1
|
Wojsyk-Banaszak I, Więckowska B, Szczepankiewicz A, Stachowiak Z, Andrzejewska M, Juchnowicz J, Kycler M, Famulska P, Osińska M, Jończyk-Potoczna K. MRI and Pulmonary Function Tests' Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. J Clin Med 2023; 12:5136. [PMID: 37568538 PMCID: PMC10419458 DOI: 10.3390/jcm12155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Magnetic resonance imaging (MRI) of the chest is becoming more available in the detection and monitoring of early changes in lung function and structure in patients with cystic fibrosis (CF). The aim of this study was to assess the relationship between pulmonary function tests (PFT) and perfusion deficits in CF children measured by MRI. We performed a retrospective analysis of the perfusion lung MRI scans and the results of spirometry, oscillometry, body plethysmography, single-breath carbon monoxide uptake, and multiple-breath washout technique (MBW). There were statistically significant correlations between the MRI perfusion scores and MBW parameters (2.5% LCI, M1/M0, M2/M0), spirometry parameters (FEV1, FVC, FEF25/75), reactance indices in impulse oscillometry (X5Hz, X10Hz), total lung capacity (TLC) measured in single breath carbon monoxide uptake, markers of air-trapping in body plethysmography (RV, RV/TLC), and the diffusing capacity of the lungs for carbon monoxide. We also observed significant differences in the aforementioned PFT variables between the patient groups divided based on perfusion scores. We noted a correlation between markers of functional lung deficits measured by the MRI and PFTs in CF children. MRI perfusion abnormalities were reflected sooner in the course of the disease than PFT abnormalities.
Collapse
Affiliation(s)
- Irena Wojsyk-Banaszak
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (B.W.); (J.J.)
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (A.S.); (Z.S.)
| | - Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (A.S.); (Z.S.)
| | - Marta Andrzejewska
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Jerzy Juchnowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (B.W.); (J.J.)
| | - Maciej Kycler
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Paulina Famulska
- Pediatric and Cystic Fibrosis Department, Pediatric Hospital in Gdańsk, 80-308 Gdańsk, Poland; (P.F.); (M.O.)
| | - Marta Osińska
- Pediatric and Cystic Fibrosis Department, Pediatric Hospital in Gdańsk, 80-308 Gdańsk, Poland; (P.F.); (M.O.)
| | | |
Collapse
|
2
|
Gong T, Wang X, Li S, Zhong L, Zhu L, Luo T, Tian D. Global research status and trends of bronchiectasis in children from 2003 to 2022: A 20-year bibliometric analysis. Front Pediatr 2023; 11:1095452. [PMID: 36816374 PMCID: PMC9936077 DOI: 10.3389/fped.2023.1095452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background This study aims to analyze the research hotspots, evolution, and developing trends in pediatric bronchiectasis over the past 20 years using bibliometric analysis and visualization tools to identify potential new research directions. Methods Publications related to bronchiectasis in children were retrieved from the Web of Science Core Collection (WoSCC) database from 2003 to 2022. Knowledge maps were performed through VOSviewer1.6.18 and CiteSpace6.1 R2. Results A total of 2,133 publications were searched, while only 1,351 original articles written in English between 2003 and 2022 were incorporated. After removing duplicates, we finally included 1,350 articles published by 6,593 authors from 1,865 institutions in 80 countries/regions in 384 different academic journals with an average citation frequency of 24.91 times. The number of publications shows an extremely obvious binomial growth trend. The majority of publications originated from the United States, Australia, and England. The institutes in Australia, especially Charles Darwin University, published the most articles associated with pediatric bronchiectasis. In addition, Pediatric Pulmonology was the most published journal. In terms of authors, Chang AB was the most productive author, while Gangell CL had the highest average citation frequency. The five keywords that have appeared most frequently during the last two decades were "children," "cystic fibrosis," "bronchiectasis," "ct," and "pulmonary-function." According to keyword analysis, early diagnosis and intervention and optimal long-term pediatric-specific management were the most concerned topics for researchers. Conclusion This bibliometric analysis indicates that bronchiectasis in children has drawn increasing attention in the last two decades as its recognition continues to rise, providing scholars in the field with significant information on current topical issues and research frontiers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daiyin Tian
- Department of Respiratory Disease, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
3
|
Ciet P, Bertolo S, Ros M, Casciaro R, Cipolli M, Colagrande S, Costa S, Galici V, Gramegna A, Lanza C, Lucca F, Macconi L, Majo F, Paciaroni A, Parisi GF, Rizzo F, Salamone I, Santangelo T, Scudeller L, Saba L, Tomà P, Morana G. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the "iMAging managEment of cySTic fibROsis" (MAESTRO) consortium. Eur Respir Rev 2022; 31:210173. [PMID: 35321929 PMCID: PMC9489084 DOI: 10.1183/16000617.0173-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists. STUDY DESIGN A committee of 21 experts in CF from the 10 largest specialist centres in Italy was convened, including a radiologist and a pulmonologist from each centre, with the overall aim of developing clear and actionable recommendations for lung imaging in CF. An a priori threshold of at least 80% of the votes was required for acceptance of each statement of recommendation. RESULTS After a systematic review of the relevant literature, the committee convened to evaluate 167 articles. Following five RAND conferences, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 28 main statements. CONCLUSIONS There is a need for international guidelines regarding the appropriate timing and selection of imaging modality for patients with CF lung disease; timing and selection depends upon the clinical scenario, the patient's age, lung function and type of treatment. Despite its ubiquity, the use of the chest radiograph remains controversial. Both computed tomography and magnetic resonance imaging should be routinely used to monitor CF lung disease. Future studies should focus on imaging protocol harmonisation both for computed tomography and for magnetic resonance imaging. The introduction of artificial intelligence imaging analysis may further revolutionise clinical practice by providing fast and reliable quantitative outcomes to assess disease status. To date, there is no evidence supporting the use of lung ultrasound to monitor CF lung disease.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology and Nuclear Medicine Dept, Erasmus MC, Rotterdam, The Netherlands
- Pediatric Pulmonology and Allergology Dept, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Silvia Bertolo
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Rosaria Casciaro
- Dept of Pediatrics, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Centre, Genoa, Italy
| | - Marco Cipolli
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Stefano Colagrande
- Dept of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence- Careggi Hospital, Florence, Italy
| | - Stefano Costa
- Dept of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Valeria Galici
- Cystic Fibrosis Centre, Dept of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Gramegna
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Dept, IRCCS Ca' Granda, Milan, Italy
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Lanza
- Radiology Dept, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Letizia Macconi
- Radiology Dept, Tuscany Reference Cystic Fibrosis Centre, Meyer Children's Hospital, Florence, Italy
| | - Fabio Majo
- Dept of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rizzo
- Radiology Dept, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Center, Genoa, Italy
| | | | - Teresa Santangelo
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigia Scudeller
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Luca Saba
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Paolo Tomà
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Morana
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| |
Collapse
|
4
|
Best Practices: Imaging Strategies for Reduced-Dose Chest CT in the Management of Cystic Fibrosis-Related Lung Disease. AJR Am J Roentgenol 2021; 217:304-313. [PMID: 34076456 DOI: 10.2214/ajr.19.22694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE. Cystic fibrosis (CF) is a multisystemic life-limiting disorder. The leading cause of morbidity in CF is chronic pulmonary disease. Chest CT is the reference standard for detection of bronchiectasis. Cumulative ionizing radiation limits the use of CT, particularly as treatments improve and life expectancy increases. The purpose of this article is to summarize the evidence on low-dose chest CT and its effect on image quality to determine best practices for imaging in CF. CONCLUSION. Low-dose chest CT is technically feasible, reduces dose, and renders satisfactory image quality. There are few comparison studies of low-dose chest CT and standard chest CT in CF; however, evidence suggests equivalent diagnostic capability. Low-dose chest CT with iterative reconstructive algorithms appears superior to chest radiography and equivalent to standard CT and has potential for early detection of bronchiectasis and infective exacerbations, because clinically significant abnormalities can develop in patients who do not have symptoms. Infection and inflammation remain the primary causes of morbidity requiring early intervention. Research gaps include the benefits of replacing chest radiography with low-dose chest CT in terms of improved diagnostic yield, clinical decision making, and patient outcomes. Longitudinal clinical studies comparing CT with MRI for the monitoring of CF lung disease may better establish the complementary strengths of these imaging modalities.
Collapse
|
5
|
Delacoste J, Feliciano H, Yerly J, Dunet V, Beigelman‐Aubry C, Ginami G, van Heeswijk RB, Piccini D, Stuber M, Sauty A. A black‐blood ultra‐short echo time (UTE) sequence for 3D isotropic resolution imaging of the lungs. Magn Reson Med 2019; 81:3808-3818. [DOI: 10.1002/mrm.27679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jean Delacoste
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Helene Feliciano
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Jérôme Yerly
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Vincent Dunet
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Catherine Beigelman‐Aubry
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Giulia Ginami
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Ruud B. van Heeswijk
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Davide Piccini
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
| | - Matthias Stuber
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Alain Sauty
- Adult CF unit, Neuchatelois‐Pourtales Hospital Neuchatel Switzerland
- Service of Pneumology, Department of Medicine University Hospital (CHUV) Lausanne Switzerland
| |
Collapse
|
6
|
A Bond-Fluctuation Model of Translational Dynamics of Chain-like Particles through Mucosal Scaffolds. Biophys J 2018; 114:2732-2742. [PMID: 29874621 DOI: 10.1016/j.bpj.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/24/2018] [Accepted: 04/18/2018] [Indexed: 11/22/2022] Open
Abstract
Mucus scaffolds represent one of the most common barriers in targeted drug delivery and can remarkably reduce the outcome of pharmacological therapies. An efficient transport of drug particles through a mucus barrier is a precondition for an efficient drug delivery. Understanding the transport mechanism is particularly important for treatment of disorders such as cystic fibrosis. These are characterized by an onset of high-density mucus scaffolds imposing an increased steric filtering. In this study, we employed the bond-fluctuation model to analyze the effect of steric interactions on slowing the translational dynamics of compound chain-like particles traversing through scaffolds of different configurations (regular isotropic and anisotropic versus irregular random). The model, which accounts for both the geometry-imposed steric interaction as well as the intrachain steric interaction between the chain subunits, yields a transient subdiffusive motional pattern persists between the short-time and long-time Gaussian diffusion limits. The motion is analyzed in terms of a mean-squared displacement, diffusion coefficient, and radius of gyration. With higher levels of restriction or larger particles, the subdiffusive motional regime persists longer. The study also demonstrates that an important feature of the motion is also geometry-induced chain accommodation. The presented model is generic and could also be applied to studying the translational dynamics of other particles with more complex architecture such as dendrites or chain-decorated nanoparticles.
Collapse
|
7
|
Amaxopoulou C, Gnannt R, Higashigaito K, Jung A, Kellenberger CJ. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis. Pediatr Radiol 2018; 48:165-175. [PMID: 29143200 DOI: 10.1007/s00247-017-4021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. OBJECTIVE To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. MATERIALS AND METHODS We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. RESULTS Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). CONCLUSION Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation.
Collapse
Affiliation(s)
- Christina Amaxopoulou
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland. .,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Ralph Gnannt
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland.,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Kai Higashigaito
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Zürich, Switzerland
| | - Andreas Jung
- Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,Division of Pneumology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr. 75, 8032, Zürich, CH, Switzerland.,Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Szczesniak R, Turkovic L, Andrinopoulou ER, Tiddens HAWM. Chest imaging in cystic fibrosis studies: What counts, and can be counted? J Cyst Fibros 2017; 16:175-185. [PMID: 28040479 PMCID: PMC5340596 DOI: 10.1016/j.jcf.2016.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The dawn of precision medicine and CFTR modulators require more detailed assessment of lung structure in cystic fibrosis (CF) clinical studies. Various imaging markers have emerged and are measurable, but clarity is needed to identify what markers should count for clinical studies. High-resolution chest computed tomography (CT) scoring has yielded sensitive markers for the study of CF disease progression. Once completed, CT scores from ongoing randomized controlled trials can be used to examine relationships between imaging endpoints and therapeutic effectiveness. Similarly, Magnetic Resonance Imaging (MRI) is in development to generate structural as well as functional markers. RESULTS The aim of this review is to characterize the role of currently available CT and MRI markers in clinical studies, and to discuss study design, data processing and statistical challenges unique to these endpoints in CF studies. Suggestions to overcome these challenges in CF studies are included. CONCLUSIONS To maximize the potential of CT and MRI markers in clinical studies and advance treatment of CF disease progression, efforts should be made to conduct longitudinal randomized controlled trials including these modalities, develop data repositories, promote standardization and conduct reproducible research.
Collapse
Affiliation(s)
- Rhonda Szczesniak
- Division of Biostatistics & Epidemiology and Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | | | - Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, The Netherlands; Department of Radiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Abstract
1. CT is superior to pulmonary function tests and chest radiography for the assessment and monitoring of cystic fibrosis (CF)-related lung disease and, also, of pediatric bronchiectasis not caused by CF (hereafter referred to as non-CF bronchiectasis). 2. Low-dose CT protocols that impart radiation doses similar to those used in chest radiography are feasible for the surveillance of patients with bronchiectasis. 3. Chest radiography is still most commonly used as the first-line imaging examination of choice for the assessment of acute complications related to bronchiectasis. 4. Pulmonary MRI, with or without the use of inhaled hyperpolarized gas, can be performed to obtain functional information, and, in dedicated centers, it may yield imaging results comparable to those obtained by CT. 5. Gastrointestinal and pancreaticobiliary manifestations of CF are observed with greater frequency in adults, because of increased life expectancy.
Collapse
|
10
|
Meltzer C, Båth M, Kheddache S, Ásgeirsdóttir H, Gilljam M, Johnsson ÅA. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE. RADIATION PROTECTION DOSIMETRY 2016; 169:177-87. [PMID: 26842827 PMCID: PMC4911964 DOI: 10.1093/rpd/ncv556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted.
Collapse
Affiliation(s)
- Carin Meltzer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Susanne Kheddache
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Helga Ásgeirsdóttir
- Gothenburg CF-Center, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marita Gilljam
- Gothenburg CF-Center, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
11
|
Ferris H, Twomey M, Moloney F, O’Neill SB, Murphy K, O’Connor OJ, Maher M. Computed tomography dose optimisation in cystic fibrosis: A review. World J Radiol 2016; 8:331-341. [PMID: 27158420 PMCID: PMC4840191 DOI: 10.4329/wjr.v8.i4.331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/15/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease of the Caucasian population worldwide, with respiratory disease remaining the most relevant source of morbidity and mortality. Computed tomography (CT) is frequently used for monitoring disease complications and progression. Over the last fifteen years there has been a six-fold increase in the use of CT, which has lead to a growing concern in relation to cumulative radiation exposure. The challenge to the medical profession is to identify dose reduction strategies that meet acceptable image quality, but fulfil the requirements of a diagnostic quality CT. Dose-optimisation, particularly in CT, is essential as it reduces the chances of patients receiving cumulative radiation doses in excess of 100 mSv, a dose deemed significant by the United Nations Scientific Committee on the Effects of Atomic Radiation. This review article explores the current trends in imaging in CF with particular emphasis on new developments in dose optimisation.
Collapse
|
12
|
Wielpütz MO, Kauczor HU. Imaging cystic fibrosis lung disease with MRI. IMAGING 2016. [DOI: 10.1183/2312508x.10002415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Tepper LA, Ciet P, Caudri D, Quittner AL, Utens EMWJ, Tiddens HAWM. Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 2016; 51:34-41. [PMID: 26436668 DOI: 10.1002/ppul.23328] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/20/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Computed Tomography (CT) is the gold standard to assess bronchiectasis and trapped air in cystic fibrosis (CF) lung disease, but has the disadvantage of radiation exposure. Magnetic Resonance Imaging (MRI) is a radiation free alternative. OBJECTIVE To validate MRI as outcome measure by: correlating MRI scores for bronchiectasis and trapped air with clinical parameters, and by comparing those MRI scores with CT scores. METHODS In patients with CF (aged 5.6-17.4 years), MRI and CT were alternated annually during routine annual check-ups between July 2007 and January 2010. Twenty-three children had an MRI performed 1 year prior to CT, 34 children had a CT 1 year prior to MRI. Bronchiectasis and trapped air were scored using the CF-MRI and CF-CT scoring system. CF-MRI scores were correlated with clinical parameters: FEV1 , Pseudomonas aeruginosa, pulmonary exacerbations and patient-reported respiratory symptoms measured on the Cystic Fibrosis Questionnaire-Revised (CFQ-R), using Spearman's correlation coefficient. MRI and CT scores were compared using intra-class correlation coefficients (ICC) and Bland-Altman plots. RESULTS Fifty-seven patients who had an MRI, CT and CFQ-R during the study period were included. CF-MRI bronchiectasis correlated with FEV1 , Pseudomonas aeruginosa, pulmonary exacerbations and patient-reported respiratory symptoms. CF-MRI trapped air only correlated with FEV1 and Pseudomonas aeruginosa. ICCs between MRI and CT bronchiectasis and trapped air were 0.41 and 0.35 respectively. MRI tended to overestimate bronchiectasis compared to CT. CONCLUSION The associations between CF-MRI scores and several important clinical parameters further contributes to the validation of MRI. MRI provides different information than CT.
Collapse
Affiliation(s)
- Leonie A Tepper
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)/Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)/Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Daan Caudri
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Alexandra L Quittner
- Departments of Psychology and Pediatrics, University of Miami, Coral Gables, Florida
| | - Elisabeth M W J Utens
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC/ Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)/Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Dournes G, Grodzki D, Macey J, Girodet PO, Fayon M, Chateil JF, Montaudon M, Berger P, Laurent F. Quiet Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. Radiology 2015; 276:258-65. [PMID: 25768672 DOI: 10.1148/radiol.15141655] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess lung magnetic resonance (MR) imaging with a respiratory-gated pointwise encoding time reduction with radial acquisition (PETRA) sequence at 1.5 T and compare it with imaging with a standard volumetric interpolated breath-hold examination (VIBE) sequence, with extra focus on the visibility of bronchi and the signal intensity of lung parenchyma. MATERIALS AND METHODS The study was approved by the local ethics committee, and all subjects gave written informed consent. Twelve healthy volunteers were imaged with PETRA and VIBE sequences. Image quality was evaluated by using visual scoring, numbering of visible bronchi, and quantitative measurement of the apparent contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). For preliminary clinical assessment, three young patients with cystic fibrosis underwent both MR imaging and computed tomography (CT). Comparisons were made by using the Wilcoxon signed-rank test for means and the McNemar test for ratios. Agreement between CT and MR imaging disease scores was assessed by using the κ test. RESULTS PETRA imaging was performed with a voxel size of 0.86 mm(3). Overall image quality was good, with little motion artifact. Bronchi were visible consistently up to the fourth generation and in some cases up to the sixth generation. Mean CNR and SNR with PETRA were 32.4% ± 7.6 (standard deviation) and 322.2% ± 37.9, respectively, higher than those with VIBE (P < .001). Good agreement was found between CT and PETRA cystic fibrosis scores (κ = 1.0). CONCLUSION PETRA enables silent, free-breathing, isotropic, and submillimeter imaging of the bronchi and lung parenchyma with high CNR and SNR and may be an alternative to CT for patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gaël Dournes
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - David Grodzki
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Julie Macey
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Pierre-Olivier Girodet
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Michaël Fayon
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Jean-François Chateil
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Michel Montaudon
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - Patrick Berger
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| | - François Laurent
- From the Center for Cardiothoracic Research of Bordeaux, University of Bordeaux, Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Inserm, Center for Cardiothoracic Research of Bordeaux, U1045, F-3300, 146 rue Léo Saignat, 33076 Bordeaux, France (G.D., P.O.G., M.F., M.M., P.B., F.L.); Department of Thoracic and Cardiovascular Imaging, Department of Respiratory Disease, Department of Functional and Respiratory Examination, Centre Hospitalier Universitaire (CHU) de Bordeaux, Pessac, France (G.D., J.M., P.O.G., M.M., P.B., F.L.); Department for Imaging of the Woman and Child, Pediatric Pneumology Unit, CHU de Bordeaux, Bordeaux, France (M.F., J.F.C.); CHU de Bordeaux, CIC 0005, Bordeaux, France (M.F.); and Department of Magnetic Resonance, Siemens Healthcare, Erlangen, Germany (D.G.)
| |
Collapse
|
15
|
Tiddens HAWM, Puderbach M, Venegas JG, Ratjen F, Donaldson SH, Davis SD, Rowe SM, Sagel SD, Higgins M, Waltz DA. Novel outcome measures for clinical trials in cystic fibrosis. Pediatr Pulmonol 2015; 50:302-315. [PMID: 25641878 PMCID: PMC4365726 DOI: 10.1002/ppul.23146] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/20/2014] [Accepted: 11/02/2014] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is a common inherited condition caused by mutations in the gene encoding the CF transmembrane regulator protein. With increased understanding of the molecular mechanisms underlying CF and the development of new therapies there comes the need to develop new outcome measures to assess the disease, its progression and response to treatment. As there are limitations to the current endpoints accepted for regulatory purposes, a workshop to discuss novel endpoints for clinical trials in CF was held in Anaheim, California in November 2011. The pros and cons of novel outcome measures with potential utility for evaluation of novel treatments in CF were critically evaluated. The highlights of the 2011 workshop and subsequent advances in technologies and techniques that could be used to inform the development of clinical trial endpoints are summarized in this review. Pediatr Pulmonol. © 2014 The Authors. Pediatric Pulmonology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, Department of Radiology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michael Puderbach
- Department for Diagnostic and Interventional Radiology, Hufeland Klinikum, Bad Langensalza, Germany
| | - Jose G Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Felix Ratjen
- Department of Pediatrics, Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario
| | - Scott H Donaldson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Stephanie D Davis
- Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Denver, Colorado
| | | | | |
Collapse
|
16
|
The communication of the radiation risk from CT in relation to its clinical benefit in the era of personalized medicine: part 2: benefits versus risk of CT. Pediatr Radiol 2014; 44 Suppl 3:525-33. [PMID: 25304716 DOI: 10.1007/s00247-014-3087-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 01/19/2023]
Abstract
In order to personalize the communication of the CT risk, we need to describe the risk in the context of the clinical benefit of CT, which will generally be much higher, provided a CT scan has a well-established clinical indication. However as pediatric radiologists we should be careful not to overstate the benefit of CT, being aware that medico-legal pressures and the realities of health care economics have led to overutilization of the technology. And even though we should not use previously accumulated radiation dose to a child as an argument against conducting a clinically indicated scan (the "sunk-cost" bias), we should consider patients' radiation history in the diagnostic decision process. As a contribution to future public health, it makes more sense to look for non-radiating alternatives to CT in the much larger group of basically healthy children who are receiving occasional scans for widely prevalent conditions such as appendicitis and trauma than to attempt lowering CT use in the smaller group of patients with chronic conditions with a limited life expectancy. When communicating the CT risk with individual patients and their parents, we should acknowledge and address their concerns within the framework of informed decision-making. When appropriate, we may express the individual radiation risk, based on estimates of summated absorbed organ dose, as an order of magnitude rather than as an absolute number, and compare this with the much larger natural cancer incidence over a child's lifetime, and with other risks in medicine and daily life. We should anticipate that many patients cannot make informed decisions on their own in this complex matter, and we should offer our guidance while maintaining respect for patient autonomy. Proper documentation of the informed decision process is important for future reference. In concert with our referring physicians, pediatric radiologists are well-equipped to tackle the complexities associated with the communication of CT risk, a task that often falls upon us, and by becoming more involved in the diagnostic decision process we can add value to the health care system.
Collapse
|
17
|
[Chest computed tomography in children: indications, efficiency and effective dose]. Arch Pediatr 2014; 21:279-86. [PMID: 24485863 DOI: 10.1016/j.arcped.2013.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/21/2013] [Accepted: 12/27/2013] [Indexed: 12/28/2022]
Abstract
INTRODUCTION New multidetector row computed tomography (CT) has made the imaging of younger children more feasible and extending CT indications to a wide range of pediatric respiratory diseases in the last few years. However, CT is a source of radiation exposure. The aim of this study was to evaluate the main indications and the contribution of chest CT in pediatric pulmonology as well as induced radiation. METHODS This was an observational, prospective study. Children whose chest CTs were analyzed during multidisciplinary meetings (radiologist, pulmonary pediatrician) were included from November 2009 to April 2010. We collected demographic data, CT results, contribution of CT to diagnosis and management, and radiation doses (dose-length product [DLP] and effective dose). Radiation doses were compared according to the CT scans (Lille University Hospital with 128-slice dual-source CT or Lille University Hospital single-source 64-slice CT, or CT performed outside the university hospital). RESULTS One hundred thirty-five patients were included. The mean age was 6.4 years old. The main indications were analysis of bronchial disease (44%), infectious disease (16%), interstitial disease (14%), or a malformation (9%). The aim of CT was diagnosis (61%) or follow-up of previous lung diseases (39%). Diagnosis chest-CT directly contributed to diagnosis in 48% of cases and to treatment in 24%. Follow-up CT contributed to diagnosis in 38% and treatment in 19% of cases. DLP and effective doses were significantly lower for CT performed in the university hospital, especially with the 128-slice CT compared to the others (P<0.001). The effective doses were: 128-slice CT, 0.61 mSv ± 0.32; 64-slice CT, 1.24 mSv ± 0.97; outside university hospital, 2.56 mSv ± 1.98. CONCLUSION This study confirms the role played by chest CT in children, which contributes to diagnosis and management of lung diseases. The main concern of CT application, especially in children, is the radiation burden. Children are more susceptible to the effects of radiation than adults and have a longer life expectancy to develop complications. Both radiologists and pediatricians should be aware of a potential risk and have to conjugate their efforts in reducing this risk. The wide range of radiation doses in this study for the same CT procedures underlines the extensive efforts still needed to limit radiation exposure in children.
Collapse
|
18
|
Sileo C, Corvol H, Boelle PY, Blondiaux E, Clement A, Ducou Le Pointe H. HRCT and MRI of the lung in children with cystic fibrosis: comparison of different scoring systems. J Cyst Fibros 2013; 13:198-204. [PMID: 24095209 DOI: 10.1016/j.jcf.2013.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/13/2013] [Accepted: 09/15/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chest imaging is essential in the assessment of respiratory disease in cystic fibrosis (CF). High-resolution computed tomography (HRCT) can detect progressive lung disease but involves significant delivered dose of ionizing radiation. Magnetic resonance imaging (MRI) is radiation-free but is rarely used in CF. Based on the limited information on the potential interest of chest MRI in CF pediatric patients, the aims of our study were: 1) to evaluate and compare the reproducibility of HRCT and MRI scores; and 2) to evaluate the agreement between HRCT and MRI scores using both Helbich and Eichinger scores. METHODS In this prospective study, CF children who were having a HRCT for their routine assessment were proposed to perform a chest MRI the same day. 17 patients were included (median age 12.7 years). Two radiologists scored independently HRCT (Helbich score) and MRI (Helbich and Eichinger scores); and established a consensus score. Concordance was assessed using the Intraclass Correlation Coefficient (ICC); and the inter-observer reproducibility between methods was compared using Fisher's Z test for dependent observations. RESULTS Concordance between readers was almost perfect for HRCT score (ICC = 96%) and MRI-Eichinger score (84%), and substantial for MRI-Helbich score (68%). Correlation was strong between HRCT and MRI (r = 0.86 and 0.91 for HRCT and respectively MRI-Eichinger and MRI-Helbich scores) and the concordance almost perfect and substantial (ICC = 86% and 78% for HRCT and respectively MRI-Eichinger and MRI-Helbich scores). CONCLUSIONS We showed that, in CF children, MRI could adequately visualize lung morphologic changes when compared with the "gold-standard" HRCT. Regarding the potential cancer risks from associated ionizing radiation with HRCT, these results lead us to propose larger intervals of time between two lung HRCTs with realization of lung MRI in the meantime.
Collapse
Affiliation(s)
- Chiara Sileo
- AP-HP, Hôpital Trousseau, Pediatric Radiology Department, Paris, France; Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Harriet Corvol
- Université Pierre et Marie Curie - Paris 6, Paris, France; AP-HP, Hôpital Trousseau, Paediatric Pulmonary Department, INSERM U938, Paris, France.
| | - Pierre-Yves Boelle
- Université Pierre et Marie Curie - Paris 6, Paris, France; AP-HP, Hôpital St Antoine, Biostatistics Department, INSERM U707, Paris, France
| | - Eléonore Blondiaux
- AP-HP, Hôpital Trousseau, Pediatric Radiology Department, Paris, France; Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Annick Clement
- Université Pierre et Marie Curie - Paris 6, Paris, France; AP-HP, Hôpital Trousseau, Paediatric Pulmonary Department, INSERM U938, Paris, France
| | - Hubert Ducou Le Pointe
- AP-HP, Hôpital Trousseau, Pediatric Radiology Department, Paris, France; Université Pierre et Marie Curie - Paris 6, Paris, France
| |
Collapse
|
19
|
Simpson SJ, Mott LS, Esther CR, Stick SM, Hall GL. Novel end points for clinical trials in young children with cystic fibrosis. Expert Rev Respir Med 2013; 7:231-43. [PMID: 23734646 PMCID: PMC5033038 DOI: 10.1586/ers.13.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cystic fibrosis (CF) lung disease commences early in the disease progression and is the most common cause of mortality. While new CF disease-modifying agents are currently undergoing clinical trial evaluation, the implementation of such trials in young children is limited by the lack of age-appropriate clinical trial end points. Advances in infant and preschool lung function testing, imaging of the chest and the development of biochemical biomarkers have led to increased possibility of quantifying mild lung disease in young children with CF and objectively monitoring disease progression over the course of an intervention. Despite this, further standardization and development of these techniques is required to provide robust objective measures for clinical trials in this age group.
Collapse
Affiliation(s)
- Shannon J Simpson
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
20
|
Folescu TW, Marques EDA, Boechat MCB, Daltro P, Higa LYS, Cohen RWF. High-resolution computed tomography scores in cystic fibrosis patients colonized with Pseudomonas aeruginosa or Staphylococcus aureus. J Bras Pneumol 2012; 38:41-9. [PMID: 22407039 DOI: 10.1590/s1806-37132012000100007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/26/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To compare HRCT findings in cystic fibrosis (CF) patients chronically colonized with Pseudomonas aeruginosa or Staphylococcus aureus using the modified Bhalla CT scoring system, as well as to evaluate intraobserver and interobserver reliability of the method. METHODS This was a retrospective cross-sectional study involving 41 CF patients, 26 of whom were chronically colonized with P. aeruginosa (Pa group), and 15 of whom were colonized with S. aureus (Sa group).Two independent radiologists evaluated the HRCT scans of these patients using the modified Bhalla CT scoring system in two different moments. Intraobserver and interobserver reliability was calculated using the intraclass correlation coefficient (ICC). RESULTS There was good intraobserver and interobserver agreement (ICC > 0.8). Scores were higher in the Pa group than in the Sa group for observer 1 (mean, 13.50 ± 3.90; median, 13.5 vs. mean, 5.00 ± 5.28; median, 3.0) and for observer 2 (mean, 11.96 ± 5.07; median, 12.0 vs. mean, 5.07 ± 5.65; median, 5.0). In addition, HRCT findings, such as bronchiectasis, bronchial wall thickening, mucus plugging, generation of bronchial divisions, and mosaic attenuation/perfusion pattern, were more prevalent in the Pa group. CONCLUSIONS The modified Bhalla CT scoring system was reproducible and reliable for use in the evaluation of HRCT scans, allowing distinctions to be drawn between the two groups of patients under study. The higher scores in the Pa group provided evidence of greater pulmonary impairment in that group.
Collapse
Affiliation(s)
- Tania Wrobel Folescu
- Serviço de Pneumologia Pediátrica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
21
|
MONTELLA SILVIA, MAGLIONE MARCO, BRUZZESE DARIO, MOLLICA CARMINE, PIGNATA CLAUDIO, ALOJ GIUSEPPINA, MANNA ANGELO, ESPOSITO ANTONIETTA, MIRRA VIRGINIA, SANTAMARIA FRANCESCA. Magnetic resonance imaging is an accurate and reliable method to evaluate non-cystic fibrosis paediatric lung disease. Respirology 2011; 17:87-91. [DOI: 10.1111/j.1440-1843.2011.02067.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
|
23
|
Sun Y, O'Sullivan BP, Roche JP, Walvick R, Reno A, Baker D, Mansour JK, Albert MS. Using hyperpolarized 3He MRI to evaluate treatment efficacy in cystic fibrosis patients. J Magn Reson Imaging 2011; 34:1206-11. [PMID: 21932361 DOI: 10.1002/jmri.22724] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 06/23/2011] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To use hyperpolarized (HP) (3)He MR imaging to assess functional lung ventilation in subjects with cystic fibrosis (CF) before and after treatment. MATERIALS AND METHODS We performed HP (3)He static ventilation MRI scans on three subjects, using a Philips 3.0 Tesla (T) Achieva MRI scanner, before and after 11 days of in-patient treatment with combined intravenous and inhaled therapies for pulmonary exacerbations of CF. We also collected spirometry data. We quantified pulmonary ventilation volume measured with HP (3)He MRI using an advanced semi-automated analysis technique. RESULTS Following 11 days of treatment with intravenous antibiotics, hypertonic saline, and rhDNase, HP (3)He MR images in one subject displayed a 25% increase in total ventilation volume. Total ventilation volume in the other two subjects slightly decreased. All three subjects showed increases in FEV(1) and FVC following treatment. CONCLUSION In all subjects, the HP (3)He MR images provided detailed information on precisely where in the lungs gas was reaching. These data provide additional support for the conclusion that HP noble gas MRI can be a powerful tool for evaluating lung ventilation in patients with cystic fibrosis, but also raise important questions about the correlation between spirometry and HP gas MRI measurements.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|