1
|
Zou X, Li X, He K, Song Q, Yin R. Current knowledge of vertebral osteomyelitis: a review. Eur J Clin Microbiol Infect Dis 2025; 44:213-231. [PMID: 39589654 DOI: 10.1007/s10096-024-04983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE As life expectancy increases worldwide, the elderly population in every country is growing in both the size and proportion. This review aims to provide a comprehensive overview of the microbiology, clinical presentation, diagnostic strategies, and therapeutic approaches to vertebral osteomyelitis, summarizing the latest evidence to guide effective treatment. METHODS A comprehensive literature search was conducted using the Medline and Embase databases to identify relevant studies on vertebral osteomyelitis. The search included the following keywords: "vertebral osteomyelitis," "spinal infection," "discitis," "spondylitis," " spondylodiscitis," and "spinal epidural abscess." Both retrospective and prospective studies, case series, and reviews were considered. RESULTS This condition is commonly caused by bacteria such as Staphylococcus aureus or gram-negative bacilli, but can also be caused by other pathogens like fungi and parasites. The onset of vertebral osteomyelitis is insidious, with low specificity in clinical manifestations, often making early diagnosis difficult. Delayed or inadequate treatment may lead to sepsis, permanent neurological damage, or even death. Treatment strategies emphasize the importance of identifying the causative pathogen to guide effective antimicrobial therapy. Current consensus does not advocate for empirical antibiotic treatment unless patients exhibit signs of neurological impairment or severe sepsis. Severe cases involving neurological paralysis, spinal instability, or sepsis may require surgical intervention. CONCLUSION Vertebral osteomyelitis requires prompt diagnosis and treatment for a good prognosis. Delayed diagnosis and treatment can lead to permanent neurological deficits or death. Identifying the causative organism is crucial for guiding appropriate antimicrobial therapy. In addition to conservative and surgical treatments, local drug delivery systems offer new approaches to managing spinal osteomyelitis.
Collapse
Affiliation(s)
- Xuanying Zou
- Department of Orthopedic Surgery, China-Japan Union Hospital, Jilin University, Jilin, 130033, China
| | - Xiaoyan Li
- Infection Control Department, Hospital of Stomatology, Jilin University, Jilin, 130033, China
| | - Kang He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Song
- Department of Orthopedic Surgery, China-Japan Union Hospital, Jilin University, Jilin, 130033, China
| | - Ruofeng Yin
- Department of Orthopedic Surgery, China-Japan Union Hospital, Jilin University, Jilin, 130033, China.
| |
Collapse
|
2
|
Lai J, Wang B, Petrik M, Beziere N, Hammoud DA. Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future. J Infect Dis 2023; 228:S259-S269. [PMID: 37788500 PMCID: PMC10547453 DOI: 10.1093/infdis/jiad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.
Collapse
Affiliation(s)
- Jianhao Lai
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Cortat Y, Zobi F. Resurgence and Repurposing of Antifungal Azoles by Transition Metal Coordination for Drug Discovery. Pharmaceutics 2023; 15:2398. [PMID: 37896159 PMCID: PMC10609764 DOI: 10.3390/pharmaceutics15102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in the field of coordination derivatives of AAs synthesized for medical purposes by discussing the corresponding publications and emphasizing the most promising compounds discovered so far. The resulting overview highlights the efficiency of AAs and their metallic species, as well as the potential still lying in this research area.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
4
|
Malek H, Hedayati R, Maghsudi M, Yaghoobi N. Diagnosis of Fungal Infection ( Candida albicans) After Heart Transplantation in a Pediatric Case with Fever of Unknown Origin: Role of 99mTc-UBI SPECT/CT and 18F-FDG PET/CT. Nucl Med Mol Imaging 2023; 57:155-158. [PMID: 37187953 PMCID: PMC10172439 DOI: 10.1007/s13139-022-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The diagnosis of patients with fever of unknown origin (FUO) in pediatric heart transplantation is a challenging medical problem. The physician should differentiate between rejections, infections, malignancy, adrenal insufficiency, and drug fever. Immunosuppressive therapy in these patients exposes them to a high risk of developing a post-transplantation fungal infection. In this case, we discuss the diagnostic contribution of the 99mTc-UBI scan and 18F-FDG PET scan for diagnosis of fungal infection causing FUO in these patients.
Collapse
Affiliation(s)
- Hadi Malek
- Cardiovascular Interventional Research Center, Department of Nuclear Medicine, Rajaei Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Hedayati
- Department of Nuclear Medicine, Hazrate Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Maghsudi
- Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Yaghoobi
- Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ankrah AO, Lawal IO, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. Imaging of Invasive Fungal Infections- The Role of PET/CT. Semin Nucl Med 2023; 53:57-69. [PMID: 35933165 DOI: 10.1053/j.semnuclmed.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
Over the last decades, the population at risk for invasive fungal disease (IFD) has increased because of medical therapy advances and diseases compromising patients' immune systems. The high morbidity and mortality associated with invasive fungal disease in the immunocompromised present the challenge of early diagnosis of the IFD and the need to closely monitor the infection during treatment. The definitive diagnosis of invasive fungal disease based on culture or histopathological methods often has reduced diagnostic accuracy in the immunocompromised and may be very invasive. Less invasive and indirect evidence of the fungal infection by serology and imaging has been used for the early diagnosis of fungal infection before definitive results are available or when the definitive methods of diagnosis are suboptimal. Imaging in invasive fungal disease is a non-invasive biomarker that helps in the early diagnosis of invasive fungal disease but helps follow-up the infection during treatment. Different imaging modalities are used in the workup to evaluate fungal disease. The different imaging modalities have advantages and disadvantages at different sites in the body and may complement each other in the management of IFD. Positron emission tomography integrated with computed tomography with [18F]Fluorodeoxyglucose (FDG PET/CT) has helped manage IFD. The combined functional data from PET and anatomical data from the CT from almost the whole body allows noninvasive evaluation of IFD and provides a semiquantitative means of assessing therapy. FDG PET/CT adds value to anatomic-based only imaging modalities. The nonspecificity of FDG uptake has led to the evaluation of other tracers in the assessment of IFD. However, these are mainly still at the preclinical level and are yet to be translated to humans. FDG PET/CT remains the most widely evaluated radionuclide-based imaging modality in IFD management. The limitations of FDG PET/CT must be well understood, and more extensive prospective studies in uniform populations are needed to validate its role in the management of IFD that can be international guidelines.
Collapse
Affiliation(s)
- Alfred O Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA, Ghana; Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands.
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Rudi A J O Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Andor W J M Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| |
Collapse
|
6
|
V F Esposito T, Rodríguez-Rodríguez C, Blackadar C, Haney EF, Pletzer D, E W Hancock R, Saatchi K, Häfeli UO. Biodistribution and Toxicity of Innate Defense Regulator 1018 (IDR-1018). Eur J Pharm Biopharm 2022; 179:11-25. [PMID: 36028151 DOI: 10.1016/j.ejpb.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Innate defense regulators (IDRs) are synthetic host-defense peptides (HDPs) with broad-spectrum anti-infective properties, including immunomodulatory, anti-biofilm and direct antimicrobial activities. A lack of pharmacokinetic data about these peptides hinders their development and makes it challenging to fully understand how they work in vivo since their mechanism of action is dependent on tissue concentrations of the peptide. Here, we set out to define in detail the pharmacokinetics of a well-characterized IDR molecule, IDR-1018. To make the peptide traceable, it was radiolabeled with the long-lived gamma-emitting isotope gallium-67. After a series of bench-top characterizations, the radiotracer was administered to healthy mice intravenously (IV) or subcutaneously (SQ) at various dose levels (2.5-13 mg/kg). Nuclear imaging and ex-vivo biodistributions were used to quantify organ and tissue uptake of the radiotracer over time. When administered as an IV bolus, the distribution profile of the radiotracer changed as the dose was escalated. At 2.5 mg/kg, the peptide was well-tolerated, poorly circulated in the blood and was cleared predominately by the reticuloendothelial system. Higher doses (7 and 13 mg/kg) as an IV bolus were almost immediately lethal due to respiratory arrest; significant lung uptake of the radiotracer was observed from nuclear scans of these animals, and histological examination found extensive damage to the pulmonary vasculature and alveoli. When administered SQ at a dose of 3 mg/kg, radiolabeled IDR-1018 was rapidly absorbed from the site of injection and predominately cleared renally. Apart from the SQ injection site, no other tissue had a concentration above the minimum inhibitory concentration that would enable this peptide to exert direct antimicrobial effects against most pathogenic bacteria. Tissue concentrations were sufficient however to disrupt microbial biofilms and alter the host immune response. Overall, this study demonstrated that the administration of synthetic IDR peptide in vivo is best suited to local administration which avoids some of the issues associated with peptide toxicity that are observed when administered systemically by IV injection, an issue that will have to be addressed through formulation.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada; Asep Medical Holdings, Victoria, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Co CM, Mulgaonkar A, Zhou N, Harris S, Öz OK, Tang L, Sun X. PET Imaging of Active Invasive Fungal Infections with d-[5- 11C]-Glutamine. ACS Infect Dis 2022; 8:1663-1673. [PMID: 35869564 DOI: 10.1021/acsinfecdis.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
8
|
Leroy-Freschini B, Imperiale A. PET imaging in invasive fungal infection. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Bone and Joint Infections: The Role of Imaging in Tailoring Diagnosis to Improve Patients' Care. J Pers Med 2021; 11:jpm11121317. [PMID: 34945789 PMCID: PMC8709091 DOI: 10.3390/jpm11121317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Imaging is needed for the diagnosis of bone and joint infections, determining the severity and extent of disease, planning biopsy, and monitoring the response to treatment. Some radiological features are pathognomonic of bone and joint infections for each modality used. However, imaging diagnosis of these infections is challenging because of several overlaps with non-infectious etiologies. Interventional radiology is generally needed to verify the diagnosis and to identify the microorganism involved in the infectious process through imaging-guided biopsy. This narrative review aims to summarize the radiological features of the commonest orthopedic infections, the indications and the limits of different modalities in the diagnostic strategy as well as to outline recent findings that may facilitate diagnosis.
Collapse
|
10
|
Radionuclide Imaging of Invasive Fungal Disease in Immunocompromised Hosts. Diagnostics (Basel) 2021; 11:diagnostics11112057. [PMID: 34829403 PMCID: PMC8620393 DOI: 10.3390/diagnostics11112057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal disease (IFD) leads to increased mortality, morbidity, and costs of treatment in patients with immunosuppressive conditions. The definitive diagnosis of IFD relies on the isolation of the causative fungal agents through microscopy, culture, or nucleic acid testing in tissue samples obtained from the sites of the disease. Biopsy is not always feasible or safe to be undertaken in immunocompromised hosts at risk of IFD. Noninvasive diagnostic techniques are, therefore, needed for the diagnosis and treatment response assessment of IFD. The available techniques that identify fungal-specific antigens in biological samples for diagnosing IFD have variable sensitivity and specificity. They also have limited utility in response assessment. Imaging has, therefore, been applied for the noninvasive detection of IFD. Morphologic imaging with computed tomography (CT) and magnetic resonance imaging (MRI) is the most applied technique. These techniques are neither sufficiently sensitive nor specific for the early diagnosis of IFD. Morphologic changes evaluated by CT and MRI occur later in the disease course and during recovery after successful treatment. These modalities may, therefore, not be ideal for early diagnosis and early response to therapy determination. Radionuclide imaging allows for targeting the host response to pathogenic fungi or specific structures of the pathogen itself. This makes radionuclide imaging techniques suitable for the early diagnosis and treatment response assessment of IFD. In this review, we aimed to discuss the interplay of host immunity, immunosuppression, and the occurrence of IFD. We also discuss the currently available radionuclide probes that have been evaluated in preclinical and clinical studies for their ability to detect IFD.
Collapse
|
11
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
12
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Radionuclide Imaging of Fungal Infections and Correlation with the Host Defense Response. J Fungi (Basel) 2021; 7:jof7060407. [PMID: 34067410 PMCID: PMC8224611 DOI: 10.3390/jof7060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The human response to invading fungi includes a series of events that detect, kill, or clear the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionuclides. Several important clinical applications have been found with radiolabelled biomolecules of inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host defence of fungi. This tracer has added value in the early detection of infection, in staging and visualising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial peptides showed promising results, but large prospective studies in fungal infection are lacking. Other tracers have also been used in imaging events of the host response, such as the migration of white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further studies before translation into clinical use. The application of therapeutic radionuclides offers a very promising clinical application of these tracers in managing drug-resistant fungi.
Collapse
Affiliation(s)
- Alfred O. Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA-222 7974, Ghana;
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
13
|
Henneberg S, Hasenberg A, Maurer A, Neumann F, Bornemann L, Gonzalez-Menendez I, Kraus A, Hasenberg M, Thornton CR, Pichler BJ, Gunzer M, Beziere N. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun 2021; 12:1707. [PMID: 33731708 PMCID: PMC7969596 DOI: 10.1038/s41467-021-21965-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immunocompromised humans, caused by the opportunistic fungal pathogen Aspergillus fumigatus. Inadequacies in current diagnostic procedures mean that early diagnosis of the disease, critical to patient survival, remains a major clinical challenge, and is leading to the empiric use of antifungal drugs and emergence of azole resistance. A non-invasive procedure that allows both unambiguous detection of IPA and its response to azole treatment is therefore needed. Here, we show that a humanised Aspergillus-specific monoclonal antibody, dual labelled with a radionuclide and fluorophore, can be used in immunoPET/MRI in vivo in a neutropenic mouse model and 3D light sheet fluorescence microscopy ex vivo in the infected mouse lungs to quantify early A. fumigatus lung infections and to monitor the efficacy of azole therapy. Our antibody-guided approach reveals that early drug intervention is critical to prevent complete invasion of the lungs by the fungus, and demonstrates the power of molecular imaging as a non-invasive procedure for tracking IPA in vivo. Invasive pulmonary aspergillosis is a life-threatening fungal lung disease devoid of specific rapid diagnosis and with limited therapeutic options. Here, the authors show how state-of-the-art imaging approaches can enable specific diagnosis and therapy monitoring of this infection.
Collapse
Affiliation(s)
- Sophie Henneberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Franziska Neumann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christopher R Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany. .,Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
14
|
Gunzer M, Thornton CR, Beziere N. Advances in the In Vivo Molecular Imaging of Invasive Aspergillosis. J Fungi (Basel) 2020; 6:jof6040338. [PMID: 33291706 PMCID: PMC7761943 DOI: 10.3390/jof6040338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection of immunocompromised patients with Aspergillus fumigatus, a ubiquitous environmental mould. While there are numerous functioning antifungal therapies, their high cost, substantial side effects and fear of overt resistance development preclude permanent prophylactic medication of risk-patients. Hence, a fast and definitive diagnosis of IPA is desirable, to quickly identify those patients that really require aggressive antimycotic treatment and to follow the course of the therapeutic intervention. However, despite decades of research into this issue, such a diagnostic procedure is still not available. Here, we discuss the array of currently available methods for IPA detection and their limits. We then show that molecular imaging using positron emission tomography (PET) combined with morphological computed tomography or magnetic imaging is highly promising to become a future non-invasive approach for IPA diagnosis and therapy monitoring, albeit still requiring thorough validation and relying on further acceptance and dissemination of the approach. Thereby, our approach using the A. fumigatus-specific humanized monoclonal antibody hJF5 labelled with 64Cu as PET-tracer has proven highly effective in pre-clinical models and hence bears high potential for human application.
Collapse
Affiliation(s)
- Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Correspondence: (M.G.); (N.B.); Tel.: +49-201-183-6640 (M.G.); +49-7071-29-87511 (N.B.)
| | - Christopher R. Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: (M.G.); (N.B.); Tel.: +49-201-183-6640 (M.G.); +49-7071-29-87511 (N.B.)
| |
Collapse
|
15
|
Preparation and evaluation of 99mTc-anidulafungin: a potential radiotracer for fungal infection. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07274-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Anjos MNV, de Araújo-Neto LN, Silva Buonafina MD, Pereira Neves R, de Souza ER, Bezerra ICF, Ferreira MRA, Soares LAL, Coutinho HDM, Martins N, da Silva MV, Correia MTDS. Ocotea glomerata (Nees) Mez Extract and Fractions: Chemical Characterization, Anti- Candida Activity and Related Mechanism of Action. Antibiotics (Basel) 2020; 9:antibiotics9070394. [PMID: 32659912 PMCID: PMC7400089 DOI: 10.3390/antibiotics9070394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Opportunistic fungal infections are increasingly common, with Candida albicans being the most common etiological agent; however, in recent years, episodes of candidiasis caused by non-albicansCandida species have emerged. Plants belonging to the Lauraceae family have shown remarkable antifungal effects. This study assessed the anti-Candida activity of Ocotea glomerata extracts and fractions, time of death and the synergistic effects with conventional antifungals. The possible mechanism of action was also addressed. Methods: Minimal inhibitory concentrations (MIC) were determined by broth microdilution technique, and the mechanism of action was assessed by ergosterol, sorbitol, cell viability, reactive oxygen species (ROS) generation and phosphatidylserine externalization tests. Results: All the tested extracts evidenced antifungal activity, but the methanol extract was revealed to be the most effective (MIC = 3.12 μg/mL) on C. krusei. The combination of methanol extract with ketoconazole and fluconazole revealed a synergistic effect for C. krusei and C. albicans, respectively. Fractions 1 and 5 obtained from the methanol extract had fungicidal activity, mainly against C. krusei. Methanol extract did not reveal effects by ergosterol and sorbitol assays; however, it led to an increase in intracellular ROS levels, decreased cell viability, and consequently, cell death. Conclusion: O. glomerata methanol extract may be viewed as a rich source of biomolecules with antifungal activity against Candida spp.
Collapse
Affiliation(s)
- Mayara Nunes Vitor Anjos
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| | - Luiz Nascimento de Araújo-Neto
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Maria Daniela Silva Buonafina
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Rejane Pereira Neves
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Edson Rubhens de Souza
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Isabelle Cristinne Ferraz Bezerra
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63000-000, Brazil
- Correspondence: (H.D.M.C.); (N.M.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence: (H.D.M.C.); (N.M.)
| | - Márcia Vanusa da Silva
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| | - Maria Tereza dos Santos Correia
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| |
Collapse
|
17
|
Silindir-Gunay M, Ozer AY. 99mTc-radiolabeled Levofloxacin and micelles as infection and inflammation imaging agents. J Drug Deliv Sci Technol 2020; 56:101571. [PMID: 32288835 PMCID: PMC7104933 DOI: 10.1016/j.jddst.2020.101571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/01/2023]
Abstract
Easy and early detection of infection and inflammation is essential for early and effective treatment. In this study, PEGylated micelles were designed and both micelles and Levofloxacin were radiolabeled with 99mTcO4 - to develop potential radiotracers for detection of infection/inflammation. Radiolabeling efficiency, in vitro stability and bacterial binding of 99mTc-Levofloxacin and 99mTc-micelles were compared. The aim of this study is to formulate and compare 99mTc-Levofloxacin and 99mTc-micelles as infection and inflammation agents having different mechanisms for the accumulation at infection and inflammation site. PEGylated micelles were designed with a particle size of 80 ± 0.7 nm and proper characterization properties. High radiolabeling efficiency was achieved for 99mTc-Levofloxacin (96%) and 99mTc-micelles (87%). The radiolabeling efficiency was remained stable with some insignificant alterations for both radiotracers at 25 °C for 24 h. Although in vitro bacterial binding of 99mTc-levofloxacine was higher than 99mTc-micelles, 99mTc-micelles may also be evaluated potential agent due to long circulation and passive accumulation mechanisms at infection/inflammation site. Both radiopharmaceutical agents exhibit potential results in design, characterization, radiolabeling efficiency and in vitro bacterial binding point of view.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, 06100, Sıhhiye, Ankara, Turkey
| | - Asuman Yekta Ozer
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
18
|
Spinal Infections: An Update. Microorganisms 2020; 8:microorganisms8040476. [PMID: 32230730 PMCID: PMC7232330 DOI: 10.3390/microorganisms8040476] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal infection poses a demanding diagnostic and treatment problem for which a multidisciplinary approach with spine surgeons, radiologists, and infectious disease specialists is required. Infections are usually caused by bacterial microorganisms, although fungal infections can also occur. The most common route for spinal infection is through hematogenous spread of the microorganism from a distant infected area. Most patients with spinal infections diagnosed in early stages can be successfully managed conservatively with antibiotics, bed rest, and spinal braces. In cases of gross or pending instability, progressive neurological deficits, failure of conservative treatment, spinal abscess formation, severe symptoms indicating sepsis, and failure of previous conservative treatment, surgical treatment is required. In either case, close monitoring of the patients with spinal infection with serial neurological examinations and imaging studies is necessary.
Collapse
|
19
|
Welling MM, de Korne CM, Spa SJ, van Willigen DM, Hensbergen AW, Bunschoten A, Duszenko N, Smits WK, Roestenberg M, van Leeuwen FWB. Multimodal Tracking of Controlled Staphylococcus aureus Infections in Mice. ACS Infect Dis 2019; 5:1160-1168. [PMID: 31016979 PMCID: PMC6630532 DOI: 10.1021/acsinfecdis.9b00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 12/14/2022]
Abstract
There is a need to develop diagnostic and analytical tools that allow noninvasive monitoring of bacterial growth and dissemination in vivo. For such cell-tracking studies to hold translational value to controlled human infections, in which volunteers are experimentally colonized, they should not require genetic modification, and they should allow tracking over a number of replication cycles. To gauge if an antimicrobial peptide tracer, 99mTc-UBI29-41-Cy5, which contains both a fluorescent and a radioactive moiety, could be used for such in vivo bacterial tracking, we performed longitudinal imaging of a thigh-muscle infection with 99mTc-UBI29-41-Cy5-labeled Staphylococcus aureus. Mice were imaged using SPECT and fluorescence-imaging modalities at various intervals during a 28 h period. Biodistribution analyses were performed to quantitate radioactivity in the abscess and other tissues. SPECT and fluorescence imaging in mice showed clear retention of the 99mTc-UBI29-41-Cy5-labeled bacteria following inoculation in the thigh muscle. Despite bacterial replication, the signal intensity in the abscess only modestly decreased within a 28 h period: 52% of the total injected radioactivity per gram of tissue (%ID/g) at 4 h postinfection (pi) versus 44%ID/g at 28 h pi (15% decrease). After inoculation, a portion of the bacteria disseminated from the abscess, and S. aureus cultures were obtained from radioactive urine samples. Bacterial staining with 99mTc-UBI29-41-Cy5 allowed noninvasive bacterial-cell tracking during a 28 h period. Given the versatility of the presented bacterial-tracking method, we believe that this concept could pave the way for precise imaging capabilities during controlled-human-infection studies.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Clarize M. de Korne
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Silvia J. Spa
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Albertus W. Hensbergen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Anton Bunschoten
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Laboratory
of BioNanoTechnology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| | - Nikolas Duszenko
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department
of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Laboratory
of BioNanoTechnology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|
20
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. An update on radiotracer development for molecular imaging of bacterial infections. Clin Transl Imaging 2019; 7:105-124. [DOI: 10.1007/s40336-019-00317-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
|
21
|
Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection. ACS NANO 2018; 12:5615-5625. [PMID: 29746090 PMCID: PMC8045556 DOI: 10.1021/acsnano.8b01362] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ag+ ions are a well-known antibacterial agent, and Ag nanoparticles act as a reservoir of these Ag+ ions for targeted therapy of bacterial infections. However, there are no tools to effectively trigger and monitor the release of Ag+ ions from Ag nanoparticles. Photoacoustic (PA) imaging is an emerging noninvasive imaging tool, and gold nanorods (AuNRs) are an excellent contrast agent for PA imaging. In this work, we developed Au/Ag hybrid nanoparticles by coating AuNRs with silver (Ag), which decreased their photoacoustic signal. The as-prepared, Ag-coated Au nanorods (Au/AgNRs) are stable under ambient conditions, but the addition of ferricyanide solution (1 mM) results in oxidative etching of the silver shell. The PA contrast is simultaneously recovered as the silver is released, and this PA signal offers noninvasive monitoring of localized release of Ag+ ions. The released Ag+ ions exhibit a strong bactericidal efficacy similar to equivalent free Ag+ ions (AgNO3), and the nanoparticles killed >99.99% of both (Gram-positive) methicillin-resistant Staphylococcus aureus (MRSA, 32 μM Ag+ equivalent) and (Gram-negative) Escherichia coli (8 μM Ag+ equivalent). The theranostic potential of these nanoparticles was demonstrated in a pilot in vivo study. Mice were inoculated with MRSA and Au/AgNRs were subcutaneously implanted followed by silver etching. There was a 730% increase in the PA signal ( p < 0.01) pre- and post-etching, and the bacterial counts in infected tissues of the treated group were reduced by 1000-fold (log CFU/g = 4.15 vs 7.75) versus the untreated control; this treatment efficacy was confirmed with histology. We further showed that these hybrid nanoparticles could release Ag+ after stimulation by reactive oxygen species including hydrogen peroxide and peroxynitrite. These hybrid Au/Ag nanoparticles are a useful theranostic agent for the photoacoustic imaging and treatment of bacterial infections.
Collapse
Affiliation(s)
- Taeho Kim
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Qiangzhe Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jin Li
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| |
Collapse
|
22
|
Thornton CR. Molecular Imaging of Invasive Pulmonary Aspergillosis Using ImmunoPET/MRI: The Future Looks Bright. Front Microbiol 2018; 9:691. [PMID: 29686661 PMCID: PMC5900000 DOI: 10.3389/fmicb.2018.00691] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immuno-compromised humans caused by the ubiquitous environmental mold Aspergillus. Biomarker tests for the disease lack sensitivity and specificity, and culture of the fungus from invasive lung biopsy is slow, insensitive, and undesirable in critically ill patients. A computed tomogram (CT) of the chest offers a simple non-intrusive diagnostic procedure for rapid decision making, and so is used in many hematology units to drive antifungal treatment. However, radiological indicators that raise the suspicion of IPA are either transient signs in the early stages of the disease or not specific for Aspergillus infection, with other angio-invasive molds or bacterial pathogens producing comparable radiological manifestations in a chest CT. Improvements to the specificity of radiographic imaging of IPA have been attempted by coupling CT and positron emission tomography (PET) with [18F]fluorodeoxyglucose ([18F]FDG), a marker of metabolic activity well suited to cancer imaging, but with limited use in invasive fungal disease diagnostics due to its inability to differentiate between infectious etiologies, cancer, and inflammation. Bioluminescence imaging using single genetically modified strains of Aspergillus fumigatus has enabled in vivo monitoring of IPA in animal models of disease. For in vivo detection of Aspergillus lung infections in humans, radiolabeled Aspergillus-specific monoclonal antibodies, and iron siderophores, hold enormous potential for clinical diagnosis. This review examines the different experimental technologies used to image IPA, and recent advances in state-of-the-art molecular imaging of IPA using antibody-guided PET/magnetic resonance imaging (immunoPET/MRI).
Collapse
Affiliation(s)
- Christopher R Thornton
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,ISCA Diagnostics Ltd., Exeter, United Kingdom
| |
Collapse
|
23
|
Salmanoglu E, Kim S, Thakur ML. Currently Available Radiopharmaceuticals for Imaging Infection and the Holy Grail. Semin Nucl Med 2018; 48:86-99. [PMID: 29452623 PMCID: PMC6487501 DOI: 10.1053/j.semnuclmed.2017.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infection is ubiquitous. However, its management is challenging for both the patients and the health-care providers. Scintigraphic imaging of infection dates back nearly half a century. The advances in our understanding of the pathophysiology of disease at cellular and molecular levels have paved the way to the development of a large number of radiopharmaceuticals for scintigraphic imaging of infection. These include radiolabeling of blood elements such as serum proteins, white blood cells (WBCs), and cytokines, to name a few. Infectious foci have also been imaged using a radiolabeled sugar molecule by taking advantage of increased metabolic activity in the infectious lesions. Literature over the years has well documented that none of the radiopharmaceuticals and associated procedures that facilitate imaging infection are flawless and acceptable without a compromise. As a result, only a few compounds such as 99mTc-hexamethylpropyleneamineoxime, 18F-FDG, the oldest but still considered as a gold standard 111In-oxine, and, yes, even 67Ga-citrate in some countries, have remained in routine clinical practice. Nonetheless, the interest of scientists and physicians to improve the approaches to imaging and to the management of infection is noteworthy. These approaches have paved the way for the development of numerous, innovative radiopharmaceuticals to label autologous WBCs ex vivo or even those that could be injected directly to image infection or inflammation without direct involvement of WBCs. In this review, we briefly describe these agents with their pros and cons and place them together for future reference.
Collapse
Affiliation(s)
- Ebru Salmanoglu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107; Department of Nuclear Medicine, Kahramanmaras Sutcu Imam University Faculty of Medicine, Avsar Kampus, Kahramanmaras 46040, Turkey
| | - Sung Kim
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mathew L Thakur
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107.
| |
Collapse
|
24
|
de Assis DN, Araújo RS, Fuscaldi LL, Fernandes SOA, Mosqueira VCF, Cardoso VN. Biodistribution of free and encapsulated 99mTc-fluconazole in an infection model induced by Candida albicans. Biomed Pharmacother 2018; 99:438-444. [DOI: 10.1016/j.biopha.2018.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022] Open
|
25
|
Tunçel A, Ocakoglu K, Colak SG, Yılmaz O, Öztürk İ, Yurt F. Evaluation of infection imaging potential of 131I-labeled imidazolium salt. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-017-5691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Radiosynthesis and biodistribution of 99mTc-Sulfamethoxazole: a novel molecule for in-vivo infection imaging. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Dutta J, Naicker T, Ebenhan T, Kruger HG, Arvidsson PI, Govender T. Synthetic approaches to radiochemical probes for imaging of bacterial infections. Eur J Med Chem 2017; 133:287-308. [DOI: 10.1016/j.ejmech.2017.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
28
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
29
|
Kniess T, Laube M, Wüst F, Pietzsch J. Technetium-99m based small molecule radiopharmaceuticals and radiotracers targeting inflammation and infection. Dalton Trans 2017; 46:14435-14451. [DOI: 10.1039/c7dt01735a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
99mTc-labeled antibiotics, antifungal drugs, antimicrobial peptides and COX-2 inhibitors are comprehensively reviewed.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Frank Wüst
- University of Alberta
- Department of Oncology
- 11560 University Avenue
- Edmonton
- Canada
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|
30
|
Dang Y, Li X, Zheng M, Liu H, Zhou X, Jin X. Development of a specific 99mTc-MAG3-mAb-WF-AF-1 for noninvasive detection of Aspergillus fumigatus. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Akbar MU, Ahmad MR, Shaheen A, Mushtaq S. A review on evaluation of technetium-99m labeled radiopharmaceuticals. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Abstract
Bacterial spinal infections in adults can have notable adverse consequences, including pain, neurologic deficit, spinal instability and/or deformity, or death. Numerous factors can predispose a person to spinal infection, many of which affect the immune status of the patient. These infections are typically caused by direct seeding of the spine, contiguous spread, or hematogenous spread. Infections are generally grouped based on anatomic location; they are broadly categorized as vertebral osteomyelitis, discitis, and epidural abscess. In some cases, the diagnosis may not be elucidated early without a reasonable index of suspicion. Diagnosis is based on history and physical examination, laboratory data, proper imaging, and culture. Most infections can be treated with an appropriate course of antibiotics and bracing if needed. Surgical intervention is usually reserved for infections resistant to medical management, the need for open biopsy/culture, evolving spinal instability or deformity, and neurologic deficit or deterioration.
Collapse
|
33
|
Ady J, Fong Y. Imaging for infection: from visualization of inflammation to visualization of microbes. Surg Infect (Larchmt) 2015; 15:700-7. [PMID: 25402672 DOI: 10.1089/sur.2014.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND With the development of high-resolution cross-sectional imaging, anatomic identification of most areas of infection has become routine. Imaging a site of infection allows for diagnosis and treatment. In the past, molecular imaging for infection involved mainly the use of radiolabeled leukocytes for functional targeting at infection sites. With the recent development of functional nuclear imaging, bacterial and viral metabolism can also be imaged directly for potential identification of early infection. METHODS Review of pertinent English-language literature. RESULTS Cross-sectional imaging is used routinely to identify and treat sources of infection in patients with fever, leukocytosis, or unexplained hemodynamic instability. Although ultrasound is preferred for the identification of biliary or hepatic sepsis, computed tomography (CT) has proved to be accurate for the identification and treatment of intra-abdominal fluid collections and abscesses. Biologic imaging is a non-invasive technique that identifies sites of infection in cases in which no definite abnormality is identified via cross-sectional imaging. This is made possible by imaging the accumulation of radioisotopes that have been attached to white blood cells or glucose. Biologic imaging is useful for the identification of anatomic sites where there is inflammation or high metabolic demand. However, a drawback of biologic imaging is that it is not specific for infection. Techniques that image microbes directly increase the specificity of imaging results significantly and can be used to quantify and track infectious processes. For example, radiolabeling of antimicrobial proteins and antibiotics is one technique that has been demonstrated to identify areas of infection accurately in animals but is not currently being used clinically in humans. With the advent of gene therapy, many researchers are inserting the herpes viral thymidine kinase gene into both viruses and bacteria. This allows for tracking of the infectious process by imaging the accumulation of radiolabeled thymidine analogues. CONCLUSION This review summarizes standard imaging for infection as it is currently practiced clinically. We will also explore the promising new methods of microbial imaging that are likely to become standards in clinical care in the near future.
Collapse
Affiliation(s)
- Justin Ady
- 1 Memorial Sloan Kettering Cancer Center , New York, New York
| | | |
Collapse
|
34
|
Mirshojaei SF. Advances in infectious foci imaging using 99mTc radiolabelled antibiotics. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4003-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Radiotracers used for the scintigraphic detection of infection and inflammation. ScientificWorldJournal 2015; 2015:676719. [PMID: 25741532 PMCID: PMC4337049 DOI: 10.1155/2015/676719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
Over the last forty years, a small group of commercial radiopharmaceuticals have found their way into routine medical use, for the diagnostic imaging of patients with infection or inflammation. These molecular radiotracers usually participate in the immune response to an antigen, by tagging leukocytes or other molecules/cells that are endogenous to the process. Currently there is an advancing effort by researchers in the preclinical domain to design and develop new agents for this application. This review discusses radiopharmaceuticals used in the nuclear medicine clinic today, as well as those potential radiotracers that exploit an organism's defence mechanisms to an infectious or inflammatory event.
Collapse
|
36
|
Abstract
With the rise in antibiotic-resistant infections, noninvasive sensing of infectious diseases is increasingly important. Optical imaging, while safer and simpler, is less developed than other modalities like radioimaging; due to low availability of target-specific molecular probes. Here, we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F’-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4× enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08×, and higher signal amplification ~1.4×, compared to conventional dyes. We show the probe offers greater ~5.7× enhancement in imaging of S. aureus infective endocarditis. These biologically-functionalized, aqueous-dispersed, actively-targeted, modularly-tunable SWNT probes offer new avenues for exploration of deeply-buried infections.
Collapse
|
37
|
Hina S, Rajoka MI, Roohi S, Haque A, Qasim M. Preparation, Biodistribution, and Scintigraphic Evaluation of 99mTc-Clindamycin: an Infection Imaging Agent. Appl Biochem Biotechnol 2014; 174:1420-1433. [DOI: 10.1007/s12010-014-1075-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
|
38
|
Bardhan NM, Ghosh D, Belcher AM. M13 virus based detection of bacterial infections in living hosts. JOURNAL OF BIOPHOTONICS 2014; 7:617-23. [PMID: 23576418 PMCID: PMC3989466 DOI: 10.1002/jbio.201300010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 05/24/2023]
Abstract
We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli. Further, in order to tune this M13-Dye complex suitable for targeting other strains of bacteria, we have used a 1-step reaction for creating an anti-bacterial antibody-M13-Dye probe. As an example, we show anti-S. aureus-M13-Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background.
Collapse
Affiliation(s)
- Neelkanth M. Bardhan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debadyuti Ghosh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela M. Belcher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
39
|
Palestro CJ. Nuclear medicine and the failed joint replacement: Past, present, and future. World J Radiol 2014; 6:446-458. [PMID: 25071885 PMCID: PMC4109096 DOI: 10.4329/wjr.v6.i7.446] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography(SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements.
Collapse
|
40
|
Palestro CJ, Glaudemans AWJM, Dierckx RAJO. Multiagent imaging of inflammation and infection with radionuclides. Clin Transl Imaging 2013; 1:385-396. [PMID: 32289033 PMCID: PMC7102491 DOI: 10.1007/s40336-013-0041-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/13/2013] [Indexed: 11/26/2022]
Abstract
Molecular imaging with single photon- and positron-emitting tracers plays an important role in the evaluation of inflammation and infection. Although supplanted by labeled leukocyte imaging for most indications, gallium-67 remains useful for opportunistic infections, pulmonary inflammation and interstitial nephritis and, when [18F]FDG is not available, spinal infection and fever of unknown origin. In vitro labeled leukocyte imaging is the radionuclide procedure of choice for most infections in immunocompetent patients. When performed for musculoskeletal infection, complementary bone marrow imaging usually is necessary. Recent data suggest that dual time point imaging might be an alternative to marrow imaging. Several methods of labeling leukocytes in vivo, with agents including antigranulocyte antibodies and antibody fragments, peptides and cytokines, have been investigated, with variable results. These agents are not widely available and none of them are available in the USA. Radiolabeled antibiotics have been investigated as “infection-specific” tracers, but the results to date have been disappointing. Conversely, radiolabeled antimicrobial peptides do hold promise as infection-specific tracers. The use of positron-emitting tracers for diagnosing inflammation and infection has generated considerable interest. [18F]FDG is useful in fever of unknown origin, spinal osteomyelitis, vasculitis and sarcoidosis. Other positron-emitting tracers that have been investigated include [18F]FDG-labeled leukocytes, copper-64-labeled leukocytes, gallium-68 citrate and iodine-124 FIAU. Although radiolabeled tracers are used primarily for diagnosis, they also offer objective biomarkers for assessing response to therapeutic interventions in inflammatory diseases. They could also potentially be used to target cells and molecules with specific receptor expression for histological characterization, select patients for receptor-targeted therapy and predict response to treatment.
Collapse
Affiliation(s)
- Christopher J. Palestro
- Department of Radiology, Hofstra North Shore-LIJ, School of Medicine, Hempstead, NY USA
- Division of Nuclear Medicine and Molecular Imaging, North Shore-Long Island Jewish Health System, Manhasset, NY USA
- Division of Nuclear Medicine and Molecular Imaging, Long Island Jewish Medical Center, 270-05 76th Avenue, New Hyde Park, NY 11040 USA
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Abstract
BACKGROUND Nanoparticles are increasingly being incorporated into the design of diagnostic imaging agents. Significant research efforts have been conducted with one class of lipid nanoparticle (liposomes) radiolabeled with gamma-emitting radionuclides as radiopharmaceuticals for scintigraphic imaging of cancer, inflammation/infection and sentinel lymph node detection. OBJECTIVE This article reviews the current literature with special emphasis on the clinical studies performed with liposome radiopharmaceuticals for detection of tumors, infectious/inflammatory sites or metastatic lymph nodes. Future uses of liposome radiopharmaceuticals are also described. METHODS Characteristics required of the radionuclide, liposome formulation and radiolabeling method for an effective radiopharmaceutical are discussed. A description of the procedures and instrumentation for conducting an imaging study with liposome radiopharmaceutical is included. Clinical studies using liposome radiopharmaceuticals are summarized. Future imaging applications of first- and second-generation radiolabeled liposomes for chemodosimetry and the specific targeting of a disease process are also described. RESULTS/CONCLUSION The choice of radionuclide, liposome formulation and radiolabeling method must be carefully considered during the design of a liposome radiopharmaceutical for a given application. After-loading and surface chelation methods are the most efficient and practical. Clinical studies with liposome radiopharmaceuticals demonstrated that a wide variety of tumors could be detected with good sensitivity and specificity. Liposome radiopharmaceuticals could also clearly detect various soft tissue and bone inflammatory/infectious lesions, and performed equal to or better than infection imaging agents that are approved at present. Yet, despite these favorable results, no liposome radiopharmaceutical has been approved for any indication. Some of the reasons for this can be attributed to reports of an unexpected infusion-related adverse reaction in two studies, the requirement of more complex liposome manufacturing procedures, and the adoption of other competing imaging procedures. Continued research of liposome radiopharmaceutical design based on a better understanding of liposome biology, improved radiolabeling methodologies and advances in gamma camera technology is warranted.
Collapse
Affiliation(s)
- Beth A Goins
- The University of Texas Health Science Center at San Antonio, TX Department of Radiology, Mail Code 7800, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA +1 210 567 5575 ; +1 210 567 5549 ;
| |
Collapse
|
42
|
Kumar V, Boddeti DK. (68)Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results Cancer Res 2013; 194:189-219. [PMID: 22918761 DOI: 10.1007/978-3-642-27994-2_11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection imaging has been challenging over the past four decades, which provided an excellent playing field for researchers working in this area, and till date the quest continues to find an ideal imaging agent. Labelled leukocytes were first developed in the 1970s for imaging infection lesions such as osteomyelitis, cellulitis, diabetic foot, Crohn's disease, inflammatory bowel disease, fever of unknown origin, etc. Subsequently labelled antibiotics such as (99m)Tc-labelled ciprofloxacin have emerged for directly identifying live bacterial infections. From the early 1970s through the mid-1980s,( 67)Ga-Citrate was the prime radionuclide for imaging of inflammation and infection of musculoskeletal origin. Although (68)Ga-PET was described in 1960s for tumour imaging, recent reports described (68)Ga-Citrate and (68)Ga-transferrin as possible agents for PET-imaging of infection due to successful application of (67)Ga-Citrate SPECT in the past, despite its limitations. It is important to establish a faster imaging method for (68)Ga, as its half-life is 68 min compared to 78.3 hrs for (67)Ga. Preparation of (68)Ga-Citrate and (68)Ga-transferrin is described, with very high yield and high radiochemical purity (RCP), which is ideally suited for routine clinical studies. Biodistribution of (68)Ga-Citrate-PET images were characterised with high blood pool, high liver and bone (growth plate) uptake with low soft-tissue activity. (68)Ga-Citrate or (68)Ga-transferrin was able to detect infected lesions in rats within 5-10 min post injection but a focal intense uptake at the lesion (SUV(max)) was visualized only at 30 min, which increased for up to 6 hrs post injection with concomitant decrease in the cardiac blood pool activity. The liver and bowel activity decreased after 90 min then stabilised. In the patient studies, infection lesions were detected within 30 min post injection of (68)Ga-Citrate. Cardiac blood pool and liver activities decreased during the period of study. Interestingly, there was persistent high vascular activity in the thigh region. One of the major limitations of (67)Ga-Citrate SPECT is the delayed post injection waiting time of 48 hrs, in contrast to 60 min post injection waiting with (68)Ga-Citrate. The distinct difference in imaging time is intriguing, although there is no chemical difference between (67)Ga-Citrate and (68)Ga-Citrate, except for the radiolabel. No literature is available on early imaging times using (67)Ga-SPECT. When compared (68)Ga/(67)Ga-Citrate images at 60 min post injection in normal rats, (68)Ga-PET showed better images with low background activity than (67)Ga-SPECT agent. This may be due to short half-life of (68)Ga (68 min), as it would have decayed one half-life at 60 min post-imaging time, compared to the SPECT agent ((67)Ga), which would require 76 hrs to undergo one half-life. Therefore, the visual difference in background can be attributed to the difference in the half-lives of these two agents. Similarly, uptake of (68)Ga by liver, cardiac blood pool activity is much lower than (67)Ga at 60 min post injection period, may be attributed to the faster decay of (68)Ga than (67)Ga. High background activity of (68)Ga-Citrate in the thorax and upper abdomen at 60 min post-injection may interfere with detecting lesions in these regions; therefore, (68)Ga-PET is more suitable for imaging lesions in the lower abdomen and the extremities. The short half-life of (68)Ga (68 min) may be advantageous from low dosimetry to the patients, but disadvantageous for longer periods of study. Since (68)Ga-Citrate was capable of detecting infection within 60 min, the need for imaging for longer periods may not be warranted. The functional imaging was not limited to diagnosing infection but it could be extended to surgical planning and antibiotic therapy monitoring of osteomyelitis and in distinguishing prosthetic infection from loosening of prosthesis. (18)F-FDG is sensitive but has the limitation of giving false positive results in patients with bone prosthesis, even if there is no infection or mobilisation. But the available literature clearly indicated (68)Ga-Citrate was positive only in cases of infection. In summary, preliminary reports suggest (68)Ga-Citrate PET/CT is useful in the diagnosis of suspected bone infections with reliable sensitivity, specificity, positive predictive value, negative predictive value and overall accuracy. Preliminary reports with (68)Ga-Transferrin showed it is capable of detecting both Gram-positive Staphylococcus aureus (Staph A) and Gram-negative Proteus mirobilis. This is an incidental finding but gives an insight into the potential of this agent to detect more than one bacterial infection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Nuclear Medicine, The Children's Hospital at Westmead, Westmead, Australia.
| | | |
Collapse
|
43
|
Wang Y, Chen L, Liu X, Cheng D, Liu G, Liu Y, Dou S, Hnatowich DJ, Rusckowski M. Detection of Aspergillus fumigatus pulmonary fungal infections in mice with (99m)Tc-labeled MORF oligomers targeting ribosomal RNA. Nucl Med Biol 2012; 40:89-96. [PMID: 23142409 DOI: 10.1016/j.nucmedbio.2012.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/29/2023]
Abstract
PURPOSE Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients. The fungus Aspergillus fumigatus (A. fumigatus) is the primary causative agent of invasive aspergillosis. However, A. fumigatus infections remain difficult to diagnose particularly in the early stages due to the lack of a rapid, sensitive and specific diagnostic approach. In this study, we investigated (99m)Tc labeled MORF oligomers targeting fungal ribosomal RNA (rRNA) for the imaging detection of fungal infections. PROCEDURES Three phosphorodiamidate morpholino (MORF) oligomer (a DNA analogue) probes were designed: AGEN, complementary to a sequence of the fungal 28S ribosomal RNA (rRNA) of Aspergillus, as a genus-specific probe; AFUM, complementary to the 28S rRNA sequence of A. fumigatus, as a fungus species-specific probe; and cMORF, irrelevant to all fungal species, as a control probe. The probes were conjugated with Alexa Fluor 633 carboxylic acid succinimidyl ester (AF633) for fluorescence imaging or with NHS-mercaptoacetyl triglycine (NHS-MAG3) for nuclear imaging with (99m)Tc and then evaluated in vitro and in vivo. RESULTS The specific binding of AGEN and AFUM to fungal total RNA was confirmed by dot blot hybridization while specific binding of AGEN and AFUM in fixed and live A. fumigatus was demonstrated by both fluorescent in situ hybridization (FISH) analysis and accumulation in live cells. SPECT imaging of BALB/c mice with pulmonary A. fumigatus infections and administered (99m)Tc labeled AGEN and AFUM showed immediate and obvious accumulation in the infected lungs, while no significant accumulation of the control (99m)Tc-cMORF in the infected lung was observed. Compared to non-infected mice, with sacrifice at 1h, the accumulation of (99m)Tc-AGEN and (99m)Tc-AFUM in the lungs of mice infected with A. fumigatus was 2 and 2.7 fold higher respectively. CONCLUSIONS In vivo targeting fungal ribosomal RNA with (99m)Tc labeled MORF probes AGEN and AFUM may be useful for A. fumigatus infection imaging and may provide a new strategy for the noninvasive diagnosis of invasive aspergillosis and other fungal infections.
Collapse
Affiliation(s)
- Yuzhen Wang
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
45
|
Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:965238. [PMID: 22675369 PMCID: PMC3362861 DOI: 10.1155/2012/965238] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/09/2012] [Accepted: 03/11/2012] [Indexed: 11/17/2022]
Abstract
Nuclear medicine imaging techniques offer whole body imaging for localization of number and site of infective foci inspite of limitation of spatial resolution. The innate human immune system contains a large member of important elements including antimicrobial peptides to combat any form of infection. However, development of antibiotics against bacteria progressed rapidly and gained popularity over antimicrobial peptides but even powerful antimicrobials failed to reduce morbidity and mortality due to emergence of mutant strains of bacteria resulting in antimicrobial resistance. Differentiation between infection and inflammation using radiolabeled compounds with nuclear medicine techniques has always been a dilemma which is still to be resolved. Starting from nonspecific tracers to specific radiolabeled tracers, the question is still unanswered. Specific radiolabeled tracers included antibiotics and antimicrobial peptides which bind directly to the bacteria for efficient localization with advanced nuclear medicine equipments. However, there are merits and demerits attributed to each. In the current paper, radiolabeled antibiotics and radiolabeled peptides for infection localization have been discussed starting with the background of primitive nonspecific tracers. Radiolabeled antimicrobial peptides have certain merits compared with labeled antibiotics which make them superior agents for localization of infective focus.
Collapse
|
46
|
North SH, Wojciechowski J, Chu V, Taitt CR. Surface immobilization chemistry influences peptide-based detection of lipopolysaccharide and lipoteichoic acid. J Pept Sci 2012; 18:366-72. [PMID: 22565661 DOI: 10.1002/psc.2399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/27/2011] [Accepted: 01/04/2012] [Indexed: 01/21/2023]
Abstract
Antimicrobial peptides (AMPs) have recently gained attention as potentially valuable diagnostic and therapeutic agents. The utilization of these peptides for diagnostic purposes relies on the ability to immobilize them on the surface of a detection platform in a predictable and reliable manner that facilitates target binding. The method for attachment of peptides to a solid support is guided by peptide length, amino acid composition, secondary structure, and the nature of the underlying substrate. While immobilization methods that target amine groups of amino acid sequences are widely used, they can result in heterogeneous conjugation at multiple sites on a peptide and have direct implications for peptide presentation and function. Using two types of commercial amine-reactive microtiter plates, we described the effects of analogous immobilization chemistries on the surface attachment of AMPs and their differential binding interaction with Gram-specific bacterial biomarkers, lipopolysaccharide and lipoteichoic acid. As might be expected, differences in overall binding affinities were noted when comparing AMPs immobilized on the two types of plates. However, the two-amine-targeted linking chemistries also affected the specificity of the attached peptides; lipopolysaccharide generally demonstrated a preference for peptides immobilized on one type of plate, while (when observed at all) lipoteichoic acid bound preferentially to AMPs immobilized on the other type of plate. These results demonstrate the potential for tuning not only the binding affinities but also the specificities of immobilized AMPs by simple alterations in linking strategy.
Collapse
Affiliation(s)
- Stella H North
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| | | | | | | |
Collapse
|
47
|
Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 2012; 39:1175-83. [PMID: 22526953 PMCID: PMC3369139 DOI: 10.1007/s00259-012-2110-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/02/2012] [Indexed: 01/09/2023]
Abstract
Purpose Invasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with 68Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising 68Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE). Methods Siderophores were labelled with 68Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic μPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo. Results 68Ga-siderophores were labelled with high radiochemical purity and specific activity. 68Ga-TAFC and 68Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, 68Ga-TAFC and 68Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by μPET with both compounds and increased with severity of the infection, correlating with abnormal CT images. Conclusion 68Ga-TAFC and 68Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging. Electronic supplementary material The online version of this article (doi:10.1007/s00259-012-2110-3) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Detection of invasive Candida albicans infection using a specific 99mTc-labeled monoclonal antibody for the C. albicans germ tube. Appl Microbiol Biotechnol 2011; 93:2099-108. [DOI: 10.1007/s00253-011-3533-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
49
|
Brouwer CPJM, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides 2011; 32:1953-1963. [PMID: 21827807 DOI: 10.1016/j.peptides.2011.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
Abstract
There is an urgent need to develop new antimicrobial drugs especially for combating the rise of infections caused by multi-resistant pathogens such as MRSA and VRSA. The problem of antibiotic resistant micro-organisms is expected to increase disproportionally and controlling of infections is becoming difficult because of the rapid spread of those micro-organisms. Primary therapy with classical antibiotics is becoming more ineffective. Combinational therapy of antibiotics with antimicrobial peptides (AMP's) has been suggested as an alternative approach to improve treatment outcome. Their unique mechanism of action and safety profile makes AMP's appealing candidates for simultaneous or sequential use in different cases of infections. In this review, for antimicrobial treatment the application of synthetic antimicrobial peptide hLF(1-11), derived from the first 11 amino acids of human lactoferrin is evaluated in both pre-clinical and clinical settings. Present information indicates that this derivate from lactoferrin is well tolerated in pre-clinical tests and clinical trials and thus hLF(1-11) is an interesting candidate for further exploration in various clinical indications of obscure infections, including meningitis. Another approach of using AMP's is their use in prevention of infections e.g. as coating for dental or bone implants or in biosensing applications or useful as infection specific radiopharmaceutical.
Collapse
Affiliation(s)
- Carlo P J M Brouwer
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Room C4-R-77, Leiden, The Netherlands
| | | | | |
Collapse
|
50
|
Signore A, Glaudemans AWJM. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med 2011; 25:681-700. [PMID: 21837469 DOI: 10.1007/s12149-011-0521-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022]
Abstract
Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine techniques, by contrast, allow the in vivo detection in humans of different physiologic and pathologic phenomena and offer noninvasive tools to detect early pathophysiological changes before anatomical changes occur. In this review, we highlight the role of nuclear medicine in inflammation/infection with emphasis on molecular imaging for in vivo histological characterization of affected tissues for diagnostic purposes and follow-up of therapies. We also describe the clinical indications of all available radiopharmaceuticals in the light of the newly available guidelines.
Collapse
Affiliation(s)
- Alberto Signore
- Medicina Nucleare, 2nd Faculty of Medicine, Ospedale S. Andrea, University of Rome "Sapienza", Via di Grottarossa 1035, 00189 Rome, Italy.
| | | |
Collapse
|