C, Muzic RF, DiFilippo FP, Hu L, Rubbert C, Herrmann KA. Artifacts and diagnostic pitfalls in positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:255-70. [PMID: 25497910 DOI: 10.1053/j.ro.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Raymond F Muzic
- Department of Radiology, Case Western Reserve University, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Imaging Institute, Cleveland, OH
| | | | - Christian Rubbert
- Institute of Diagnostic and Interventional Radiology, University Hospitals, Düsseldorf, Germany
| | - Karin A Herrmann
- Department of Radiology, Case Western Reserve University, Cleveland, OH; Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
41
|
Sher A, Valls L, Muzic RF, Plecha D, Avril N. Whole-body positron emission tomography-magnetic resonance in breast cancer. Semin Roentgenol 2014; 49:313-20. [PMID: 25498228 DOI: 10.1053/j.ro.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrew Sher
- Department of Radiology, University Hospitals Case Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Laia Valls
- Department of Radiology, University Hospitals Case Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Raymond F Muzic
- Department of Radiology, University Hospitals Case Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Donna Plecha
- Department of Radiology, University Hospitals Case Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Norbert Avril
- Department of Radiology, University Hospitals Case Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
42
|
Slomka PJ, Berman DS, Germano G. New Cardiac Cameras: Single-Photon Emission CT and PET. Semin Nucl Med 2014; 44:232-51. [DOI: 10.1053/j.semnuclmed.2014.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Sher A, Vercher-Conejero JL, Muzic RF, Avril N, Plecha D. Positron emission tomography/magnetic resonance imaging of the breast. Semin Roentgenol 2014; 49:304-12. [PMID: 25498227 DOI: 10.1053/j.ro.2014.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew Sher
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | - Jose L Vercher-Conejero
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | - Raymond F Muzic
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | - Norbert Avril
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | - Donna Plecha
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Center for Imaging Research, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
44
|
Eo JS, Paeng JC, Lee DS. Nuclear imaging for functional evaluation and theragnosis in liver malignancy and transplantation. World J Gastroenterol 2014; 20:5375-5388. [PMID: 24833867 PMCID: PMC4017052 DOI: 10.3748/wjg.v20.i18.5375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Currently, nuclear imaging such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) is increasingly used in the management of liver malignancy. 18F-fluorodeoxyglucose (FDG)-PET is the most widely used nuclear imaging in liver malignancy as in other cancers, and has been reported to be effective in diagnosis, response monitoring, recurrence evaluation, and prognosis prediction. Other PET imaging such as 11C-acetate PET is also used complementarily to FDG-PET in diagnosis of liver malignancy. Additionally, image-based evaluation of regional hepatic function can be performed using nuclear imaging. Those imaging modalities are also effective for candidate selection, treatment planning, and perioperative evaluation in liver surgery and transplantation. Recently, nuclear imaging has been actively adopted in the transarterial radioembolization therapy of liver malignancy, according to the concept of theragnosis. With the development of new hybrid imaging technologies such as PET/magnetic resonance imaging and SPECT/CT, nuclear imaging is expected to be more useful in the management of liver malignancy, particularly regarding liver surgery and transplantation. In this review, the efficacy and roles of nuclear imaging methods in diagnosis, transplantation and theragnosis are discussed.
Collapse
|
45
|
Grueneisen J, Beiderwellen K, Heusch P, Buderath P, Aktas B, Gratz M, Forsting M, Lauenstein T, Ruhlmann V, Umutlu L. Correlation of standardized uptake value and apparent diffusion coefficient in integrated whole-body PET/MRI of primary and recurrent cervical cancer. PLoS One 2014; 9:e96751. [PMID: 24804676 PMCID: PMC4013042 DOI: 10.1371/journal.pone.0096751] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/10/2014] [Indexed: 12/27/2022] Open
Abstract
Background To evaluate a potential correlation of the maximum standard uptake value (SUVmax) and the minimum apparent diffusion coefficient (ADCmin) in primary and recurrent cervical cancer based on integrated PET/MRI examinations. Methods 19 consecutive patients (mean age 51.6 years; range 30–72 years) with histopathologically confirmed primary cervical cancer (n = 9) or suspected tumor recurrence (n = 10) were prospectively enrolled for an integrated PET/MRI examination. Two radiologists performed a consensus reading in random order, using a dedicated post-processing software. Polygonal regions of interest (ROI) covering the entire tumor lesions were drawn into PET/MR images to assess SUVmax and into ADC parameter maps to determine ADCmin values. Pearson’s correlation coefficients were calculated to assess a potential correlation between the mean values of ADCmin and SUVmax. Results In 15 out of 19 patients cervical cancer lesions (n = 12) or lymph node metastases (n = 42) were detected. Mean SUVmax (12.5±6.5) and ADCmin (644.5±179.7×10−5 mm2/s) values for all assessed tumor lesions showed a significant but weak inverse correlation (R = −0.342, p<0.05). When subdivided in primary and recurrent tumors, primary tumors and associated primary lymph node metastases revealed a significant and strong inverse correlation between SUVmax and ADCmin (R = −0.692, p<0.001), whereas recurrent cancer lesions did not show a significant correlation. Conclusions These initial results of this emerging hybrid imaging technique demonstrate the high diagnostic potential of simultaneous PET/MR imaging for the assessment of functional biomarkers, revealing a significant and strong correlation of tumor metabolism and higher cellularity in cervical cancer lesions.
Collapse
Affiliation(s)
- Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- * E-mail:
| | - Karsten Beiderwellen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Philipp Heusch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Paul Buderath
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
| | - Bahriye Aktas
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
| | - Marcel Gratz
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Thomas Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
46
|
Partovi S, Kohan AA, Zipp L, Faulhaber P, Kosmas C, Ros PR, Robbin MR. Hybrid PET/MR imaging in two sarcoma patients - clinical benefits and implications for future trials. Int J Clin Exp Med 2014; 7:640-648. [PMID: 24753758 PMCID: PMC3992403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
PET/MRI is an evolving hybrid imaging modality which combines the inherent strengths of MRIs soft-tissue and contrast resolution and PETs functional metabolic capabilities. Bone and soft-tissue sarcoma are a relatively rare tumor entity, relying on MRI for local staging and often on PET/CT for lymph node involvement and metastatic spread evaluation. The purpose of this article is to demonstrate the successful use of PET/MRI in two sarcoma patients. We also use these patients as a starting point to discuss how PET/MRI might be of value in sarcoma. Among its potential benefits are: superior TNM staging than either modality alone, decreased radiation dose, more sensitive and specific follow-up and better assessment of treatment response. These potentials need to be investigated in future PET/MRI soft-tissue sarcoma trials.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Andres A Kohan
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Lisa Zipp
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, University Hospitals Case Medical CenterCleveland, Ohio
| | - Peter Faulhaber
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Christos Kosmas
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Pablo R Ros
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Mark R Robbin
- Department of Radiology, University Hospitals Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| |
Collapse
|
47
|
Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 2013; 83:289-96. [PMID: 24331845 DOI: 10.1016/j.ejrad.2013.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE To compare the performance of PET/MRI imaging using MR attenuation correction (MRAC) (DIXON-based 4-segment -map) in breast cancer patients with that of PET/CT using CT-based attenuation correction and to compare the quantification accuracy in lesions and in normal organ tissues. METHODS A total of 36 patients underwent a whole-body PET/CT scan 1h after injection and an average of 62 min later a second scan using a hybrid PET/MRI system. PET/MRI and PET/CT were compared visually by rating anatomic allocation and image contrast. Regional tracer uptake in lesions was quantified using volumes of interest, and maximal and mean standardized uptake values (SUVmax and SUVmean, respectively) were calculated. Metabolic tumor volume (MTV) of each lesion was computed on PET/MRI and PET/CT. Tracer uptake in normal organ tissue was assessed as SUVmax and SUVmean in liver, spleen, left ventricular myocardium, lung, and muscle. RESULTS Overall 74 FDG positive lesions were visualized by both PET/CT and PET/MRI. No significant differences in anatomic allocation scores were found between PET/CT and PERT/MRI, while contrast score of lesions on PET/MRI was significantly higher. Both SUVmax and SUVmean of lesions were significantly higher on PET/MRI than on PET/CT, with strong correlations between PET/MRI and PET/CT data (ρ=0.71-0.88). MTVs of all lesions were 4% lower on PET/MRI than on PET/CT, but no statistically significant difference was observed, and an excellent correlation between measurements of MTV with PET/MRI and PET/CT was found (ρ=0.95-0.97; p<0.0001). Both SUVmax and SUVmean were significantly lower by PET/MRI than by PET/CT for lung, liver and muscle, no significant difference was observed for spleen, while either SUVmax and SUVmean of myocardium were significantly higher by PET/MRI. High correlations were found between PET/MRI and PET/CT for both SUVmax and SUVmean of the left ventricular myocardium (ρ=0.91; p<0.0001), while moderate correlations were found for the other normal organ tissues (ρ=0.36-0.61; p<0.05). CONCLUSIONS PET/MRI showed equivalent performance in terms of qualitative lesion detection to PET/CT. Despite significant differences in tracer uptake quantification, due to either methodological and biological factors, PET/MRI and PET/CT measurements in lesions and normal organ tissues correlated well. This study demonstrates that integrated whole-body PET/MRI is feasible in a clinical setting with high quality and in a short examination time.
Collapse
|
48
|
Wetter A, Lipponer C, Nensa F, Heusch P, Rübben H, Altenbernd JC, Schlosser T, Bockisch A, Pöppel T, Lauenstein T, Nagarajah J. Evaluation of the PET component of simultaneous [(18)F]choline PET/MRI in prostate cancer: comparison with [(18)F]choline PET/CT. Eur J Nucl Med Mol Imaging 2013; 41:79-88. [PMID: 24085502 DOI: 10.1007/s00259-013-2560-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The aim of this study was to evaluate the positron emission tomography (PET) component of [(18)F]choline PET/MRI and compare it with the PET component of [(18)F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. METHODS Thirty-six patients were examined with simultaneous [(18)F]choline PET/MRI following combined [(18)F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUVmax and SUVmean) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUVmax and SUVmean was tested using Pearson's product-moment correlation and Bland-Altman analysis. RESULTS All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUVmax and SUVmean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p<0.05 and 2.0 vs 2.6, p<0.001, respectively). Pearson's product-moment correlation indicated highly significant correlations between SUVmax of PET/CT and PET/MRI (R=0.86, p<0.001) as well as between SUVmean of PET/CT and PET/MRI (R=0.81, p<0.001). Bland-Altman analysis revealed lower and upper limits of agreement of -2.77 to 3.64 between SUVmax of PET/CT vs PET/MRI and -1.12 to +2.23 between SUVmean of PET/CT vs PET/MRI. CONCLUSION PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUVmax and SUVmean was found. Both SUVmax and SUVmean were significantly lower in [(18)F]choline PET/MRI than in [(18)F]choline PET/CT. Differences of SUVmax and SUVmean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [(18)F]choline between the subsequent examinations and in the respective organ systems have to be taken into account.
Collapse
Affiliation(s)
- Axel Wetter
- Department of diagnostic and interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Partovi S, Robbin MR, Steinbach OC, Kohan A, Rubbert C, Vercher-Conejero JL, Kolthammer JA, Faulhaber P, Paspulati RM, Ros PR. Initial experience of MR/PET in a clinical cancer center. J Magn Reson Imaging 2013; 39:768-80. [PMID: 24006287 DOI: 10.1002/jmri.24334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Magentic Resonance/positron emission tomography (PET) has been introduced recently for imaging of clinical patients. This hybrid imaging technology combines the inherent strengths of MRI with its high soft-tissue contrast and biological sequences with the inherent strengths of PET, enabling imaging of metabolism with a high sensitivity. In this article, we describe the initial experience of MR/PET in a clinical cancer center along with a review of the literature. For establishing MR/PET in a clinical setting, technical challenges, such as attenuation correction and organizational challenges, such as workflow and reimbursement, have to be overcome. The most promising initial results of MR/PET have been achieved in anatomical areas where high soft-tissue and contrast resolution is of benefit. Head and neck cancer and pelvic imaging are potential applications of this hybrid imaging technology. In the pediatric population, MR/PET can decrease the lifetime radiation dose. MR/PET protocols tailored to different types of malignancies need to be developed. After the initial exploration phase, large multicenter trials are warranted to determine clinical indications for this exciting hybrid imaging technology and thereby opening new horizons in molecular imaging.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|