1
|
Alhasan A, Sani SFA, Tajuddin HA, Ali TH. Development of nanoparticles and quantum dots as alternatives to iodinated contrast agents for mono-modal and bi-modal computed tomography imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025:102831. [PMID: 40513631 DOI: 10.1016/j.nano.2025.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/08/2025] [Accepted: 06/01/2025] [Indexed: 06/16/2025]
Abstract
Medical imaging plays a pivotal role in disease screening, early detection, and diagnosis. Among the various imaging modalities, computed tomography (CT) is one of the most widely utilized in clinical practice, offering high-resolution anatomical images critical for disease investigation. To enhance the visibility of tissues with similar densities, contrast agents are often required. Iodinated contrast agents, the most commonly used, are effective but have significant limitations, including short circulation times, the need for high-concentration injections, restricted tissue targeting, and potential side effects such as nephrotoxicity. These challenges have spurred the development of next-generation contrast agents. Nanostructured materials, particularly nanoparticles and quantum dots, have emerged as promising alternatives due to their superior X-ray attenuation, extended circulation times, and potential for multi-modal imaging applications such as CT/MRI and CT/fluorescence. Their unique properties, including small size, large surface area, and tunable functionalization enable targeted imaging and reduced side effects, making them ideal candidates for advanced diagnostics. This review highlights the recent advancements in synthesizing and optimizing nanostructured contrast agents based on their elemental composition, synthesis techniques, and imaging properties. It underscores the transformative potential of nano-based agents in enhancing diagnostic accuracy while minimizing adverse effects, marking a significant step forward in medical imaging technology.
Collapse
Affiliation(s)
- Ammar Alhasan
- College of Pharmacy, Al-Muthanna University, 66001 Samawah, Al-Muthanna, Iraq; Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hairul Anuar Tajuddin
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tammar Hussein Ali
- College of Pharmacy, Al-Muthanna University, 66001 Samawah, Al-Muthanna, Iraq
| |
Collapse
|
2
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 PMCID: PMC12114779 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Oleg V. Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia;
| | - Vladimir N. Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia;
| | - Aleksandr A. Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| |
Collapse
|
3
|
Lei W, Hu J, Zhai J, Gong J, Tian F, Chang S, Zou X, Ju F, Qian S. Study of heat transfer and flow within atherosclerotic plaques in a focused ultrasound field. ULTRASONICS 2025; 154:107699. [PMID: 40393268 DOI: 10.1016/j.ultras.2025.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Focused ultrasound has been widely used for the thermotherapy of soft tissue lesions. In this process, non-Fourier heat conduction and porous medium theory has to be considered because of non-homogeneous media. The study estimates the effects of the temperature lag and porous medium on the plaque ablation and drug treatment by focused ultrasound (FU). This study integrated TWMBT with the porous media heat transfer equation to characterize the internal temperature distribution within atherosclerotic plaque (AP) during FU application. The coupling equations are solved with finite element method. This paper focuses on the effects of porosity, permeability, and attenuation coefficient on the temperature and flow rate within the AP. The results consider artery wall thickness on heating of AP by FU. In addition, this study qualitatively analyzed the differences among the Pennes, TWMBT, and porous media heat conduction equations. The results show that the temperature responses of biological tissues exhibits lagging behaviors, which are inherently related to the physical time scale. Because of the disparities in the physical characteristics of the target and surrounding tissues, fluid flow within AP can have an impact on the distribution of tissue temperature, the direction of flow between solid tissues is determined by the permeability coefficient and ultrasonic intensity. The permeability coefficient, frequency and attenuation coefficient have a significant effect on the fluid flow within AP. Both heat dissipation and heat convergence are characteristics of fluid flow within the tissue, the focal location and the physical property parameters may affect the fluid heat dissipation and heat collection properties within the tissue. Furthermore, the temperature peak may not occur at the focus. The model can provide an analytical template for different types of precise thermal ablation AP, including radiofrequencyablation, microwave therapy, and laserablation besides FU ablation, and can also provide a case for adjunctive drug transport.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Jintao Zhai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China
| | - Jinru Gong
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Fangfang Ju
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
4
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2025; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
5
|
Mohammadi T, Gheybalizadeh H, Rahimpour E, Soleymani J, Shafiei-Irannejad V. Advanced photoluminescent nanomaterials for targeted bioimaging of cancer cells. Heliyon 2025; 11:e41566. [PMID: 39850435 PMCID: PMC11754178 DOI: 10.1016/j.heliyon.2024.e41566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity. Also, bioimaging has the potential to enhance the quality of established imaging techniques like magnetic resonance imaging (MRI). The utilization of nanoparticles in targeted bioimaging enhances the imaging quality and efficiency. Biocompatible nanoparticles can easily penetrate cell membranes, while they can be readily functionalized on their surfaces toward cell receptors. This study reviews reports on the application of new advanced photoluminescent materials for targeted bioimaging using the cell membrane receptors. Also, the limitations and advantages of the application of nanoparticles have been reviewed along with the clinical consideration of their uses in bioimaging.
Collapse
Affiliation(s)
- Tooba Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Gheybalizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
7
|
Luo GF, Zhang XZ. Magnetic nanoparticles for use in bioimaging. Biomater Sci 2024; 12:6224-6236. [PMID: 39498601 DOI: 10.1039/d4bm01145g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Magnetic nanoparticles (MNPs) are well-known contrast agents for use in medical imageology, facilitating disease detection via magnetic resonance imaging (MRI). With the development of nanotechnology, various MNPs have been exploited with strong contrast enhancement effects as well as multiple functions to conquer challenges related to the low detection accuracy and sensitivity. In this review, the typical characteristics and types of MNPs are outlined, and the design and fabrication of MNP-based MRI contrast agents as well as multi-mode imaging agents are also introduced by discussing the representative studies. In the pursuit of performance-enhanced MNPs, novel MNPs are expected to be developed as the next generation of contrast agents for precise bioimaging applications in a broad spectrum of fields.
Collapse
Affiliation(s)
- Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
8
|
Okonkwo TP, Amienghemhen OD, Nkwor AN, Ifijen IH. Exploring the versatility of copper-based nanoparticles as contrast agents in various imaging modalities. NANO-STRUCTURES & NANO-OBJECTS 2024; 40:101370. [DOI: 10.1016/j.nanoso.2024.101370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
10
|
Vercelli B. Functional Nanomaterials for Sensing Devices: Synthesis, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1652. [PMID: 39452988 PMCID: PMC11510707 DOI: 10.3390/nano14201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The growing field of nanotechnology impacts many research areas, such as engineering, electronics, energy, environment, biology, and medicine [...].
Collapse
Affiliation(s)
- Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Via Cozzi, 53, 20125 Milano, Italy
| |
Collapse
|
11
|
Farazin A, Mahjoubi S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J Mech Behav Biomed Mater 2024; 157:106661. [PMID: 39018918 DOI: 10.1016/j.jmbbm.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Addressing infected bone defects remains a significant challenge in orthopedics, requiring effective infection control and bone defect repair. A promising therapeutic approach involves the development of dual-functional engineered biomaterials with drug delivery systems that combine antibacterial properties with osteogenesis promotion. The Hydroxyapatite composite scaffolds offer a one-stage treatment, eliminating the need for multiple surgeries and thereby streamlining the process and reducing treatment time. This review delves into the impaired bone repair mechanisms within pathogen-infected and inflamed microenvironments, providing a theoretical foundation for treating infectious bone defects. Additionally, it explores composite scaffolds made of antibacterial and osteogenic materials, along with advanced drug delivery systems that possess both antibacterial and bone-regenerative properties. By offering a comprehensive understanding of the microenvironment of infectious bone defects and innovative design strategies for dual-function scaffolds, this review presents significant advancements in treatment methods for infectious bone defects. Continued research and clinical validation are essential to refine these innovations, ensuring biocompatibility and safety, achieving controlled release and stability, and developing scalable manufacturing processes for widespread clinical application.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, United States
| | - Soroush Mahjoubi
- Department of Civil and Environmental Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
12
|
Li Z, Lin Y, Qiu T, Liang J, Lan Y, Meng F, Liang C, Zhang Y, Wang Q, Shi D, Zhang C, Shi Y, Liu L, Yang Y, Zhang J. Noninvasive Photothermal Therapy of Nasopharyngeal Cancer Guided by High Efficiency Optical-Absorption Nanomaterial Enhanced by NIR-II Photoacoustic Imaging. Int J Nanomedicine 2024; 19:7817-7830. [PMID: 39099790 PMCID: PMC11298190 DOI: 10.2147/ijn.s457069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background Photothermal therapy (PTT) guided by photoacoustic imaging (PAI) using nanoplatforms has emerged as a promising strategy for cancer treatment due to its efficiency and accuracy. This study aimed to develop and synthesize novel second near-infrared region (NIR-II) absorption-conjugated polymer acceptor acrylate-substituted thiadiazoloquinoxaline-diketopyrrolopyrrole polymers (PATQ-DPP) designed specifically as photothermal and imaging contrast agents for nasopharyngeal carcinoma (NPC). Methods The PATQ-DPP nanoparticles were synthesized and characterized for their optical properties, including low optical band gaps. Their potential as PTT agents and imaging contrast agents for NPC was evaluated both in vitro and in vivo. The accumulation of nanoparticles at tumor sites was assessed post-injection, and the efficacy of PTT under near-infrared laser irradiation was investigated in a mouse model of NPC. Results Experimental results indicated that the PATQ-DPP nanoparticles exhibited significant photoacoustic contrast enhancement and favorable PTT performance. Safety and non-toxicity evaluations confirmed the biocompatibility of these nanoparticles. In vivo studies showed that PATQ-DPP nanoparticles effectively accumulated at NPC tumor sites and demonstrated excellent tumor growth inhibition upon exposure to near-infrared laser irradiation. Notably, complete elimination of nasopharyngeal tumors was observed within 18 days following PTT. Discussion The findings suggest that PATQ-DPP nanoparticles are a promising theranostic agent for NIR-II PAI and PTT of tumors. This innovative approach utilizing PATQ-DPP nanoparticles provides a powerful tool for the early diagnosis and precise treatment of NPC, offering a new avenue in the management of this challenging malignancy.
Collapse
Affiliation(s)
- Zhaoyong Li
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Yanping Lin
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Ting Qiu
- Department of Radiology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Junsheng Liang
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Yintao Lan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Fan Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Chaohao Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Qingyun Wang
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Da Shi
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Changli Zhang
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Yanan Shi
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Liujun Liu
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Yanlan Yang
- Department of Radiology, DongGuan Tungwah Hospital, Dongguan Key Laboratory of Radiology and Molecular Imaging, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
- Department of Oncology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, 511500, People’s Republic of China
| |
Collapse
|
13
|
Yamada S, Yamada K, Sugawara-Narutaki A, Baba Y, Yukawa H. Near-infrared-II fluorescence/magnetic resonance double modal imaging of transplanted stem cells using lanthanide co-doped gadolinium oxide nanoparticles. ANAL SCI 2024; 40:1043-1050. [PMID: 38430367 DOI: 10.1007/s44211-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 03/03/2024]
Abstract
To ensure maximum therapeutic safety and efficacy of stem cell transplantation, it is essential to observe the kinetics of behavior, accumulation, and engraftment of transplanted stem cells in vivo. However, it is difficult to detect transplanted stem cells with high sensitivity by conventional in vivo imaging technologies. To diagnose the kinetics of transplanted stem cells, we prepared multifunctional nanoparticles, Gd2O3 co-doped with Er3+ and Yb3+ (Gd2O3: Er, Yb-NPs), and developed an in vivo double modal imaging technique with near-infrared-II (NIR-II) fluorescence imaging and magnetic resonance imaging (MRI) of stem cells using Gd2O3: Er, Yb-NPs. Gd2O3: Er, Yb-NPs were transduced into adipose tissue-derived stem cells (ASCs) through a simple incubation process without cytotoxicity under certain concentrations of Gd2O3: Er, Yb-NPs and were found not to affect the morphology of ASCs. ASCs labeled with Gd2O3: Er, Yb-NPs were transplanted subcutaneously onto the backs of mice, and successfully imaged with good contrast using an in vivo NIR-II fluorescence imaging and MRI system. These data suggest that Gd2O3: Er, Yb-NPs may be useful for in vivo double modal imaging with NIR-II fluorescence imaging and MRI of transplanted stem cells.
Collapse
Affiliation(s)
- Shota Yamada
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
| | - Kaori Yamada
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan
- Department of Medical-Engineering Collaboration Supported by SEI Group CSR Foundation, Nagoya University, Tsurumai 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Department of Medical-Engineering Collaboration Supported by SEI Group CSR Foundation, Nagoya University, Tsurumai 65, Showa-Ku, Nagoya, 466-8550, Japan.
- B-3Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Institute for Advanced Research, Nagoya University, Tsurumai 65, Showa-Ku, Nagoya, 466-8550, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
Ferreira VHC, Gardette V, Busser B, Sancey L, Ronsmans S, Bonneterre V, Motto-Ros V, Duponchel L. Enhancing Diagnostic Capabilities for Occupational Lung Diseases Using LIBS Imaging on Biopsy Tissue. Anal Chem 2024; 96:7038-7046. [PMID: 38575850 DOI: 10.1021/acs.analchem.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Laser-induced breakdown spectroscopy (LIBS) imaging continues to gain strength as an influential bioanalytical technique, showing intriguing potential in the field of clinical analysis. This is because hyperspectral LIBS imaging allows for rapid, comprehensive elemental analysis, covering elements from major to trace levels consistently year after year. In this study, we estimated the potential of a multivariate spectral data treatment approach based on a so-called convex envelope method to detect exotic elements (whether they are minor or in trace amounts) in biopsy tissues of patients with occupational exposure-related diseases. More precisely, we have developed an approach called Interesting Features Finder (IFF), which initially allowed us to identify unexpected elements without any preconceptions, considering only the set of spectra contained in a LIBS hyperspectral data cube. This task is, in fact, almost impossible with conventional chemometric tools, as it entails identifying a few exotic spectra among several hundred thousand others. Once this detection was performed, a second approach based on correlation was used to locate their distribution in the biopsies. Through this unique data analysis pipeline to processing massive LIBS spectroscopic data, it was possible to detect and locate exotic elements such as tin and rhodium in a patient's tissue section, ultimately leading to a possible reclassification of their lung condition as an occupational disease. This review will thus demonstrate the potential of this new diagnostic tool based on LIBS imaging in addressing the shortcomings of approaches developed thus far. The proposed data processing approach naturally transcends this specific framework and can be leveraged across various domains of analytical chemistry, where the detection of rare events is concealed within extensive data sets.
Collapse
Affiliation(s)
- Victor H C Ferreira
- CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, Univ. Lille, 59000 Lille ,France
| | - Vincent Gardette
- Institut Lumière Matière, UMR 5306, CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne ,France
| | - Benoit Busser
- INSERM U1209 CNRS UMR 5309, Institute for Advanced Biosciences, Univ. Grenoble Alpes, 38000 Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Lucie Sancey
- INSERM U1209 CNRS UMR 5309, Institute for Advanced Biosciences, Univ. Grenoble Alpes, 38000 Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Steven Ronsmans
- Centre for Environment and Health, KU Leuven, and Department of Respiratory Diseases, University Hospitals Leuven, 3000Leuven, Belgium
| | | | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne ,France
| | - Ludovic Duponchel
- CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, Univ. Lille, 59000 Lille ,France
| |
Collapse
|
15
|
Su T, Zhao F, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. SMALL METHODS 2024; 8:e2301470. [PMID: 38044269 DOI: 10.1002/smtd.202301470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Self-monitoring in tumor therapy is a concept that allows for real-time monitoring of the location and state of applied nanomaterials. This monitoring relies on dynamic signals, such as wave or magnetic signals, which vary in response to changes in the location and state of nanomaterials. Dynamic changes in nanomaterials can be monitored using dynamic signals, making it possible to determine and control the treatment process. Theranostic nanomaterials, which possess unique physical and chemical properties, have recently been explored as a viable option for self-monitoring. With the help of self-monitoring, theranostic nanomaterials can guide themselves to achieve region-selective treatment with higher controllability and safety. In this review, self-monitoring theranostic nanomaterials will be introduced in three parts according to their roles during therapy: tumor accumulation, tumor therapy, and metabolism. The limitations and future challenges of current self-monitoring theranostic nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Tuo Su
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
16
|
Frencken AL, Richtsmeier D, Leonard RL, Williams AG, Johnson CE, Johnson JA, Blasiak B, Orlef A, Skorupa A, Sokół M, Tomanek B, Beckham W, Bazalova-Carter M, van Veggel FCJM. X-ray-Sensitive Doped CaF 2-Based MRI Contrast Agents for Local Radiation Dose Measurement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13453-13465. [PMID: 38445594 DOI: 10.1021/acsami.3c16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Ionizing radiation has become widely used in medicine, with application in diagnostic techniques, such as computed tomography (CT) and radiation therapy (RT), where X-rays are used to diagnose and treat tumors. The X-rays used in CT and, in particular, in RT can have harmful side effects; hence, an accurate determination of the delivered radiation dose is of utmost importance to minimize any damage to healthy tissues. For this, medical specialists mostly rely on theoretical predictions of the delivered dose or external measurements of the dose. To extend the practical use of ionizing radiation-based medical techniques, such as magnetic resonance imaging (MRI)-guided RT, a more precise measurement of the internal radiation dose internally is required. In this work, a novel approach is presented to measure dose in liquids for potential future in vivo applications. The strategy relies on MRI contrast agents (CAs) that provide a dose-sensitive signal. The demonstrated materials are (citrate-capped) CaF2 nanoparticles (NPs) doped with Eu3+ or Fe2+/Fe3+ ions. Free electrons generated by ionizing radiation allow the reduction of Eu3+, which produces a very small contrast in MRI, to Eu2+, which induces a strong contrast. Oxidative species generated by high-energy X-rays can be measured indirectly using Fe2+ because it oxidizes to Fe3+, increasing the contrast in MRI. Notably, in the results, a strong increase in the proton relaxation rates is observed for the Eu3+-doped NPs at 40 kV. At 6 MV, a significant increase in proton relaxation rates is observed using CaF2 NPs doped with Fe2+/Fe3+ after irradiation. The presented concept shows great promise for use in the clinic to measure in vivo local ionizing radiation dose, as these CAs can be intravenously injected in a saline solution.
Collapse
Affiliation(s)
- Adriaan L Frencken
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Devon Richtsmeier
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - R Lee Leonard
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Aleia G Williams
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Charles E Johnson
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Jacqueline A Johnson
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Barbara Blasiak
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow 31-342, Poland
| | - Andrzej Orlef
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Boguslaw Tomanek
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow 31-342, Poland
- Oncology Department, University of Alberta, 8303-112 Street NW, Edmonton, Alberta T6G 2T4, Canada
| | - Wayne Beckham
- BC Cancer, Royal Jubilee Hospital, Victoria, British Columbia V8R 6 V5, Canada
| | - Magdalena Bazalova-Carter
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Frank C J M van Veggel
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
17
|
Ju S, Cho HY. Biohybrid Nanoparticle-Based In Situ Monitoring of In Vivo Drug Delivery. BIOSENSORS 2023; 13:1017. [PMID: 38131776 PMCID: PMC10741677 DOI: 10.3390/bios13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Nanomaterials have gained huge attention worldwide owing to their unique physicochemical characteristics which enable their applications in the field of biomedicine and drug delivery systems. Although nanodrug delivery systems (NDDSs) have better target specificity and bioavailability than traditional drug delivery systems, their behavior and clearance mechanisms in living subjects remain unclear. In this regard, the importance of bioimaging methods has come to the forefront for investigating the biodistribution of nanocarriers and discovering drug release mechanisms in vivo. In this review, we introduce several examples of biohybrid nanoparticles and their clinical applications, focusing on their advantages and limitations. The various bioimaging methods for monitoring the fate of nanodrugs in biological systems and the future perspectives of NDDSs have also been discussed.
Collapse
Affiliation(s)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| |
Collapse
|
18
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
19
|
Zheng N, Yao Z, Tao S, Almadhor A, Alqahtani MS, Ghoniem RM, Zhao H, Li S. Application of nanotechnology in breast cancer screening under obstetrics and gynecology through the use of CNN and ANFIS. ENVIRONMENTAL RESEARCH 2023; 234:116414. [PMID: 37390953 DOI: 10.1016/j.envres.2023.116414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Breast cancer is the leading reason of death among women aged 35 to 54. Breast cancer diagnosis still presents significant challenges, and preventing the disease's most severe symptoms requires early detection. The role of nanotechnology in the tumor-treatment has recently attracted a lot of interest. In cancer therapies, nanotechnology plays a major role in the medication distribution process. Nanoparticles have the ability to target tumors. Nanoparticles are favorable and maybe preferable for usage in tumor detection and imaging due to their incredibly small size. Quantum dots, semiconductor crystals with increased labeling and imaging capabilities for cancer cells, are one of the particles that have received the most research attention. The design of the research is cross-sectional and descriptive. From April through September of 2020, data were gathered at the State Hospital. All pregnant women who came to the hospital throughout the first and second trimesters of the research's data collection were included in the study population. 100 pregnant women between the ages of 20 and 40 who had not yet had a mammogram comprised the research sample. 1100 digitized mammography images are included in the dataset, which was obtained from a hospital. Convolutional neural networks (CNN) were used to scan all images, and breast masses and mass comparisons were made using the malignant-benign categorization. The adaptive neuro-fuzzy inference system (ANFIS) then examined all of the data obtained by CNN in order to identify breast cancer early using inputs based on the nine different inputs. The precision of the mechanism used in this technique to determine the ideal radius value is significantly impacted by the radius value. Nine variables that define breast cancer indicators were utilized as inputs to the ANFIS classifier, which was then used to identify breast cancer. The parameters were given the necessary fuzzy functions, and the combined dataset was applied to train the method. Testing was initially performed by 30% of dataset that was later done with the real data obtained from the hospital. The accuracy of the results for 30% data was 84% (specificity =72.7%, sensitivity =86.7%) and the results for the real data was 89.8% (sensitivity =82.3%, specificity =75.9%), respectively.
Collapse
Affiliation(s)
- Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Zhiang Yao
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China
| | - Shanhui Tao
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China
| | - Ahmad Almadhor
- Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Rania M Ghoniem
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Huajun Zhao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Shijun Li
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
21
|
Gupta D, Roy I, Gandhi S. Metallic nanoparticles for CT-guided imaging of tumors and their therapeutic applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Somoza M, Rial R, Liu Z, Llovo IF, Reis RL, Mosqueira J, Ruso JM. Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:501. [PMID: 36770462 PMCID: PMC9921701 DOI: 10.3390/nano13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications.
Collapse
Affiliation(s)
- Manuel Somoza
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Iago F. Llovo
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Jesús Mosqueira
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Wu J, Qiao H. Medical Imaging Technology and Imaging Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:15-38. [PMID: 37460725 DOI: 10.1007/978-981-32-9902-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.
Collapse
Affiliation(s)
- Jieting Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
24
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
25
|
Thi Thuy Khue N, Thanh Tam LT, Thanh Dung N, The Tam L, Xuan Chung N, Thi Ngoc Linh N, Dinh Vinh N, Minh Quy B, Trong Lu L. Water‐dispersible Gadolinium Oxide Nanoplates as an Effective Positive Magnetic Resonance Imaging Contrast Agent. ChemistrySelect 2022. [DOI: 10.1002/slct.202202062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Thi Thuy Khue
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Haiphong University of Medicine and Pharmacy 72A Nguyen Binh Khiem, Ngo Quyen Hai Phong Vietnam
| | - Le Thi Thanh Tam
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Ngo Thanh Dung
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Le The Tam
- Vinh University 182 Le Duan Vinh City Vietnam
| | - Nguyen Xuan Chung
- Department of Physics Hanoi University of Mining and Geology 18 Pho Vien, Bac Tu Liem Hanoi Vietnam
| | - Nguyen Thi Ngoc Linh
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Nguyen Dinh Vinh
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Bui Minh Quy
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Le Trong Lu
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| |
Collapse
|
26
|
Yamada S, Yukawa H, Yamada K, Murata Y, Jo JI, Yamamoto M, Sugawara-Narutaki A, Tabata Y, Baba Y. In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2022; 22:5705. [PMID: 35957262 PMCID: PMC9371134 DOI: 10.3390/s22155705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The diagnosis of the dynamics, accumulation, and engraftment of transplanted stem cells in vivo is essential for ensuring the safety and the maximum therapeutic effect of regenerative medicine. However, in vivo imaging technologies for detecting transplanted stem cells are not sufficient at present. We developed nanohybrid particles composed of dendron-baring lipids having two unsaturated bonds (DLU2) molecules, quantum dots (QDs), and magnetic nanoparticles in order to diagnose the dynamics, accumulation, and engraftment of transplanted stem cells, and then addressed the labeling and in vivo fluorescence and magnetic resonance (MR) imaging of stem cells using the nanohybrid particles (DLU2-NPs). Five kinds of DLU2-NPs (DLU2-NPs-1-5) composed of different concentrations of DLU2 molecules, QDs525, QDs605, QDs705, and ATDM were prepared. Adipose tissue-derived stem cells (ASCs) were labeled with DLU2-NPs for 4 h incubation, no cytotoxicity or marked effect on the proliferation ability was observed in ASCs labeled with DLU2-NPs (640- or 320-fold diluted). ASCs labeled with DLU2-NPs (640-fold diluted) were transplanted subcutaneously onto the backs of mice, and the labeled ASCs could be imaged with good contrast using in vivo fluorescence and an MR imaging system. DLU2-NPs may be useful for in vivo multimodal imaging of transplanted stem cells.
Collapse
Affiliation(s)
- Shota Yamada
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (S.Y.); (A.S.-N.)
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.Y.); (Y.B.)
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- B-3Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Institute for Advanced Research, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Department of Medical-Engineering Collaboration Supported by SEI Group CSR Foundation, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Kaori Yamada
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.Y.); (Y.B.)
| | - Yuki Murata
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; (Y.M.); (J.-i.J.); (Y.T.)
| | - Jun-ichiro Jo
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; (Y.M.); (J.-i.J.); (Y.T.)
| | - Masaya Yamamoto
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan;
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (S.Y.); (A.S.-N.)
| | - Yasuhiko Tabata
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; (Y.M.); (J.-i.J.); (Y.T.)
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.Y.); (Y.B.)
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Medical-Engineering Collaboration Supported by SEI Group CSR Foundation, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
27
|
Oberländer J, Ayerbe R, Cabellos J, da Costa Marques R, Li B, Günday-Türeli N, Türeli AE, Ofir R, Shalom EI, Mailänder V. Higher Loading of Gold Nanoparticles in PAD Mesenchymal-like Stromal Cells Leads to a Decreased Exocytosis. Cells 2022; 11:cells11152323. [PMID: 35954168 PMCID: PMC9367297 DOI: 10.3390/cells11152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cell therapy is an important new method in medicine and is being used for the treatment of an increasing number of diseases. The challenge here is the precise tracking of cells in the body and their visualization. One method to visualize cells more easily with current methods is their labeling with nanoparticles before injection. However, for a safe and sufficient cell labeling, the nanoparticles need to remain in the cell and not be exocytosed. Here, we test a glucose-PEG-coated gold nanoparticle for the use of such a cell labeling. To this end, we investigated the nanoparticle exocytosis behavior from PLX-PAD cells, a cell type currently in clinical trials as a potential therapeutic agent. We showed that the amount of exocytosed gold from the cells was influenced by the uptake time and loading amount. This observation will facilitate the safe labeling of cells with nanoparticles in the future and contribute to stem cell therapy research.
Collapse
Affiliation(s)
- Jennifer Oberländer
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rafael Ayerbe
- LEITAT Technological Center, c/Innovació, 2, 08225 Terrassa, Spain; (R.A.); (J.C.)
| | - Joan Cabellos
- LEITAT Technological Center, c/Innovació, 2, 08225 Terrassa, Spain; (R.A.); (J.C.)
| | - Richard da Costa Marques
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Bin Li
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Nazende Günday-Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Akif Emre Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Racheli Ofir
- Pluristem Therapeutics Inc., Matam Park, Building 05, Haifa 3508409, Israel; (R.O.); (E.I.S.)
| | - Eliran Ish Shalom
- Pluristem Therapeutics Inc., Matam Park, Building 05, Haifa 3508409, Israel; (R.O.); (E.I.S.)
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
28
|
Varbanov HP, Glasnov T, Belaj F, Herbert S, Brumby T, Mösch-Zanetti NC. New strategies towards advanced CT contrast agents. Development of neutral and monoanionic sulfur-bridged W(V) dimeric complexes. Dalton Trans 2022; 51:11086-11097. [PMID: 35796232 DOI: 10.1039/d2dt01470j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multinuclear tungsten complexes are intriguing candidates for new contrast media that can provide substantial improvements in CT imaging diagnostics. Herein, we present a ligand strategy, based on amino acids, and mono- and disubstituted EDTA derivatives, that enables the development of stable complexes with high tungsten content and reasonably low osmolality. Accordingly, a series of neutral and monoanionic di-μ-sulfido W(V) dimers have been synthesized via a convenient procedure utilizing microwave heating in combination with ion-pair HPLC reaction monitoring. The compounds were characterized in detail by various techniques, including ESI-HRMS, NMR spectroscopy, HPLC, elemental analysis, and X-ray crystallography. The aqueous stability of the complexes under physiologically relevant conditions, and during heat sterilization was also examined as an initial assessment of their potential applicability as radiocontrast agents. Monoanionic complexes featuring monosubstituted EDTA derivatives have demonstrated high stability, while producing a lower number of ions in solution (resulting in lower osmolality) in comparison to their bis-anionic EDTA counterparts. Nevertheless, they exhibited insufficient water solubility for application as intravascular contrast agents. However, our study showed that aqueous solubility of this type of complexes can be tuned by small modifications in the ligand structure.
Collapse
Affiliation(s)
- Hristo P Varbanov
- Institute of Chemistry - Inorganic Chemistry, University of Graz, Schubertstraße 1/III, 8010 Graz, Austria.
| | - Toma Glasnov
- Institute of Chemistry - Medicinal Chemistry, University of Graz, Schubertstraße 1/IV, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry - Inorganic Chemistry, University of Graz, Schubertstraße 1/III, 8010 Graz, Austria.
| | - Simon Herbert
- Research & Development, Pharmaceuticals Laboratory, Bayer AG, 13342 Berlin, Germany
| | - Thomas Brumby
- Research & Development, Pharmaceuticals Laboratory, Bayer AG, 13342 Berlin, Germany
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry - Inorganic Chemistry, University of Graz, Schubertstraße 1/III, 8010 Graz, Austria.
| |
Collapse
|
29
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Wu H, Ou S, Zhang H, Huang R, Yu S, Zhao M, Tai S. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int 2022; 22:220. [PMID: 35761336 PMCID: PMC9237966 DOI: 10.1186/s12935-022-02640-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/18/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is the most lethal type of malignancy and is characterized by high invasiveness without severe symptoms. It is difficult to detect PC at an early stage because of the low diagnostic accuracy of existing routine methods, such as abdominal ultrasound, CT, MRI, and endoscopic ultrasound (EUS). Therefore, it is of value to develop new diagnostic techniques for early detection with high accuracy. In this review, we aim to highlight research progress on novel biomarkers, artificial intelligence, and nanomaterial applications on the diagnostic accuracy of pancreatic cancer.
Collapse
Affiliation(s)
- Haotian Wu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| | - Suwen Ou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| | | | - Rui Huang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| | - Ming Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, 610500 China
| | - Sheng Tai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| |
Collapse
|
31
|
Mulkerns NMC, Hoffmann WH, Ramos-Soriano J, de la Cruz N, Garcia-Millan T, Harniman RL, Lindsay ID, Seddon AM, Galan MC, Gersen H. Measuring the refractive index and sub-nanometre surface functionalisation of nanoparticles in suspension. NANOSCALE 2022; 14:8145-8152. [PMID: 35616244 PMCID: PMC9178438 DOI: 10.1039/d2nr00120a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Direct measurements to determine the degree of surface coverage of nanoparticles by functional moieties are rare, with current strategies requiring a high level of expertise and expensive equipment. Here, a practical method to determine the ratio of the volume of the functionalisation layer to the particle volume based on measuring the refractive index of nanoparticles in suspension is proposed. As a proof of concept, this technique is applied to poly(methyl methacrylate) (PMMA) nanoparticles and semicrystalline carbon dots functionalised with different surface moieties, yielding refractive indices that are commensurate to those from previous literature and Mie theory. In doing so, it is demonstrated that this technique is able to optically detect differences in surface functionalisation or composition of nanometre-sized particles. This non-destructive and rapid method is well-suited for in situ industrial particle characterisation and biological applications.
Collapse
Affiliation(s)
- Niall M C Mulkerns
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
| | - William H Hoffmann
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | | | - Teodoro Garcia-Millan
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Ian D Lindsay
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
| | - Annela M Seddon
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Henkjan Gersen
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
| |
Collapse
|
32
|
Garcia-Millan T, Swift TA, Morgan DJ, Harniman RL, Masheder B, Hughes S, Davis SA, Oliver TAA, Galan MC. Small variations in reaction conditions tune carbon dot fluorescence. NANOSCALE 2022; 14:6930-6940. [PMID: 35466987 PMCID: PMC9109711 DOI: 10.1039/d2nr01306a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of robust and reproducible synthetic strategies for the production of carbon dots (CDs) with improved fluorescence quantum yields and distinct emission profiles is of great relevance given the vast range of applications of CDs. The fundamental understanding at a molecular level of their formation mechanism, chemical structure and how these parameters are correlated to their photoluminescence (PL) properties is thus essential. In this study, we describe the synthesis and structural characterization of a range of CDs with distinct physico-chemical properties. The materials were prepared under three minutes of microwave irradiation using the same common starting materials (D-glucosamine hydrochloride 1 and ethylenediamine 2) but modifying the stoichiometry of the reagents. We show that small variation in reaction conditions leads to changes in the fluorescent behaviour of the CDs, especially in the selective enhancement of overlapped fluorescence bands. Structural analysis of the different CD samples suggested different reaction pathways during the CD formation and surface passivation, with the latter step being key to the observed differences. Moreover, we demonstrate that these materials have distinct reversible response to pH changes, which we can be attribute to different behaviour towards protonation/deprotonation events of distinct emission domains present within each nanomaterial. Our results highlight the importance of understanding the reaction pathways that lead to the formation of this carbon-based nanomaterials and how this can be exploited to develop tailored materials towards specific applications.
Collapse
Affiliation(s)
| | - Thomas A Swift
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - David J Morgan
- Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- HarwellXPS, - ESPRC National Facility for XPS, Research Complex at Harwell (RcAH), Didcot, Oxon OX11 0FA, UK
| | - Robert L Harniman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Benjamin Masheder
- DST Innovations Ltd, Unit 6a Bridgend Business Centre, Bennett Street, Bridgend, CF31 3SH, UK
| | - Stephen Hughes
- DST Innovations Ltd, Unit 6a Bridgend Business Centre, Bennett Street, Bridgend, CF31 3SH, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Thomas A A Oliver
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
33
|
Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
35
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
36
|
Nazari M, Saljooghi AS, Ramezani M, Alibolandi M, Mirzaei M. Current status and future prospects of nanoscale metal–organic frameworks in bioimaging. J Mater Chem B 2022; 10:8824-8851. [DOI: 10.1039/d2tb01787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The importance of diagnosis and in situ monitoring of lesion regions and transportation of bioactive molecules has a pivotal effect on successful treatment, reducing side effects, and increasing the chances of survival in the case of diseases.
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, Khorasan Razavi, Iran
| |
Collapse
|
37
|
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021; 8:rbab062. [PMID: 34868634 PMCID: PMC8634494 DOI: 10.1093/rb/rbab062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of 3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures. Magnetic resonance imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM tumours. However, commercially available clinical contrast agents do not accurately distinguish between GBM, surrounding normal tissue and other cancer types due to their limited ability to cross the blood–brain barrier, their low relaxivity and their potential toxicity. New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfaces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging technology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug delivery systems for GBM treatments. This review focuses on the research progress for GBM-targeting MRI contrast agents as well as MRI-guided GBM therapy.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ke Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Zhang J, Liu W, Zhang P, Song Y, Ye Z, Fu H, Yang S, Qin Q, Guo Z, Zhang J. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomater Sci Eng 2021; 8:32-53. [PMID: 34851607 DOI: 10.1021/acsbiomaterials.1c01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-ray computed tomography (CT), as one of the most widely used noninvasive imaging modalities, can provide three-dimensional anatomic details with high resolution, which plays a key role in disease diagnosis and treatment assessment. However, although they are the most prevalent and FDA-approved contrast agents, iodinated water-soluble molecules still face some challenges in clinical applications, such as fast clearance, serious adverse effects, nonspecific distribution, and low sensitivity. Because of their high biocompatibility, tunable designability, controllable biodegradation, facile synthesis, and modification capability, the polymers have demonstrated great potential for efficient delivery of iodinated contrast agents (ICAs). Herein, we comprehensively summarized the applications of multifunctional polymeric materials for ICA delivery in terms of increasing circulation time, decreasing nephrotoxicity, and improving the specificity and sensitivity of ICAs for CT imaging. We mainly focused on various iodinated polymers from the aspects of preparation, functionalization, and application in medical diagnosis. Future perspectives for achieving better imaging and clinical translation are also discussed to motivate new technologies and solutions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Weiming Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China.,Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Yanqiu Song
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Shicheng Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
39
|
Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, Guo Z, Zhang J, Zhang J. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Molecules 2021; 26:7063. [PMID: 34885645 PMCID: PMC8658861 DOI: 10.3390/molecules26237063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
X-ray computed tomography (CT) imaging can produce three-dimensional and high-resolution anatomical images without invasion, which is extremely useful for disease diagnosis in the clinic. However, its applications are still severely limited by the intrinsic drawbacks of contrast media (mainly iodinated water-soluble molecules), such as rapid clearance, serious toxicity, inefficient targetability and poor sensitivity. Due to their high biocompatibility, flexibility in preparation and modification and simplicity for drug loading, organic nanoparticles (NPs), including liposomes, nanoemulsions, micelles, polymersomes, dendrimers, polymer conjugates and polymeric particles, have demonstrated tremendous potential for use in the efficient delivery of iodinated contrast media (ICMs). Herein, we comprehensively summarized the strategies and applications of organic NPs, especially polymer-based NPs, for the delivery of ICMs in CT imaging. We mainly focused on the use of polymeric nanoplatforms to prolong circulation time, reduce toxicity and enhance the targetability of ICMs. The emergence of some new technologies, such as theragnostic NPs and multimodal imaging and their clinical translations, are also discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Xinyu Ma
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Ruiwei Guo
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Zhanpeng Ye
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Han Fu
- Graduate School, Tianjin Medical University, Tianjin 300070, China;
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| |
Collapse
|
40
|
Shetty S, Baig N, Safa M, Gharbi R, Sriram S, Rasoul F, Alameddine B. Highly Selective and Sensitive Aggregation-Induced Emission of Fluorescein-Coated Metal Oxide Nanoparticles. ChemistryOpen 2021; 10:1067-1073. [PMID: 34674374 PMCID: PMC8529954 DOI: 10.1002/open.202100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
We report the synthesis, characterization, and photophysical properties of novel metal oxide nanoparticles (NPs) coated with specially designed fluorescein substituents which are capped with electron-withdrawing groups. The fluorescein-coated nanoparticles were synthesized in excellent yields, and their structures were confirmed using various advanced spectroscopic, instrumental, and surface analysis techniques, revealing the formation of the target functionalized nanoparticles (FNPs) which show superior chemical and thermal stabilities. In addition, the photophysical properties of the FNPs were examined using UV-visible absorption and fluorescence spectroscopy. These latter techniques disclosed aggregation-induced emission (AIE) properties for most of the target FNPs, namely those which are soluble in common organic solvents at selective concentration ranges of water fractions in the solvent mixture.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural SciencesGulf University for Science and Technology32093Hawally>Kuwait
- Functional Materials Group – CAMBGulf University for Science and Technology40006West MishrefKuwait
| | - Noorullah Baig
- Department of Mathematics and Natural SciencesGulf University for Science and Technology32093Hawally>Kuwait
- Functional Materials Group – CAMBGulf University for Science and Technology40006West MishrefKuwait
| | - Muhieddine Safa
- Petroleum Research CenterKuwait Institute for Scientific Research70051SafatKuwait
| | | | | | - Firas Rasoul
- Petroleum Research CenterKuwait Institute for Scientific Research70051SafatKuwait
| | - Bassam Alameddine
- Department of Mathematics and Natural SciencesGulf University for Science and Technology32093Hawally>Kuwait
- Functional Materials Group – CAMBGulf University for Science and Technology40006West MishrefKuwait
| |
Collapse
|
41
|
Tukova A, Kuschnerus IC, Garcia-Bennett A, Wang Y, Rodger A. Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. NANOMATERIALS 2021; 11:nano11102565. [PMID: 34685003 PMCID: PMC8538065 DOI: 10.3390/nano11102565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Gold nanoparticles have the potential to be used in biomedical applications from diagnostics to drug delivery. However, interactions of gold nanoparticles with different biomolecules in the cellular environment result in the formation of a “protein corona”—a layer of protein formed around a nanoparticle, which induces changes in the properties of nanoparticles. In this work we developed methods to reproducibly synthesize spheroidal and star-shaped gold nanoparticles, and carried out a physico-chemical characterization of synthesized anionic gold nanospheroids and gold nanostars through transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ZP), nanoparticles tracking analysis (NTA), ultraviolet-visible (UV–Vis) spectroscopy and estimates of surface-enhanced Raman spectroscopy (SERS) signal enhancement ability. We analyzed how they interact with proteins after pre-incubation with bovine serum albumin (BSA) via UV–Vis, DLS, ZP, NTA, SERS, cryogenic TEM (cryo-TEM) and circular dichroism (CD) spectroscopy. The tests demonstrated that the protein adsorption on the particles’ surfaces was different for spheroidal and star shaped particles. In our experiments, star shaped particles limited the protein corona formation at SERS “hot spots”. This benefits the small-molecule sensing of nanostars in biological media. This work adds more understanding about protein corona formation on gold nanoparticles of different shapes in biological media, and therefore guides design of particles for studies in vitro and in vivo.
Collapse
Affiliation(s)
- Anastasiia Tukova
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
- Correspondence: (A.T.); (Y.W.)
| | - Inga Christine Kuschnerus
- Electron Microscopy Unit, University of New South Wales, Sydney, NSW 2052, Australia;
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alfonso Garcia-Bennett
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
| | - Yuling Wang
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
- Correspondence: (A.T.); (Y.W.)
| | - Alison Rodger
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
| |
Collapse
|
42
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
43
|
Green fluorescent carbon dots as targeting probes for LED‐dependent bacterial killing. NANO SELECT 2021. [DOI: 10.1002/nano.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
44
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
46
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
48
|
Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. CRYSTALS 2021. [DOI: 10.3390/cryst11060674] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite is one of the most studied biomaterials in the medical and dental field, because of its biocompatibility; it is the main constituent of the mineral part of teeth and bones. In dental science, hydroxyapatite nanoparticles (HAnps) or nano-hydroxyapatite (nano-HA) have been studied, over the last decade, in terms of oral implantology and bone reconstruction, as well in restorative and preventive dentistry. Hydroxyapatite nanoparticles have significant remineralizing effects on initial enamel lesions, and they have also been used as an additive material in order to improve existing and widely used dental materials, mainly in preventive fields, but also in restorative and regenerative fields. This paper investigates the role of HAnps in dentistry, including recent advances in the field of its use, as well as their advantages of using it as a component in other dental materials, whether experimental or commercially available. Based on the literature, HAnps have outstanding physical, chemical, mechanical and biological properties that make them suitable for multiple interventions, in different domains of dental science. Further well-designed randomized controlled trials should be conducted in order to confirm all the achievements revealed by the in vitro or in vivo studies published until now.
Collapse
|
49
|
Akbar A, Pillalamarri N, Jonnakuti S, Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci 2021; 11:108. [PMID: 34108005 PMCID: PMC8191053 DOI: 10.1186/s13578-021-00623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Silica Based Nanomaterial for Drug Delivery. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:57-89. [DOI: 10.2174/9781681088235121010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|